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Abstract

With the rise in biomedical research and the
increasing risk of misinformation, ensuring the
accuracy of claims about treatment effective-
ness is critical, as inaccuracies can significantly
affect patient care and treatment decisions. In
this work, we introduce the Chain of Evidential
Natural Language Inference(CoENLI) frame-
work that leverages large language models
(LLMs) to enhance natural language inference
in biomedical claim verification. The task in-
volves determining the entailment relationship
between a claim and evidence derived from
medical studies or clinical trial reports (CTRs).
CoENLI enhances the ability of LLMs to pro-
cess complex contexts and make logical infer-
ences through a structured reasoning frame-
work, comprising four clearly defined steps:
semantic grounding, evidence-based evalua-
tion, logical conclusion, and relation predic-
tion. Our experimental results demonstrate that,
through structured, human-like deductive rea-
soning, small-scale LLMs can exhibit biomed-
ical expertise and achieve high accuracy in
biomedical claim verification.

1 Introduction

Natural language inference (NLI) tasks typically
involve determining whether or not a given hypoth-
esis is entailed with respect to a premise (Bowman
et al., 2015). An NLI system labels the logical
relationship between the premise and hypothesis
(e.g., Entailment, Contradiction, or Neutral). To
enhance transparency and trustworthiness, the sys-
tem should also provide an explanation in the form
of specific evidence (rationales) that justify its de-
cision (Camburu et al., 2018). In the scientific and
medical domains, NLI is used to assist clinicians
and researchers by automatically verifying claims
against evidence from clinical trial data or medi-
cal literature. This task is particularly challenging
for models, as they must process long and com-
plex documents while also comprehending domain-

specific terminology to accurately assess the claims.
(Romanov and Shivade, 2018; Wadden et al., 2020;
Jullien et al., 2023). The NLI4CT challenges (Jul-
lien et al., 2023, 2024) highlight the significant
difficulties of applying NLI to validate statements
(hypotheses) related to clinical trial reports (CTRs),
which requires more than simple textual analysis
(see example in Figure 1). For clarity, in this paper,
we will use "claim" and "statement" interchange-
ably to refer to the hypothesis within the context
of NLI for biomedical claim verification, as differ-
ent benchmarks employ vary conventions for these
terms.

Statement.
"Most patients in cohort 1 sufered a
|cardiac event.”

Premise:

Section: Adverse events
Adverse events 1: total 36/93,
Leukopenia 3/93,

Arthythmia 1/93,

Atrial fibrillation 1/93,
Pericardial effusion 1/93,
Tachycardia 1/93

v
Contradiction

Figure 1: An example from NLI4CT dataset (Jullien
et al., 2023). Left: a pair of statement and the adverse
event section of a clinical trial data (premise). Right: an
illustration of understanding the key terms and reason-
ing capabilities required to infer the logical relationship
between the statement and the premise.

Specifically, it requires a deep understanding
of medical and scientific knowledge to interpret
implicit data points beyond simple text matching.
Clinical trial data often contain complex statistical
information and precise measurements that must
be interpreted accurately to avoid errors in claim
verification. The challenges for an NLI system
to determine whether the statement is supported
(entailed) by the provided clinical trial section, in-
clude understanding biomedical terminology and
applying multi-hop reasoning to draw connections
that are not immediately obvious. Large language



Statement: "Patients receiving the placebo intervention in the primary trial were twice as likely to experience BMESIS as patients receiving Aprepitant."|

|

IQI semantic grounding Zm;;:/;lruoaul; the claim, we can calculate the emesis rates in
W - Emesis rate for Aprepitant group: (20 - 13) /20 =7 /20 = 0.35

or 35%

- Placebo intervention: Inert substance or treatment given to the - Emesis rate for Placebo group: (20 - 5)/ 20 = 15/20 = 0.75

control group, with no active effect. Q or 75%

- Aprepitant: Active being to the placebo. =

- EMiSEI: Refers to vomiting or nausea. ) > evidence- ——»{Based on the calculated emesis rates:

Twice as likely" indicates a comparison suggesting that the based - The rate of emesis in the Placebo group is 75%.

probability of experiencing emesis in the placebo group is double aElE T - The rate of emesis in the Aprepitant group is 35%.

that of the Aprepitant group.

Premise:

Primary trial:
- Outcome Measurement:
- Number of Emesis Free Participants During the Study Period.

- Results 1:

- Arm/Group Title: Aprepitant

- Arm/Group Description: Loading dose of 125 mg capsule once a day
for one day, then maintenance dose of 80 mg capsule daily through
Day +4 of Bone Marrow Transplant

- Overall Number of Participants Analyzed: 20

- Measure Type: Number

- Unit of Measure: Participants 13

- Results 2:

- Arm/Group Title: Placebo (Sugar Pill)

- Arm/Group Description: Loading dose of 125 mg capsule once a day
for one day, then maintenance dose of 80 mg capsule daily through
Day +4 of Bone Marrow Transplant

- Overall Number of Participants Analyzed: 20

- Measure Type: Number

- Unit of Measure: Participants 5

The data from the clinical trial indicates that the rate of Efiesis
in the Placebo group was 75% and in the Aprepitant group was
35%.

e o

lal logical conclusion

v

**Conclusion**: based on the calculated relative risk, patients in
the placebo group were approximately 2.14 times as likely to
lexperience emesis compared to patients in the Aprepitant
group. This supports the initial statement made regarding the
likelihood of experiencing emesis between the two intervention

groups.
v

|$| relation prediction

v

l {"Relation": "Entailment", "Confidence": "high"} I H

Figure 2: CoENLI framework for biomedical claim verification. The framework begins with Semantic Grounding
and Evidence-based Evaluation steps, which help interpret key terms and assess each piece of claim against
identified relevant data points. These steps activate specific semantic space in LLMs associated with the biomedical
knowledge and logical patterns necessary for addressing the current inference task.

models (LLMs) offer promising potential to ad-
dress these challenges. Recent research has shown
that the reasoning capability of (LLMs) depends
on two key factors: the size of the model and the
appropriateness of the prompts provided for spe-
cific tasks (Huang and Chang, 2022; Qiao et al.,
2022; Xia et al., 2024). In particular, Chain-of-
Thought (CoT) strategies (Wei et al., 2022), which
provide exemplars of clear, step-by-step reason-
ing processes have demonstrated impressive per-
formance in guiding LL.Ms to complete various
reasoning tasks. Kojima et al. (2022) demonstrated
that zero-shot CoT prompting with the prompt of
"Let’s think step by step. " instead of examples.
Breaking down complex reasoning tasks into sim-
pler steps can be useful, Zhou et al. (2022) noted
that decomposition prompts require task-specific
design for optimal performance.

In this work, we introduce a chain of evidential
natural language inference (CoENLI) framework
that breaks down the NLI process for biomedical
claim verification into sequential stages to enhance
the zero-shot reasoning capabilities of LLMs (see
illustration in Figure 2). In particular, we aim to
address the challenges posed by the need for do-
main expertise and the extensive length of medical
documents, as well as the demand for the reliabil-

ity. We explain the CoENLI framework in more
detail in Section 2. CoENLI reasoning frame-
work offers a structured, interpretable deductive
reasoning process and achieves improved perfor-
mance by breaking down complex inferences into
manageable steps. In our experiments, we specifi-
cally investigate the improvement obtained in both
lightweight LLMs (from 3.6 to 14 billion parame-
ters at most) and GPT3.5 and GPT40-mini models
() compared to two baselines. All investigated mod-
els show a significant improvement over standard
CoT method, achieving approximately 10% perfor-
mance improvement compared to baselines. No-
tably, COENLI incorporating GPT40-mini model
shows the best zero-shot F1 scores for logical rela-
tion prediction across all evaluation datasets. Our
key contributions can be summarized into:

* We propose a CoENLI framework that ex-
tends the zero-shot CoT methodology and
aims to address complex reasoning tasks like
biomedical claim verification.

* We demonstrate how combining our COENLI
framework and supervised fine-tuning (SFT)
significantly enhances the performances of
lightweight LLMs in tackling the reasoning
tasks.



The code for reproduce our experiments is available
in the GitHub repository .

2 Approach

Task Definition We frame the NLI task in the
biomedical domain as a binary classification prob-
lem, where an NLI system based on LLMs deter-
mines whether a statement or claim (C') logically
follows from the premise (P) provided in clinical
trial or scientific study data. For automatic perfor-
mance evaluation, the final output of the system is
a prediction of the logical relationship between C'
and P. Let’s denote:

Entailment if C' logically follows
from P; @))]

Contradiction otherwise

f(C,P):

The binary prediction accuracy provides a
straightforward measure of the LLMs’ reasoning
capabilities. For solving the task, our first base-
line utilizes a straightforward prompt template (see
Figure 3), as proposed by Jullien et al. (2024).

Prompt template

"Given a section of 2 clinical
trial descriptions and a statement,
determine whether the statement
logically follows from the sections.
If the statement logically follows
from the sections, you need to
return ’Entailment’. If the
statement does not logically follow
from the sections, you need to
return ’Contradiction’. The output
should be a single word <Entailment>
or <Contradiction>.

"Statement: " + Statement

"Primary Trial: " + Primary CTR text
"Secondary Trial: " + Secondary CTR
text

Figure 3: A simple prompt template for producing a
one word logical relation prediction for NLI4CT task
(Jullien et al., 2024).

Metrics For evaluating the performance of LLMs
in our task, we employ the Fl-score as the key
evaluation metric for binary classification results.

Fl—9 Precision - Recall

" Precision + Recall

Zero-shot Chain-of-Thought (CoT) Intermedi-
ate steps are useful for increasing grounded con-
text and intermediate steps also increase the re-
liability of model generations (Yu, 2023). Stan-
dard CoT is a prompting methodology guiding

LLMs to handle reasoning tasks by mimicking the
thoughts of solving example tasks demonstrated in
prompts (Brown, 2020; Wei et al., 2022). In our
cases, providing multiple human-annotated exam-
ples in prompts is impractical due to the length of
input documents, which can individually exceed
5,000 tokens. Adding examples along with model-
generated responses for intermediate steps would
exceed the model’s input limits and introduce noise
to harm performance. As another baseline, we inte-
grate the zero-shot CoT consisting of two steps, as
suggested in Kojima et al. (2022) In the first step,
the model is prompted with an instruction phrase
"think step by step" instead of examples to generate
a CoT response that leads to a solution. In the sec-
ond step, the response from the first step is used to
prompt the model to produce an output. Based on
the task-specific prompt template as shown in Fig-
ure 3), our zero-shot CoT consisting of two stages
with the following instructive prompts:

1. Stage: 'Determine whether the statement logi-
cally follows from the sections step by step.’.

2. Stage: Including the response generated in
the first stage followed by the remaining part
of the prompt template, e.g. ’If the statement
...The output should be a single word <Entail-
ment> or <Contradiction>.’.

Chain of Evidential Natural Langauge Inference
(CoENLI) In the zero-shot CoT setting, LLMs
first generate rationals before jumping into the log-
ical conclusion. While this can be effective in sim-
pler context, we recognize the following limita-
tions of standard CoT analysis in the biomedical
claim verification tasks, especially with lightweight
LLM:s.

* Lack of co-reference resolution of terms or
abbreviations between statement and premise
data, leading to misinterpretation of key terms
in the reasoning process.

» Zero-shot CoT results in shallow analysis
without addressing each relevant factual de-
tail in the premise (see examples of different
models in Appendix A).

The textual evaluation process can vary signifi-
cantly depending on the specific context, with dif-
ferent focuses for each statement to be verified. For
example, one statement may emphasize assessing
the inclusion criteria for the primary trial, while an-
other may concentrate on verifying the number of



adverse events stated in the outcome section of the
report. To address the need for a deeper understand-
ing of biomedical terminology and diverse reason-
ing patterns, we draw inspiration from previous re-
search. Lei et al. (2023) addresses ungrounded mis-
information in language model outputs by checking
for factual inconsistencies between model genera-
tion and source documents at the sentence and en-
tity levels within a chain of NLI framework. Zhou
et al. (2022) involves breaking down complex prob-
lems into a series of simpler sub-problems, with
the final problem being addressed depending on the
responses to earlier sub-problems, and has proved
generalization across different tasks. We propose a
CoENLI framework with four sequential steps to
improve vague reasoning of standard CoT method
(see Figure 2). Below, we explain each stage in
more detail.

* Semantic Grounding: In the first step, the
model only receives the statement and a tar-
geted prompt instructing the model to inter-
pret the medical terminology and complex
biomedical concepts within the statement, e.g.
"Interpret the key terms in the statement based
on biomedical knowledge. ". This step serves
to activate relevant domain knowledge and
establish a semantic context for associating
relevant information in later stages.

Evidence-Based Evaluation: After under-
standing the statement, the model is presented
with the premise data in the second step, such
as original text from a clinical trial or med-
ical study. The model is instructed to iden-
tify the relevant data points as evidence from
the source compared to the information in the
statement. Thus, the model focuses on verify-
ing the truth of the statement by identifying
the relevant evidence and performing com-
parative analysis. This analysis may involve
numerical reasoning or biomedical reasoning,
depending on the understanding of seman-
tic context of each instance in the previous
and current steps. Example instruction at this
stage include: "I. Identify the relevant data
points. 2. Evaluate each piece of information
in the statement against these data points.".
The response generated in this stage serves as
the basic for logical deduction in the subse-
quent inference stages.

* Logical Conclusion: LLMs likely draw con-

clusions in the evaluation step. However,
these conclusions often lack task-specific fo-
cus and lead to diverse outputs. Therefore,
the logical conclusion step builds on the ten-
dency of LLMs to generate conclusions in
their response but explicitly guides the mod-
els to focus on deducing logical relationship.
For instance, we provide the following prompt
in the third step: "Conclude the evidence and
determine whether the statement logically fol-
lows from the clinical trial data.” . This step
refines the conclusion of the evaluation and
steers the generation from broad analyzing to
explicitly addressing the task of determining
the logical relationship.

* Relation Prediction: The final step encapsu-
lates the model’s reasoning path in a single
relation prediction in natural words, e.g. "En-
tailment" or "Contradiction” as it is shown in
the prompt template( Figure 3). This relation-
ship prediction provides a concise outcome,
enabling effective evaluation with automated
metrics calculation.

By breaking down the biomedical claim verifica-
tion task into well-defined steps and emphasizing
semantic grounding and evidence-based evalua-
tion prior to performing logical inference, COENLI
aims to enable LL.Ms to focus on a specific task
at each step, reducing ambiguity and increasing
accuracy.

3 Experiments

Our experiments aim to address the main research
question:

* How effectively does the COENLI framework
enhance the performance of LLMs in com-
plex numerical and domain-specific reasoning
tasks, particularly in biomedical claim verifi-
cation?

Datasets Our primary evaluation task in this
work is NLI4CT (Jullien et al., 2024), which
presents challenges in numerical and domain-
specific knowledge reasoning, as illustrated in Fig-
ure 1. Additionally, we assess the generalization
capabilities using two related benchmarks: SciFact
(Wadden et al., 2020) and HealthVer (Sarrouti
et al., 2021). Both SciFact and HealthVer were
designed as NLI tasks. While the claims in SciFact
are written by human experts given scientific study



abstracts of focusing medical research, the claims
of HealthVer are directly extracted from studies.
The premises in both datasets consist of evidence
sentences extracted from relevant studies, requiring
models to assign a relation label—Support or Re-
fute—between input claims and the sentence-level
premises. Wadden et al. (2022) highlighted the lim-
itations of relying solely on sentence-level premises
for scientific claim verification and demonstrated
the advantages of incorporating document-level
premises. For our experiments, we use the versions
of SciFact and HealthVer provided by Wadden
et al. (2022), which link each claim-premise pair
to its relevant study source. To align with our task
definition, we exclude the negative samples where
the studies lack sufficient information to determine
whether the claims are Entailed or Contradicted.
Furthermore, we omit experiments involving the
CovidFact (Saakyan et al., 2021) dataset due to
the issues with noisy claims, including ungrammat-
ical statements or claims unrelated to the provided
sources (Wadden et al., 2022). Table 1 summarizes
the instance distribution for each relation class ap-
plied in our evaluation.

Dataset Entailment/Support | Contradiction
NLI4CT (test set) 250 250
SciFact (dev set) 216 122
HealthVer (test set) 503 308

Table 1: Number of instances in three different datasets
for zero-shot experiments. SciFact’s test set withholds
ground truth labels for leaderboard submissions, here
we use its dev set as substitute.

Model Version Context Window Parameters
GPT3.5 gpt-3.5-turbo-0125 16K 175B
GPT40-mini  gpt-40-mini-2024-07-18 128K ?
Phi3.5-3.6B  Phi-3.5-mini-instruct 128K 3.6B
Mistral-7b mistral-7b-instruct-v0.3 32K 7B
Llama3.1-8B  Meta-Llama-3.1-8B-Instruct 128K 8B
Gemma2-9B  gemma-2-9b-bnb-it 8K 9B
Mistral-12B Mistral-Nemo-Instruct-2407  1024K 12B
Phi3-14B Phi-3-medium-4k-instruct 4K 14B

Table 2: List of low-cost GPT models and lightweight
open-source LLMs used in our experiments, and a com-
parison of model size and initial context window length.
The model size of the open source LLMs is limited to
14 billion parameters. All models are the instruct fine-
tuned version.

Models Considering computational constraints,
our experiments focus on small-scale LLMs to ex-
plore cost-effective solutions without compromis-
ing performance. We employ instruction-tuned
(Ouyang et al., 2022) lightweight open-source

LLMs (Phi et al., 2024; Jiang et al., 2023; Team
et al., 2024; Dubey et al., 2024) that are compati-
ble with the FastLanguageModel Modules of un-
sloth.ai (Unsloth, 2024) for faster running and fine-
tuning with LoRA method (Hu et al., 2021) on a
single NVIDIA A100-80GB GPU. Table 2 provides
the version information about the models utilized
in our experiments, including comparisons with
two low-cost GPT models (OpenAl, 2024).

Data Augmentation for Supervised Fine-Tuning
While CoENLI can enhance the performance of
LLMs in logical inference, a significant perfor-
mance gap still exists between larger and smaller
LLMs. The limitations of smaller models include
difficulties in producing responses with the cor-
rect format and challenges in controlling response
length (Ding et al., 2023). The second research
question in our experiments is:

* Can supervised fine-tuning with GPT40-mini
generated samples within the CoOENLI frame-
work improve the reliability and consistency
of the output of the small-scale LLMs?

To fine-tune small-scale LLMs, high-quality train-
ing examples are essential. The zero-shot perfor-
mance of the GPT40-mini model demonstrates its
potentials to generate such data without human-
written inference examples (Gilardi et al., 2023).
We employ GPT40-mini to generates examples us-
ing the NLI4CT training set. During this process, a
refinement step is required in the evidence-based
evaluation stage: if the model’s initial output devi-
ates from the human-annotated label, e.g. predict-
ing a Contradiction when the correct label is Entail-
ment, the model is prompted to refine its reasoning
to reach the correct logical conclusion. Prediction
accuracy is then assessed to ensure the quality of
the augmented data (see Table 3).

Class Precision Recall F1-Score Support
Entailment 0.99 0.97 0.98 850
Contradiction 0.97 0.99 0.98 850
Accuracy 0.98 1700
Macro Average 0.98 0.98 0.98 1700
Weighted Average 0.98 0.98 0.98 1700

Table 3: Quality control of the augmented instruction-
response pairs with GPT40-mini on the classification
results of 1,700 samples from the NLI4CT train set.



Model NLI4CT SciFact HealthVer
Simple 2-Stage CoENLI Simple 2-Stage CoENLI Simple 2-Stage CoENLI

GPT3.5 0.52+£0.01 0.53+0.00 0.75+£0.01 0.51%0.03 0.76+0.00 0.86+0.00 0.51+0.01 0.60+0.01 0.74+0.02
GPT40-mini 0.67+0.01 0.77+0.02 0.86+0.01 0.83+0.01 0.88+0.00 0.94+0.01 0.69+0.02 0.72+0.01 0.77+£0.02
Phi3.5-3.6B  0.53+£0.00 0.61+0.01 0.66+0.02 0.51+0.01 0.70+0.03 0.80%0.02 0.51+0.01 0.70+0.01 0.72+0.01
Mistral-7B 0.55+£0.01 0.59+0.02 0.69+0.00 0.50+0.02 0.72+0.02 0.80+0.02 0.44+0.02 0.70+0.00 0.72+0.02
Llama3.1-8B  0.47+0.00 0.54+0.01 0.67+0.02 0.53+0.02 0.80+0.01 0.84+0.05 044+0.02 0.70+0.00 0.72+0.01
Gemma2-9B 0.63+0.00 0.67+0.03 0.75+0.03 0.57+0.01 0.73+0.00 0.86+0.02 0.65+0.02 0.70+0.02 0.74 £0.01
Mistral-12B  0.55+0.00 0.65+0.01 0.75+0.01 0.65+0.01 0.83+0.00 0.87+0.02 0.50+0.02 0.72+0.00 0.74 +0.01
Phi3-14B 0.62+0.01 0.64+0.00 0.75+0.02 0.76+0.03 0.80+0.01 0.88+0.02 0.68+0.02 0.72+0.01 0.75+0.01

Table 4: F1 Scores (mean + standard deviation) for three benchmarks in zero-shot scenario. We compare the
performance across the cost-effective GPT models and open sourced lightweight LLMs. In our evaluations, the F1
scores are computed using the scikit-learn library', ensuring reliable calculation across experiments.

4 Results
4.1 Zero-Shot Results

Our results in Table 4 demonstrate significant
improvements in the performance of both cost-
effective commercial models and small-scale
LLMs when leveraging CoENLI framework, com-
pared to the simple prompt template and zero-shot
CoT baselines. These improvements highlight the
effectiveness of integrating structured reasoning
with clear instructions of subtasks for enhancing
smaller models in complex reasoning tasks like
biomedical claim verification.

Ablation The CoENLI framework starts with se-
mantic grounding, where the model interprets the
main claim and key terms in the statement. Without
this initial step, the comparative analysis process
at the evidence-based evaluation stage, which in-
volves "identifying relevant data points and evalu-
ating the information in the statement against these
data points", likely results in reasoning paths that
are less coherent. The ablation results in Figure 4
demonstrate that the absence of semantic ground-
ing can hinder the accuracy of LLMs in claim veri-
fication.
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Figure 4: Without semantic grounding, it likely results
in degraded performance compared to the complete Co-
ENLI framework.

4.2 Supervised Fine-Tuning Results

Figure 5 shows that supervised fine-tuning (SFT)
with a small number of examples significantly im-
proves Fl-scores for lightweight LL.Ms, with per-
formance further increasing as the number of train-
ing instances grows. Notably, Llama3.1-8B ex-
hibits the largest performance gains, benefiting the
most from the fine-tuning process.

0.82 model

—e— Phi3-3.6B

—&— Mistra-7B

—e— Liama3.1-8B

—e— Gemma2-9B
Mistral-128
Phi3-148

0.75

F1-score

1000

1500

# SFT instances

Figure 5: F1-scores of various lightweight LLM mod-
els with increasing numbers of SFT instances from
NLI4CT train set.

Table 5 presents the generalization performance
of lightweight models fine-tuned with NLI4CT
samples, evaluated on the related tasks.

Model SciFact HealthVer
zero-shot SFT*  zero-shot SFT*
Phi3.5-3.6B 0.80 0.85 0.72 0.74
Mistral-7B 0.80 0.87 0.72 0.74
Llama3.1-8B 0.84 0.89 0.72 0.74
Gemma2-9B 0.86 0.90 0.74 0.75
Mistral-12B 0.87 0.88 0.74 0.75
Phi3-14B 0.88 0.90 0.75 0.77

Table 5: A comparison of F1 Scores (mean) for related
tasks in zero-shot scenario and SFT(SFT* only with
NLI4CT training samples).



We observe that SFT significantly advantages
the quality of evidence-based evaluation within
CoENLI, which is the primary contributor to the
improved results. See some example responses of
the small-scale models in zero-shot setting and after
SFT in Appendix from table 10 to 15. Moreover,
SFT improves task-specific control by ensuring
adherence to specific instructions and maintaining a
consistent response format, such as JSON, thereby
enhancing the LLM’s reliability not only for in-
domain task - NLI4CT, but also the related tasks:
SciFact and HealthVer.

5 Discussion

Incorporation of GPT40-mini CoENLI high-
lights the importance of evidential evaluation in
biomedical claim verification tasks. As shown
in Figure 5, fine-tuning lightweight LLMs with
samples augmented by GPT40-mini significantly
improves their performance on the NLI4CT task.
Similarly, Table 6 demonstrates the positive impact
of incorporating GPT40-mini’s responses during
the evidence-based evaluation stage within the Co-
ENLI framework. These findings indicate that
leveraging GPT40-mini’s robust reasoning capa-
bilities enhances the evidential evaluation process,
enabling smaller LLMs to generate more accurate
outputs. Whether to fine-tune lightweight LLMs
with GPT40-mini generated data or to integrate
GPT40-mini’s evaluations directly into the Co-
ENLI pipeline depends on the specific require-
ments, computational constraints, and operational
objectives of the application.

GPT40-mini in 2.Stage SFT*

Phi3-3.6B 0.80 0.77
Mistral-7B 0.84 0.76
Llama3.1-8B 0.84 0.80
Gemma2-9B 0.84 0.80
Mistral-12B 0.84 0.82
Phi3-14B 0.85 0.82

Table 6: SFT* are the results of each lightweight models
fine-tuned within the CoOENLI framework using GPT4o-
mini generated training samples.

Divergence in LLM-generated Conclusions in
Biomedical Claim Verification Jullien et al.
(2023) conducted a human evaluation on 100 ran-
domly sampled test instances from the NLI4CT
task, where three experts achieved an average ac-
curacy of 85% relative to the gold labels, with a
Cohen’s kappa of 0.83. This substantial yet im-

perfect inter-annotator agreement underscores the
inherent variability in human judgments. Such dis-
agreements often reflect the diversity in user prefer-
ences and priorities, highlighting the challenge of
aligning model outputs with a universally accepted
perspective. For example, as shown in Table 7, we
observed two opposite logical conclusions: con-
tradiction and entailment, produced by different
LLMs for the same verification sample within the
CoENLI framework illustrated in Figure 2. De-
spite being instructed and exposed to the same eval-
uation results, these models arrived at divergent
conclusions. This highlights the necessity of fur-
ther preference fine-tuning to better align model
judgments with user intent (Ouyang et al., 2022;
Rafailov et al., 2024).

Logical Conclusion

While it is true that the placebo group had a higher incidence
of emesis compared to the Aprepitant group, the claim that the
placebo group was "twice as likely" to experience emesis is mis-
leading. The actual ratio of emesis incidence between the two
groups is approximately 2.14 times (75% divided by 35%), which
does not equate to a simple doubling.

Therefore, the statement is not fully accurate as it oversimplifies
the comparative risk and does not reflect the nuanced findings of
the trial data.

Relation Prediction: Contradiction

The data indicates that patients receiving the placebo intervention
were approximately 2.14 times more likely to experience emesis
compared to those receiving Aprepitant.

Relation Prediction: Entailment

Table 7: Divergent conclusions and corresponding logi-
cal relation predictions generated by different LLMs for
the same dvaluation task.

6 Related Work

Leveraging massive amounts of training data and
billions of parameters, LLMs have demonstrated
enhanced performance in various reasoning tasks
across multiple domains, particularly when employ-
ing the Chain-of-Thought (CoT) prompting method
(Kojima et al., 2022; Wei et al., 2022). However,
their performance can vary depending on the com-
plexity of the task and form of reasoning (Huang
and Chang, 2023). The evolution of CoT and CoX
methodologies (Zhou et al., 2022; Yao et al., 2023;
Zhao et al., 2023; Zhang et al., 2024; Xia et al.,
2024) underscores the importance of thought de-
composition and structured reasoning frameworks
in improving both the accuracy and interpretability
of LLM outputs. In particular, the intermediate



steps of CoT can make the model’s output easier
to interpret and evaluate (Yu et al., 2023), which
is valuable for tasks requiring high accountability,
such as biomedical claim verification. Moreover,
Wang et al. (2022) proposed the self-consistency
method, which enhances the reliability of the re-
sults by sampling diverse CoT generations for each
sample and selecting the most consistent conclu-
sions among them. Weng et al. (2022) introduced
backward verification to complement forward CoT
reasoning, allowing self-verification of conclusions
derived from different CoT paths to identify the
most accurate CoT generations for specific tasks.

In various NLP tasks, pre-trained language mod-
els are effectively applied to medical text pro-
cessing, ranging from transfer learning in sum-
marizing radiology reports (Liang et al., 2022)
to cross-domain medical information extraction
(Liang et al., 2023) and active learning in biomed-
ical relation extraction (Liang et al., 2024). (Liu
et al., 2024) demonstrated the potential of auto-
mated verification of scientific claims with LLMs
using retrieval-augmented strategies that exploit
open resources such as PubMed. More recent stud-
ies have explored the potential applications of pre-
trained language models in clinical practice, such
as building clinical entity extraction system without
in-domain training data (Liang and Sonntag, 2024),
real-time radiology reporting (Elkassem and Smith,
2023; Jeblick et al., 2024) with LLMs. (Datta et al.,
2024) leveraged LLMs for automatic eligibility cri-
teria from free text clinical trial protocol to facili-
tate trial enrollment and evaluation.(Sivarajkumar
et al., 2024) highlighted the effectiveness of differ-
ent prompting strategies, including zero-shot and
few-shot, for clinical information extraction, while
(Tang et al., 2023) found that LLMs still struggle
to summarize medical evidence in longer textual
contexts by evaluating LLM-generated summaries
focused on six clinical domains.

Moreover, LLMs have been shown to enhance
the diagnostic accuracy of general radiologists in
cardiac imaging, highlighting their value as a diag-
nostic support tool (Cesur et al., 2024). Rao et al.
(2023) also underscored the potential of LLMs
to assist healthcare professionals in diagnostic
decision-making. Studies from Benary et al. (2023)
suggest that LLLMs are not yet suitable for routine
use in personalized clinical decision-making in on-
cology, they show promise as a complementary
tool, such as selecting relevant biomedical litera-
ture to support evidence-based, personalized treat-

ment decisions and offering unique strategies not
identified by experts. However, further research is
necessary to evaluate their integration into clinical
workflows effectively (Verlingue et al., 2024).

7 Conclusion

In summary, our approach structures the complex
NLI process into a sequential framework. The pro-
cess begins with semantic grounding, where the
model activates contextual understanding based on
the statement to be verified. Next, the model iden-
tifies the relevant evidence from the premise data,
where the model compares the information in the
statement with the extracted evidence. After this
evaluation, the model is asked to draw a conclu-
sion and predict the logical relationship between
the statement and the evidence. In the context of
validating biomedical claims based on long and
nuanced documents, the semantic grounding and
evidence-based evaluation steps help LLMs per-
form subtasks with greater precision in contrast
to the abstract nature of logical relationship pre-
diction. Hence, these steps ensure contextually
grounded outputs, enhancing the clarity, coherence,
and accuracy of language inferences.

Future work While LLMs demonstrate signifi-
cant improvements in generating evaluations within
CoENLI and after SFT, the degree of autonomy
granted to these models should align with spe-
cific user preferences and the application domain.
In high-stakes areas such as medical decision-
making, allowing LLMs to make decisions raises
critical concerns about accountability and trustwor-
thiness (Elkassem and Smith, 2023; Jeblick et al.,
2024). These models should provide transparent
reasoning and clear evidence, enabling users to un-
derstand how conclusions are reached. By doing
so, CoOENLI can empower users to make informed
decisions while maintaining trust and accountabil-
ity in high-stakes applications of LLMs. Our future
research will also focus on positioning LLMs as
collaborative agents. Integrating a feedback-driven
loop would support the development of collabo-
rative systems that balance the responsibility for
decision making between users and LLMs. This
balance is particularly important in high-stakes do-
mains where trust and accountability are essential.
By empowering users to participate in the reason-
ing process, the system can be further optimized to
align with user preferences for critical decisions.



Limitations

Our focus has primarily been on the reasoning capa-
bilities of models when relevant source documents
are provided, with pre-retrieved documents used in
the evaluation data. However, for open-ended cases,
we would need to incorporate a retrieval pipeline
to limit the candidate documents to a manageable
scale, as otherwise, the process of evidential evalu-
ation could become too time-consuming. Addition-
ally, due to time constraints, we did not compare
many different CoT methods. Some approaches,
such as generating multiple responses and applying
voting heuristics, could offer more reliable results
but are computationally expensive. We opted for
the most intuitive and effective method, focusing
on our four-step reasoning process within the Co-
ENLI framework. We find that decomposition re-
duces ambiguity in prompt instructions, making the
LLM’s responses less sensitive to specific wording,
as long as the subtask is clearly defined. For ex-
ample, in CoENLI, the semantic grounding step
only interprets key terms, while the evidence-based
evaluation focuses on comparing the statement and
the evidence to identify relevant data points. This
approach can also effectively minimize the need
for extensive prompt engineering.
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A Appendix

In particular, Table 10-15 illustrates the enhance-
ment of lightweights LLMs in analyzing the state-
ment based on the provided data (The first step
in zero-shot CoT and evidence-based evaluation
stage in CoENLI respectively) for the following
example:

Fine-tuned results are obtained after fine-tuning
with the GPT40-mini augmented training samples.
Fine-tuning provides the LLMs with reliable analy-
sis patterns for the NLI4CT tasks, thereby increas-
ing the reliability of small-scale models. We uti-
lize the FastLanguageModel modules of unsloth?
library to accelerate the SFT fine-tuning in our ex-
periments.

https://github.com/unslothai/unsloth
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Statement: 'Only 2 patients in the primary trial did not have Recurrence-free Survival’

Clinical Trial Data:

Primary trial:

- Outcome Measurement:

- Recurrence-free Survival

- Recurrence-free survival curves will be plotted for subjects treated with stage I and II disease.

- Time frame: Time from the start of treatment to recurrence, second malignancy, or death as a first
event, assessed up to 3 years

- Results 1:

- Arm/Group Title: Treatment (Chemotherapy With or Without Maintenance Therapy)

- Arm/Group Description: SYSTEMIC CHEMOTHERAPY: Patients receive cyclophosphamide IV
over 1 hour and paclitaxel IV over 3 hours on day 1. Treatment repeats every 14 days for 6 courses
in the absence of disease progression or unacceptable toxicity.

- MAINTENANCE THERAPY (Her-2 neu positive patients): Patients receive trastuzumab IV over
30 minutes on day 1. Treatment repeats every 14 days for 5 courses and then every 21 days for 14
courses in the absence of disease progression or unacceptable toxicity.

- cyclophosphamide, paclitaxel, trastuzumab: Given IV

- Overall Number of Participants Analyzed: 100

- Measure Type: Number

- Unit of Measure: percentage of subjects 98 (92.2 to 99.5)

Label: Entailment

Table 8: On exmpale instance of ’Entailment’ class from NLI4CT test set.

GPT40-mini in evidence-based evaluation step: "To evaluate the claim "Only 2 patients in the
primary trial did not have Recurrence-free Survival," we first need to extract and clarify the relevant
data points from the provided clinical trial data and then analyze the claim against those data
points. 1. Relevant Data Points Extracted and Clarified: - **Total Participants Analyzed**: 100 -
**Recurrence-free Survival Result**: 98 participants (which equates to the percentage of subjects
achieving RFS) achieved recurrence-free survival. - **Percentage of Subjects with RFS**: 98%
(confidence interval of 92.2% to 99.5%) 2. Evaluation of the Claim against Data Points: 1. **Total
number of patients**: The total number of participants in the trial is 100. - **Evaluation**: The
claim mentions "only 2 patients" not achieving RFS. This would imply that a total of 98 out of 100
patients experienced RFES as stated in the trial data. 2. **Number of patients with Recurrence-free
Survival**: According to the trial data, 98 patients achieved RFS. - **Evaluation**: This supports
the claim, as if 98 patients achieved RFS, then logically it follows that 2 patients did not achieve
RFS (100 total participants - 98 with RFS = 2 without RFS). 3. **Effectiveness of Treatment**:
The high percentage of 98% suggests a strong effectiveness of the treatment administered. -
**Evaluation**: This supports the assertion in the claim that such a small number of patients (2
in this case) who did not achieve RFS indicates high treatment effectiveness. 4. **Definition of
Recurrence-Free Survival**: RFS is defined as a period during which a patient remains free of
any signs of disease recurrence. - **Evaluation**: The claim directly referenced RFS, which is
consistent with the clinical outcome measures defined in the trial data. Conclusion: The claim
that "Only 2 patients in the primary trial did not have Recurrence-free Survival" is consistent with
the clinical trial data provided. The data indicates that out of 100 participants, 98 achieved RFS,
meaning it is accurate to state that only 2 patients did not have RFS. Hence, the claim is validated
by the data."

Predict: Entailment

Table 9: Evaluation on the above example made by GPT40-mini in the 2. Stage within CoENLI that leads to the
accurate logical relation prediction.
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Model

Approach

Prediction

Phi3.5-3.6B

zero-shot CoT: "The statement claims that "Only 2 patients in the pri-
mary trial did not have Recurrence-free Survival," but the clinical trial
data does not provide a specific number of patients without Recurrence-
free Surv"

Contradiction

zero-shot CoENLI:"Recurrence-free Survival" (RFS) is the primary
outcome measure, which in this context is the time until cancer recur-
rence, development of a second cancer, or death, whicheOever comes
first. - "Time frame" specifies that the RFS is assessed from the start
of treatment up to 3 years, which is a standard period for evaluating
long-term outcomes in oncology trials. - "Arm/Group Title: Treatment
(Chemotherapy With or Without Maintenance Therapy)" refers to the
two distinct treatment strategies being compared in the trial: one with
systemic chemotherapy alone and the other with chemotherapy followed
by maintenance therapy for Her-2 neu positive patients. - "Arm/Group
Description" provides details on the chemotherapy regimen for the sys-
temic treatment arm, including the drugs used (cyclophosphamide and
paclitaxel), the administration method (IV), and the treatment schedule
(every 14 days for 6 courses). - "MAINTENANCE THERAPY (Her-2
neu positive patients)" specifies the additional treatment for patients with
Her-2 neu positive cancer, which includes the drug trastuzumab, also
administered IV, with a different treatment schedule (every 14 days for 5
courses, then every 21 days for 14 courses). - "cyclophosphamide, pacli-
taxel, trastuzumab: Given IV" confirms the intravenous administration of
the drugs used in the trial. - "Overall Number of Participants Analyzed:
100"

Entailment

SFT: " To evaluate the statement "Only 2 patients in the primary trial
did not have Recurrence-free Survival" based on the provided clinical
trial data, we can analyze the relevant information as follows: 1. **Out-
come Measurement**: The primary outcome measure is Recurrence-free
Survival (RFS), which assesses the time from the start of treatment to
recurrence, second malignancy, or death. 2. **Time Frame**: The
assessment period for RFS is up to 3 years, indicating a focus on short- to
medium-term outcomes. 3. **Treatment Arm**: The trial includes two
treatment groups: - **Chemotherapy With or Without Maintenance Ther-
apy**: This group receives systemic chemotherapy (cyclophosphamide
and paclitaxel) and, for Her-2 neu positive patients, maintenance therapy
(trastuzumab). - **Maintenance Therapy Only**: This group receives
maintenance therapy (trastuzumab) only. 4. **Qverall Number of Par-
ticipants Analyzed**: A total of 100 participants were included in the
trial. 5. **Results**: The reported outcome indicates that 98% of par-
ticipants achieved Recurrence-free Survival. This translates to: - 98%
of 100 participants = 98 participants had Recurrence-free Survival. -
Therefore, 2 patients (100 - 98) did not have Recurrence-free Survival.
Conclusion: The statement "Only 2 patients in the primary trial did not
have Recurrence-free Survival" is supported by the data. The evidence
shows that 98 participants achieved Recurrence-free Survival, confirming
that indeed only 2 patients did not experience this outcome. Thus, the
statement can be logically inferred from the provided clinical trial data."

Entailment

Table 10: Comparison of evaluation results made by model Phi3.5-3.6B in three different settings
zero-shot CoENLLI, fine-tuned with GPT40-mini generated training responses within CoENLI.
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Model

Approach

Prediction

Mistral-7B

zero-shot CoT: The statement does not logically follow from the pro-
vided clinical trial data. The data only provides the percentage of subjects
(98 out of 100) who did not experience a recurrence, but it does not spec-
ify the number of subjects who did experience a recurrence. Therefore,
it is not possible to determine from this data whether only 2 patients in
the primary trial did not have Recurrence-free Survival."

Contradiction

zero-shot CoENLI:" Based on the provided clinical trial data, the
claim "Only 2 patients in the primary trial did not have Recurrence-
free Survival" can be evaluated as follows: 1. Outcome Measurement:
Recurrence-free Survival The claim and the data both refer to the same
outcome measure. 2. Time frame: Time from the start of treatment to
recurrence, second malignancy, or death as a first event, assessed up to
3 years The time frame in the claim is consistent with the time frame
in the data (up to 3 years). 3. Results 1: - Arm/Group Title: Treatment
(Chemotherapy With or Without Maintenance Therapy) - Arm/Group De-
scription: SYSTEMIC CHEMOTHERAPY: Patients receive cyclophos-
phamide I'V and paclitaxel [V. MAINTENANCE THERAPY (Her-2 neu
positive patients): Patients receive trastuzumab IV. - Overall Number
of Participants Analyzed: 100 - Measure Type: percentage of subjects
- Unit of Measure: percentage The data shows that 98 out of 100 par-
ticipants (92.2 to 99.5%) did not have recurrence-free survival. This
suggests that the majority of participants in the trial did not experience
a recurrence of their disease during the follow-up period. However, the
claim does not specify which arm or group within the trial the 2 patients
without recurrence-free survival belong to. In conclusion, while the data
supports the claim that the majority of participants did not experience
a recurrence of their disease, the claim is not fully accurate as it does
not specify which arm or group the 2 patients without recurrence-free
survival belong to. A more detailed analysis would require information"

Contradiction

SFT: "To evaluate the statement "Only 2 patients in the primary trial did
not have Recurrence-free Survival," we can analyze the provided clini-
cal trial data as follows: 1. **Outcome Measurement**: The primary
outcome of the trial is Recurrence-free Survival (RFS), which is defined
as the time from the start of treatment to recurrence, second malignancy,
or death, assessed up to 3 years. 2. **Results Overview**: The trial
included a total of 100 participants, with 98 achieving recurrence-free
survival, resulting in a percentage of 98% (with a confidence interval
of 92.2% to 99.5%). This indicates that a significant majority of par-
ticipants remained free from disease recurrence. 3. **Interpretation of
the Statement**: The statement claims that only 2 patients did not have
recurrence-free survival. Given that 98 out of 100 participants achieved
this outcome, it can be inferred that the remaining 2 patients did not
achieve recurrence-free survival. 4. **Conclusion**: The evidence from
the trial data supports the statement, confirming that only 2 patients did
not have recurrence-free survival, as they are the 2 out of 100 participants
who did not achieve this outcome. Thus, the statement can be accurately
inferred from the provided data."

Entailment

Table 11: Comparison of evaluation results made by model Mistral-7B in three different settings
zero-shot CoENLLI, fine-tuned with GPT40-mini generated training responses within CoENLI.
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Model

Approach

Prediction

Llama3.1-
8B

zero-shot CoT: " Based on the provided clinical trial data, the state-
ment "Only 2 patients in the primary trial did not have Recurrence-free
Survival" does not logically follow from the given information. The
statement in question implies that the outcome of interest is the num-
ber of patients without Recurrence-free Survival, which is not explicitly
mentioned in the provided data. The data only mentions the outcome of
Recurrence-free Survival, not the absence of it."

Contradiction

zero-shot CoENLI: " Based on the clinical trial data, the following rele-
vant data points are identified: * **QOutcome Measure**: Recurrence-free
Survival * **Time Frame**: Up to 3 years * **Number of Participants
Analyzed**: 100 * **Measure Type**: Number * **Unit of Measure**:
Percentage of subjects Evaluating the claim: * The claim states that
"Only 2 patients in the primary trial did not have Recurrence-free Sur-
vival". This statement seems to be inconsistent with the data, as the trial
reported a 98% (92.2-99.5) recurrence-free survival rate, indicating that a
significant portion of the patients did experience recurrence-free survival.
* The claim suggests that only 2 patients out of the total 100 participants
did not achieve recurrence-free survival, which contradicts the overall
recurrence-free survival rate of 98% reported in the trial. * The trial’s
reported results do not support the claim that only 2 patients did not
experience recurrence-free survival."

Contradiction

SFT: " To evaluate the statement "Only 2 patients in the primary trial did
not have Recurrence-free Survival," we will analyze it in relation to the
provided clinical trial data. Evaluation of the Statement: 1. **Outcome
Measurement**: The primary trial measures Recurrence-free Survival,
which indicates the duration patients remain free from disease recurrence
following treatment. 2. **Patient Cohort**: The statement refers to a
specific group of patients within the trial, focusing on those who did
not achieve recurrence-free survival. 3. **Results Data**: - **Total
Participants Analyzed**: 100 patients. - **Outcome Measure**: The
percentage of participants achieving recurrence-free survival is reported
as 98% (with a confidence interval of 92.2% to 99.5%). 4. **Interpreting
the Results**: - If 98% of patients achieved recurrence-free survival,
this means that: - 98% of 100 = 98 patients did have recurrence-free
survival. - Consequently, the number of patients who did not achieve
recurrence-free survival would be:

100 — 98 = 2 patients

Conclusion: The statement "Only 2 patients in the primary trial did
not have Recurrence-free Survival" can be logically inferred from the
provided data, confirming that indeed, 2 out of the 100 participants
did not achieve recurrence-free survival, supporting the accuracy of the
claim."

Entailment

Table 12: Comparison of evaluation results made by model Llama3.1-8B in three different settings: zero-shot CoT,
zero-shot CoENLLI, fine-tuned with GPT40-mini generated training responses within CoENLI.
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Model

Approach

Prediction

Gemma2-9B

zero-shot CoT: "The statement **does not logically follow** from
the provided clinical trial data. Here’s why: * **Missing Data:** The
data only provides the overall percentage of subjects (98%) who expe-
rienced Recurrence-free Survival. It doesn’t specify the exact number
of patients who did or did not experience recurrence. * **Potential for
Interpretation:** While the high percentage suggests that most patients
did experience Recurrence-free Survival, it doesn’t definitively confirm
that only two patients did not. To determine if the statement is true, we
would need the raw data on individual patient outcomes (e.g., a table
showing whether each patient experienced recurrence or not). "

Contradiction

zero-shot CoENLI:"Let’s break down the claim and compare it to the
provided data: **Claim:** *Only 2 patients in the primary trial did not
have Recurrence-free Survival’ **Data Points:** * **Primary Trial:**
Yes, the data refers to a primary trial. * **Outcome Measurement:**
Recurrence-free Survival is the primary outcome. * **Time Frame:**
The trial assesses Recurrence-free Survival up to 3 years. * **QOverall
Number of Participants Analyzed:** 100 * **Results 1:** The data
shows 98 out of 100 (92.2 to 99.5%) of patients in the treatment arm
experienced Recurrence-free Survival. **Evaluation:** The claim is
**partially supported** by the data. * **Support:** The data clearly
states that 98 out of 100 patients in the treatment arm had Recurrence-free
Survival. This means only 2 patients did *not* experience Recurrence-
free Survival. * **Missing Information:** The claim doesn’t specify
which treatment arm it refers to. We need to know if this refers to the
chemotherapy with or without maintenance therapy. **Important Consid-
erations:** * **Confidence Intervals:** The data provides a confidence
interval (92.2 to 99.5%). This means we are 95% confident that the true
percentage of patients with Recurrence-free Survival in the treatment
arm falls within this range. * **Context:** To fully evaluate the claim,
we need more information about the control group (if there was one) and
the specific types of cancer being treated. "

Entailment

SFT:" To evaluate the statement "Only 2 patients in the primary trial did
not have Recurrence-free Survival” based on the provided clinical trial
data, we can analyze the relevant information as follows: 1. **QOutcome
Measurement**: The primary trial focused on measuring Recurrence-
free Survival (RFS), which is a critical endpoint in cancer trials. 2.
**Time Frame**: The assessment of RFS was conducted over a period
of up to 3 years from the start of treatment, providing a comprehensive
view of the treatment’s effectiveness. 3. **Results Analysis**: - The
trial included a total of **100 participants** analyzed. - The statement
indicates that **2 patients** did not achieve RFS. - This translates to
**98%** of participants having RFS, as shown in the results (98% with
a confidence interval of 92.2% to 99.5%). 4. **Conclusion**: The
statement is supported by the data, confirming that only 2 out of 100
participants did not achieve recurrence-free survival. This indicates a high
level of effectiveness of the treatment in preventing disease recurrence
among the majority of patients. In summary, the evidence from the
trial data clearly supports the statement that only 2 patients did not
have recurrence-free survival, highlighting the treatment’s success in
maintaining disease-free status in the majority of participants."

Entailment

Table 13: Comparison of evaluation results made by mollgl Gemma2-9B in three different settings: zero-shot CoT,
zero-shot CoENLI, fine-tuned with GPT40-mini generated training responses within CoENLI.




Model

Approach

Prediction

Mistral-12B

zero-shot CoT: "Based on the provided clinical trial data, the statement
"Only 2 patients in the primary trial did not have Recurrence-free Sur-
vival" is **not logically supported** by the data. Here’s why: 1. The
clinical trial data reports that 98 out of 100 participants had Recurrence-
free Survival, which is 92.2% to 99.5% (with 95% confidence interval).
2. This means that, at most, 2 out of 100 participants did not have
Recurrence-free Survival, which is consistent with the reported percent-
age. 3. However, the statement uses "only 2 patients" which implies that
the number is exact and not an estimate. The data provided does not
confirm this exact number; it only gives a range (92.2% to 99.5%) within
which the number of patients with Recurrence-free Survival falls. "

Contradiction

zero-shot CoENLI:"Based on the provided clinical trial data, let’s evalu-
ate the claim "Only 2 patients in the primary trial did not have Recurrence-
free Survival": 1. **Number of participants in the trial**: The claim
mentions "primary trial," and the data provides the overall number of
participants analyzed as 100. This matches the context of the claim,
as it refers to the primary trial. - Data point: 100 participants - Claim:
Applicable (primary trial) 2. **Outcome measure**: The claim focuses
on Recurrence-free Survival (RFS), which is also the primary outcome
measurement mentioned in the trial data. - Data point: Recurrence-free
Survival - Claim: Applicable (RFES is the outcome of interest) 3. **Time
frame**: The claim does not specify a time frame, but the trial data
indicates that RFS is assessed up to 3 years. Without a specified time
frame in the claim, we cannot directly evaluate this aspect. - Data point:
Up to 3 years - Claim: Not specified, so cannot be evaluated 4. **Num-
ber of patients without RFS**: The claim states "Only 2 patients... did
not have Recurrence-free Survival." The trial data does not provide the
exact number of patients without RFS, but it does mention the overall
percentage of subjects with RFS. - Data point: 98% (92.2 to 99.5) of
subjects had RFS - Claim: The data suggests that 2% (0.5 to 7.8) of
subjects did not have RFS, which is consistent with the claim’s statement
of "Only 2 patients." 5. **Arm/Group**: The claim does not specify
any particular treatment arm or group, so we cannot directly evaluate this
aspect."

Entailment

SFT: "To evaluate the statement "Only 2 patients in the primary trial
did not have Recurrence-free Survival," we can analyze the provided
clinical trial data as follows: 1. **Outcome Measurement™*: The trial
measures Recurrence-free Survival, which is defined as the time from the
start of treatment to recurrence, second malignancy, or death. 2. **Total
Participants**: The trial included 100 participants. 3. **Results**: The
statement claims that only 2 patients did not have Recurrence-free Sur-
vival. This implies that 98 patients did achieve Recurrence-free Survival.
4. **Confidence Interval®**: The reported percentage of subjects with
Recurrence-free Survival is 98%, with a confidence interval of (92.2
to 99.5). This indicates a high level of confidence in the outcome. 5.
**Conclusion**: Based on the data, it can be inferred that the statement
is accurate. If 98 out of 100 participants achieved Recurrence-free Sur-
vival, then the number of patients who did not achieve this outcome is
indeed 2, confirming the statement.""

Entailment

Table 14: Comparison of evaluation results made by model Mistral-12B in three different settings
zero-shot CoENLLI, fine-tuned with GPT40-mini generategl training responses within CoENLI.
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Model Approach \ Prediction

Phi3-14B zero-shot CoT: " The statement "Only 2 patients in the primary trial did | Contradiction
not have Recurrence-free Survival" does not logically follow from the
clinical trial data provided. The data indicates that 98% (92.2 to 99.5)
of the subjects had recurrence-free survival, which means that 2% (100
- 98%) of the subjects did not have recurrence-free survival. However,
the data does not specify the exact number of patients who did not have
recurrence-free survival."

zero-shot CoENLI:" Relevant data points from the clinical trial data: 1. | Entailment
Outcome Measurement: Recurrence-free Survival 2. Time frame: Time
from the start of treatment to recurrence, second malignancy, or death
as a first event, assessed up to 3 years 3. Arm/Group Title: Treatment
(Chemotherapy With or Without Maintenance Therapy) 4. Arm/Group
Description: SYSTEMIC CHEMOTHERAPY and MAINTENANCE
THERAPY (Her-2 neu positive patients) 5. Overall Number of Partic-
ipants Analyzed: 100 6. Measure Type: Number 7. Unit of Measure:
percentage of subjects 8. Results 1: 98 (92.2 to 99.5) Evaluation of
the claim: The claim states that "Only 2 patients in the primary trial
did not have Recurrence-free Survival." Based on the clinical trial data
provided, the results show that 98% of the subjects (92.2 to 99.5) had
Recurrence-free Survival. This means that 2% of the subjects did not
have Recurrence-free Survival. Given that there were 100 participants
in the trial, 2% of the participants would be 2 participants. Therefore,
the claim is consistent with the clinical trial data, as it accurrightly states
that only 2 patients in the primary trial did not have Recurrence-free
Survival."

SFT: " To evaluate the statement "Only 2 patients in the primary trial | Entailment
did not have Recurrence-free Survival," we can analyze the provided
clinical trial data as follows: 1. **QOutcome Measurement**: The pri-
mary outcome of the trial is Recurrence-free Survival (RFS), which is
defined as the time from the start of treatment to the occurrence of re-
currence, a second malignancy, or death. 2. **Treatment Description**:
The trial involves systemic chemotherapy, with specific regimens for
Her-2 neu positive patients, including cyclophosphamide, paclitaxel, and
trastuzumab. 3. **Time Frame**: The assessment of RFS is conducted
over a period of up to 3 years from the start of treatment. 4. **Qverall
Number of Participants Analyzed**: The trial includes a total of 100 par-
ticipants. 5. **Results**: The data indicates that 98% of the participants
achieved recurrence-free survival, with a confidence interval of 92.2% to
99.5%. Evaluation of the Statement: - **Claim**: "Only 2 patients in
the primary trial did not have Recurrence-free Survival." - **Analysis**:
- If 98% of the 100 participants achieved RFS, this means that 2% did
not. - Calculating the number of patients who did not achieve RFS: - 2%
of 100 participants = 2 patients. Conclusion: The statement "Only 2
patients in the primary trial did not have Recurrence-free Survival" is
supported by the data. The evidence indicates that 2 patients out of 100
did not achieve RFS, confirming the accuracy of the claim."

Table 15: Comparison of evaluation results made by model Phi3-14B in three different settings: zero-shot CoT,
zero-shot CoENLLI, fine-tuned with GPT40-mini generated training responses within CoENLI.
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