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Abstract

Image goal navigation requires two different skills: firstly,
core navigation skills, including the detection of free space
and obstacles, and taking decisions based on an internal
representation; and secondly, computing directional infor-
mation by comparing visual observations to the goal im-
age. Current state-of-the-art methods either rely on dedi-
cated image-matching, or pre-training of computer vision
modules on relative pose estimation. In this paper, we study
whether this task can be efficiently solved with end-to-end
training of full agents with RL, as has been claimed by re-
cent work. A positive answer would have impact beyond
Embodied AI and allow training of relative pose estimation
from reward for navigation alone. In this large experimen-
tal study we investigate the effect of architectural choices
like late fusion, channel stacking, space-to-depth projec-
tions and cross-attention, and their role in the emergence
of relative pose estimators from navigation training. We
show that the success of recent methods is influenced up to
a certain extent by simulator settings, leading to shortcuts
in simulation. However, we also show that these capabili-
ties can be transferred to more realistic setting, up to some
extent. We also find evidence for correlations between nav-
igation performance and probed (emerging) relative pose
estimation performance, an important sub skill.

1. Introduction
The interplay between perception and action in modern AI-
based robotics is a well-studied topic covering contributions
from multiple fields, including computer vision, sequen-
tial decision making, and optionally some form of mapping
and planning. Independent of the specific robotics task at
hand, there is an ongoing debate on whether these compo-
nents should be trained end-to-end, e.g. with RL [8, 76],
typically for higher performance, or whether modular tech-
niques could provide higher robustness, e.g. [15, 37].

In the context of navigation, the ImageNav task adds an
additional complexity, as perception not only involves the
currently observed image, but also the goal image, requiring
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Figure 1. Image goal navigation, or “ImageNav”, requires gen-
eral navigation skills, but also in particular the extraction of direc-
tional information towards the goal. We analyze which architec-
ture design choices influence these capabilities, and to what degree
they — and the underlying sub task of relative pose estimation,
which we probe with a dedicated head p — can be trained end-to-
end from the navigation loss directly, without pose ground-truth.

the comparison of two images to extract directional infor-
mation. Different strategies have been proposed to address
this, and the recent literature seems to provide conflicting
reports on their performances and up- and downsides. We
aim to shed some light on this with an in-depth analysis.

Early works addressed the problem in a purely data-
driven way by end-to-end training Late Fusion (eg.
Siamese) image encoders [78], with mixed results. It was
conjectured, that the weak and sparse learning signal from
RL might not be sufficient to train high capacity encoders
comparing images. Since the ImageNav task introduces a
sub task of relative pose estimation (“where is the goal with
respect to my current position?”), there is a strong case for
modular methods separating perception and decision tak-
ing. For instance, Krantz et al. [37] employ local fea-
tures and matching (SuperGlue [60]) combined with map
and plan strategies for navigation. However, it has since
been shown [8] that image correspondences can actually
emerge directly in the cross-attention layers of a binocular
transformer, provided it is appropriately pre-trained. This



strategy, used in the DEBiT agent [8] outperforms explicit
matching approaches. Key to this solution is, firstly, pre-
training, and secondly, the fusion of observation and goal
such that comparisons between local parts (e.g. patches) of
the two respective images can be calculated by the architec-
ture, as opposed to comparing embedding vectors.

Recent work [68] however indicates that ImageNav can
be addressed by very low-capacity convolutional encoders
with channel-wise stacking and through RL training alone,
without any pre-training. FGPrompt [68] achieves results
which are on par with DEBiT with a fraction of the model
capacity, which raises interesting questions:
Q1: Can ImageNav be learned by RL alone?
Q2: Which architecture can support that best?
Q3: Is the solution related to the estimation of directional

information between observation and goal images?
The implications could potentially go beyond image goal
navigation and have impact on the wider field of relative
pose estimation and localization. In this paper we systemat-
ically disentangle the different mediators to shed a light on
what choices matter in ImageNav, and we find that:
R1: Agents trained with RL alone underperform in real-

istic navigation settings.
R2: Early Fusion performs better, with early patch-wise

fusion being essential, compared to Late Fusion.
R3: We find correlations between navigation and (emer-

gent) relative pose estimation performance, which we
probe from representations trained with RL.

Bonus: We discovered that success of recent frugal archi-
tectures using channel stacking and trained with RL alone
is mostly due to a simulator setting that allows agents
to slide along walls. Surprisingly, while this setting is
known to hamper sim2real transfer since [32], we have
obtained further insights: (i) unrealistic motion simula-
tion has also a negative impact on the learned perception
capabilities, and (ii) some learned capabilities can still be
transferred to realistic settings if the transfer includes
weights of the perception module.

2. Related Work
Navigation from visual observations – has been addressed
in several different fields. Robotics for a long time focused
on explicit modeling [13, 43, 45], which is mainly based
on mapping and localization [12, 39, 69], explicit plan-
ning [36, 64] and low-level control [26, 59]. Accurate sen-
sor and observation models are essential, followed by filter-
ing, dynamical models and optimization techniques.

Modern AI-based solutions are typically trained on
large-scale photorealistic simulators like Habitat [61] or
AI2-Thor [35]. Modular agents [17, 53, 55] decompose
the problem in sub modules, typically mapping, pose esti-

mation, planning and local decision taking. On the other
end of this spectrum, end-to-end trained models directly
map input to actions, with RL [30, 48, 70, 77] or Imita-
tion Learning (IL) [23], offline-RL [67], or unsupervised
RL [34, 42]. In recent work, end-to-end trained agents are
combined with visual foundation models, eg. DINOv2 [50]
in PoliFormer [77], or binocular ones for image compar-
isons as in DEBiT [8]. Agent memory is implemented as
recurrent representations [10, 31], occupancy maps [17], se-
mantic maps [16], latent metric maps [6, 29, 51], topolog-
ical maps [5, 18, 65], scene graphs [66], explicit episodic
memory [20, 24, 25, 56], implicit representations [38, 46]
or navigability [9]. In this work we investigate end-to-end
trained agents with recurrent memory.
Image goal navigation – or “ImageNav”, adds a matching
aspect to navigation, as the agent needs to compare the goal
image to the observed image. Explicit methods have ad-
dressed this with local feature matching [37], or by retriev-
ing features from a topological map [5]. End-to-end trained
agents compare images by extracting features with ResNets
[1, 78] or ViTs [76], potentially stacking multiple observa-
tions over time [65], with ViTs followed by cross-attention
[8], or by stacking images channel-wise [68]. Modular ap-
proaches have also been proposed [22, 74].

Depending on whether goal images are randomly cho-
sen or correspond to images of semantically meaningful
objects, the task can either be supported by semantic fea-
tures or requires purely geometric image understanding. In
this work we focus on the latter, and study how success de-
pends on architectural key design choices. We review these
choices in detail in Sec. 3.1 and their implementations in the
state of the art in Sec. 3.2.
Relative pose estimation (RPE) – was tackled for decades
with pixel-level image matching techniques [28, 49, 62].
Learning-based approaches have also been proposed [33],
and to overcome the lack of generalizability of early meth-
ods, self-supervised techniques have been used [41]. More
recently, DUSt3R [71] regresses pointmaps of each image
expressed in the coordinate system of the first image while
MASt3R [40] additionally learns an extra descriptor inspired
by standard image matching. Both leverage CroCo pre-
training [72, 73]. Similarly, MicKey [4] regresses pointmaps
of each image in its respective coordinate system and learns
descriptors to obtain correspondences, supervised by rela-
tive pose [7, 11]. These recent methods have led to impres-
sive results, even under scenarios with little image overlap
as in the MapFree-Relocalization benchmark [3]. In this
work, we study RPE as a sub-task of ImageNav and probe
it explicitly from agent representations.

3. Can we learn goal-perception with actions?
We study the ImageNav task in photo-realistic 3D environ-
ments, where an agent is given a goal image g∈R3×H×W
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Figure 2. Different architecture choices for binocular encoders learning to compare the observed image ot with the goal image g: (a)
Late Fusion encodes them separately and comparison is done “late” between embedding vectors ϕo(ot) and ϕg(g), making correspondence
computations difficult. (b) ChannelCat stacks images over the channel dimension, followed by convolutional encoders ϕ ([ot,g]dim=1). It
makes correspondence computations possible in principle if the CNN receptive field is big enough. (c) SpaceToDepth reshapes the patch
dimension into the channel dimension. Combined with ChannelCat [68], it could allow correspondence to emerge in each layer directly
through conv filters. (d) Binocular ViTs [8] model correspondence directly as cross-attention between patch tokens.

and is required to navigate from a starting location to
the position shown in the goal. At each timestep t the
agent observes an RGB image ot∈R3×H×W , all images
are of size 112×112. The action space is the discrete
set A ={MOVE FORWARD 0.25m, TURN LEFT 10◦, TURN
RIGHT 10◦, and STOP}. An episode is considered success-
ful if the agent is within 1m of the goal position and it calls
the STOP action within its 1000 steps budget. We use the
Habitat simulator [61] and the Gibson dataset [75].

All our experiments are done with different variants of
the same identical base agent, which maintains a recurrent
episodic memory ht, integrates the observation ot and the
goal image g, and predicts actions at:

g̃t = ϕ(ot,g) // binocular perception

ht = h(ht−1, g̃t, ζ(at−1)) // state update

at ∼ π(ht), // policy

(1)

where h is the function updating the hidden state ht of
a GRU [21] and gating equations have been omitted for
brevity; ϕ and ζ are trainable encoders, and π is a lin-
ear policy. All agent variants are trained from scratch
with PPO [63] with reward function defined as in [8, 19]:
rt = K · 1success −∆Geo

t − λ, where λ=0.01 is a slack cost
to encourage efficiency, K=10, and ∆Geo

t is the increase in
geodesic distance to the goal.

3.1. Architecture design choices

At the heart of the problem is the sub task of learning to
compare images ot and g to infer directional information

related to relative pose estimation. In the classical Image-
Nav task, goal images can be taken from any position and
do not necessarily show a semantically meaningful object.
Given the possible absence of semantic cues, which would
have allowed to compare images on a global level, we con-
jecture that successful comparison requires the computation
of some form of correspondence between local parts of the
respective images. While pose estimation methods based on
local feature matching perform this explicitly [57, 60], re-
cent work have shown that this kind of correspondence can
emerge implicitly from large-scale training without explicit
supervision of matches, e.g. in CroCo [72] or DUSt3R [71].

In the context of robotics and navigation, the question
arises whether it is possible to go a step further, and forgo
pose-related losses completely, training image comparisons
end-to-end together with the navigation agent from RL
alone. This has been the promise of works like FGPrompt
[68] and OVRL-v2 [76], and we will analyze this in-depth.

Assuming that correspondence computations are neces-
sary to extract directional information, we conjecture that
these computations need to be supported by underlying net-
work architectures. The basic building blocks for image
comparison in the literature, also illustrated in Fig. 2, are:

Late Fusion networks use separate networks ϕo and ϕg to
encode observation and goal. The representation fed to
the agent is given as ϕ(ot,g) = [ϕo(ot), ϕg(g)], where
[.] denotes concatenation, see Fig. 2(a). The comparison
is thus performed “late” between embeddings ϕo(ot) and
ϕg(g), which makes it generally harder to be done on a



local image level, unless output representations retain suf-
ficient spatial structure going through encoder layers.

ChannelCat uses a single network to encode both observa-
tion and goal, which are channel stacked into one input
image ϕ ([ot,g]dim=1), where 0 is the batch dimension
and 1 the channel dimension — see Fig. 2(b).
If encoders are implemented as CNNs, a common choice
in robotics for computational complexity reasons, com-
parisons between local parts of images can be done only
if the receptive field of the network is big enough to en-
compass the full image. Given a sufficiently deep encoder
correspondence can therefore be computed, but not nec-
essarily efficiently, as individual matching results need to
be accumulated in the output of different filter kernels.
If encoders are ViTs, each feature patch corresponds to a
pair of patches having the same coordinates in both im-
ages. Correspondence can be more easily computed if
different self-attention heads are learned with query and
key projections focusing on one of the two channel groups
of the two respective images.1

SpaceToDepth reshapes image patches into channel values
[58]. FGPrompt [68] uses SpaceToDepth in combina-
tion with ChannelCat of observation and goal, achiev-
ing strong navigation results. We investigate whether
a ResNet in this configuration can compute correspon-
dences across a large spatial dimension through a sin-
gle convolutional layer, somewhat reminiscent of cross-
attention, only with very few parameters — see Fig. 2(c).

Cross-attention is a natural way to compute correspon-
dences between local parts of images [8], as each patch in
one image can be naturally linked to one or more patches
in the other image through the cross-attention distribu-
tion, see Fig. 2(d).

3.2. Implementations in prior work

Early methods used Late Fusion approaches based on
CNNs [1, 78], but later works switched to ViTs. Cross-
attention for ImageNav was introduced in DEBiT [8] with
code available,2 and combined with pre-training, first for
cross-view completion as in [72], then for relative pose
and visibility estimation. The binocular ViT was combined
with an additional CNN with only the observation as input,
trained with RL, providing current state-of-the-art results.
Interestingly, the authors have shown that pre-training is es-
sential, as the high-capacity binocular transformer cannot
be trained from scratch with RL only. The learning signal
from the RL loss alone seems to be too weak to drive the en-

1As an illustrative example, consider an input image X corresponding
to channel stacking of two images XA and XB . Then, if for a given
attention head the Query projection only uses the channels of image XA

and the Key projection only use the channels of image XB , then this self-
attention on X mimics cross-attention between XA and XB .

2https://github.com/naver/debit

coder to discover correspondence computations. The inabil-
ity of RL to train big encoders was somewhat confirmed in
the Late Fusion method OVRL-v2 [76], as “switching from
the 50.9M parameters ViT-Small to the 179.2M parameters
ViT-Base produces another negative result: SR drops -2.4%
while SPL minimally increases by +0.7%”.

FGPrompt [68] proposed channel stacking for Image-
Nav, with code available,3 and it is based on previous code
of ZSEL [1]. Both codebases use a non-standard ResNet9
architecture with several custom blocks, the most signifi-
cant one being SpaceToDepth described earlier. Interest-
ingly, SpaceToDepth was first introduced in TResNet [58]
as a general purpose network block for computer vision op-
timized for memory efficiency, targeting image classifica-
tion and object detection. Correspondence problems were
not explicitly targeted. The ResNet9 encoder in this paper
is exactly the same as those used in ZSEL and FGPrompt.

Given the good results FGPrompt obtained without any
pre-training, 92% SR, vs. DEBiT’s 94% SR relying on pre-
training, we raise the question whether it is possible to use
the weak learning signal provided by RL to learn binocular
perception modules capable of providing directional infor-
mation. A positive answer would have significant impact
also on training vision modules targeting RPE directly. In
the experimental section we will dive into this question and
benchmark architectures and design choices.

4. Experimental Setup
Unfortunately there are different evaluation protocols in the
literature on Embodied AI, and in particular on the Image-
Nav task. We therefore train all agents ourselves in identical
conditions and with the same experimental protocol. The
agents are trained on the 72 scenes of the Gibson dataset
[75] and use the standard Habitat episode definitions (a sub-
set of the literature uses the definitions from Episodic Trans-
formers [47] and another subset those from NSNRL [27]).
We set the maximum episode length to the default value of
1000 steps and we train for 500M steps, which allows all
agent variants to converge easily.
Implementation details – We test perception networks ϕ
implemented as ResNet9, ViT-Small4 and DEBiT-B archi-
tectures, available in their respective public repositories.
We test CannelCat, Late Fusion and SpaceToDepth vari-
ants of ResNet and ViT, while for DEBiT we either use
the pretrained binocular encoder or train the whole agent
from scratch. Network versions are chosen based on size-
performance tradeoff — see Supplementary for details. The
function ζ embeds previous actions into a 32D feature, h is
a GRU with 2 layers and hidden dimension 128, followed
by a linear Actor-Critic policy π.

3https://github.com/XinyuSun/FGPrompt
4https://github.com/huggingface/pytorch-image-

models

https://github.com/naver/debit
https://github.com/XinyuSun/FGPrompt
https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models


Validation – To avoid overfitting evaluation over the choice
of checkpoints, while at the same time staying comparable,
we use three different splits. We train on the standard Gib-
son train split (72 scenes) and report on the standard Gibson
validation split (14 scenes), as most literature, but we use an
independent custom holdout set of unused Gibson scenes to
choose the checkpoint.
Metrics – Navigation performance is evaluated by success
rate (SR), i.e., fraction of episodes terminated within a dis-
tance of <1m to the goal by the agent calling the STOP ac-
tion, and SPL [2], i.e., SR weighted by the optimality of the
path, SPL = 1

N

∑N
i=1 Si

ℓ∗i
max(ℓi,ℓ∗i )

, where Si be a binary
success indicator in episode i, ℓi is the agent path length
and ℓ∗i the shortest path length.
Comparing the comparable – An important choice in the
Habitat simulator is the binary Sliding switch, which,
when set to True, allows the agent in simulation to slide
along obstacles when colliding, against the more realistic
behavior of stopping. This parameter is known to have a big
impact on sim2real transfer [32]. In our own analysis, we
saw that the increased difficulty of Sliding=False goes
beyond sim2real transfer and also impacts task difficulty in
simulation: when the agent hits a wall, it can in principle
continue the episode, but is frequently restricted in its mo-
tion, often stuck, and typically needs to turn to recover.

While this setting is switched to True by default, there
is consensus in the field that it should be set to False,
as the goal is to decrease the sim2real gap and to evalu-
ate agents in situations which are as close as possible to
real physical robots and environments. Looking closer into
the available code of navigation repositories, it seems that
indeed most use Sliding=False (DEBiT [8], ZSEL [1],
ZSON [44], PIRLNav [54]), with a couple of exceptions
using Sliding=True, notably FGPrompt [68] (details in
Supplementary). We therefore performed experiments with
both settings, and were surprised to see that there is a big
influence of this parameter. Given its impact, we color-
coded the entries in all tables into three different groups:
(i) Sliding=True : the visual encoder ϕ has been trained
with this setting on; (ii) Sliding=False : it has been
trained with this setting off; (iii) Pre-train : the visual en-
coder ϕ has been pre-trained on an auxiliary task, typically
relative pose and visibility estimation (RPVE).

4.1. Benchmarking architectures

Tab. 1 summarizes results for different architectures and
settings. With Sliding=True , ChannelCat (d)-(f) ob-
tains excellent performance, close to DEBiT-B (h) which
has a larger, more complex architecture, and is pre-trained
on RPVE. Without pre-training, DEBiT is not exploitable,
as also reported in [8]. Late Fusion architectures (a)-(c)
underperform, and SpaceToDepth has no significant im-
pact on either ChannelCat or Late Fusion models : being

Slide=True Slide=FalseModel s2d† Backbone SR SPL SR SPL
(a) Late Fusion ✗ ResNet9 13.8 8.0 12.8 7.1
(b) Late Fusion [1] ✓ ResNet9 12.5 7.6 13.2 8.9
(c) Late Fusion ✗ ViT-Small 12.5 6.7 6.9 4.5
(d) ChannelCat ✗ ResNet9 83.2 43.9 44.6 23.4
(e) ChannelCat [68] ✓ ResNet9 83.6 42.1 31.7 18.7
(f) ChannelCat ✗ ViT-Small 71.1 34.3 35.3 16.2
(g) Cross-attn ✗ DEBiT-B 0.0 0.0 0.0 0.0
(h) Cross-attn [8] ✗ DEBiT-B‡ 90.5 60.3 81.7 52.0

Table 1. Agents with different visual encoders trained
and validated with Sliding=True or Sliding=False .
s2d†=SpaceToDepth. ‡=pre-trained for RPVE .

able to compare local patches across images in a single
layer through convolutions does not translate into numerical
gains. With Sliding=False the trends change dramati-
cally. While the impact on the (previously already under-
performing) Late Fusion architecture is similar, Channel-
Cat, (d)-(f), now breaks down and performance is halved,
or less. In contrast, DEBiT is able to cope well with the
more realistic Sliding=False setting, arguably because
of its strong pre-trained visual encoder, confirming the im-
portance of visual pre-training.

To summarize, and coming back to Q1 and Q2 raised in
Sec. 1, we can conclude the following:
R1: In realistic settings (Sliding=False), agents trained

with RL alone perform significantly worse than DEBiT
with pre-trained visual encoder.

R2: Early Fusion agents perform better than Late Fusion
counterparts, with early patch-wise fusion being the best
option, but requiring pre-training.

Additionally, we found that recent success of agents based
on small CNNs trained end-to-end with RL only, was
mostly due to setting Sliding=True in Habitat.

4.2. Transferring capabilities obtained w. “Sliding”

The huge impact of the Sliding simulator setting came
somewhat as a surprise. While its role in sim2real trans-
fer of point goal navigation was established in [32], the
common conjecture was that it impacted “low-level navi-
gation”, i.e., finding free space, avoiding obstacles, capabil-
ities which are independent of the extraction of goal direc-
tional information. Our experiments, however, suggest that
the choice of binocular visual encoder ϕ is impacted by this
hyper-parameter, which should be related to motion only.

This then raises the question, whether (i) the two agents
trained in their respective settings have similar capabili-
ties but perform differently purely due to the difference
in task difficulty, or (ii) whether, for some reason, train-
ing with sliding actually leads to different and perhaps
better performing agent capabilities. We tested these hy-
potheses by performing experiments loading the weights



Perception Action (%)Checkpoint
ϕ h ζ π SR SPL

(a) Load all “false” f∗ f∗ f∗ f∗ 31.7 18.7
(b) Load all “true” t∗ t∗ t∗ t∗ 54.6 27.5
(c) Load all “true” t→ t→ t→ t→ 65.7 34.1
(d) Load action “true” ⟳ t∗ t∗ t∗ 0.0 0.0
(e) Load action “true” ⟳ t→ t→ t→ 6.1 4.8
(f) Load perception ”true” t∗ ⟳ ⟳ ⟳ 26.4 14.3
(g) Load perception “true” t→ ⟳ ⟳ ⟳ 38.5 20.3

Table 2. OOD behavior and cross-domain transfer (Channel-
Cat+SpaceToDepth agent): Can navigation knowledge learned
with sliding be transferred to the non-sliding setting through fine-
tuning? f : load from agent trained with Sliding=False,
t: load from agent trained with Sliding=True, ∗: frozen ,
→: finetune , ⟳: re-train from scratch .

of an agent trained with Sliding=True and finetuning it
with Sliding=False. For these experiments we used the
ChannelCat + SpaceToDepth agent, for which the differ-
ence in SR dropped from 83.6% to 31.7% when sliding was
switched off (cf. Tab. 1).

Tab. 2 shows the results of these experiments. Taking
the agent trained with Sliding=True and validating it on
False, row (b), makes SR jump to 54.6%, compared to the
baseline of 31.7%, trained on False only. This is a highly
surprising result. Although the performance is a far cry of
the 83.6% obtained by training and validating with True,
it indicates that a certain amount of transfer is possible —
some capabilities are learned with sliding enabled. Fine-
tuning this agent for 100M steps on False provides further
gains and yields SR=65.7%, row (c).

To pinpoint the effect, we loaded different parts of the
agent trained with Sliding=True: only the perception part
(weights of the visual encoder ϕ), only the action part (GRU
h, policy π, previous action encoder ζ) or both. Trans-
ferring the action part of the agent, i.e. GRU h, policy
π, encoder ζ, rows (d) and (e), does not lead to any dis-
cernible performance: learning the upstream visual encoder
ϕ from scratch through pre-loaded downstream weights of
the GRU and policy seems a very hard task. However,
transferring the perception weights ϕ and training the ac-
tion part from scratch, rows (f) and (g), leads to exploitable
results, although significantly lower than loading the full
agent weights. With a SR of 38.5% for the finetuning ver-
sion, row (g), these are still higher than the baseline of
31.7% trained from scratch on False. In Tab. 3 we perform
similar experiments with DEBiT which, however, uses a
pre-trained visual encoder ϕ that is kept frozen. We load the
rest of the agent trained with Sliding=True and evaluate
it with False (b): in this case, no transfer happens and per-
formance drops significantly. Finetuning the agent trained
with True on False, (c), improves the Sliding=True

policy, but not to the extent of reaching the performance of
the agent trained on-distribution, i.e. Sliding=False, ar-

Perception Action (%)Checkpoint
ϕ h ζ π SR SPL

(a) Load all “false” p∗ f∗ f∗ f∗ 81.7 52.0
(b) Load all “true” p∗ t∗ t∗ t∗ 59.5 35.4
(c) Load all “true” p∗ t→ t→ t→ 79.6 46.9

Table 3. OOD behavior (DEBiT agent): f : load from agent
trained with Sliding=False, t: load from agent trained
with Sliding=True, p: pre-trained with RPVE, ∗: frozen ,
→: finetune .

guably because RPVE pre-training of perception is already
providing a strong visual encoder.

We the following lessons from these experiments. The
difference between Sliding=True or False cannot only
be described by the task difficulty alone. The easier task
(True) allows to learn additional capabilities, which trans-
fer to the harder task, and which are partially related to per-
ception (since the performance in Tab. 2(g) > 2(a)), and
also related to action / sequential decision taking, since
Tab. 2(b) ≫ 2(a) and Tab. 2(b) ≫ 2(g). However, we con-
jecture that the transfer of the knowledge stored in the ac-
tion component is also highly linked to improving the per-
ception skills, as it does not happen when ϕ is pre-trained
and frozen (Tab. 3(a) ≫ 3(b), and Tab. 3(a) > 3(c)). One
possible explanation is that only training with False leads
to undertraining of, both, action and perception: the policy
keeps getting stuck (which we empirically confirmed) and
does not learn to cope with the last meters of each episode;
this, in turn, leads to undertraining the comparison between
the (hardly ever seen) goals and observations.

4.3. Probing RPVE capabilities

Given that a certain limited capacity for visual reasoning
has been learned by the visual encoder ϕ when the full
agent has been trained for navigation with Sliding=True,
we pursue this question further and directly investigate how
well the different visual encoders can deal with extracting
directional information. Or, motivated differently, given the
potential impact on relative pose estimation of training these
visual encoders from navigation losses only without pose
supervision, we evaluate how well they work for this task.
We took the frozen visual encoders ϕ of the agents evalu-
ated in Tab. 1 and trained probing heads p on top of them
predicting relative pose and visibility (RPVE):

(t,R, v) = p
(
ϕ(o,g)

)
. (2)

In line with [8], relative pose between the observed image
and the goal image is composed of two components, transla-
tion t∈R3 and a rotation matrix R∈R3×3. Visibility quan-
tifies the amount of overlap between the two images, nec-
essary since in navigation settings the goal image might not
even be observed at certain moments. It is defined as the
proportion of 16×16 patches of the goal image g which are



Model %corr.poses %corr.vis.
(Table nr. + row) s2d† Backbone S‡

1m,10° 2m,20° <0.05

Late Fusion 1a ✗ ResNet9 ✓ 7.6 26.0 13.8
Late Fusion 1b ✓ ResNet9 ✓ 9.0 29.6 16.1
ChannelCat 1d ✗ ResNet9 ✓ 11.4 29.3 13.7
ChannelCat 1e ✓ ResNet9 ✓ 18.4 41.6 20.8
Late Fusion 1a ✗ ResNet9 ✗ 7.8 26.8 13.2
Late Fusion 1b ✓ ResNet9 ✗ 8.7 28.5 16.1
ChannelCat 1d ✗ ResNet9 ✗ 9.8 26.9 13.8
ChannelCat 1e ✓ ResNet9 ✗ 12.5 31.9 19.2
ChannelCat 2c ✓ ResNet9 → 18.2 41.4 21.1
ChannelCat 2d ✓ ResNet9 → 5.8 22.9 6.7
ChannelCat 2e ✓ ResNet9 → 7.2 26.1 11.9
ChannelCat 2g ✓ ResNet9 → 18.6 41.6 21.0
Cross-attn 1h ✗ DEBiT-B N/A 92.1 96.8 88.8
Late fusion ✗ DEBiT-B N/A 14.8 38.6 19.6
Late fusion ✗ DINOv2 N/A 12.9 34.0 22.7

Table 4. Probing relative pose and visibility estima-
tion: representations ϕ(o,g) trained with an RL (naviga-
tion) loss are frozen, and then we train a probing head.
The last block of methods in italic is not comparable, as the en-

coders were pre-trained: DEBiT [8] was pre-trained on RPVE
losses, DINOv2 [50] with SSL. We report RPVE performance on
a hold-out set. s2d†=SpaceToDepth, S‡ = Sliding=True. The
third block shows agents which have been finetuned (→) from
True to False, see Tab. 2.

visible in the observed image o.
The probing heads p are adapted to the different architec-

tures, while at the same time providing a comparable capac-
ity of ∼ 3M parameters for each head variant. They collect
features at the last spatial representation (feature map for
ResNet, patch embeddings for ViT, concatenation of these
for Late Fusion representations) and first linearly project
token-wise to a lower dimension, before flattening to ob-
tain a global representation which is passed to an MLP with
1024 hidden units. The low dimension of the projection
changes according to architectures (as the spatial resolution,
i.e., the number of tokens change) to make the parameter
counts similar: 64 for ViTs, 192 (resp. 16) for ResNet9
with (resp. without) SpaceToDepth.

As in [8], we generated a probing dataset by combin-
ing the 3D scene datasets Gibson [75], MP3D [14], and
HM3D [52], following their standard train/val scene splits.
We sample pairs of points randomly in the scene, calculate
the shortest path between them, and extract 10 intermediate
poses on the path. These 10 poses are then each combined
with the end point to form pairs of observation o and goal g.
Ground-truth for relative pose is directly available from the
simulator, and visibility can be estimated from the two point
clouds generated from the respective images. We generated
around 68M image pairs total.

We train the probing heads p with a loss combining all
three components, translation, rotation and visibility, where
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(a) Nav evaluated w. Sliding=True (b) Nav evaluated w. False

Figure 3. Nav vs. Rel-pose: navigation perf. (SR,%) plotted
against pose est. probing accuracy (% for err <2m, 20◦) for 4 types
of visual encoders ϕ: trained w. sliding , trained w/o sliding ,
pre-trained w. RPVE , trained w. sliding, finetuned w/o ; (LF =

Late Fusion, CC=ChannelCat). The dashed line relates the
finetuned models to the same model trained w/o sliding .

pose supervision is switched off when visibility is low,

Lp =
∑

i

[
|vi−v∗i |+ 1v∗

i >τ

{
|ti−t∗i |+ |Ri−R∗

i |
}]

, (3)

where i indexes image pairs over the probing dataset,
t∗i ,R

∗
i , v

∗
i denote ground truth values, 1. is the binary in-

dicator function, |.| denotes the L1 loss and τ is a threshold.
Metrics – relative pose is evaluated over the pairs with vis-
ibility over τ in the percentage of correct poses for given
thresholds on distance and angle, e.g. 1 meter and 10°. Vis-
ibility is evaluated over all pairs by its accuracy at ±0.05,
i.e., the percentage of prediction within a 0.05 margin of the
ground-truth value.
Results – Tab. 4 gives results comparing RPVE perfor-
mance on a validation set for all tested visual encoders,
and Fig. 3 provides a scatter plot relating it to navigation
performance (taken from Tab. 1, 2). While the Channel-
Cat architecture obtains high navigation performance in the
Sliding=True setting, 3(a), its pose estimation perfor-
mance remains limited. Late Fusion models generally pro-
vide low performance both for navigation and pose estima-
tion. In the Sliding=False setting, 3(a), the navigation
performance significantly drops for the ChannelCat mod-
els, as already discussed in Sec. 4.1, and also somewhat
for pose estimation. Transferring the models trained with
True on the False setting provides gains not only in nav-
igation performance, as already discussed, but also on pose
estimation — only when at least the weights of the visual
encoder ϕ are transferred, but in particular when the whole
agent is transferred and finetuned. This further corroborates
our conjecture, that the perception model is undertrained
when sliding is disabled. Finally, the best performance is
obtained by the DEBiT model based on ViTs and cross-
attention, both in navigation and pose probing. However,
the pose estimation performance is not comparable for ob-
vious reasons — the model has been pre-trained and frozen
for this task. Its performance is given for information.
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Figure 4. Analysis of navigation behavior: Sankey plots show the distribution of success/failure codes over 994 test episodes for different
models, and their “flow” between certain pairs of models. For instance, the strength of the connection between “Time out” (left) and
“success” (right) indicates how many episodes toggled from one to the other when switching from the left to the right model.

In Tab. 4 we also provide pose probing results for two
additional models, where we explore whether the pose esti-
mation performance of Late Fusion can be increased by us-
ing two different pre-trained and frozen encoders, namely
DINOv2 and the ViT encoder part of DEBiT, without the
cross-attention layers combining them5. They both under-
perform, further corroborating the importance of compar-
ing visual representations early, allowing to compute corre-
spondences between local image parts. These experiments
support a positive answer to Q3 in Sec. 1: there is a clear
correlation between navigation and RPE performance.

4.4. Analysis of navigation behavior

In Fig. 4 we provide Sankey plots showing the differences
in navigation behavior as a distribution of success/error
types over 994 test episodes evaluated in environments with
Sliding=False, and how this behavior varies across dif-
ferent models and different training settings. Here we dis-
tinguish between unsuccessful episodes due to Time out,
when the agent does not complete an episode in the 1000
steps budget, and Early stop, when the agent terminates the
episode but is further away than the 1m success threshold.

Left, the ChannelCat agent trained on Sliding=False,
Tab. 2(a), stops too early in most of the episodes, confirm-
ing that its components are not properly trained, probably
due to the difficulty of the task. Next, finetuning on False

the ChannelCat agent trained with True, Tab. 2(c), allows
to obtain an agent with good navigation capabilities. It im-
proves the ChannelCat agent trained with True, Tab. 2(b),
in the middle in Fig. 4, whose main failure mode is time
out. We observe that most of these time-outs occur far from
the goal and are due to the agent getting stuck, likely be-
cause it learned to slide along obstacles, which is not pos-
sible with False. On the 4th column, DEBiT trained with
True, Tab. 3(b), exhibits a similar behavior, while DEBiT
trained with False, Tab. 3(a), on the right-most column,

5DEBiT first encodes each image with a ViT and then passes both em-
beddings to a decoder using cross-attention, cf. [8].

can effectively solve the complex navigation task, arguably
thanks to its pretrained, high capacity, perception module.

5. Discussion and conclusion
We have studied image goal navigation and raised questions
on agent architecture and whether components dedicated to
vision or decision taking should be trained jointly with RL
or separately. We have shown that the success of recent
architectures based on channel stacking can be linked to
a simulator setting allowing sliding. While agents trained
with sliding enabled are known to transfer badly to real
environments, where this is not possible, our analysis has
shown that capabilities learned with this sliding setting can
actually be partially transferred to more realistic environ-
ment settings. While sliding is a property of agent dynam-
ics and not inherently linked to perception, we have shown
that it significantly impacts training of the visual encoders
of end-to-end trained agents: transferring capabilities to the
realistic setting only seems to be successful if it also involves
transferring the visual encoder weights. We conjecture that
training with the realistic setting leads to undertraining both
the perception module, as the goal is seen more rarely, and
the rest of the agent, which has a difficulty to cover later
portions of the episodes.

We also compared and analyzed different widely-used
architectures: Late Fusion, ChannelCat, SpaceToDepth
projections and Cross-attention. Results suggest that suc-
cessful architectures require support for early fusion of
representations, allowing to compute correspondences be-
tween local parts of images: Late Fusion generally under-
performs. As expected, we also found a correlation between
navigation performance and (emerging) relative pose esti-
mation performance, which we probed with explicit heads.
Finally, we argue that, up to our knowledge, there does not
seem to exist a simple solution to learn with RL alone image
goal navigation end-to-end with simple low-capacity archi-
tectures and without pre-training, which we judge to remain
essential for goal-oriented navigation.
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