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Abstract
Large pre-trained vision-language models like CLIP have shown
amazing zero-shot recognition performance. To adapt pre-trained
vision-language models to downstream tasks, recent studies have
focused on the “learnable context + class name” paradigm, which
learns continuous prompt contexts on downstream datasets. In prac-
tice, the learned prompt context tends to overfit the base categories
and cannot generalize well to novel categories out of the training
data. Recent works have also noticed this problem and have pro-
posed several improvements. In this work, we draw a new insight
based on empirical analysis, that is, uninformative class names lead
to degraded base-to-novel generalization performance in prompt
learning, which is usually overlooked by existing works. Under this
motivation, we advocate to improve the base-to-novel generaliza-
tion performance of prompt learning by enhancing the semantic
richness of class names. We coin our approach as the Information
Disengagement based Associative Prompt Learning (IDAPL) mech-
anism which considers the associative, meanwhile, decoupled learn-
ing of prompt context and class name embedding. IDAPL can ef-
fectively alleviate the phenomenon of learnable context overfitting
to base classes, meanwhile, learning more informative semantic
representation of base classes by fine-tuning the class name em-
bedding, leading to improved performance on both base and novel
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classes. Experimental results on eleven widely used few-shot learn-
ing benchmarks clearly validate the effectiveness of our proposed
approach. Code is available at https://github.com/tiggers23/IDAPL
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1 Introduction
It is well known that the recognition performance of CLIP is usu-
ally sensitive to the prompt template. Prompt engineering based
on trial and error usually takes a large amount of time in word
tuning. To address this problem, existing works [8, 14, 45] assign a
set of learnable vectors as the prompt template and optimizes them
on downstream datasets. In practice, however, the learned prompt
context usually tends to overfit the base categories and cannot gen-
eralize to novel categories well. Hence, recent studies along this line
mainly focus on improving the cross-category generalizability of
prompt learning by learning image conditional prompt [44], multi-
modal prompt [14] and regularization stratages [15, 46]. To further
improve the generalizability of prompt learning, we turn our atten-
tion to analyzing the mechanism of cross-category generalizability
degradation in prompt learning.
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Figure 1: Novel class accuracies obtained by implementing
context optimization on the family-level task of FGVCAir-
craft dataset [21] with base class names of different qualities,
including manually-defined code-names, original name em-
bedding, name embedding enhanced by hierarchical label
set [25], and name embedding refined by images [27]. “Code-
name” indicates replacing the original base class names with
code-names (e.g., “00”, “01”). For fair comparisons, the testing
procedure is conducted with original name embedding of
novel categories.

To answer the above question, we propose a hypothesis from the
perspective of prompt composition, that is, one of the key reasons
for the learned prompts overfitting to base categories is the lack of
semantics carried in class name embedding. The focus of existing
works on prompt learning mainly lies in the context part, but ig-
nores that a prompt is composed of a prompt context and a class
name (i.e., the “learnable context + class name” paradigm). In general,
class names are assumed to carry the discriminative information for
classification, while the prompt context should be responsible for
aligning the text encoder with the corresponding visual features,
acting as a universal template. In practice, however, class names are
usually coarsely-defined or non-descriptive (e.g., “A340-200” rep-
resenting an aircraft) [23], which may degrade the discriminative
performance of CLIP. When the semantic information provided by
class names is insufficient, the learnable prompt context will try
to derive discriminative information from training data, in order
to remedy the uninformative drawback of class names. As a result,
the learned context will be biased to base categories and cause
performance degradation on novel categories out of the training
dataset. This violates the original intention of context optimization,
i.e., automatically learning a prompt context acting as a universal
template (e.g., “a photo of a”). To verify this hypothesis, we con-
duct experiments by implementing context optimization with class
names of different qualities. From the results shown in Figure 1,
we can see that context prompt learned with class names of richer
semantic richness (subclass names or optimized class names) can
be more generalizable to novel categories. When using manually-
defined code-names to replace the class names of training data, the
learned context will have very poor recognition performance on
novel categories. These experimental phenomena well confirm our
hypothesis.

Motivated by the above observations, this work advocates im-
proving the base-to-novel generalization performance of prompt

learning by enhancing the semantic richness of class names. To
this end, we propose the Associative Prompt Learning (APL) mech-
anism to associatively optimize both the learnable context and
class name embedding. Specifically, by introducing learnable class-
specific residual vectors, APL sets class name embedding as train-
able variables to refine them. During the learning process, the
semantic richness of class name embedding can be improved by de-
riving class-related discriminative information from training data.
With trainable class name embedding to remedy the drawback of
uninformative class names, the prompt context can hence concen-
trate on its original role in finding a universal template. As a result,
the learned prompt context can achieve improved generalizability
on novel categories. In addition, APL can also use class semantic
descriptions generated by GPT [26] as additional training data to
refine class name embedding following the implementation of [8].

Moreover, although improving the semantic richness of class
name embedding can reduce the learnable context overfitting to
base classes, there is still no guarantee to prevent learnable con-
texts from carrying base class information, especially when both
context and class name embedding are optimized by a unified cross-
entropy loss. To achieve this guarantee, we further propose the
Universal and Discriminative Information Disengagement (UDID)
mechanism to ensure the prompt context and class name embed-
ding to concentrate on their original role in finding a universal
template and carrying the discriminative information of classes,
respectively. Specifically, UDID adopts an embedding discriminator
to decouple the prompt context and class names. As class name em-
bedding already carries most of the class information, decoupling
the prompt context and class names can further prevent it from
carrying base class information, as a result, avoiding the learned
prompts overfitting to the base classes. We coin our approach as
Information Disengagement based Associative Prompt Learning
(IDAPL) considering both the associative and disengagement mech-
anism of prompt context and class name embedding. The over-
all architecture of IDAPL is shown in Figure 2. IDAPL can effec-
tively alleviate the phenomenon of learnable context overfitting
to base classes, meanwhile, learning more informative semantic
representation of base classes by fine-tuning the class name em-
bedding, leading to improved performance on both base and novel
classes. The IDAPL mechanism can be easily applied into existing
prompt learning methods (e.g., CoOp [45] and MaPLe [14]). Exten-
sive experiments on diverse few-shot learning benchmarks clearly
demonstrate the effectiveness of our approach. Compared with the
previous works relying on regularization with human-engineered
prompt temples [15, 46], which potentially requires a lot of hu-
man costs, IDAPL achieves better performance as well. This result
further validates the effectiveness of our approach.

2 Related Works
2.1 Vision-Language Models
VLMs [13, 29, 40] mainly focus on learning aligned image-language
representations. In general, vision-language models consist of a
visual encoder and a language encoder and bridge the two modali-
ties by training two encoders jointly. The recent studies on VLMs
pay attentions on pre-training large-scale vision-language models
via contrastive representation learning [3, 9] on web-scale datasets.
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Figure 2: The overall architecture of Information Disengagement based Associative Prompt Learning (IDAPL). IDAPL consists
of two components, the Associative Prompt Learning (APL) mechanism and the Universal and Discriminative Information
Disengagement (UDID) mechanism. APL is proposed to learn the ideal prompts by optimizing both prompt context and class
names. Specifically, APL learns a general prompt context initialized by “a photo of a” and class-specific residual vectors which
are added to original class name embedding. To further prevent the prompt context from carrying base class information, the
UDID mechanism decouples the context and class names by minimizing the similarity score of these two embeddings.

For instance, CLIP [29] and ALIGN [13] respectively exploit about
400 million and 1.8 billion noisy image-text pairs curated from the
Internet for pre-training. Based on the rich supervision provided
by natural language, large-scale pre-trained VLMs such as CLIP
and ALIGN have been recognized to learn powerful visual repre-
sentations that are transferable across a wide range of downstream
tasks.

2.2 Prompt Learning
Inspired by the NLP community [17, 18], the prompt learning par-
adigm is also applied for VMLs adaptation [19, 34–36, 45]. For
example, Yu et al. [42] propose to add learnable residuals on clas-
sification weights. Zhou et al. [45] propose the CoOp approach to
learn continuous prompt contexts on downstream datasets. Yin et
al. [41] propose test time prompt tuning to avoid collecting labeled
training data for prompt learning. In practice, the learned prompts
usually tend to overfit the base categories and cannot well general-
ize to novel categories out of the training data. Hence, recent works
mainly focus on improving the cross-category generalization per-
formance of the prompt learning paradigm [14, 20, 39, 44, 46]. For
example, Chen et al. propose to apply optimal transport to match
learnable prompt with visual features. Khattak et al. [14] propose
MaPLe to improve alignment between the vision and language em-
bedding. Zhou et al. [44] propose the Conditional CoOp (CoCoOp)

approach to improve the cross-category generalizability of prompt
learning. Moreover, Maniparambil et al. [46] and Roy et al. [31]
propose using GPT generated class description to refine the learn-
able prompts. Zhu et al. [46] propose the Prompt-aligned Gradient
(ProGrad) mechanism to prevent prompt tuning from damaging the
prior knowledge of pre-trained VLMs. Khattak et al. [15] propose a
self-regularization strategy to improve the cross-category generaliz-
ability of learned prompt. However, the above two approaches rely
on regularization with human-engineered prompt temples, which
potentially require a lot of human costs. In addition,

In general, existing works still lack in-depth analyses of how
prompt learning effects the cross-category generalizability of VLMs.
In practice, as we found, the uninformative class name embedding
could significantly reduce the cross-category generalizability of
the learned prompt context. Several recent works have also found
the importance of improving the richness of class names for VLMs.
Novack et al. [25] and Ge et al. [7] improve the class name em-
bedding via hierarchical label set. Yu et al. [27] further propose
the Class name Optimization (CnOp) mechanism to learn optimal
class names in prompt learning by replacing the class name embed-
ding with learnable vectors which are trained on downstream tasks.
However, the above works lack further insight on the connection
between uninformative class names and biased context optimiza-
tion. In this work, we utilize class name optimization to improve
the generalizability of prompt learning in new classes.
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3 Methodology
In this section, we present our proposed Information Disengage-
ment based Associative Prompt Learning approach, with the moti-
vation of improving the base-to-novel generalizability of prompt
learning by enhancing the semantic richness of class names.

3.1 Preliminaries
Revisiting CLIP. CLIP [29] consists of an image encoder V and a
text encoderG. After pre-trained by a contrastive loss on large-scale
multimodal corpus, CLIP can be used for zero-shot classification.
For each test image 𝑥 , the image encoderV encodes it into a visual
embedding f = V (𝑥). The classification weight vectors {w𝑖 }𝐾𝑖=1
are derived by using hand-engineered text prompts (e.g., “a photo
of a [classname]i”) to query the textual encoder G, where 𝐾 is the
number of classes and [classname]i represents the name of class 𝑖
(e.g., “cat”, “dog” and “car”). The prediction probability that image
𝑥 belongs to class 𝑖 is calculated as:

𝑝 (𝑦 = 𝑖 |𝑥) = exp (sim (f,wi) /𝜏)∑𝐾
𝑗=1 exp

(
sim

(
f,wj

)
/𝜏
) , (1)

where sim (·, ·) denotes the cosine similarity and 𝜏 is a learned
temperature parameter.
Prompt Learning in CLIP. As CLIP’s performance is sensitive to
human-defined prompt context (e.g., “a photo of a”), the context
optimization mechanism [45] is proposed to learn the optimal con-
text by introducing a set of learnable vectors 𝑃 = {𝑣1, 𝑣2, ..., 𝑣𝑀 } to
replace the human-defined context. The prompts are hence refor-
mulated as 𝑡𝑖 = {𝑣1, 𝑣2, ..., 𝑣𝑀 ,𝐶𝑖 }, where 𝐶𝑖 represents the word
embedding of class names, and𝑀 is the number of learnable context
vectors. The prediction probability is computed as:

𝑝 (𝑦 = 𝑖 |𝑥) = exp (sim (f,G (𝑡𝑖 )) /𝜏)∑𝐾
𝑗=1 exp

(
sim

(
f,G

(
𝑡 𝑗
) )
/𝜏
) . (2)

The prompt context vectors {𝑣1, 𝑣2, ..., 𝑣𝑀 } are learned by minimiz-
ing the cross-entropy loss between 𝑝 (𝑦 = 𝑖 |𝑥) and ground-truth
labels.

3.2 Motivation
In a desired prompt 𝑡𝑖 = {𝑣1, 𝑣2, ..., 𝑣𝑀 ,𝐶𝑖 }, the class name em-
bedding should be responsible for carrying the discriminative in-
formation for classification, while the prompt context should be
responsible for aligning G(𝑡𝑖 ) with the corresponding visual fea-
tures, acting as a universal template. Existing works put their main
focus on optimizing prompt contexts [45], in order to adapt CLIP
to downstream datasets, with the assumption that the class name
embedding can reveal the visual difference between categories. In
practice, however, the class names are usually coarsely-defined or
non-descriptive (e.g., “A340-200” representing an aircraft). In this
case, the context vectors {𝑣1, 𝑣2, ..., 𝑣𝑀 } will be trained to derive
discriminative information from the training dataset, in order to
remedy the uninformative drawback of class names. As a result,
the learned prompt context will inevitably be biased towards base
categories and cannot generalize well to novel categories out of the
training dataset. Hence, the class name embedding should be re-
fined, not only for improving the discriminative ability but also for
improving the base-to-novel generalizability of the learned context.

3.3 Method
Figure 2 shows the overall architecture of our Information Disenga-
gement based Associative Prompt Learning (IDAPL) approach.
To achieve the above motivation, IDAPL consists of two compo-
nents, the Associative Prompt Learning (APL) mechanism and the
Universal and Discriminative Information Disengagement (UDID)
mechanism. APL optimizes both prompt context and class name
embedding. With the semantically enriched class name embedding,
the generalizability of the learned prompt context can be improved.
To further prevent the prompt context from carrying base class
information, the UDID mechanism decouples the context and class
names by minimizing the similarity of these two embeddings.
Associative Prompt Learning. To improve the generalizability
of prompt context, we propose the APL mechanism to learn the
prompts by optimizing both prompt context and class name embed-
ding. In the “learnable context + class name” paradigm, the whole
prompt for class 𝑖 can be defined as 𝑡𝑖 = {𝑣1, 𝑣2, ..., 𝑣𝑀 ,𝐶𝑖 }, where
𝐶𝑖 = {𝑐 (𝑖,1) , ..., 𝑐 (𝑖,𝐿𝑖 ) } are the embedding of class name tokens and
𝐿𝑖 is the token length of the 𝑖-th class name. In order to improve
the semantic richness of 𝐶𝑖 , we introduce class-specific category
residuals 𝑅𝑖 =

{
𝑟 (𝑖,1) , ..., 𝑟 (𝑖,𝐿𝑖 )

}
to update it as follows:

𝐶∗
𝑖 = (1 − 𝛼) ×𝐶𝑖 + 𝛼 × 𝑅𝑖 , (3)

where each 𝑟 (𝑖, 𝑗 ) is a learnable vector with the same dimension as
the class name embedding 𝑐 (𝑖, 𝑗 ) and 𝛼 is a hyper-parameter. By
replacing the original class embedding 𝐶𝑖 in prompt 𝑡𝑖 with 𝐶∗

𝑖
,

the refined prompt 𝑡∗
𝑖
= {𝑣1, 𝑣2, ..., 𝑣𝑀 ,𝐶∗

𝑖
} is received. Thereby, the

classification weight vector w∗
𝑖
will be generated by passing the

refined prompt 𝑡∗
𝑖
through the text encoder G as w∗

𝑖
= G

(
𝑡∗
𝑖

)
.

Similar to existing prompt learning approaches [14, 44, 45], we
optimize prompts using base class images through the standard
classification loss function, cross-entropy loss, formally,

L𝐼 =
1

|𝔇𝐵 |
∑︁
𝑗∈𝔇𝐵

log
(
𝑝
(
𝑦 = 𝐼 𝑗 |𝑥 𝑗

) )
, (4)

where 𝔇𝐵 represents the set of base class images, and 𝐼 𝑗 repre-
sents the real label of sample 𝑥 𝑗 . During training, both prompt
context vectors (i.e., {𝑣1, 𝑣2, ..., 𝑣𝑀 }) and category residual variables
(i.e, {𝑅𝑖 |𝑖 ∈ ℭ𝐵}) are optimized by L𝐼 , with the purpose of learning
informative class embedding and generalizable prompt context. In
addition, our approach can also use class semantic descriptions gen-
erated by GPT [26] as additional training data for𝔇𝐵 to refine class
name embedding by optimizing the Euclidean distance between
the feature of GPT descriptions and category prompts.
Universal and Discriminative Information Disengagement.
Although improving the semantic richness of class name embedding
can reduce the learnable context overfitting to base classes, there is
still no guarantee to prevent learnable contexts from carrying base
class information. To achieve this guarantee, we propose the UDID
mechanism, which ensures the prompt context and class name em-
bedding to concentrate on there original role in finding a universal
template and carrying the discriminative information of classes,
respectively. To achieve this, UDID adopts an embedding discrimi-
nator D to decouples the prompt context 𝑃 = {𝑣1, 𝑣2, ..., 𝑣𝑀 } and
refined class names {𝐶∗

1,𝐶
∗
2, ...,𝐶

∗
𝐾
}. The objective of D is to learn

a binary classifier to classify whether the input embedding is the



Rethinking the Effect of Uninformative Class Name in Prompt Learning MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

general context or class name embedding. This decoupling process
is performed using the binary cross-entropy loss, formally,

L𝐷 = − log (D (𝑃)) − 1
|ℭ𝐵 |

∑︁
𝑖∈ℭ𝐵

log
(
1 − D

(
𝐶∗
𝑖

) )
, (5)

where ℭ𝐵 is the set of base classes. In this way, the similarity be-
tween prompt context and class names can be reduced. As class
name embedding already carries most of the discriminative infor-
mation, reducing the similarity can prevent it from carrying base
class information. Therefore, the disengagement mechanism can
further avoid the learned prompt context from overfitting the base
classes.
Optimization and Inference. The overall training object of our
IDAPL is the combination of the above two loss functions, formally,

L = L𝐼 + 𝛽 × L𝐷 , (6)

where 𝛽 is a hyper-parameter. In the inference stage, we put the op-
timized prompt context {𝑣1, 𝑣2, ..., 𝑣𝑀 } and the original novel class
name embedding into the text encoder G to derive the classification
weights for novel classes.

Based on the above APL and UDID mechanisms, our IDAPL
approach can effectively alleviate the phenomenon of learnable
context overfitting to base classes, meanwhile, learning more infor-
mative semantic representation of base classes by fine-tuning the
class name embedding, leading to improved performance on both
base and novel classes.

4 Experiments
4.1 Experimental Setup
We conduct comprehensive experiments on diverse benchmarks to
validate the core idea of our work. Both base-to-novel and cross-
dataset generalization settings [14, 44, 45] are considered to demon-
strate the effectiveness of our proposed approach in improving the
cross-category generalizability of the prompt learning mechanism.
Specifically, in the base-to-novel setting, each dataset is divided
into subsets of base and novel categories, and only base categories
provide images for training. In the cross-dataset generalization
setting, we adopt ImageNet [32] for training and test the perfor-
mance on other datasets with categories different from the training
categories.

4.2 Dataset
Following existing works on prompt learning [14, 44, 45], we con-
duct experiments on eleven standard image recognition bench-
marks which focus on different categories, including: i) two generic-
object recognition benchmarks (i.e., ImageNet [32] and Caltech101
[5]); ii) five fine-grained recognition benchmarks (i.e., OxfordPets
[28], StanfordCars [16], Flowers102 [24], Food101 [1], and variant
level task of FGVCAircraft [21]); iii) one scene benchmark (i.e.,
SUN397 [38]); iv) one action recognition benchmark (i.e., UCF101
[33]); v) one texture benchmark (i.e., DTD [4]); vi) one satellite-
image benchmark (i.e., EuroSAT [10]).

4.3 Implementation Details
In all the experiments, following prior works [14, 44], we randomly
select 16 samples per category for training, under the few-shot learn-
ing setting. In our experiments, we implement the IDAPL mecha-
nism under the training paradigm of CoOp [45] and MaPLe [14]
respectively. Specifically, the pre-trained ViT-B/16 CLIP model is
utilized as the backbone of our model. We directly adopt the GPT
visual descriptions collected by Maniparambil et al. [22] as the ad-
ditional training data of base classes. The training epoch number is
set to 50 and 5 for CoOp w/ IDAPL and MaPLe w/ IDAPL, respec-
tively. The adaptation stage utilizes the same iteration number as
that of the training stage. The hyper-parameter 𝛼 & 𝛽 are set to
0.1 & 5, respectively. The rest hyper-parameter settings (e.g., learn-
ing rate, batch size, context length, prompt depth, etc) follow the
original implementation of CoOp [45] and MaPLe [14]. In addition,
to warm up the discriminator D, we optimize it by Eq. 4 with the
original general context (i.e., “a photo of a”) and class name em-
bedding before the formal training process. The hyperparameters
are fixed across all datasets. The experiments are conducted on one
4090 GPU. The implementation code will be released online upon
acceptance.

4.4 Experimental Results
Baselines. We compare our approach with the recent state-of-
the-art works on VLMs adaptation, including CLIP-Adapter (CLIP-
A) [6], Context Optimization (CoOp) [45], Class name Optimization
(CnOp) [27], Conditional CoOp (CoCoOp) [44], Prompt Learning
with Optimal Transport (CoPLOT) [2], Regularized Mask Tuning(R-
AMT) [43], Multi-modal Prompt Learning (MaPLe) [14], CLIP-A-
Self [22], PromptSRC [15], and ProGrad [46]. Of these, CLIP-A [6],
R-AMT [43] and CoOp [44] are pioneer works on adapting CLIP
towards downstream tasks. Specifically, CLIP-A introduces light-
weight additional feature adapters on either visual or language
branches, R-AMT fine-tunes VLMs via masking selected parame-
ters, while CoOp focuses on learning continuous context vectors.
CnOp [27] proposes to adapt CLIP towards downstream datasets
by optimizing class name embedding. CoCoOp [44], CoPLOT [2],
MaPLe [14], PromptSRC [15], and ProGrad [46] draw attentions on
improving the base-to-novel generalization performance of prompt
learning. CLIP-A-Self [22] further proposes to enhance prompt
learning by utilizing GPT descriptions.
Base-to-Novel Generalization. This setting splits datasets into
base and novel categories. In this setting, the model is first trained
on base categories and then tested on novel categories. Table 1 dis-
plays the performance comparison of each approach. From Table 1,
we can draw the following observations. First, the performance
achieved by our approach is on par with or even better than that of
the compared baselines on most of the benchmarks (except FGV-
CAircraft, Caltech101, and ImageNet), as well as on average. By
improving the generalizability of prompt context and enriching the
class name embedding together, our approach can obtain consistent
performance improvement over both base and novel categories.
Second, by applying the IDAPL mechanism into the training para-
digm of CoOp, our approach can achieve consistent performance
improvement over the vanilla CoOp approach. By applying the
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Table 1: Comparison with existing prompt learning methods on the base-to-novel generalization setting. H indicates the
harmonic mean of accuracies on base and novel categories.

(a) Average over 11 datasets

Base Novel H
CLIP 69.3 74.2 71.7
CLIP-A 79.9 72.3 75.9
CoOp 82.7 63.2 71.7
CoCoOp 80.5 71.7 75.8
CoPLOT 75.9 67.6 71.8
CnOp 82.8 73.1 77.7
R-AMT 85.7 72.2 78.4
MaPLe 82.3 75.1 78.5
CLIP-A-Self 82.5 74.5 78.3
PromptSRC 84.3 76.1 80.0
ProGrad 82.5 70.7 76.2
CoOp+IDAPL 83.8 75.1 79.2
MaPLe+IDAPL 84.2 77.7 80.8

(b) ImageNet

Base Novel H
CLIP 72.4 68.1 70.2
CLIP-A 75.4 68.6 71.8
CoOp 76.5 67.9 71.9
CoCoOp 76.0 70.4 73.1
CoPLOT 68.2 63.1 65.7
CnOp 74.7 68.1 71.2
R-AMT 77.2 70.3 73.6
MaPLe 76.7 70.5 73.5
CLIP-A-Self 76.4 68.3 72.1
PromptSRC 77.6 70.7 74.0
ProGrad 77.0 66.7 71.5
CoOp+IDAPL 77.1 70.6 73.7
MaPLe+IDAPL 76.8 70.8 73.7

(c) FGVCAircraft

Base Novel H
CLIP 27.2 36.3 31.1
CLIP-A 34.9 33.5 34.2
CoOp 40.4 22.3 28.7
CoCoOp 33.4 23.7 27.7
CoPLOT 25.6 26.6 26.1
CnOp 44.0 33.3 37.9
R-AMT 49.2 32.1 38.9
MaPLe 37.4 35.6 36.5
CLIP-A-Self 37.8 33.0 35.2
PromptSRC 42.7 37.9 40.2
ProGrad 40.5 27.6 32.8
CoOp+IDAPL 44.8 34.2 38.8
MaPLe+IDAPL 44.0 35.9 39.6

(d) Food101

Base Novel H
CLIP 90.1 91.2 90.7
CLIP-A 90.3 91.2 90.7
CoOp 88.3 82.3 85.2
CoCoOp 90.7 91.3 91.0
CoPLOT 85.0 85.2 85.1
CnOp 86.5 91.0 88.7
R-AMT 90.7 91.1 90.9
MaPLe 90.7 92.1 91.4
CLIP-A-Self 90.4 91.2 90.8
PromptSRC 90.7 91.5 91.1
ProGrad 90.4 89.6 90.0
CoOp+IDAPL 90.3 91.7 91.0
MaPLe+IDAPL 90.9 92.1 91.5

(e) Caltech101

Base Novel H
CLIP 96.8 94.0 95.4
CLIP-A 97.7 93.6 95.6
CoOp 98.0 89.8 93.7
CoCoOp 98.0 93.8 95.8
CoPLOT 95.4 90.9 93.2
CnOp 97.9 94.0 95.9
R-AMT 98.9 94.4 96.6
MaPLe 97.7 94.4 96.0
CLIP-A-Self 98.3 95.9 97.1
PromptSRC 98.1 94.0 96.0
ProGrad 98.0 93.9 95.9
CoOp+IDAPL 98.6 95.2 96.9
MaPLe+IDAPL 97.8 94.2 96.0

(f) Flowers102

Base Novel H
CLIP 72.1 77.8 74.8
CLIP-A 94.6 71.5 81.4
CoOp 97.6 59.7 74.1
CoCoOp 94.9 71.8 81.7
CoPLOT 89.6 69.2 79.4
CnOp 98.0 77.1 86.3
R-AMT 98.0 70.9 82.3
MaPLe 95.9 72.5 82.6
CLIP-A-Self 97.4 75.3 84.9
PromptSRC 98.1 76.5 86.0
ProGrad 95.5 71.9 82
CoOp+IDAPL 97.7 78.1 86.8
MaPLe+IDAPL 96.7 76.4 85.3

(g) OxfordPets

Base Novel H
CLIP 91.2 97.3 94.1
CLIP-A 94.8 97.0 95.9
CoOp 93.7 95.3 94.5
CoCoOp 95.2 97.7 96.4
CoPLOT 92.1 95.9 94.0
CnOp 93.4 96.9 95.1
R-AMT 95.7 96.0 95.8
MaPLe 95.4 97.8 96.6
CLIP-A-Self 94.4 97.0 95.7
PromptSRC 95.3 97.3 96.3
ProGrad 95.1 97.6 76.2
CoOp+IDAPL 95.4 97.3 96.4
MaPLe+IDAPL 95.5 97.7 96.6

(h) StanfordCars

Base Novel H
CLIP 63.4 74.9 68.7
CLIP-A 70.5 73.3 71.9
CoOp 78.1 60.4 68.1
CoCoOp 70.5 73.6 72.0
CoPLOT 63.2 66.5 64.9
CnOp 80.6 75.0 77.7
R-AMT 82.9 69.5 75.6
MaPLe 72.9 74.0 73.5
CLIP-A-Self 76.8 72.9 74.8
PromptSRC 78.3 75.0 76.6
ProGrad 77.7 68.6 72.9
CoOp+IDAPL 81.4 75.3 78.3
MaPLe+IDAPL 80.8 75.5 78.1

(i) SUN397

Base Novel H
CLIP 69.4 75.4 72.2
CLIP-A 80.1 75.9 77.9
CoOp 80.6 65.9 72.5
CoCoOp 79.7 76.9 78.3
CoPLOT 75.2 73.2 74.2
CnOp 79.1 75.5 77.3
R-AMT 82.2 76.5 79.2
MaPLe 80.8 78.7 79.7
CLIP-A-Self 81.4 76.8 79.0
PromptSRC 82.7 78.5 80.5
ProGrad 81.3 74.2 77.6
CoOp+IDAPL 82.2 78.1 80.1
MaPLe+IDAPL 81.9 79.5 80.7

(j) DTD

Base Novel H
CLIP 53.2 59.9 56.4
CLIP-A 74.9 53.0 62.1
CoOp 79.4 41.2 54.2
CoCoOp 77.0 56.0 64.9
CoPLOT 72.6 51.4 62.0
CnOp 80.3 60.0 68.7
R-AMT 84.4 57.2 68.2
MaPLe 80.4 59.2 68.2
CLIP-A-Self 81.8 62.3 70.7
PromptSRC 83.4 63.0 71.7
ProGrad 77.4 52.4 62.4
CoOp+IDAPL 82.2 57.1 67.4
MaPLe+IDAPL 83.4 65.3 73.3

(k) EuroSAT

Base Novel H
CLIP 56.5 64.1 60.0
CLIP-A 82.5 62.4 71.1
CoOp 92.2 54.7 68.7
CoCoOp 87.5 60.0 71.2
CoPLOT 91.0 55.3 73.2
CnOp 92.1 59.8 72.5
R-AMT 95.8 58.3 72.5
MaPLe 94.1 73.2 82.4
CLIP-A-Self 88.5 70.5 78.5
PromptSRC 92.9 73.9 82.3
ProGrad 90.1 60.9 72.7
CoOp+IDAPL 86.9 73.2 79.5
MaPLe+IDAPL 93.9 85.8 89.7

(l) UCF101

Base Novel H
CLIP 70.5 77.5 73.9
CLIP-A 82.9 74.9 78.7
CoOp 84.7 56.1 67.5
CoCoOp 82.3 73.5 77.6
CoPLOT 77.4 66.2 71.8
CnOp 84.1 73.9 78.7
R-AMT 87.9 77.4 82.3
MaPLe 83.0 78.7 80.8
CLIP-A-Self 84.1 76.4 80.1
PromptSRC 87.1 78.8 82.7
ProGrad 84.3 74.9 79.4
CoOp+IDAPL 84.7 74.8 79.4
MaPLe+IDAPL 84.4 81.4 82.9
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Table 2: Performance comparison with the existing methods of prompt learning under the cross-dataset generalization setting.

Source Target
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CoOp 71.5 68.7 18.5 85.3 93.7 89.1 64.5 64.2 41.9 46.4 66.6 63.9
CoCoOp 71.0 71.9 22.9 86.1 94.4 90.1 65.3 67.4 45.7 45.4 68.2 65.7
MaPLe 71.6 70.8 21.8 86.1 92.1 90.1 65.6 66.5 46.7 35.3 67.8 64.3
PromptSRC 71.3 70.3 23.9 86.2 93.6 90.3 65.7 67.1 46.9 45.5 68.8 65.8
ProGrad 72.2 67.9 20.6 85.4 91.5 89.6 62.4 62.5 39.4 43.5 64.3 62.7
CoOp+IDAPL 72.5 71.7 23.1 86.4 94.4 89.8 65.6 67.2 47.0 39.5 69.1 65.4
MaPLe+IDAPL 72.1 72.6 23.8 86.0 94.0 90.1 65.6 68.0 45.9 38.7 68.9 65.4

Table 3: Ablation study on base-to-novel generation task un-
der the training paradigm of CoOp+IDAPL. We report the
average results of all the 11 datasets.

Base Novel
“a photo of a” 69.3 73.1

+ context learning (CoOp) 82.1 68.8
+ associative learning 83.5 71.9
+ GPT generated description 83.8 74.7
+ UDID (full model) 83.8 75.1

IDAPL mechanism into the training paradigm of MaPLe, our ap-
proach outperforms the vanilla MaPLe approach on most of the
benchmarks (except Caltech101), as well as on average. In addi-
tion, our approach can clearly outperform the CLIP-A-Self baseline
which also utilizes GPT descriptions to enhance prompt learning.
Finally, our approach can clearly outperform the regularization
strategy based baselines, PromptSRC [15] and ProGrad [46], which
potentially require a lot of human costs. This result shows the su-
periority of enhancing the semantic richness of class names and
decoupling the embedding of prompt context and class names in
improving the generalizability of prompt learning.
Cross-Dataset Generalization. In this setting, the model is first
trained on base categories of one source dataset and then tested on
novel categories of other datasets. Table 2 displays the performance
comparison of each approach. From Table 2, we can draw similar
observations as in the above setting. In general, our approach can
achieve improved performance compared with baseline models
and can achieve comparable (3/10) or improved (6/10) performance
compared with other comparison models on target benchmarks
(except EuroSAT). EuroSAT is a satellite-image benchmark, which
is very different from other datasets and contains only 10 classes,
making its performance unstable. Fair comparisons, we adopt the
same hyperparameters for baseline models, (i.e., CoOp and MaPLe)
and our implementation.

4.5 Analysis
Ablation Study. In order to further demonstrate the effective-
ness of the proposed associative learning mechanism, we conduct
ablation studies and show the corresponding results in Table 3.
Comparing CLIP with the context learning mechanism, we can
see that learning prompt context can significantly improve base
class accuracy, but limit the cross-category generalizability as the

Table 4: Performance on the domain generalization setting,
in which models are trained on ImageNet and then evaluated
on datasets of other domain styles.

Source Target
ImageNet -V2 -S -A -R Avg.

CoOp 71.5 64.2 48.0 49.7 75.2 59.3
CoOp+IDAPL 72.6 65.1 48.7 50.4 76.1 60.1
MaPLe 70.7 64.1 49.2 50.9 77.0 60.3
MaPLe+IDAPL 70.9 64.0 49.2 50.7 76.9 60.2

Table 5: Comparison for the number of trainable parameters
on the Flowers102 dataset.

Method Parameters Performances
Num. % CLIP Base Novel H

CoOp 2048 0.002 97.6 59.7 74.1
CoOp+IDAPL 134.7 K 0.108 97.5 78.4 86.9
MaPLe 3.55 M 2.85 95.9 72.5 82.6
MaPLe+IDAPL 3.68 M 2.96 97.7 77.5 86.5

learned context overfits to base classes. By introducing associative
learning of both prompt context and class name embedding, we can
observe consistent performance improvements on both base and
novel classes. In addition, using class semantic descriptions gener-
ated by GPT as additional training data to refine the prompts also
achieves performance improvement. These observations show that
the APL mechanism can alleviate the phenomenon of the learned
context overfit to base classes, meanwhile, learning more informa-
tive semantic representation of base classes by fine-tuning the class
name embedding with semantic rich class descriptions and base
class images, which is consistent with our motivation. Furthermore,
comparing the fourth line with the fifth line in Table 3, it is clear
that our UDID mechanism achieves performance improvement on
novel classes, showing that decoupling the learnable context and
class name embedding could further protect the learnable context
from overfitting to base classes.
Sensitivity Analysis. To demonstrate the robustness of our ap-
proach, we further conduct sensitivity analysis for hyper-parameters
and report the corresponding results in Figure 3. From the upper
part of Figure 3, we can see that the performance of our approach
progressively improves as the epoch number grows, and is stabi-
lized after 50 epochs, while the performance of CoOp is sensitive
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Figure 3: Sensitivity analysis on DTD (left), StanfordCars (middle), and Food101 (right) datasets. The results are obtained by
varying the value of the corresponding hyper-parameter, while fixing the other hyper-parameters to the values adopted in the
experiments.

to the epoch number. This observation further shows that our
proposed associative learning mechanism is robust against base-to-
novel performance degradation during context optimization. From
the middle and bottom part of Figure 3, we can see that our ap-
proach can tolerate wide ranges of the trade-off parameters 𝛼 &
𝛽 , which are used to incorporate category residuals 𝑅𝑖 into class
name embedding and balance the loss functions, respectively.
Domain Generalization. The associative prompt learning mecha-
nism is originally proposed for improving the cross-category gener-
alization performance of context optimization. Considering that our
approach usually obtains better performance on base categories, we
have concerns on whether the introduced IDAPL mechanism will
cause extra bias towards the domain style of training data. To this
end, we further examine the performance of our approach on the
domain generalization setting and report the corresponding results
in Table 4. Specifically, the model is first trained on ImageNet and
then evaluated on datasets of other domain styles (i.e., ImageNet-
V2 [30], ImageNet-S [37], ImageNet-A [12] and ImageNet-R [11]).
From Table 4, we can see that the introduced IDAPL mechanism
does not lead to clear performance degradation on new domains.
The domain generalization performance obtained by our approach
can be on par with or even better than the corresponding baselines,
although cross-domain generalization is not the original purpose
of our approach.
Prompt Complexity. As shown in Table 5, we compare the num-
ber of trainable parameters of CoOp+IDAPL and MaPLe+IDAPL
with their baselines. We can see that the IDAPL mechanism only

introduces about 0.1M extra trainable parameters (∼0.1% parame-
ters of CLIP) to their baselines, but brings about clear performance
improvement on the harmonic mean metrics. Notably, since APL
does not change the visual branch, its inference speed is consistent
with the original baseline model.

5 Conclusion
This work focuses on improving the generalization ability of prompt
learning for vision-language models. To achieve this, we draw a
novel empirical-analysis-based insight on the effect of uninfor-
mative class names causing novel class performance degradation
in prompt learning. Motivated by this observation, we propose
our IDAPL approach, which consists of APL and UDID mecha-
nisms. APL alleviates the phenomenon of learnable context over-
fitting to base classes by enhancing the semantic richness of class
names, meanwhile, semantically enriched class name embedding
also brings performance improvement on base classes. In addition,
as APL cannot prevent the learnable context from learning base
class information, we further propose UDID to ensure the prompt
context and class name embedding to concentrate on their original
role in finding a universal template and carrying the discriminative
information of classes, respectively, by decoupling the embedding
of prompt context and class names. In this way, the learnable con-
text is protected from biasing to base classes. We conduct extensive
experiments on eleven widely used few-shot learning benchmarks.
Experimental results clearly validate the effectiveness of IDAPL.
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