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Abstract

Multiplicity—the existence of distinct models with compa-
rable performance—has received growing attention in recent
years. While prior work has largely emphasized modelling
choices, the critical role of data in shaping multiplicity has
been comparatively overlooked. In this work, we introduce a
neighbouring datasets framework to examine the most granu-
lar case: the impact of a single-data-point difference on multi-
plicity. Our analysis yields a seemingly counterintuitive find-
ing: neighbouring datasets with greater inter-class distribu-
tion overlap exhibit lower multiplicity. This reversal of con-
ventional expectations arises from a shared Rashomon pa-
rameter, and we substantiate it with rigorous proofs.
Building on this foundation, we extend our framework to
two practical domains: active learning and data imputation.
For each, we establish natural extensions of the neighbour-
ing datasets perspective, conduct the first systematic study of
multiplicity in existing algorithms, and finally, propose novel
multiplicity-aware methods, namely, multiplicity-aware data
acquisition strategies for active learning and multiplicity-
aware data imputation techniques.

1 Introduction

Predictive multiplicity refers to the phenomenon of a set
of “good models” (the Rashomon set), typically defined as
models whose performance exceeds a given threshold (the
Rashomon parameter), learning distinct decision boundaries
and therefore producing conflicting predictions for the same
individual (Marx, Calmon, and Ustun 2020; Black, Ragha-
van, and Barocas 2022; Breiman 2001).

Multiplicity has been a point of concern for many, as
decisions that affect individuals lack adequate justification
when a model is chosen arbitrarily from the Rashomon
set (Black, Raghavan, and Barocas 2022; Gomez et al. 2024;
Watson-Daniels et al. 2024; Sokol et al. 2024). At the same
time, multiplicity is also championed as a counterbalance
to monoculture, where reliance on a single dominant sys-
tem can systematically deny individuals access to critical re-
sources, and multiplicity can introduce much needed diver-
sity (Creel and Hellman 2022; Jain et al. 2024; Jain, Creel,
and Wilson 2024; Kleinberg and Raghavan 2021). Recent
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work by Gur-Arieh and Lee (2025) brings together these two
strands of research by identifying distinct settings in which
one might prefer consistency versus arbitrariness.

Irrespective of the direction, controlling multiplicity re-
quires understanding how developer choices shape down-
stream outcomes (Ganesh, Taik, and Farnadi 2025). While
existing work has primarily examined how choices dur-
ing model training influence predictive multiplicity (Black,
Raghavan, and Barocas 2022), the role of data processing
remains largely overlooked. This gap may stem from the
difficulty of mapping how data processing decisions affect
downstream models without actually training them (Koh
et al. 2019), or from the prevailing norm in the literature of
relying on already processed datasets rather than questioning
the processing choices themselves (Paullada et al. 2021).

Consider, for example, a task with missing values for pre-
dicting an individual’s income (Ding et al. 2021). Using our
multiplicity-aware imputation methods (more details in §5),
we find that the choice of imputation can shift downstream
multiplicity from 14% to 24%, i.e., up to 10% of the dataset
is affected by this one data processing choice. Income pre-
dictors are used in applications such as loan approval or hir-
ing, where controlled arbitrariness can be helpful to prevent
monoculture (Gur-Arieh and Lee 2025). Thus, a poor impu-
tation choice can potentially result in a blanket rejection for
up to 10% of the data, not recoverable during model training.
Clearly, choices made during data processing play a signifi-
cant role in downstream multiplicity.

While recent frameworks like dataset multiplicity (Meyer,
Albarghouthi, and D’ Antoni 2023) study noise in the data
while keeping the training pipeline fixed, we argue that iso-
lating either model or dataset multiplicity will give us an
incomplete picture. In our work, we instead focus on how
different data processing choices—creating neighbouring
datasets—affect model multiplicity (see Figure 1).

The perspective of neighbouring datasets, inspired by the
literature in differential privacy (Dwork 2006), pops up re-
peatedly and naturally in many data processing scenarios,
such as data acquisition for active learning (Ren et al. 2021;
Aggarwal et al. 2014), data imputation (Miao et al. 2022),
and handling outliers (Aguinis, Gottfredson, and Joo 2013),
among others. Data processing rarely transforms a dataset
entirely; instead, it introduces incremental changes that can
still have significant downstream effects. For instance, con-
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Figure 1: Our neighbouring datasets framework alongside model and dataset multiplicity frameworks.

sider data imputation, where different techniques may fill the
missing values in distinct ways. However, the majority of the
data is not missing and thus remains unchanged. Hence, data
imputation can be seen as a choice between various neigh-
bouring datasets.

Contributions. By framing our study through the lens of
neighbouring datasets, we provide a unified framework that
accommodates many frequently studied problems in data
processing, allowing us to systematically examine develop-
ers’ choices and their influence on multiplicity. We then ap-
ply the insights derived from this perspective to two well-
established subdomains of data processing, active learning
and data imputation, highlighting the trends of downstream
multiplicity as well as designing new algorithms offering
control over multiplicity. More specifically, our main con-
tributions are,

1. Neighbouring Datasets Framework: A novel unified
framework to study the impact of various data processing
choices on multiplicity (§3). We formalize neighbouring
datasets for deeper theoretical insights in controlled set-
tings and practical extensions in real-world applications.

2. Reversed Multiplicity Trends under a Shared
Rashomon Parameter: Theoretical insights into neigh-
bouring datasets and multiplicity reveal a surprising
result: under a shared Rashomon parameter, less sepa-
rability leads to lower multiplicity (§4). This reverses
expected trends based on prior work (Watson-Daniels,
Parkes, and Ustun 2023; Semenova et al. 2024). Without
contradicting existing literature, this reversal occurs due
to the use of a shared Rashomon parameter across neigh-
bouring datasets, highlighting how these frameworks fail
to capture multiplicity trends in data processing.

3. Multiplicity and Data Imputation: We investigate data
imputation from the lens of neighbouring datasets, per-
forming the first empirical study of multiplicity in data
imputation, as well as using our theoretical insights to
propose new multiplicity-aware data imputation algo-
rithms (§5). Our experiments reveal consistent trends of
less separability leading to lower multiplicity, even be-
yond the assumptions of our theoretical analysis, further
strengthening the value of our framework.

4. Multiplicity and Active Learning: We repeat our study
for another important data processing task, data acquisi-
tion for active learning, and observe a similar set of con-
tributions and trends as in data imputation (§A).

2 Related Work

Multiplicity and Rashomon Sets. The literature on multi-
plicity has grown rapidly (Ganesh, Taik, and Farnadi 2025),
with a particular focus on predictive multiplicity (Marx, Cal-
mon, and Ustun 2020; Cooper, Frankle, and De Sa 2022;
Watson-Daniels et al. 2024). Through extension to new
forms of multiplicity (Watson-Daniels et al. 2023, 2024;
Hsu et al. 2024b), development of better tools for audit-
ing and quantifying multiplicity (Hsu et al. 2024b; Kissel
and Mentch 2024; Zhong et al. 2024; Xin et al. 2022; Hsu
et al. 2024a; Ganesh 2024), and deeper investigations into
the benefits and harms of multiplicity (Black, Raghavan, and
Barocas 2022; Rudin et al. 2024; Gur-Arieh and Lee 2025),
it is evident that multiplicity has become a valuable lens for
understanding the ambiguity inherent in learning pipelines.

Yet, despite growing interest, most research continues
to concentrate only on modeling decisions during learn-
ing (Ganesh, Taik, and Farnadi 2025). In contrast, our work
joins a smaller but emerging thread of research that aims
to uncover the inherent multiplicity in the datasets them-
selves (Meyer, Albarghouthi, and D’Antoni 2023; Cavus
and Biecek 2024; Semenova et al. 2024; Watson-Daniels,
Parkes, and Ustun 2023).

Data and Multiplicity. Meyer, Albarghouthi, and
D’Antoni (2023) proposed a framework for dataset mul-
tiplicity, showing how noisy data can introduce multiplic-
ity. However, while their focus lies in aggregating variance
across datasets using a fixed learning pipeline, we instead
investigate and minutely compare variations across datasets
and their relationship with downstream multiplicity under
changing learning pipelines.

The works closely related to our theoretical analysis are
those of Semenova et al. (2024); Watson-Daniels, Parkes,
and Ustun (2023). Semenova et al. (2024) demonstrate that
noisier tasks, i.e., tasks with higher inter-class distribution
overlap, exhibit higher multiplicity. Watson-Daniels, Parkes,
and Ustun (2023) provide similar insights on the low sepa-
rability of a task as a potential cause of multiplicity. Inter-
estingly, our examination of neighbouring datasets under a
shared Rashomon parameter reverses these trends (Semen-
ova et al. 2024; Watson-Daniels, Parkes, and Ustun 2023).
This is because existing frameworks are designed to com-
pare distinct tasks, and not neighbouring datasets within a
single task. Our framework addresses this gap, enabling the
study of how data processing affects multiplicity.

On the empirical side, the study by Cavus and Biecek
(2024) is most related to our work. They conduct a large-
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Figure 2: Examples of neighbouring datasets in several data preparation and processing pipelines.

scale empirical analysis of data balancing methods and
their effect on multiplicity. We provide a similar analy-
sis for data acquisition and imputation techniques. Further-
more, drawing on our theoretical insights, we also introduce
multiplicity-aware data processing, which can achieve the
lowest (or highest) multiplicity while preserving accuracy.

Active Learning and Data Imputation. In this work, we
study two components of data processing from the lens of
neighbouring datasets, namely active learning and data im-
putation. Active learning focuses on selecting the data points
to label (Ren et al. 2021; Aggarwal et al. 2014), recog-
nizing that labeling is often expensive. On the other hand,
data imputation deals with the issue of missing data (Miao
et al. 2022). Together, they represent decisions that devel-
opers must navigate during data collection and preparation.
Although both fields have rich histories of research, to the
best of our knowledge, we are the first to study their impact
on multiplicity.

3 Neighbouring Datasets

When preparing data, developers routinely make decisions
that involve choosing between neighbouring datasets. Exam-
ples include: active learning (Ren et al. 2021), where the new
data points to label are chosen while the rest of the dataset
remains unchanged; data imputation (Miao et al. 2022),
where a few missing values are filled leading to datasets var-
ied in only those data points; and handling outliers (Neale
2016), where normalizing only affects outliers (see Figure
2).

Making these choices with an awareness of multiplicity
can allow developers to understand and control the down-
stream trends. Thus, studying multiplicity for neighbouring
datasets can enable multiplicity-aware data collection and
preparation practices from the outset and lead to informed
decision-making.

3.1 Preliminaries: Rashomon Set and Multiplicity

Consider a supervised learning setup, with data distribu-
tion D = X x Y, where X represents the feature dis-
tribution and Y represents the label distribution. We sam-
ple two datasets independently from the distribution D, the
train dataset Diyain = (Xtrain, Yerain) ~ D and the test
dataset Dyost = (Xtest, Yiest) ~ D. Given a loss function
L(0, D) for the parameter vector § on the dataset D, and the
Rashomon parameter ¢, the Rashomon set is defined as (Hsu
and Calmon 2022):

Definition 3.1 (Rashomon Set). The set of all parameter
vectors © = {61,0s,...}, such that the loss defined by

L(6;, Dtrain) for each parameter vector in the set is less than
a given threshold ¢, i.e.,

G(Dtm,m,e) = {91 | L(eia Dt'rain) S 6} (1)
The Rashomon set is the set of models that achieve sim-
ilar loss on the training dataset. We will omit the subscript
and refer to the Rashomon set as simply O for brevity. We
can then quantify multiplicity as M (O, Dyest), Where M ()
is a multiplicity metric that maps the Rashomon set and the
test dataset to a score between 0 and 1, representing the
severity of prediction conflicts. For instance, we can quan-
tify predictive multiplicity for classification by defining am-
biguity (Marx, Calmon, and Ustun 2020) M“() as:

Definition 3.2 (Ambiguity). The ambiguity of a prediction
problem over the Rashomon set © is the proportion of points
in the test dataset D;. ; that can be assigned a conflicting
prediction between two classifiers in the Rashomon set, i.e.,
0;, 9j €0:

1
MA(©, Dyest)

= Dol > eep,.., Maxg, o,co 1[0i(z) # 0;(z)]  (2)

We will denote multiplicity as Mg (for example, ambi-
guity as Mg) for brevity. We make a distinction between
the Rashomon set created on the train dataset Dy,..;, and
the multiplicity measured on the test dataset Dy.g;. This is
different from the tradition of measuring multiplicity on the
train dataset itself (Marx, Calmon, and Ustun 2020). We ar-
gue that this distinction is important in practice, as the phe-
nomenon of several models achieving similar loss and thus
forcing an arbitrary choice by the developer occurs during
training, while its impact and hence the multiplicity is felt
when the model is deployed.

3.2 k-Neighbouring Datasets

Definition 3.3 (k-Neighbouring Datasets). Two datasets
D', D? of same size, ie., |D!| = |D?| = n are k-
neighbouring if they differ in exactly & data points, i.e.,

ID'|=|D?*=n and |{i:D;#D}} =k<n (3)

Here, the size of a dataset |D| represents the number of
data points present in the dataset.

Objective: As previously discussed, the formulation of
k-neighbouring datasets extends naturally to various data
preparation decisions, where the developer has to choose
between several neighbouring datasets. The objective, thus,
is to facilitate a multiplicity-aware choice in such sce-
narios. More formally, given two k-neighbouring datasets
D} iny D2 . and the Rashomon sets on these datasets de-
noted by ©' = O(p1  1,0% = O(pz ), we aim to
compare the multiplicity due to these datasets on a common
test set Dyeqy, i.€., compare the values Mg: and Mgz2.



4 Higher Overlap leads to a Smaller
Rashomon Set

Data-driven learning methods typically rely on implicitly
approximating the underlying distribution. As a result, learn-
ing a classifier is tightly coupled with learning the empiri-
cal distribution. Intuitively, when the distributions of various
classes in a dataset exhibit greater overlap than those of its
neighbouring datasets, the decision boundary becomes more
ambiguous and can lead to higher error rates. With a fixed
Rashomon parameter €, under appropriate assumptions, such
a shift can exclude some models from the Rashomon set,
thereby reducing its size and, in turn, reducing multiplicity
under any metric that is monotonic within the Rashomon
set (Ganesh, Taik, and Farnadi 2025).

Note, it is vital to emphasize that the insights presented
in our work are based on comparisons between neighbour-
ing datasets. This framing is important because it allows us
to apply a shared fixed threshold € across datasets. At first
glance, our claim may seem counterintuitive, as higher over-
lap and higher error rates are typically associated with higher
multiplicity (Semenova et al. 2024; Watson-Daniels, Parkes,
and Ustun 2023). However, this is because when comparing
different tasks, the Rashomon sets are defined using a task-
dependent threshold ¢, hence leading to the trends seen in the
literature. In contrast, our analysis focuses on neighbouring
datasets for the same task, where we argue that the threshold
for what constitutes a “good model” should not vary due to
data processing choices. In other words, the threshold for a
good model remains anchored to the task itself . As we will
demonstrate, under this constraint, higher overlap leads to a
smaller Rashomon set.

4.1 Theoretical Insights for Binary Classification

Consider two  l-neighbouring  training  datasets

1 2 . . . .
D ains Divain: Thg learning task is binary classifica-
tion, i.e., Y 0in, Yitain € {0,1}". Thus, each dataset
contains two classes, i.e., D}, in = Olrgin Y lirqin. Where

[0/1}£rain = {(xj’ y]) | (ijyj) € Dzrain. and Yi =
[0/1]}. The overlap between the two classes is measured
using the overlapping coefficient defined as:

Definition 4.1 (Overlapping Coefficient (Inman and
Bradley Jr 1989)). The overlapping coefficient (OVL) be-
tween two probability distributions P, () is defined as:

OVL(P,Q) =Y _min(P(x),Q(z)) “)

or OVL(P,Q) / min(P(2), Q@) dz  (5)

'A recent work by Ganesh, Taik, and Farnadi (2025) argues for
a broader definition of the Rashomon set, incorporating all deci-
sions made during model development, including even data pro-
cessing. Under this perspective, the different Rashomon sets across
neighbouring datasets in our work can be seen as subsets of one
larger Rashomon set. Although we do not adopt this perspective,
since we compare data processing choices and their effects, it still
offers a useful intuition to the reader for using a fixed threshold
across neighbouring datasets.

depending on whether the distributions are discrete or con-
tinuous. The overlapping coefficient is the complement to
total variation distance (TVD) (Dudley 2018), i.e., OV L +
TVD = 1. We will write the overlapping coefficient be-
tween the two classes as OV L! . = OV L(0: 1

train train’ train)'

Under the assumptions of a 0-1 loss function,

Theorem 4.1. Given two 1-neighbouring binary classifica-
tion datasets D}, ;,,, D?.,;, Which, without loss of general-
ity, differ only at the index 0, i.e., (z},33) # (23,%3) and
(z},y;) = (3,43) Vj # 0, and adhere to the following
assumptions:

1. Loss of all models in the Rashomon set is higher on one

differing data point over another, i.e.,

L(0, (x5, y)) > L9, (25,3))
Va G G(Dtlrain’i) U @(Dgnuin’e) (6)
2. Loss of the Bayes optimal models 67, 05 follow the same
trend as the Rashomon set, i.e.,

L(67, (x5, ¥5)) = L(63, (25, 43)) )

then we can say that the overlapping coefficient between the
two classes will be higher for this dataset, i.e., ovel >

train =
OV L? and the resulting Rashomon set for this dataset

train>
under a common threshold ¢ will be a subset of the

Rashomon set for the other dataset, i.e., G)( D -
@( D2

fraini€)’

1
train:€)

Proof Sketch. We first show that for neighbouring
datasets, the Bayes optimal loss is proportional to the over-
lapping coefficient, under the assumption of identical class
priors. Thus, we say that the overlapping coefficient is higher
for the dataset with the higher Bayes optimal loss. We then
use the loss relationship in the first assumption to show that
any model in the Rashomon set of the higher-loss dataset
also belongs to the Rashomon set of the lower-loss dataset,
but not vice-versa, creating a subset relationship. Complete
proof can be found in the Appendix (§B).

Interpreting the Assumptions. The assumptions together
state that one of the datapoints differing between neighbour-
ing datasets is harder to classify than the other, and that
all good models and both Bayes optimal models agree on
this. The assumption fails when both differing datapoints
lie in the ambiguous region near the decision boundary. A
tighter Rashomon parameter € (i.e., a smaller €) makes the
ambiguous region smaller, increasing the likelihood that the
assumption holds.

Note that if the Bayesian optimal models are in the
Rashomon set, the second assumption becomes redundant.
In other words, for any hypothesis class expressive enough
to include the Bayesian optimal, the second assumption can
be dropped.

4.2 Extending to k-Neighbouring Datasets

Our theoretical discussion has focused on 1-neighbouring
datasets, which enabled us to provide a rigorous proof for the
downstream multiplicity based on the precise relationship
between neighbouring datasets. However, in practice, we are



unlikely to encounter datasets that differ by only a single
data point. Instead, we typically face the more general and
realistic case of k-neighbouring datasets. While our previous
sets of proofs do not work directly in this setting, we propose
the following conjecture:

Conjecture 4.1. Given two k-neighbouring binary classi-
fication datasets D}, ;,,, D?.,;, of size n, with k < n, if
the overlapping coefficient between the two classes in higher
for one dataset, i.e., without loss of generality OV L}, . >

OVL? ..., then the resulting multiplicity for this dataset un-
der a common threshold ¢ will be a lower than the other

dataset, i.e., Mg: < Mge.

In addition to generalizing from 1-neighbouring datasets
to k-neighbouring datasets, we also shift our focus from
the Rashomon set to the resulting multiplicity. Interestingly,
the conjecture remains provable under strong assumptions—
specifically, if the assumptions of Theorem 4.1 hold across
all k differing data points (see §B for details). However, as
k increases, such an assumption becomes increasingly unre-
alistic. Instead, we draw on our previous observations that a
greater overlap between datasets is likely to increase the er-
ror across most models within the Rashomon set. As a result,
given a fixed Rashomon parameter €, we expect lower mul-
tiplicity in datasets with higher overlap compared to their
neighbours. We will support these claims through empirical
evidence on two data processing tasks as case studies: data
acquisition in active learning (§A) and data imputation (§5).

5 Multiplicity and Data Imputation

With an understanding of how neighbouring datasets influ-
ence multiplicity, we extend our discussion to data impu-
tation. We empirically evaluate several data imputation al-
gorithms, alongside our own multiplicity-aware techniques.
Our results reveal a negative correlation between the over-
lapping coefficient and the resulting multiplicity, as well as
the success of our techniques in achieving the lowest (or
highest) multiplicity without sacrificing accuracy.

5.1 Neighbouring Datasets in Data Imputation

Data imputation fills the missing values in a dataset to best
reflect what the real values might have been. It is a necessary
step before learning, as most models cannot handle data with
missing values (Miao et al. 2022). Given a dataset D™
with missing values S™* = {ij|D/" = ¢}, a data im-
putation algorithm fills them with a set of non-empty values
SmP = {sy;]ij € S™* and s;; # ¢}. The final imputed
dataset can be defined as D*™P = D™ ¢ S"™P where the
@ operator represent filling the values missing in D™ with
values from S, We define | D™%| = n and |S™| = s.

Two different imputation techniques may fill the miss-
ing values in different ways while the rest of the dataset
remains unchanged, and the resulting imputed dataset will
be k-neighbouring datasets, where k£ < s. Thus, we argue
that the choice between data imputation techniques can also
be seen as a choice between neighbouring datasets, fitting
within our broader discussion.

5.2 Experiment Setup and Algorithms

Before jumping into the empirical results, we provide an
overview of the experiment setup, as well as define our
multiplicity-aware data imputation algorithms.

Dataset. We use three different datasets, ACSIn-
come (Ding et al. 2021), ACSEmployment (Ding et al.
2021), and Bank Customer Churn dataset (Topre 2025), to
ensure the robustness of our findings. Due to limited space,
we focus on the ACSIncome dataset in the main paper, while
additional results and details of the experiment setup are del-
egated to the Appendix (§E).

We first divide the dataset into train and test sets, with a
ratio of [0.8,0.2]. Next, we randomly remove r fraction of
values from the train set, giving us D™, The pipeline is
repeated 10 times, while sticking with the same test set.

Models. We use LogisticRegression (LR), RandomForest
(RF), and Multi-Layer Perceptron (MLP) with a single hid-
den layer of size 10, three model classes of varying complex-
ity. We use RF as our default setup, while additional results
for LR and MLP are in the Appendix (§E). To evaluate mul-
tiplicity, for each dataset, we train a total of 100 models and
then select the Rashomon set. As discussed during formal-
ization (Definitions 3.1, 3.2), the creation of the Rashomon
set is done using model loss on the train set, while all evalu-
ations are performed on the test set.

Evaluation Metrics. We use accuracy (0-1 scale) as a per-
formance measure and ambiguity (Definition 3.2) as a mea-
sure of multiplicity. More details are in the Appendix (§E).

Baseline Algorithms and Multiplicity-Aware Data Im-
putation. We study five commonly used baselines in impu-
tation: (a) Mean (Miao et al. 2022), filling with the mean of
the feature, (b) Median (Miao et al. 2022), filling with the
median of the feature, (¢) Mode (Miao et al. 2022), filling
with the mode of the feature, (d) kNN (Altman 1992), using
k-nearest neighbours algorithm to find 5 neighbours and fill
with the mean of their value, and (e) MICE (Van Buuren and
Groothuis-Oudshoorn 2011), learning predictors of a feature
using other features, one at a time, and improving iteratively.

In addition, our multiplicity-aware imputation techniques
include: (a) MultLow, which checks the confidence of the
data point for all five baseline imputations and chooses
the one with the least confidence, repeating for all missing
values, and (b) MultHigh, which instead chooses the one
with the highest confidence. To get the confidence scores,
we train a single model on the mean-imputed dataset. Our
multiplicity-aware imputation algorithms use existing impu-
tation techniques and choose between them for every miss-
ing value. We provide pseudocode in the Appendix (§C).

5.3 Stronger Control with More Missing Values

We start with the relationship between overlapping coef-
ficients and the resulting multiplicity for data imputation.
Average correlation scores across all random seeds are re-
ported in Figure 3 (standard deviations are present in the
Appendix). We see a clear negative correlation on average,
supporting our hypothesis that higher overlap leads to lower
multiplicity (Conjecture 4.1). Moreover, the correlations are
stronger for LR and MLP, which may be attributed to a
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Figure 4: Accuracy and ambiguity for various data imputation strategies across varying values of missing data ratio . MultLow
(and MultHigh) algorithms stand out more for higher values of missing data ratio 7, highlighting that a large amount of missing

data can make the imputation more steerable.

poorer approximation of the true Rashomon set using only
100 models for RF.

The most intriguing results, however, come from our
multiplicity-aware algorithms. In Figure 4, we present the
average accuracy and resulting multiplicity across all ran-
dom seeds and imputation techniques, evaluated over vary-
ing levels of missing data. Our techniques consistently
achieve the lowest (or highest) multiplicity, but what stands
out is that these trends become more pronounced at higher
missing value ratios. With more missing data, the number
of plausible imputations—and thus neighbouring datasets—
increases. This leads to many neighbouring datasets vary-
ing substantially in downstream multiplicity, making our
multiplicity-aware methods more valuable.

6 Multiplicity and Active Learning

Due to limited space, we delegate the entire analysis for ac-
tive learning to the appendix (§A). However, we note that
we find similar trends for active learning as data imputation,
i.e., we find a high negative correlation between the overlap-
ping coefficient and multiplicity, as well as effective control
over multiplicity using our multiplicity-aware techniques.

7 Conclusion and Future Work

In this work, we introduced a neighbouring datasets frame-
work to study the impact of data processing on multiplicity,
offering a practical lens on the interplay between dataset and
multiplicity. Our framework captures a wide range of data
processing scenarios, provides theoretical insights into the
relationship between neighbouring datasets and multiplicity,
and reveals a surprising trend supported by rigorous proofs.
We also demonstrated its utility through data imputation.

Looking ahead, an important avenue for future research
is establishing a formal connection between our neighbour-
ing dataset framework and differential privacy, which could
yield valuable theoretical and practical insights in the fu-
ture. Another promising direction involves revisiting the
definition of neighbouring datasets, as alternatives based
on L /L, distances may offer a closer alignment with ro-
bustness literature. This perspective opens up opportunities
to study the influence of distribution shifts and adversarial
data on multiplicity through the same lens of neighbouring
datasets.
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A Multiplicity and Active Learning

We now turn to our second application: data acquisition for
active learning, repeating the k-neighbouring dataset formu-
lation and the empirical study on existing algorithms along-
side our own multiplicity-aware techniques. Combined with
the results from data imputation, these studies underscore
the practical utility of our framework in analyzing and guid-
ing developer decisions during data processing.

A.1 Neighbouring Datasets in Active Learning

In active learning, we have access to a large pool of unla-
beled data, and the objective is to selectively acquire a small
subset of the potentially most informative data points to be
labeled, known as data acquisition. Typically, active learning
begins with a small labeled dataset DY , and a large pool of
unlabeled points X° , .. At each timestep ¢, the algorithm
uses the current labeled dataset DY, and the remaining unla-
beled pool X! ;. to select a batch of points X!, ¢ X!
to be labeled by the oracle. Once labeled, these are added
to the labeled dataset, i.e., D};' = Df,, + (X!, Y.!). We
define the initial labeled set size | DY ,| = n, and | X! | = ¢
points are labeled at each step.

Over a total of T steps, two different active learning algo-
rithms may choose distinct sequences of points to label. It is
easy to see that the resulting labeled datasets can be consid-
ered k-neighbouring datasets with k& < T'q. Thus, we argue
that the choice between active learning strategies can also be

seen as a choice between neighbouring datasets.

A.2 Experiment Setup and Algorithms

We use the same experiment setup as in data imputation, but
with the following differences (more details in §D),

Dataset. We focus on the ACSIncome dataset in this sec-
tion, while additional results are delegated to §D.

After dividing the dataset into train and test sets, we
sample n points randomly from the train set that will
serve as our D?ab, and test three different values of n €
{500, 1000, 2000}. The rest of the train set is our unlabeled
pool of data. We run various active learning algorithms with
a query size ¢ = 100 for a total of 7' = 5 steps. The com-
plete pipeline starting from sampling DY), is repeated 10
times, while sticking with the same test set.

Baseline Algorithms and Multiplicity-Aware Data Ac-
quisition. We study three common baselines for active
learning: (a) Random (Aggarwal et al. 2014), data points to
be labeled are chosen at random, (b) Confidence (Aggarwal
et al. 2014), data points with the lowest prediction confi-
dence are chosen, and (¢) Committee (Seung, Opper, and
Sompolinsky 1992), data points with the most conflicting
predictions from a committee of 100 models trained on the
current labeled data are chosen.

In addition, we propose two new data acquisition algo-
rithms: (a) MultLow, which trains a committee of models
on the labeled data and chooses the data points with low
confidence in all models of the committee, and (b) MultH-
igh, which is similar but instead chooses the data points with
high confidence in all models of the committee. Pseudocode
for both algorithms is in the Appendix (§C).
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Figure 6: (a, b, ¢) Accuracy and ambiguity across various strategies for one step of data acquisition. We see clear trends of our
MultLow (and MultHigh) approach(es) getting the lowest (and highest) multiplicity, while maintaining similar accuracies. (d,
e) Accuracy and ambiguity across multiple steps of data acquisition. Similar trends persist across multiple steps.

A.3 Controlling Multiplicity During Active
Learning

We start by examining the relationship between the overlap-
ping coefficient and multiplicity for varying initial labeled
sizes (n) and active learning steps (t), across all algorithms.
Average correlation scores across all random seeds are re-
ported in Figure 5 (standard deviations are present in the
Appendix). We see a clear negative correlation on average,
supporting our hypothesis that higher overlap leads to lower
multiplicity (Conjecture 4.1). Unsurprisingly, the correlation
is stronger when n is large or ¢ is small, i.e., settings where
k < n. Moreover, the correlations are stronger for LR and
MLP, which may be attributed to a poorer approximation of
the true Rashomon set using only 100 models for RF.
Moving beyond the overall correlation, we next analyze
the trends exhibited by each algorithm separately in Fig-
ure 6. Our algorithms, MultLow and MultHigh, consistently
achieve the lowest (and highest) multiplicity. Even in sce-
narios where our theoretical assumptions do not hold—such
as when n is small or ¢ is large—the efficacy of our algo-
rithms, MultLow and MultHigh, indicates that our insights
extend well beyond strict theoretical settings. This robust-

ness highlights the practical utility of our approach across a
broader range of real-world scenarios involving neighbour-
ing datasets.

B Proof for Theorem 4.1 and Insights for
Conjecture 4.1

Step 1: Bayes optimal 0-1 loss in terms of Overlapping
Coefficient The Bayes optimal classifier minimizes the 0-
1 loss, predicting the class with the higher posterior proba-
bility at each x. So the Bayes classifier 0* () predicts:

0% (x) = P,(x).
(x) arg max, ()

Thus, the Bayes 0-1 loss L* can be expressed as the ex-
pected probability of misclassification:
L* = E, [min(Py(z), P (z))] = Zmin(wopo(x

where 7y, m; are class priors for both classes. Assuming
identical class priors, we can simplify it as,

= % Z min(Py(x)

), m P1(x)).

P1($)) = %OVL(P(),Pl)



Hence, for the two neighbouring datasets:

fOVL2

train *

fOVLl

TIdlIl’
Therefore, if L7 > L3, then:
OVLL, >OVL2

train train*

Step 2: Overlapping coefficient is higher for D} We

know from our second assumption that:

L7, (x5, 95)) = L(63, (23, 43))-
Since all other training examples are shared between the
two datasets, the only difference in their total empirical

losses lies in this one datapoint. Thus, the empirical loss sat-
isfies:

train

Ly > L3,
From the derivation in Step 1, we thus get:
OV Ly, > OV L

train train*

Step 3: Subset relationship from loss dominance Now

let € ©p1 o, ie, Lpr (0) < e Since Dy, and Di;,
differ in only one datapoint, we can write:
1 - n—1
Lp, (0) = — | L0, (xo, %)) + > L0, (z5,95) |+
j=1
1 n—1
Lpz, (0) = " L(0, (3, 95)) + ZL (z5,95))
Subtracting:

Lpy, (0) = Lpz_ (0)

1
=~ (L(0, (x5 %0)) — L(0, (23, %5))) = 0,

by the assumed loss inequality in our first assumption.
Therefore:

Lpz (0) <Lpy (0)<e = 0€0Op

hrain2€) "
Since this holds for all § € © DL ¢)» but not necessarily
the other way around, we conclude:

@(D )C@(D

train € train 76)

B.1 Extension to k-neighbouring datasets

Let D}, and D2, be k-neighbouring binary classification

datasets, i.e., they differ at k indices Z = {41, ..., }, such
that for all j € Z, we have:

(z}, ;) # (25,43,
and for all other j ¢ Z, the examples are shared:
(z,y;) = (23, 47).

Suppose further that the per-point loss dominance condi-
tion holds at all differing indices:

L(®, (levyjl>) > L(0, (‘T?a yj2))
Vo € G(D(lmin’i) @] @(DIQrain’e)7 V] el

and

L(07, (x,y;)) > L(03, (a5,y7)) VjeL
Then the overlapplng coefficient between the classes is
higher for D}

train®

> OV I?

train’

OVL1

train

and the Rashomon set satisfies:
Oy,,.0 S Owz,,.0-

To prove this, we can 51mply decompose the k-
neighbouring datasets into a sequence of k consecutive 1-
neighbouring transitions:

DL, =D® - D) .

train
where each D®) and D+ differ at exactly one datapoint
(2, yt), and the loss dominance condition holds at each step.
From Theorem 4.1, each such one-step transition satisfies:

-— DWW = p?

train»

O(pw,e) € Opetn o)
Applying this sequentially:
Oy, =Oww. &
Thus,

g @(D(k) @(D2

train? ) '

Oy, €O

(Din:€)*

C Pseudocode for Algorithms
C.1 MultLow and MultHigh for Data Acquisition

Algorithm 1: MultLow for Data Acquisition

Require: Labeled dataset L, unlabeled dataset U, query
size (), committee size K
1: Train a committee of K models { M, Mo, ...,
L
Initialize S < ()
for eachz € U do
Compute confidence ¢; () from each model M;
Compute maximum confidence across all models:
Cmax(T) = max; ¢;(x)
end for
Select bottom-() points with lowest ¢pax () values
S <+ selected points
return S

Mg} on

R

Algorithm 2: MultHigh for Data Acquisition

Require: Labeled dataset L, unlabeled dataset U, query
size (), committee size K
1: Train a committee of K" models { M7, Ms, ...,
L
Initialize S < ()
for each z € U do
Compute confidence ¢; () from each model M;
Compute minimum confidence across all models:
Cmin (%) = min; ¢;(x)
end for
Select top-(@ points with highest ¢pin () values
S <+ selected points
return S

Mg} on

R e




C.2 MultLow and MultHigh for Data Imputation

Algorithm 3: MultLow for Data Imputation

Require: Dataset with missing values D, set of baseline im-
putations {Ime(ma Inedian, - - - 7Imice}
1: Train a model C' on mean-imputed version of D
2: Initialize D’ < D
3: for each record r with missing values in D do
4:  for each imputation method I; do
5 Compute imputed record r; using I;
6: Compute confidence score ¢; = C(r;)
7:  end for
8:  Select r* = r; with lowest confidence c;
9:  Fill r in D’ with r*
10: end for
11: return D’

Algorithm 4: MultHigh for Data Imputation

Require: Dataset with missing values D, set of baseline im-
PUtatiOHS {Imean; Im,ediana s 7Imice}
1: Train a model C' on mean-imputed version of D
2: Initialize D' < D
3: for each record r with missing values in D do
for each imputation method I; do
Compute imputed record 7 using I;
Compute confidence score ¢; = C(r;)
end for
Select r* = r; with highest confidence ¢;
9:  Fill 7 in D’ with r*
10: end for
11: return D’

A A S

D Additional Results for Active Learning

In this appendix section, we provide detailed results across
all datasets for active learning. We find similar trends across
various datasets and models as seen in the main paper.

D.1 Experiment Setup Details

Folktables Subset. We use the “New Mexico” state subset
for both ACSIncome and ACSEmployment throughout the
paper.

Choosing Rashomon parameter ¢. To make sure the
Rashomon set contains enough models for each algorithm
in our setup while keeping the threshold tight, the value of ¢
is chosen to be the smallest value possible such that there are
at least 50 models in the Rashomon set for each setup. The €
value is chosen separately for each setting, i.e., each random
seed, initial dataset size, and number of steps; but is shared
between all different algorithms, i.e., a common Rashomon
parameter ¢ is used across algorithms for any particular set-
ting.

D.2 All Results for ACSIncome Dataset

Here, we provide detailed results for active learning on the
ACSIncome dataset. First, we restate the results in Figure

5, along with the standard deviations recorded separately,
present in Figure 7. We then repeat the experiments in Figure
6(d, e) for LR and MLP models, and the results are presented
in Figure 8.

D.3 All Results for ACSEmployment Dataset

Here, we provide detailed results for active learning on the
ACSEmployment dataset. First, we repeat the experiments
in Figure 5, along with the standard deviations recorded sep-
arately, present in Figure 9. We then repeat the experiments
in Figure 6(d, e) for all three model types, and the results are
presented in Figure 10.

D.4 All Results for Bank Dataset

Here, we provide detailed results for active learning on the
Bank dataset. First, we repeat the experiments in Figure
5, along with the standard deviations recorded separately,
present in Figure 11. We then repeat the experiments in Fig-
ure 6(d, e) for all three model types, and the results are pre-
sented in Figure 12.

E Additional Results for Data Imputation

In this appendix section, we provide detailed results across
all datasets for data imputation. We find similar trends across
various datasets and models as seen in the main paper.

E.1 Experiment Setup Details
Folktables Subset. Same details as above in §D

Choosing Rashomon parameter e. Same details as above
in §D.

E.2 All Results for Bank Dataset

Here, we first repeat the experiments in Figure 3 for the Bank
dataset and provide the results in Figure 13. Next, we repeat
the experiments in Figure 4 for the Bank dataset using Ran-
domForests, and the results are presented in Figure 14.
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Figure 11: Average and standard deviation of spearman’s rank correlation coefficients between the overlap and resulting multi-

plicity for the Bank dataset.
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Figure 12: Accuracy and ambiguity across multiple steps of data acquisition for RF (top, (a), (b)), LR (middle, (c), (d)) and
MLP (bottom, (e), (f)) models for Bank dataset. Similar trends persist across multiple steps of active learning.
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Figure 13: Correlation between the overlapping coefficient and resulting multiplicity for the Bank dataset.
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Figure 14: Accuracy and ambiguity for various data imputation strategies across varying values of missing data ratio r for Bank
dataset.



