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Abstract
In this work, we explore a cost-effective frame-
work for multilingual image generation. We find
that, unlike models tuned on high-quality images
with multilingual annotations, leveraging text en-
coders pre-trained on widely available, noisy In-
ternet image-text pairs significantly enhances data
efficiency in text-to-image (T2I) generation across
multiple languages. Based on this insight, we
introduce MuLan, Multi-Language adapter, a
lightweight language adapter with fewer than
20M parameters, trained alongside a frozen text
encoder and image diffusion model. Compared
to previous multilingual T2I models, this frame-
work offers: (1) Cost efficiency. Using readily
accessible English data and off-the-shelf multi-
lingual text encoders minimizes the training cost;
(2) High performance. Achieving comparable
generation capabilities in over 110 languages with
CLIP similarity scores nearly matching those in
English (39.57 for English vs. 39.61 for other lan-
guages); and (3) Broad applicability. Seamlessly
integrating with compatible community tools like
LoRA, LCM, ControlNet, and IP-Adapter, ex-
panding its potential use cases.

1. Introduction
Recent diffusion models (Esser et al., 2024; Li et al.,
2024a;b; Team, 2024; Wu et al., 2024; Zhang et al., 2022)
for content generation have attained stunning advancements
in terms of both aesthetic quality and text-content align-
ment. However, these models still face substantial limita-
tions in multilingual support. For instance, one of the most
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popular image-generation models, Stable Diffusion (Rom-
bach et al., 2022), and its successors (Podell et al., 2023;
Esser et al., 2024) only supports English and a few Latin-
based languages. This language barrier restricts the model’s
performance in multilingual contexts and hinders its ap-
plicability worldwide across diverse cultural and linguistic
backgrounds.

The community primarily adopts two approaches to achieve
multilingual text-to-image (T2I) generation. (1) The first
is translation-based methods where input content is tem-
porarily translated into English before generating the im-
age. However, this approach often leads to inference delays,
translation errors, and notable issues when handling slang
or culturally nuanced content. (2) The other approach is
native multilingual T2I models (Zhang et al., 2022; Rad-
ford et al., 2021; Arkhipkin et al., 2023; Shing & Akiba;
Li et al., 2024b; Team, 2024), which is trained directly on
high-quality images captioned in the target language. While
this native approach improves image generation quality for
non-English languages, it relies on extensive, carefully cu-
rated image-generation data in the target language, making
it data- and resource-intensive. As a result, exploring a
more efficient and generalizable approach to achieve strong
multilingual generation capabilities remains challenging.

On the other hand, thanks to the development of computa-
tional power and dataset scale, many existing language mod-
els have achieved strong multilingual capabilities through
training on large-scale internet data. For example, mod-
els trained on text data (e.g., BERT (Devlin et al., 2019),
the GPT series (Brown et al., 2020; OpenAI, 2023), and
LLaMA (Touvron et al., 2023; Dubey et al., 2024)) and
those trained on image-text pairs (e.g., CLIP (Radford et al.,
2021), ALIGN (Jia et al., 2021), and InternVL (Chen et al.,
2023b)) demonstrate outstanding performance in multilin-
gual understanding. Since the multilingual capability of T2I
generation models is closely tied to their text encoders, it be-
comes essential to explore how these powerful multilingual
text encoders can be leveraged to enable existing generative
models to achieve multilingual capabilities more efficiently
and effectively.

In this work, we deeply explore the application of multi-
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Prompt: a tiger in a lab coat with a 

1980s Miami vibe, turning a well 

oiled science content machine, 

digital art (English)

Prompt: edifici de gran alçada 

(Catalan)

Translation: high-rise building

Prompt: aquarell des 

sonnenuntergangs (German)

Translation: watercolor of the sunset

Prompt: dánska, stredomorská mode-

rná kuchyňa s veľkými oknami (Solvak)

Translation: Danish, Mediterranean 

modern kitchen with large windows

Prompt:  البحر شاطئ على كلب (Arabic)

Translation: dog by the sea 

Prompt: 한 미녀가 

모자를 쓰고 

있다 (Korean)

Translation: a beautiful woman 

wearing a hat

Prompt: Primitivní lesy (Czech)

Translation: primitive forest
Prompt: レゴアーノルド・シュワル

ツェネッガー (Japanese)

Translation: LEGO Arnold 

Schwarzenegger

Prompt: Orada çox yaşıl bitkilər 

olan gözəl bir ev vardır (Azerbaijani)

Translation: there is a beautiful 

house with many green plants

Prompt: 赛博朋克机器人 

(Chinese)

Translation: Cyberpunk robots

Prompt: a single  in bloom 

(English + emoji)

Prompt: the clear lake reflects 

the  (English + emoji)
Prompt: 飘落，覆盖在宁静
的小道上。(Chinese + emoji)

Translation:  falling down, 

covering the peaceful path

Prompt: a quiet lake at dawn, 水
墨画风格 (English + Chinese)

Translation: a quiet lake at 

dawn, ink painting style 

Prompt: a vibrant トライバ painting 

on a canvas (English + Japanese)

Translation: a vibrant tribal painting 

on a canvas

Figure 1. Images generated by MuLan with different backbones, such as Dreamshaper 8, Dreamshaper XL Lightning, and Pixart-Alpha,
using a variety of languages or mixed-language prompts.

lingual semantic alignment in image generation from the
perspective of language and image-text alignment. We also
reveal that text encoders trained on large-scale multilingual
image-text datasets with noisy data demonstrate remarkable
data efficiency in multilingual image generation. Based
on this insight, we introduce MuLan, a lightweight Multi-
Language adapter that connects text encoders to diffusion
models with low-cost training, facilitating native support for
hundreds of languages. Specifically, we employ a plug-and-
play language adapter with fewer than 20 million parameters
to bridge a frozen multilingual text encoder with a frozen
diffusion model, which exhibits outstanding zero-shot per-
formance on multilingual T2I generation tasks.

Our model offers advantages in terms of not only multi-
lingual performance, but also training cost and adaptability
compared to previous works. In a nutshell, MuLan leverages

large-scale pre-trained multilingual text encoders, reducing
the need for extensive multilingual datasets. As a result,
the model can efficiently adapt to over 110 languages using
only a small amount of English training data, achieving
generation quality comparable to English (e.g., CLIP sim-
ilarity scores: 39.57 for English, average 39.61 for other
languages). Additionally, as shown in Figure 4, MuLan ’s
plug-and-play architecture seamlessly integrates with exist-
ing model architectures and frameworks, greatly enhancing
its compatibility with various community-driven tools and
models, such as LoRA (Hu et al., 2021), LCM (Luo et al.,
2023), ControlNet (Zhang et al., 2023), and IP-Adapter (Ye
et al., 2023b).

In summary, our contribution is three folds:

(1) We investigate different possible ways to equip monolin-
gual text-to-image models with multilingual ability, among
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which we demonstrate that using a text encoder properly
trained from noisy web-scale data (such as InternVL (Chen
et al., 2023b)) is of great data efficiency.

(2) We propose MuLan, a plug-and-play lightweight lan-
guage adapter that can be combined with any community
models and tools for native multilingual generation in 110+
languages. Our method requires only English image-text
pairs and avoids problems in previous attempts, includ-
ing preparing datasets in a restricted number of languages,
heavy computing budget, and inflexibility when combined
with various community models/tools.

(3) We demonstrate our method’s effectiveness and effi-
ciency through thorough quantitative and qualitative experi-
ments. Notably, it requires only about 12 hours of training
on 8 A100 GPUs and 17M English data to perform very well
on 110+ languages, with very close CLIP similarity scores
of 39.57 (English) v.s. 39.61 (average of other languages).

2. Related Work
Multilingual Diffusion Models. Recent advancements
have seen the rise of diffusion-based models, which have sig-
nificantly improved image generation quality and diversity.
Popular models such as SD series (Rombach et al., 2022;
Esser et al., 2024; Podell et al., 2023), DALL-E (Ramesh
et al., 2022; 2021), Imagen (Saharia et al., 2022) and
Glide (Nichol et al., 2022) demonstrate photorealistic gener-
ation capabilities, yet they are primarily trained on English
data and thus struggle with multilingual image generation.
Although diffusion models using CLIP text encoders can
generalize somewhat to Romance languages (e.g., French),
their performance significantly degrades for languages out-
side this family, particularly East Asian languages such as
Chinese. This limitation arises from the models’ reliance on
English-centric text encoders, such as CLIP (Radford et al.,
2021) and T5 (Raffel et al., 2020), and the predominantly
English training data.

Recent efforts have explored multilingual image generation
by incorporating multilingual text encoders and datasets to
overcome the limitations of English-centric models. One
approach involves building models entirely from scratch
with non-English data. For instance, Hunyuan-DiT (Li et al.,
2024b) and Kolors (Team, 2024) incorporate Chinese text
encoders and extensive Chinese datasets to enhance their
support for culturally specific concepts and improve gen-
eration quality in Chinese. Alternatively, some methods
attempt to adapt existing models by replacing or fine-tuning
the text encoder. Models such as Taiyi (Wu et al., 2024),
PanGu (Lu et al., 2023), and AltDiffusion (Ye et al., 2023a)
replace the text encoder in SD and then fine-tune it with
multilingual data, thus reducing the overhead compared
to training from scratch. GlueGen (Qin et al., 2023) and

PEA-Diffusion (Ma et al., 2023) focus on fully utilizing the
current T2I model by employing lightweight networks to
align the semantics of other languages with English using
low-cost parallel data. However, this often involves complex
distillation loss, making the training process less stable. In
our work, multilingual image generation capabilities can be
generalized simply by training with the commonly used SD
loss on English image-text pairs.

Multilingual Language Model. Language models have
evolved through various modeling approaches, reflecting a
range of training objectives and capabilities. Early models,
such as BERT (Devlin et al., 2019), BART (Lewis et al.,
2019), focus on understanding sentence structure and con-
textual relationships by predicting masked tokens within a
sentence. More recent large language models (LLMs), such
as LLaMA series (Touvron et al., 2023; Dubey et al., 2024),
T5 (Raffel et al., 2020) and GPT series (Brown et al., 2020;
OpenAI, 2023), build on this foundation with improved
context understanding and generation abilities, allowing
them to handle a wide range of tasks with nuanced language
comprehension and open-ended text generation. Building
on these foundational text encoders, recent works, such as
CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021), and
InternVL (Chen et al., 2023b), incorporate visual alignment
through paired image-text data, creating joint representa-
tions that bridge language and vision for cross-modal tasks.

Previous works such as mBERT (Devlin et al., 2019) and
LLaMA3 (Dubey et al., 2024) have shown strong multi-
lingual capabilities by pre-training on large multilingual
corpora, enabling these models to understand and generate
text in a variety of languages. InternVL-LLaMA (Chen
et al., 2023b) achieves powerful multilingual cross-modal
capabilities by aligning a text encoder with a vision
transformer (ViT) on the multilingual image-text dataset
LAION(Schuhmann et al., 2022), enabling effective image-
text contrastive learning. However, due to the scarcity
of large-scale multilingual image-text datasets, some ap-
proaches (Chen et al., 2022; Carlsson et al., 2022) have
resorted to using translated datasets and distillation learning
to align multilingual text features. Despite these advances,
an open challenge remains inefficiently leveraging multi-
lingual text encoders for text-to-image (T2I) generation.
Previous works, such as Taiyi (Wu et al., 2024) and AltD-
iffusion (Ye et al., 2023a), have adopted multilingual text
encoders and fine-tuned them on multilingual image-text
pairs for T2I tasks. In contrast, our method takes advantage
of InternVL-LLaMA’s multilingual capabilities, requiring
only a small amount of English data and without the need to
fine-tune the SD model weights, achieving state-of-the-art
performance in multilingual T2I generation.
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Text Encoder Architecture Supervision
Method

Aligned

BERT encoder only MLM %

T5 encoder-decoder MLM %

LLaMA decoder only NTP %

CLIP encoder only CL !

InternVL-LLaMA decoder-only NTP&CL !

Table 1. Common Text Encoders. The common language model
architectures and their supervision methods, “Aligned” indicates
whether they have been aligned with images. In “Supervision
Method”, “MLM” is Masked Language Modeling, “NTP” is Next
Token Prediction, and “CL” is Contrastive Learning.

3. Proposed Method
In this section, we first revisit the mainstream text-to-image
generation framework, analyzing its underlying structures
and presently available data resources. Based on these in-
sights, we introduce MuLan, a cost-effective multilingual
generation framework designed to improve cross-language
adaptability and generation quality.

3.1. Revisiting Text-to-Image Generation

Given an input text prompt x and ground-truth image y
from the training dataset D, a mainstream text-to-image
(T2I) generation model G(·), which consists of a language
model L(·) and a visual generator V (·), can be defined as
follows:

θ∗l , θ
∗
v = arg min

θl,θv
E(x,y)∼D [L(G(x; θl, θv), y)] , (1)

where θl and θv represent the parameters of the language
model L(·) and the visual generator V (·), respectively, and
L denotes the generation loss, ∗ represents the optimal solu-
tion for function optimization. It can be observed that the
primary components related to multilingual processing are
the training dataset D and the language model L(·). There-
fore, in the following sections, we focus on the two modules,
exploring pathways for building an efficient text-to-image
generation model.

Language Model. Existing T2I models typically employ
pre-trained language models as text encoders. For instance,
the SD series (Rombach et al., 2022; Podell et al., 2023;
Esser et al., 2024) leverages CLIP (Radford et al., 2021) or
T5 (Raffel et al., 2020). Recently, decoder-only LLMs like
GPT (Brown et al., 2020; OpenAI, 2023) and LLaMA (Tou-
vron et al., 2023; Dubey et al., 2024) have gained attention
for their superior NLP performance, multilingual capabili-
ties, and next-word prediction training. As summarized in
Table 1, a diverse range of language models is available, yet
the optimal choice for multilingual T2I generation remains
an open question.

Dataset. As shown in Table 2, existing datasets—including

name num type lang-num quality
LAION-5B 5B TI pairs 100+ Noisy
PixArt 15M TI pairs 1 High
JourneyDB 4M TI pairs 1 High
CCAligned 100M Text Parallel 137 Noisy
CCMatrix 69B Text Parallel 80+ Noisy

Table 2. Mainstream Dataset Types. The existing data used for
T2I training mainly includes two formats: Text-Image pairs (TI
pairs) and Text Parallel data.

multilingual text corpora, multilingual text-image pairs,
and high-quality text-to-image datasets—offer valuable re-
sources for multilingual image generation. Large-scale
datasets like Laion-400M/5B (Schuhmann et al., 2022)
contain noisy, lower-quality data but provide multilingual
text-image pairs, supporting diverse languages. Meanwhile,
multilingual translation corpora (e.g., CCMatrix (Schwenk
et al., 2020)) lack image-text pairs but offer cross-language
alignments. High-quality text-to-image datasets (e.g., Jour-
neyDB (Pan et al., 2023)) supply high-resolution images
but mainly support English and a few mainstream lan-
guages. Thus, leveraging low-cost, internet-based text-
image datasets and multilingual translation corpora to en-
hance multilingual T2I model training remains a promising
direction.

3.2. MuLan: Toward Multilingual T2I Generation

Overall Architecture. To facilitate efficient and effective
multilingual T2I generation, MuLan incorporates two key
designs: (1) the multilingual semantic alignment through
easily accessible large-scale data, and (2) a language adapter
trained on a limited set of English T2I data. These designs
enable MuLan to operate without the constraints of mul-
tilingual T2I data, allowing for more efficient training by
leveraging existing models and datasets.

Multilingual Semantic Alignment. While many existing
language models demonstrate robust multilingual capabili-
ties, not all are well-suited for the multilingual T2I genera-
tion task needed for the Mulan framework. In this work, we
emphasize the importance of maintaining a consistent vec-
tor space across languages for multilingual T2I generation.
Specifically, given two text prompts, x1 and x2, that share
the same meaning but are in different languages, and a text
encoder L(·), the representations of these prompts, L(x1)
and L(x2), should closely align. This alignment ensures
that the conditional inputs to the image decoder remain
consistent across languages, thereby preserving consistent
image generation quality. Here, we mainly consider two
alignment approaches: (1) Image-centered alignment; (2)
Language-centered alignment.

(1) Language-Centered Alignment. A simple approach to
multilingual semantic alignment is leveraging large-scale
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Multilingual 
Text Encoder

MuLan
Adapter

Image
Decoder(UNet, DiT)

Noisy 
Latent

Original Text 
Encoder

Wrapping with 
LoRA/LCM(Optional)

Depth Image

Canny Image

Pose Image

Optional ControlNet

Prompt

Image

Figure 2. Overview of of MuLan. We use a language model as
the Multilingual Text Encoder, which has undergone Multilingual
Semantic Alignment stage. We only train the Language Adapter,
while all other modules are frozen.

translation data to align other languages’ vector spaces with
the well-supported English vector space. By conducting
distillation training with translation data alone, this can be
achieved: we designate the SD’s language encoder as the
teacher encoder, indicated by Lt(x) and any multilingual
encoder Ls(x, θs) as the student encoder, aligning their
features using MSE Loss. This alignment can be written as:

θ∗s = argmin
θs

E(x,y)∼Dtr
[MSE(Ls(x1, θs), Lt(x2))] (2)

(2) Image-Centered Alignment. In the image-centered align-
ment approach, CLIP maximizes the similarity between
positive text-image pairs and minimizes it for negative pairs
through contrastive learning. This training uses text-image
pairs, and when the text includes multiple languages, the
language encoder aligns different languages in the vector
space naturally around the image. In this case, the objective
function can be written as:

θ∗l = argmin
θl

E(x,y)∼D[cosine(L(x, θl), EI)], (3)

Here, θl refers to the parameters of the language model
L(·), EI refers to the image feature. This method, how-
ever, is resource-intensive and requires large multilingual
text-image pairs, which are challenging to obtain and re-
quire substantial storage. Using pre-trained models can help
reduce these costs.

Language Adapter. After getting the aligned language
model, to achieve cost-effective multilingual text-to-image
generation, we propose MuLan. This model incorporates a
lightweight language adapter L′ that bridges a multilingual-
aligned language model with a visual generator, enabling
generalization to multiple languages after training on a small
amount of English text-to-image generation data Den. So
the Eqn 1 could be rewritten as:

θ∗l′ = argmin
θl′

E(x,y)∼Den
[L(G(x; θl′), y)] . (4)

After aligning different languages using Eqn 2 or Eqn 3, we
can achieve multilingual T2I generation by training only this
adapter. The key to low-cost implementation lies in freezing
the language model and visual generator while training only
the language adapter θl′ on small-scale English data Den.

These adapters are used to re-project the high-dimensional
representations of text prompts from different languages
into a unified space. We adopt different adapter designs for
different diffusion models. In detail, we can achieve good
results using a simple MLP architecture for Pixart-α (Chen
et al., 2023a). However, we find MLP could not properly
deal with SD models (Rombach et al., 2022; Podell et al.,
2023). Instead, we choose to use one layer encoder-decoder
transformer with a set of learnable queries for extracting
embeddings from InternVL outputs. For SDXL (Podell
et al., 2023), we use two transformers to project embeddings
for two text encoders that SDXL adopts, and one attention
pooling layer for extracting pool embeddings.

Bridge Together. As shown in Figure 2, after the Multi-
lingual text encoder is trained with Multilingual Semantic
Alignment, the Language Adapter can be trained with min-
imal English training data at a low cost while enabling
multilingual image generation capabilities for broad text-to-
image diffusion models. The Multilingual Semantic Align-
ment stage can be undergone with different strategies and
base models, which could result in different performance
on subsequent image-generation fine-tuning. More details
are elucidated in Section 4.

4. Experiments
4.1. Experimental setup

Datasets. We primarily use a subset of LAION-EN (Schuh-
mann et al., 2022) with all samples that have aesthetic scores
larger than 5.8 for training base models and PixArt (Chen
et al., 2023a) dataset for aesthetic models.

Implementation details. We use InternVL-LLaMA (Chen
et al., 2023b) as our text encoder, which has undergone
Image-Centered Alignment on a multilingual image-text
pair dataset. Then, we trained the MuLan Adapter for dif-
ferent image decoders using the architecture described in
Section 3.

All MuLan adapters are trained with AdamW (Loshchilov &
Hutter, 2017) optimizer and 128 batch size. We use constant
learning rate 1e-5 for SD 1.5/2.1 (Rombach et al., 2022),
1e-6 for SDXL (Podell et al., 2023), and 2e-5 for Pixart-
α (Chen et al., 2023a). For SD 1.5, we train the adapter for
50k steps at the resolution of 512×512, and for SD 2.1 we
adjust the resolution to 768×768. For SDXL, we first train
the adapter for 100k steps at the resolution of 512×512
and finetune it for another 1k steps at the resolution of
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1024×1024. For Pixart-α, we train the adapter for 118k
steps at the resolution of 512×512. We randomly drop text
conditions at the rate of 10% and use min-SNR (Hang et al.,
2023) to accelerate training.

The training process was conducted on 8 NVIDIA A100-
80G GPUs. For SD 1.5 and SD 2.1, it took 12 hours, and
for SDXL and Pixart-α, it took two days.

Evaluation Metrics. We use XM3600 (Thapliyal et al.,
2022) to assess the model’s capabilities across 12 main-
stream languages (denoted as XM12 hereafter). To evaluate
the model’s generalization to additional languages, we tested
multilingual versions of the COCO2014 (Lin et al., 2015)
validation set. We translated the prompts into 85 languages
using Google Translate for these datasets. The model’s per-
formance was compared with an ad-hoc translation-based
SD 1.5 model and other multilingual T2I models (Yan et al.,
2024). Regarding evaluation metrics, we employed FID and
CLIP Score (SIM) calculated by InternVL-LLaMA (Chen
et al., 2023b).

4.2. Quantitive Results
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Figure 3. Comparison of CLIP Score of InternVL-MuLan-
SD15 and AltDiffusion across hundreds of languages on
COCO2014 val. Our model achieved performance comparable to
AltDiffusion in mainstream languages while substantially surpass-
ing AltDiffusion in less common languages.

Multilingual T2I Comparison. We integrated InternVL-
LLaMA (Chen et al., 2023b) into the adapter’s model, which
we call InternVL-MuLan. Specifically, for each image de-
coder, we train a separate adapter model, which we re-
fer to as InternVL-MuLan-SD15, InternVL-MuLan-SD21,
InternVL-MuLan-SDXL and InternVL-MuLan-PixArt.

As shown in Table 3, we compared our model with other
multilingual image generation models. On the XM12
dataset, InternVL-MuLan-PixArt outperformed AltDiffu-
sion (Ye et al., 2023a) and GlueGen (Qin et al., 2023) in
CLIP score, highlighting its strong multilingual understand-
ing. However, InternVL-MuLan-PixArt fell behind AltD-
iffusion in FID. To further evaluate image quality, we used
Laion’s aesthetic predictor. InternVL-MuLan-SD15 and
InternVL-MuLan-PixArt achieved average aesthetic scores
of 6.31 and 6.67, respectively, surpassing AltDiffusion’s
score of 6.05. This highlights the superior quality and visual
appeal of images generated by our model.

To further evaluate our model’s capability in the broader
range of minority languages, we evaluated our model on
the COCO2014 (Lin et al., 2015) validation set (85 lan-
guages) and computed CLIP Score, as shown in Figure 3.
Our model achieved performance comparable to AltDiffu-
sion in mainstream languages while substantially surpassing
AltDiffusion in less common languages.

Our model achieves top performance across languages,
reaching SOTA levels in mainstream languages and ex-
celling in low-resource ones, all with minimal training costs.
InternVL-MuLan-SD15 requires just 0.5×8 GPU-days, and
InternVL-MuLan-PixArt only 2×8 GPU-days. In compar-
ison, GlueGen costs 5 GPU-days yet performs worse than
the low-cost InternVL-MuLan-SD15, while AltDiffusion
demands at least 19×64 GPU-days. This highlights the
efficiency and cost-effectiveness of our approach.

Comparison of MuLan and Translate API We compared
MuLan with the approach of using Google Translate and
NLLB (NLLB Team et al., 2022) to convert non-English
languages into English for input into image generation mod-
els (Sun et al., 2024). Non-English languages in XM12
were translated into English, as input of SD15 (Rombach
et al., 2022) and PixArt-α (Chen et al., 2023a), with results
compared to direct input into MuLan. As shown in Table 3,
MuLan outperforms the approach that uses the open-source
model NLLB as a translation tool and achieves performance
comparable to using Google Translate. It demonstrates even
better results in low-resource languages where translation
tools often struggle to provide accurate translations.

Comparison of MuLan and “as-is” Baseline We eval-
uated Stable Diffusion v1.5 and PixArt-α by directly in-
putting prompts in 11 languages from the XM12 dataset,
using InternVL-LLaMA to compute CLIP scores, shown
in Table 5. These “as-is” results, where the prompts in
different languages were fed into the T2I models without
translation, were then compared with our MuLan-adapted
models. We found that MuLan adapters consistently im-
proved performance across all languages. Notably, even
for languages close to English—such as French, Spanish,
and German—our method still achieved clear gains over the
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avg. en fr es it zh ja hi de ko ru ar pl

GlueGen* SIM 35.6 39.6 35.9 35.5 35.0 35.3 36.3 % % % % % %

FID 17.4 21.4 17.1 18.5 17.6 17.6 16.1 % % % % % %

AltDiffusion SIM 38.8 40.0 40.0 39.4 39.7 39.0 39.4 34.1 39.0 38.5 38.6 38.3 39.2
FID 9.1 8.1 8.2 9.4 10.4 9.4 9.4 10.2 8.2 8.9 9.7 8.9 9.1

SD15(NLLB) SIM 36.5 39.6 37.6 37.4 37.2 36.2 36.2 32.7 37.7 35.9 36.8 33.9 36.3
FID 25.0 21.4 24.9 25.0 25.0 25.5 24.9 28.2 24.5 25.4 24.6 26.6 24.4

SD15(Google) SIM 36.9 39.6 38.2 38.0 37.8 36.6 36.7 33.1 38.4 36.4 37.4 34.4 36.7
FID 21.6 21.4 21.6 23.9 22.4 19.1 20.5 19.6 22.1 21.7 21.6 22.9 21.8

PixArt(NLLB) SIM 38.3 39.0 39.7 39.4 39.2 38.1 38.6 34.4 40.3 37.7 39.3 35.6 38.7
FID 13.2 12.6 13.2 14.6 12.5 13.0 13.1 12.4 12.9 12.4 13.0 14.3 14.7

PixArt(Google) SIM 39.7 39.0 41.2 40.6 41.0 39.9 40.8 34.7 41.5 39.0 40.5 39.0 39.9
FID 13.7 12.6 13.7 15.5 12.9 13.8 13.9 12.3 12.9 13.2 12.9 15.1 15.4
SIM 37.7 38.6 38.0 37.7 37.8 37.7 38.0 35.6 38.0 37.6 37.9 38.2 37.1Mulan-SD15 FID 14.4 13.9 14.7 16.5 13.5 17.0 13.7 13.0 13.8 12.8 13.8 14.0 16.5
SIM 39.5 39.6 40.2 39.6 40.0 39.3 40.5 37.2 40.5 39.3 39.6 39.1 39.1Mulan-PixArt FID 11.8 12.8 12.2 13.6 11.7 10.6 10.7 13.4 12.4 8.4 10.5 11.9 13.2

Table 3. Comparison of Multilingual Generation Capabilities on XM12. GlueGen and AltDiffusion are other multilingual T2I methods,
where the inputs for SD15 and PixArt-α are translated using Google Translate and NLLB. GlueGen is equivalent to the original SD15
when accepting English prompts. Its performance in English was not included in the average calculation.

lang Id Model SIM

zh

Taiyi-SDXL-3.5B 35.44
Taiyi-SD-1B-Chinese 36.84

InternVL-Mulan-SD15 37.84

ja JapaneseSDXL 38.00
InternVL-Mulan-SD15 38.01

Table 4. Comparison of CLIP Score on Chinese and Japanese
with specialized models on XM3600. InternVL-MuLan-SD15
surpasses specialized Chinese and Japanese models.

as-is baseline, demonstrating its broad effectiveness.

Alternative CLIP for Image-Text Similarity Image-text
similarity is typically computed using the industry-standard
CLIP-ViT models (Radford et al., 2021). However, these
models are primarily trained on English data, making their
similarity scores unreliable for non-English inputs. In this
work, we employ InternVL-LLaMA, a multilingual model,
to compute the image-text similarity scores. To further
ensure the objectivity of the similarity evaluation, we addi-
tionally use the multilingual CLIP-ViT model released by
Laion (LAION, 2023). The results shown in Table 5 demon-
strate that our model remains robust, and the observed trends
are consistent with those reported in Table 3.

Fine-grained Text-Image Alignment Evaluation While
CLIP Score is useful for evaluating the presence of main sub-
jects, it is limited in capturing object-level details and spatial
relations—especially for compositional prompts in XM12.
To address this, we adopt VQAScore (Lin et al., 2024) with
GPT-4o as the evaluator, enabling reliable multilingual as-
sessment. As shown in Table 5, our model achieves strong
fine-grained alignment, outperforming GlueGen and Alt-
Diffusion, and matching or surpassing translation-based
baselines across most languages.

Comparison of MuLan and Specialized Models We com-
pared the multilingual MuLan adapter with two language-
specific models: Taiyi (Wu et al., 2024), trained on mil-
lions of Chinese image-text pairs, and the Japanese SDXL
model (Shing & Akiba), fine-tuned on high-quality Japanese
image-text pairs. Our model performs better on both lan-
guages, demonstrating its competitiveness with specialized
models.

Comparison of Multilingual Semantic Alignment Meth-
ods In this study, we trained the MuLan Adapter on mul-
tilingual language models with and without Multilingual
Semantic Alignment, using different alignment methods,
and evaluated their performance on five non-English lan-
guages on the XM12 dataset. The results are shown in Table
6. We first selected the multilingual-supporting LLama (Tou-
vron et al., 2023), mT5-xl (Xue et al., 2021) and XLM-R
Large (Conneau, 2019) models as text encoders and trained
MuLan without the Multilingual Semantic Alignment stage.
Next, for Image-Centered Alignment, we choose InternVL-
LLaMA (Chen et al., 2023b) and Mul-OpenCLIP (Con-
neau, 2019) as text encoders, both of which have be trained
on multilingual image-text pairs such as Laion-5B (Schuh-
mann et al., 2022). For Language-Centered Alignment,
we selected MultiLang-CLIP (Carlsson et al., 2022) and
AltClip-m18 (Chen et al., 2022), models trained on par-
allel datasets like CCMatrix (Schwenk et al., 2020), We
also trained an XLM-R Large on CCMatrix for compari-
son. Among them, Mul-OpenCLIP, MultiLang-CLIP, and
AltClip-m18 all use the XLM-Roberta-Large architecture,
but with different training methods or datasets. All image
decoders used are based on SD 1.5 (Rombach et al., 2022).

The results are shown in Table 6. We found that multilingual
text encoders trained solely on multilingual corpora, such
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Metric avg. en fr es it zh ja hi de ko ru ar pl
SD15(as-is) SIM 29.1 39.6 34.2 34.2 31.8 26.6 26.9 26.8 31.9 24.6 23.0 24.5 24.8
PixArt(as-is) SIM 29.8 39.0 38.2 36.9 36.0 24.2 22.1 24.0 36.8 22.4 28.9 22.2 27.0
Mulan-SD15 SIM 37.7 38.6 38.0 37.7 37.8 37.7 38.0 35.6 38.0 37.6 37.9 38.2 37.1
Mulan-PixArt SIM 39.5 39.6 40.2 39.6 40.0 39.3 40.5 37.2 40.5 39.3 39.6 39.1 39.1

GlueGen SIM(Laion) 21.1 22.3 21.3 20.6 19.6 21.5 21.0 % % % % % %
AltDiffusion SIM(Laion) 23.1 24.2 23.6 23.2 23.1 24.3 23.0 21.1 24.3 22.5 22.3 22.7 23.2
SD15(Google) SIM(Laion) 22.3 22.3 23.8 23.4 22.8 22.6 21.3 20.8 24.5 21.7 22.6 19.5 21.9
PixArt(Google) SIM(Laion) 24.3 24.1 24.2 23.8 24.5 26.4 25.1 21.6 26.5 23.1 24.6 23.3 23.9
Mulan-SD15 SIM(Laion) 23.0 21.8 23.6 23.2 22.7 23.6 24.2 22.7 24.5 21.8 23.0 22.3 22.9
Mulan-PixArt SIM(Laion) 24.2 24.4 23.9 23.4 24.2 25.7 24.8 23.2 25.8 23.4 24.6 23.1 23.4

GlueGen VQAScore 0.53 0.81 0.51 0.52 0.45 0.41 0.50 % % % % % %
AltDiffusion VQAScore 0.58 0.71 0.60 0.60 0.59 0.50 0.53 0.62 0.49 0.56 0.51 0.64 0.62
SD15(Google) VQAScore 0.61 0.81 0.66 0.71 0.61 0.57 0.50 0.67 0.50 0.70 0.68 0.41 0.52
PixArt(Google) VQAScore 0.75 0.85 0.78 0.80 0.82 0.71 0.71 0.82 0.71 0.76 0.76 0.59 0.69
Mulan-SD15 VQAScore 0.64 0.80 0.74 0.76 0.68 0.60 0.52 0.53 0.57 0.65 0.75 0.45 0.57
Mulan-PixArt VQAScore 0.74 0.88 0.81 0.83 0.81 0.71 0.71 0.61 0.73 0.74 0.79 0.59 0.72

Table 5. Multidimensional Comparison of Multilingual Image Generation on XM12. Part 1: Comparison between English-only
T2I models using as-is prompts and MuLan; Part 2: Using the multilingual-capable Laion’s CLIP-ViT (LAION, 2023) for image-text
similarity; Part 3: Evaluating fine-grained text-image alignment using VQAScore (Lin et al., 2024).

Model Align Method avg SIM
LLaMA2-7B None %

mT5-xl None %

XLM-R Large None %
MultiLang-CLIP LC 33.2
AltClip-m18 LC 33.3
XLM-R Large* LC 34.7
Mul-OpenCLIP IC 36.1
InternVL-LLaMA IC 37.8

Table 6. CLIP Score on five non-English languages of Dif-
ferent Text Encoders trained with MuLan Adapter. Mul-
OpenCLIP stands for CLIP-ViT-H-14-frozen-xlm-roberta-large-
laion5B-s13B-b90k (LAION, 2023). “LC” and “IC” represent
Language-Centered Alignment and Image-Centered Alignment,
respectively; XLM-R Large* is trained by the authors using CC-
Matrix.

as LLaMA, mT5-xl, and XLM-R Large, fail to understand
non-English prompts entirely. This is because these models
have not undergone multilingual alignment, so their multi-
lingual embeddings are not aligned. After connecting these
language models with the MuLan adapter and training with
English text-image pairs, only the English embeddings are
aligned with the visual feature space, preventing understand-
ing of non-English prompts. However, with either of the
two alignment methods, the multilingual embeddings are
first mapped to a unified feature space, which the MuLan
adapter then aligns with the image space using only English
image-text pairs, enabling multilingual image generation.

The results also suggest that Image-Centered Alignment
outperforms Language-Centered Alignment by a signif-
icant margin. We speculate that this is because, in
Image-Centered Alignment, language alignment is achieved

through the image, which acts as a bridge between the lan-
guage embeddings and the visual space. As a result, the
semantic space of different languages is already aligned
with the image prior to training with MuLan, allowing Mu-
Lan to further refine this alignment. In contrast, Language-
Centered Alignment relies entirely on MuLan to establish
the connection between language embeddings and the im-
age feature space, making the MuLan adapter training more
challenging and resulting in lower performance.

In summary, MuLan innovatively uses an image-centered
aligned language model for multilingual image generation.
Previous methods like GlueGen (Qin et al., 2023) and AltD-
iffusion (Ye et al., 2023a), which rely on language-centered
alignment, face inherent limitations due to their alignment
method. GlueGen aligns non-English embeddings with the
CLIP text encoder used in SD, with SD kept frozen, but as
shown in Table 3, its performance on non-English languages
is significantly worse than that on English. AltDiffusion, by
contrast, retrains both text encoder and UNet on billions of
multilingual pairs, incurring high training costs. In compar-
ison, our approach achieves strong, balanced multilingual
generation with minimal cost, requiring only a small adapter
while keeping the SD frozen. In practice, the use of a uni-
fied, image-centered alignment pre-trained model allows
easy adaptation to various SD models in the community
with minimal overhead.

4.3. Qualitative Results

Our model can generate high-quality images across multiple
languages. It also supports multilingual mixed input and
can recognize certain emojis. In addition to simple T2I
tasks, there are numerous downstream applications of SD
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MVDream : 一个酷炫的变形金刚(A cool Transformer) Dreamshaper

Realistic Vision Cartoonmix 3D Animation LoRA (Lego)

ControlNet LCM Turbo Lightning

LoRA (MidJourney)

Figure 4. Examples of MuLan integrates with community tools. MuLan seamlessly integrates with MVDream (Shi et al., 2023) for
3D model generation and is fully compatible with community tools like LoRA (Hu et al., 2021), ControlNet (Zhang et al., 2023), and
LCM (Luo et al., 2023).

within the community, including LoRA (Hu et al., 2021),
LCM (Luo et al., 2023), and ControlNet (Zhang et al., 2023).
These tools played crucial roles in enhancing model adapt-
ability, control over outputs, and finetuning for specific
tasks. Our model does not require finetuning on SD, allow-
ing it to seamlessly integrate and be compatible with these
community-developed SD applications in a plug-and-play
manner. We show some examples in Figure 4.

5. Conclusion
We introduce language adapter MuLan that could equip
image/video/3D diffusion models with multilingual genera-
tion abilities. MuLan shows strong zero-shot capabilities for
up to 110 different languages, even if the adapter is solely
trained on English data. MuLan also can be trained with a
frozen text encoder and diffusion denoising model, which
makes it applicable for many downstream models, such as
LoRA (Hu et al., 2021), ControlNet (Zhang et al., 2023),
LCM (Luo et al., 2023), and etc., without any additional
finetuning. MuLan is currently trained with paired data, and
it could inevitably bring in bias and cause a distribution shift

of original models. A promising extension would be to alle-
viate the need for paired data and make original capabilities
intact. Furthermore, MuLan currently focuses on improving
multilingual generation capabilities, but it would be inter-
esting to extend it to improving prompt understanding and
following under a multilingual context.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. More Experiments
In this section, we provide supplementary analyses to further
evaluate and understand the performance and efficiency of
our proposed model. These studies delve into key aspects
such as training efficiency, semantic alignment methods,
and the model’s generalization across multiple languages.
By examining the impact of various design choices and
alignment strategies, we aim to shed light on the model’s
multilingual capabilities and resource efficiency.

A.1. Training Efficiency

Our model leverages the multilingual capabilities of the
InternVL-LLaMA text encoder, enabling effective training
with minimal cost. In this section, we examine the changes
in the model’s performance when data volume and training
iterations are reduced.

λ # of samples Avg SIM
1 17M 35.80
1/2 8.5M 35.46
1/4 4.25M 35.40
1/8 2.1M 35.23
1/16 1M 35.17
1/64 250k 35.13
1/256 63k 35.08
1/1024 16k 33.49

Table 7. Impact of dataset size on multilingual performance of
the model. We evaluated the model’s performance using different
proportions of the original dataset, ranging from full size (λ = 1)
to 1/1024, and measured the average CLIP Score across 7 lan-
guages. The results show that the model maintains relatively strong
performance even with significantly reduced data sizes, demon-
strating its efficiency and robustness under resource-constrained
settings.

Setting. We choose Stable Diffusion 1.5 (Rombach et al.,
2022) as the backbone model, using the AdamW optimizer
for training. The model was trained to convergence with
a learning rate of 2e-5 and a batch size of 128, without
employing any training tricks. Additionally, the dataset size
was reduced, and we set multiple data proportion levels
ranging from 0.5 to 0.001 to evaluate the impact of data size
on the model’s performance.

Results. As shown in Table 7, we found that the model’s
multilingual performance decreased as the data volume was
reduced; however, it still maintained a relatively strong per-
formance until we reduced the data to 1/1024 of the default
data volume. This level of data volume and training cost is
highly developer-friendly, requiring only 48 GPU hours to
achieve decent multilingual text-to-image (T2I) capabilities
for the model. Compared to existing multilingual T2I mod-
els, such as AltDiffusion (Ye et al., 2023a), our approach

requires significantly less data and computational cost at
every stage.

A.2. Impact of Semantic Alignment on Multilingual
Features

In this section, we conduct a preliminary analysis of the
multilingual output features produced by various text en-
coders to reveal the effects of the two image alignment train-
ing methods introduced in Section 3.2. The text encoders
we selected for this analysis include XLM-R Large (Con-
neau, 2019), CCMatrix trained XLM-R Large* in Table 6,
Mul-OpenCLIP (LAION-5B (Schuhmann et al., 2022) pre-
trained XLM-RoBERTa-Large (Conneau, 2019)), LLaMA2-
7B (Touvron et al., 2023), and InternVL-LLaMA (Chen
et al., 2023b).

We employ t-SNE (van der Maaten & Hinton, 2008), a non-
linear dimensionality reduction technique, to visualize the
aggregation effects of multilingual features produced by
these text encoders. t-SNE is particularly suited for preserv-
ing the local structure of high-dimensional data in a low-
dimensional space. Ideally, for text encoders trained with
multilingual alignment methods, the features corresponding
to semantically equivalent prompts in different languages
should exhibit aggregation effects when projected into a
lower-dimensional space.

For this analysis, we randomly sampled 20 captions from the
COCO2014 (Lin et al., 2015) validation set and translated
them into 8 languages using machine translation, resulting
in a total of 160 textual inputs. These inputs were then
encoded using the selected text encoders to obtain their
corresponding pooled feature representations.

The results are shown in Figure 5. As shown in Figures (a)
and (d), the sample points in the t-SNE (van der Maaten &
Hinton, 2008) plots exhibit a scattered distribution for text
encoders that have not undergone image alignment train-
ing. This indicates that although XLM-RoBERTa (Conneau,
2019) and LLaMA2 (Touvron et al., 2023) possess multi-
lingual representation capabilities, their output features for
synonymous multilingual prompts are not closely located
in the Euclidean space. In contrast, as shown in Figures
(b)(c)(e), the sample points exhibit a clustered distribution
after alignment training with images, with each cluster cor-
responding to the 20 different language versions of a single
prompt. Through alignment training with images, the model
minimizes the semantic discrepancies between multilingual
representations, ensuring that the embeddings of synony-
mous prompts converge in the vector space.

A.3. Detailed Results on COCO2014 validation set

In Section 4.2, we evaluated InternVL-Mulan-SD15 on the
COCO2014 (Lin et al., 2015) validation set (85 languages)
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(b) CCMatrix Pre-trained 

XLM-R-L 

(a) XLM-R-L (d) LLaMA2-7B (e) InternVL-LLaMA(c) LAION Pre-trained 

XLM-R-L

Figure 5. t-SNE analysis on embeddings of 9 prompts in 20 languages produced by 5 text encoders. (a) XLM-RoBERTa-Large (Con-
neau, 2019) (b) CCMatrix pre-trained XLM-RoBERTa-Large (Conneau, 2019) in Table 6 (c) Laion-5B (Schuhmann et al., 2022)
pre-trained XLM-RoBERTa-Large (Conneau, 2019) (d) LLaMA2-7B (Touvron et al., 2023) (e) InternVL-LLaMA (Chen et al., 2023b).
Points of the same color represent embeddings corresponding to the same prompt translated into different languages.

Id SD15 SD21 SDXL AD Id SD15 SD21 SDXL AD Id SD15 SD21 SDXL AD
af 35.39 34.54 34.68 33.83 id 35.67 35.55 35.49 31.53 ps 30.74 30.87 31.41 28.61
ar 39.00 38.20 38.13 38.77 ig 30.65 30.80 32.10 30.09 ro 37.17 36.88 36.93 30.51
az 34.19 33.67 33.66 30.95 is 30.68 30.96 31.97 29.17 ru 38.11 37.86 37.63 38.51
be 35.24 35.23 35.20 30.74 it 37.13 36.62 36.56 37.62 sd 30.61 30.20 30.26 27.93
bg 38.76 38.40 38.38 33.60 iw 38.52 38.07 38.17 26.84 sk 36.12 36.12 36.02 29.09
bn 33.58 32.56 33.61 30.06 ja 38.05 38.14 37.82 39.43 sl 36.83 36.28 36.22 27.21
bs 37.20 36.89 36.86 28.10 ka 35.70 35.53 35.80 30.38 sm 29.94 30.24 32.44 27.94
ca 37.74 37.43 37.22 33.17 kk 32.18 31.70 31.44 28.75 sn 29.61 29.71 30.74 29.97
co 35.03 34.50 34.39 33.95 km 25.82 26.71 28.43 24.81 so 29.67 29.05 31.38 29.05
cs 35.30 34.85 34.71 28.78 kn 28.94 27.42 29.65 28.59 sq 35.08 34.41 34.77 29.06
da 36.25 35.99 35.77 31.78 ko 38.06 37.21 37.09 38.27 sr 37.77 37.90 37.91 31.09
de 36.79 36.98 36.87 38.16 ku 29.86 29.23 30.41 27.50 st 29.76 30.00 32.24 29.63
el 35.39 35.49 35.24 25.36 ky 32.49 32.08 32.37 30.33 su 32.65 32.00 32.91 30.62
eo 31.17 30.81 30.99 28.92 la 30.25 30.32 30.39 29.71 sv 35.91 36.22 36.07 31.83
es 37.38 37.41 37.37 38.41 lb 30.96 30.59 30.93 30.28 sw 30.39 30.30 30.77 32.23
et 34.43 34.85 34.76 28.22 lt 36.02 35.94 35.77 27.00 ta 31.00 29.69 32.20 32.47
fa 38.22 37.99 37.92 28.58 lv 35.08 34.91 34.56 27.03 te 28.07 27.22 29.82 27.21
fi 37.16 37.16 36.74 28.71 mi 30.34 30.60 32.75 29.54 tg 30.84 30.43 31.29 28.34
fr 37.38 37.57 37.41 38.81 mk 38.17 38.29 38.41 31.66 th 36.95 36.83 36.76 37.56
fy 32.73 31.97 31.90 31.64 ml 31.75 29.67 32.78 29.72 tr 35.89 35.65 35.57 36.17
ga 27.56 26.96 28.26 28.27 mn 33.39 33.91 34.63 30.04 uk 37.62 37.22 36.98 37.94
gd 27.95 27.52 28.69 28.92 mr 35.14 34.12 34.15 31.52 ur 34.82 34.30 34.10 29.01
gl 37.06 36.80 36.59 36.08 ms 35.25 35.04 35.01 30.61 uz 30.18 29.50 30.24 28.91
gu 28.25 27.83 29.09 31.06 mt 29.97 29.22 30.64 29.87 vi 38.13 37.67 37.60 38.31
haw 31.31 31.52 33.81 31.37 my 28.15 28.10 29.56 27.90 yi 29.22 29.01 29.49 27.86
hi 36.94 36.47 36.28 36.92 ne 34.37 33.53 34.34 32.72 yo 30.32 29.95 31.68 28.65
hr 37.25 36.94 36.93 28.00 nl 36.85 36.64 36.39 37.91 zh 38.85 39.26 39.50 40.30
hu 36.38 36.08 35.98 26.44 no 35.94 35.80 35.73 31.65
hy 33.36 32.66 32.98 26.73 pl 35.97 35.82 35.30 37.12

Table 8. CLIP Score on the COCO2014 validation set. ‘Id’ indicates the key of different language. SD15/21/XL (Rombach et al., 2022;
Podell et al., 2023) represent our model implemented on the corresponding three T2I backbones, while AD refers to the AltDiffusion (Ye
et al., 2023a). Our model also demonstrates strong text-to-image (T2I) capabilities across a wider range of languages.
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and compared it with AltDiffusion (Ye et al., 2023a). More
results are shown in Table 8. It can be observed that our
model generalizes well to a wider range of languages and
delivers impressive performance.

B. More Qualitative Results
In this section, we present more examples of multilingual
generation by the model, as well as examples of its interac-
tion with existing community models and tools.

B.1. Robustness to Multiple Languages

As shown in Figure 6, our model supports multiple lan-
guages, allows prompt inputs that combine different lan-
guages, and even recognizes emojis. For example, We can
use the car emoji as a prompt (the first image in Figure 6),
and the model can generate an image of a car.

B.2. Plug and Play on Different Visual Generator

Our model can be seamlessly integrated into existing fine-
tuned models, such as DreamShaper, Realistic Vision, and
others. In Figure 6, we present additional examples, all
generated by existing models interacting with Mulan. These
examples use prompts in multiple languages, demonstrat-
ing support for various language combinations as inputs.
Our model also supports some existing tools based on the
Stable Diffusion series developed by the community. Here,
we showcase several popular models, including LoRA (Hu
et al., 2021) models, ControlNet (Zhang et al., 2023) mod-
els, and IP-Adapter (Ye et al., 2023b) models. The model’s
multilingual capabilities naturally come into play in these
applications.
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Prompt: 山水画
Translation: landscape 
painting

Prompt: 🚗
Translation: car

Prompt: 一只戴着帽
子的 rabbit
Translation: A rabbit 
wearing a hat

Prompt: Astronauten rijden
paarden
in een schetsstijl
Translation: Astronauts 
riding horses in a sketch style

Prompt: Basket buahnya
ada di meja
Translation: The fruit 
basket is on the table

Prompt: kadın büyücüsü
Translation: witch

Prompt: byzylyk me 
rruaza kristali
Translation: crystal bead 
bracelet

Prompt: Kozmikus
máglyaködben rekedt kalózhajó
Translation:Pirate ship 
stranded in cosmic bonfire 
nebula

Prompt: Stunning botanical 
水彩风格 白色背景
Translation: Stunning 
botanical, watercolor style,
white background

Prompt: Thịt bò
Translation: Beef

Prompt: une seule photo 
d’un coucher de soleil sur 
la mer
Translation: a single photo 
of a sunset over the sea

Prompt: Ένας παπαγάλος που 
φοράει γυαλιά ηλίου
Translation: A parrot 
wearing sunglasses

Figure 6. Multilingual generation results. Our model supports multilingual and mixed-language inputs.

Prompt:ビーチでサングラスをかける
Translation: Wearing sunglasses on the beach

Prompt: 一只北极熊坐在椅子上喝着奶昔
Translation: a polar bear sitting in a chair drinking a milkshake

Figure 7. IP-Adapter Results. Our model enables multilingual style transfer by integrating with the IP-Adapter (Ye et al.,
2023b).
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Prompt: 3d style kung fu 
tiger

Prompt: 3d style ةیرصملا ةكلملا
Translation: 3d style 
Egyptian Queen

Prompt: 像素风格, 一只
可爱的柯基
Translation: Pixel style-a 
cute corgi

Prompt: pixel 风格一只可爱的
🐱
Translation: Pixel style-a cute 
cat

Prompt: vector art, 雄鹰
Translation: vector art, 
eagle

Prompt: vector art, 우주
비행사
Translation: vector art, 
astronaut

Prompt: papercut-subject-
キツネ
Translation: papercut
-subject-fox

Prompt: papercut-subject-
河流与落日
Translation: papercut-
subject-river and sunset

Figure 8. Lora Results. Our model can naturally support multilingual input when using LoRA (Hu et al., 2021).

Depth-ControlNet Prompt: 스파이더맨
Translation: spiderman

Prompt: 蜘蛛侠
Translation: spiderman

Prompt: スパイダーマン
Translation: spiderman

OpenPose-ControlNet Prompt: Un mannequin 
international sur les podiums
Translation: An international 
model on the catwalks

Prompt: 一个跳舞的女孩
Translation: A dancing girl

Prompt: スーツを着たハ
ンサムな男性
Translation: Handsome 
man in a suit

Figure 9. ControlNet Results. Our model can utilize existing ControlNet (Zhang et al., 2023) models, enabling multilingual
image generation with conditional inputs such as depth maps and pose images.
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