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Abstract

Large Language Models (LLMs) are often used001
as automated judges to evaluate text, but their002
effectiveness can be hindered by various un-003
intentional biases. We propose using linear004
classifying probes, trained by leveraging dif-005
ferences between contrasting pairs of prompts,006
to directly access LLMs’ latent knowledge and007
extract more accurate preferences. Through ex-008
tensive experiments using models of varying009
size from four different families and six diverse010
datasets assessing text quality evaluation and011
common sense reasoning, we demonstrate that012
both supervised and unsupervised probing ap-013
proaches consistently outperform traditional014
generation-based judgement while maintain-015
ing similar computational costs. These probes016
generalise under domain shifts and can even017
outperform finetuned evaluators with the same018
training data size. Our results suggest linear019
probing offers an accurate, robust and compu-020
tationally efficient approach for LLM-as-judge021
tasks while providing interpretable insights into022
how models encode judgement-relevant knowl-023
edge. Our data and code will be openly released024
in the future.025

1 Introduction026

Chatbot Large Language Models (LLMs) are often027

trained using Reinforcement Learning with Hu-028

man Feedback (RLHF) over preference datasets in029

order to increase honesty, helpfulness, and harm-030

lessness (Christiano et al., 2017; Stiennon et al.,031

2020; Bai et al., 2022). This manifests as an in-032

crease in value/judgement alignment with humans,033

allowing for the use of such models as stand-in034

replacements for human raters on various tasks of035

evaluation (Zheng et al., 2023b; Shen et al., 2023;036

Zeng et al., 2023; Stephan et al., 2024; Zhong et al.,037

2022). This approach, commonly known as LLM-038

as-a-Judge, is particularly powerful for its fast and039

automatic nature.040

In these tasks, LLM evaluators perform direct 041

score-based assessment or pairwise comparisons, 042

conventionally through generation-based predic- 043

tion, where models are prompted to output numer- 044

ical or Likert scale ratings, or comparative judge- 045

ments. However, several factors limit the accuracy 046

and efficiency of such approaches. Constrained- 047

decoding for format control can introduce arti- 048

facts, and unintentional biases can be introduced 049

by prompts. Overly verbose reasoning can obscure 050

or misalign core judgements. More fundamentally, 051

black-box approaches can lead to untrustworthy 052

or factually incorrect generations, frequently stem- 053

ming from biases learned during pretraining (Wei- 054

dinger et al., 2021; Park et al., 2023; Evans et al., 055

2021; Hendrycks et al., 2021). 056

Previous work, such as Liu et al. (2024b), 057

demonstrates that reformulating direct-scoring 058

tasks as ranking problems based on pairwise prefer- 059

ences results in better alignment with human expert 060

labellers. To extract even more accurate judge- 061

ments than these generation-based approaches, we 062

propose using classifying probes through pairwise 063

comparisons. Empirical work suggests models’ 064

latent knowledge, independent of the biases con- 065

sidered above, can be identified through the use of 066

trained classifier heads on the activations of a given 067

model. Such probes can be trained in a supervised 068

(Alain and Bengio, 2017; Marks and Tegmark, 069

2024) or unsupervised (Burns et al., 2023) fash- 070

ion, and importantly, can be trained using contrast 071

pairs. This involves comparing the hidden state 072

of a model when generating different possible an- 073

swers, and observing salient contrastive features 074

in the change of hidden state, while controlling 075

for irrelevant features (Burns et al., 2023; Rimsky 076

et al., 2024). This leads both to better predictive 077

performance and gains in efficiency. 078

We present the first thorough investigation of 079

the performance of supervised and unsupervised 080

probes for LLM-as-a-Judge tasks of pairwise pref- 081
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Figure 1: Our method exploits the empirical result that LLMs’ internal features of “belief” or “judgement” are
correlated with linear directions in their embedding spaces. For Llama 3.1 70B evaluated on the MT-Bench dataset,
we find the first principal component of the contrast pair differences of embedding vectors roughly classifies
which model in a given example was preferred by a panel of human raters (left). Supervised or unsupervised
classifying probes built on these embedding vectors are more aligned with human raters than prompting
methods alone (right), and this result holds across different model families (Gemma 2, Llama 3.1) at different sizes
(from 2B to 70B parameters).

erences, comparing these methods to generation-082

based evaluation, with and without supervised fine-083

tuning (SFT). To summarise our main contribu-084

tions:085

• We introduce a way to extract human-aligned086

judgement from LLMs, by leveraging linear087

classifying probes and contrast pairs, in both088

a supervised and unsupervised setup.089

• Through extensive experiments, we show090

classifying probes consistently outperform091

generation-based evaluation.092

• We also show supervised probes considerably093

improve on the cost:performance ratio of SFT094

in realistic scenarios.095

• We demonstrate these probes correlate with096

interpretable features of the underlying lan-097

guage model, generalising well to different098

domains and remaining more robust to distri-099

butional shifts than prompting.100

Our results are consistent across four widely-used101

open-weights model families, at sizes ranging from102

0.5B to 123B parameters, and six different datasets.103

In light of our results, we encourage practitioners104

to make use of classifying probes for similar tasks105

for a more cost-efficient, robust, and performant106

solution.107

2 Background and Related Work 108

2.1 LLM-as-a-Judge 109

LLMs are increasingly employed as automatic, 110

reference-free evaluators for assessing natural lan- 111

guage tasks (Zhong et al., 2022; Chen et al., 2023; 112

Wang et al., 2023; Tan et al., 2024). Their ap- 113

plications span a wide range of domains, such as 114

summarisation (Shen et al., 2023), instruction fol- 115

lowing (Zeng et al., 2023), legal analysis (Deroy 116

et al., 2024), reasoning (Stephan et al., 2024), and 117

recommendation systems (Hou et al., 2024). De- 118

spite their growing adoption, LLM-as-a-judge faces 119

several challenges, including misalignment with hu- 120

man judgments (Chiang and Lee, 2023), biases in 121

various forms (Zheng et al., 2023b; Zhou et al., 122

2024), inconsistencies in decision-making (Liu 123

et al., 2024a), and limitations in reasoning capa- 124

bilities (Stephan et al., 2024). 125

To address these issues, researchers have pro- 126

posed several methods to enhance the reliability 127

and accuracy of LLM-based judgments. G-Eval 128

(Liu et al., 2023) refines scoring granularity us- 129

ing a logit-weighted average of score tokens. Pair- 130

wise comparison techniques have been introduced 131

to improve alignment with human preferences, as 132

demonstrated by Liu et al. (2024b) and Liusie et al. 133
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(2024). Other approaches advocate for generat-134

ing Chain-of-Thought rationales prior to evaluation135

(Saha et al., 2025; Wang et al., 2024; Ankner et al.,136

2024) or employing multi-agent debate frameworks137

(Chan et al., 2024) or evaluator panels (Verga et al.,138

2024) to enhance assessment robustness.139

2.2 Representation Probing140

Probing methods assess the extent to which141

language model representations encode specific142

knowledge. Typically, a probe is a supervised clas-143

sifier (Conneau et al., 2018; Hupkes et al., 2018)144

trained to extract information from these represen-145

tations (Christiano et al., 2021; Belrose et al., 2023).146

Linear probing (Alain and Bengio, 2018), which147

employs a linear classifier, is particularly valued148

for its efficiency and interpretability. Unsupervised149

variants have also been explored (Burns et al., 2023;150

Laurito et al., 2024).151

Probing has been widely applied to interpret152

model representations across various domains, in-153

cluding word embeddings (Levy and Goldberg,154

2014), sentiment (Maas et al., 2011), factual knowl-155

edge (Marks and Tegmark, 2024), spatial and tem-156

poral understanding (Gurnee and Tegmark, 2024),157

and world models (Li et al., 2023). It has also been158

used to detect behavioural patterns such as out-159

liers (Mallen et al., 2024), inactive modules (Mac-160

Diarmid et al., 2024), and unfaithful generation161

(Azaria and Mitchell, 2023; Campbell et al., 2023).162

In this work, we employ linear probing to extract163

evaluation judgments from an LLM-as-a-judge164

setup. Compared to inference-based or logits-based165

judgments, we show that linear probing improves166

both accuracy and efficiency.167

3 Methodology168

In order to identify an LLM’s true “judgement”169

via classifying probes, we seek to identify binary170

features of belief or knowledge: a given text may or171

may not be consistent with the knowledge the LLM172

has learned during training, and we wish to identify173

a linear direction in activation space correlated with174

this property.175

To identify such a direction, we make use of176

contrast pairs (Burns et al., 2023). We begin177

with a diverse set of binary statements or ques-178

tions S = {si}Ni=1. The contrast pairs are a dataset179

of prompts X = {(x+i , x
−
i )}Ni=1 constructed by ap-180

pending contrasting tokens to each si. Suppose for181

example that si = “The capital of France is Paris.”182

A contrast pair for factual accuracy on si would 183

have x+i = “The capital of France is Paris. This 184

statement is true” and x−i = “The capital of France 185

is Paris. This statement is false”. 186

Both prompts are then used as inputs to an LLM, 187

and the embedding vectors ϕ(x+i ) and ϕ(x−i ) of 188

the differing contrasting tokens are harvested at a 189

layer l. 190

We assume both ϕ(x+i ) and ϕ(x−i ) can be de- 191

composed into several features, most of which are 192

shared (since both are derived from the statement 193

si). We also assume we can approximate both as a 194

linear combination of said features: 195

ϕ(x+i ) =

n∑
i=1

Fshared
i +

m∑
j=1

F+
i + ϵ+, 196

ϕ(x−i ) =

n∑
i=1

Fshared
i +

k∑
j=1

F−
i + ϵ−, 197

with all Fshared common to both embeddings, 198

F+/− unique to each element of the contrast pair 199

and remaining information ϵ+/−. 200

Consider the contrast pair difference ϕ(x+i ) − 201

ϕ(x−i ), removing the effect of all Fshared and leav- 202

ing only contrastive features. Two immediately 203

obvious contrastive features are: 204

• ∆syntax := FTrue − FFalse, the syntactical 205

difference in the prompts x+ and x−. 206

• ∆knowledge := F⊤ − F⊥, the logical differ- 207

ence between both prompts: one is consistent 208

with the model’s internal knowledge while the 209

other is not. This can be thought of as the 210

model’s “belief” in a sense. 211

Given a dataset of contrast pair differences D = 212

{ϕ(x+i )− ϕ(x−i )}Ni=1, a centering step can be per- 213

formed to remove ∆syntax before taking this dif- 214

ference: 215

ϕ̃(x+i ) := ϕ(x+i )− µ+, 216

ϕ̃(x−i ) := ϕ(x−i )− µ−, 217

where µ+ and µ− are the mean embedding vec- 218

tors of {ϕ(x+i )} and {ϕ(x−i )} respectively. We 219

claim ∆knowledge will, in most cases, be the most 220

salient contrastive feature of the new dataset D̃ = 221

{ϕ̃(x+i )− ϕ̃(x−i )}Ni=1. 222

Given ground truth labels for each pairwise com- 223

parison, we can model the probability with a clas- 224

sifier: 225

P(x+ true) = σ(wT (ϕ̃(x+i )− ϕ̃(x−i ))). 226
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The supervised probes we train in Section 4 are227

described by the above classifier, the parameters of228

which we fit using logistic regression.229

Additionally, were the above claim of salience230

of ∆knowledge to be true, it would be identifiable as231

the top principal component of our dataset, thereby232

allowing us to obtain a probing classifier without233

the need for ground-truth labels. Indeed, this ap-234

proach is commonly used as an unsupervised prob-235

ing technique for similar tasks (Burns et al., 2023;236

Laurito et al., 2024), and we explore its use for237

LLM-as-a-Judge pairwise comparisons here too.238

4 Experimental Setup239

4.1 Datasets240

We investigate the performance of classifying241

probes for LLM-as-a-Judge tasks through the use242

of several datasets spanning different problem do-243

mains.244

LLM Chat Preferences MT-Bench (Zheng245

et al., 2023a) is a multi-turn question set of pair-246

wise comparisons of chatbot LLM interactions. A247

subset of these comparisons have been performed248

by several human labellers, and we use these as249

ground-truth to measure performance against.250

Text Quality The NEWSROOM (Grusky et al.,251

2018), SummEval (Fabbri et al., 2020), and252

HANNA (Chhun et al., 2024) datasets all concern253

the evaluation of text in terms of high-level con-254

cepts. News articles with summaries (former two)255

and story prompts with short stories (last) are eval-256

uated by human labellers on several high-level fea-257

tures such as “coherence” or “surprise”. Note these258

are directly scored on a Likert scale; when neces-259

sary we convert this task to one of pairwise com-260

parisons, following Liu et al. (2024b).261

Common Sense Reasoning The ROCStories262

dataset (Mostafazadeh et al., 2016a) consists of263

short story prompts provided with two potential264

endings. One ending is always more consistent265

with the story prompt, allowing for a pairwise266

comparison task. We additionally make use of267

the MCTACO (Zhou et al., 2019) and CaTeRS268

(Mostafazadeh et al., 2016b) datasets which simi-269

larly test common sense reasoning in the context270

of causal/temporal understanding.271

4.1.1 Prompts272

Full prompt templates for all datasets can be found273

in Appendix E or in our code repository to be re-274

leased. However, the general prompt template used275

in all pairwise comparison experiments is shown 276

below: 277

Consider the following two <items>: 278

Choice 1: <item 1> 279

Choice 2: <item 2> 280

Which is more <task>? 281

Answers must be a single choice. 282

When harvesting contrast pairs, we prime the 283

model with the following message: 284

Between Choice 1 and Choice 2, the more 285

<task> <item> is Choice <contrast_token> 286

4.2 Models 287

Our results robustly generalise between different 288

LLM model families. We demonstrate this in Sec- 289

tion 5, where we conduct scaling analyses only 290

within model families, as idiosyncratic differences 291

between them lead to different patterns of perfor- 292

mance and scaling. Specifically, we consider: 293

• the two smaller (8B, 70B) Llama 3.1 models 294

(Meta AI, 2024). 295

• the Gemma 2 (2B, 9B, 27B) family of models 296

(Google Gemma Team, 2024). 297

• the Qwen 2.5 (0.5B, 1.5B, 3B, 7B, 14B, 32B, 298

72B) family of models (Qwen, 2025). 299

• Mistral Nemo (12B), Small (22B), and Large 300

(123B) (Mistral AI, 2024b,c,a). 301

All our experiments are conducted through 302

question-answering, and due to this all models we 303

use have undergone a post-training pipeline of (usu- 304

ally) instruction-tuning and some form of prefer- 305

ence learning such as reinforcement learning from 306

human feedback (Christiano et al., 2017). 307

4.3 Baselines 308

For the text quality datasets mentioned in Sec- 309

tion 4.1 we report baseline results of generation- 310

based prompting a given model to evaluate text 311

on the original Likert scale e.g., on a scale of 1 to 312

5, referring to this as direct-scoring. We addition- 313

ally report a recent improvement to this approach, 314

G-Eval (Liu et al., 2023), which re-weights predic- 315

tions using the model’s own predicted probabilities 316

for each possible answer choice. 317

When re-framing the above tasks as pairwise 318

comparisons, and with all other datasets, we re- 319

port prompting performance for comparisons. To 320

address positional bias, we marginalise over posi- 321

tion and take an average of the model’s predicted 322
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Figure 2: Unsupervised probes, in all but one test case, outperform generation-based methods like direct-
scoring and pairwise comparisons. Interestingly, within a given model family, unsupervised probing performance
with a small model almost always outperforms prompting performance with much larger models. This highlights
two related key findings: (1) the use of relatively large LLMs for LLM-as-a-Judge tasks may be unnecessarily
computationally wasteful and (2) there may be significant capability “left on the table” with smaller LLMs for such
tasks.

probabilities. Note: this assumes a consistent po-323

sitional bias, and requires us to run each question324

through the model twice (with the two possible325

answer choices swapped).326

4.4 Training Setup327

Generation-based prediction is performed by ex-328

amining model predicted probabilities for possible329

answer choices e.g., for pairwise comparisons, we330

compare the probabilities for the tokens “1” and331

“2”. For activation harvesting, unless otherwise332

stated, we take the embedding vector of the final333

token (that is, the contrasting token) of a given334

prompt, after the last decoder block and before the335

final normalisation layer1.336

Both supervised and unsupervised probes are fit337

and tested on random distinct halves of a given338

dataset.339

5 Results340

We first use the MT-Bench dataset to assess the341

ability of different LLMs to compare two model-342

generated answers to a user-question in a chatbot343

interaction: a common task in LLM post-training.344

1The choice of layer is further investigated in Appendix A.

A panel of human judges reached 80% agreement 345

on this dataset (Zheng et al., 2023a), and we ob- 346

tain ground-truth labels by taking the majority- 347

vote of this panel. Both supervised and unsuper- 348

vised probes perform similarly at aligning with this 349

ground-truth, achieving F1 scores of roughly 0.8, 350

as can be seen in Figure 1. Importantly, we find 351

classifying probes outperform prompting methods, 352

while maintaining the same inference cost of two 353

forward passes per example. This motivates our 354

deeper investigation into the potential of classifying 355

probes for similar tasks, which we present now. 356

5.1 Experiment 1: Unsupervised Probes 357

We analyse the performance of the PCA-based un- 358

supervised probing method described in Section 3 359

through the three text quality datasets NEWS- 360

ROOM, SummEval, and Hanna, and the three com- 361

mon sense reasoning datasets ROCStories, MC- 362

TACO, and CaTeRS. A baseline for our probes 363

should also be unsupervised; we compare against 364

zero-shot prompting on all datasets, calibrating 365

model predictions by running each input example 366

twice, swapping the order of examples in a given 367

pairwise comparison, allowing us to marginalise 368

over answer position to account for order effects. 369
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Figure 3: Supervised probes, in all cases, allow for a further improvement in alignment with human raters
over unsupervised probes. We also test parameter-efficient and full finetuning of models in the Gemma 2 family,
finding that supervised probes still outperform finetuned generation-based evaluators.

Figure 4: Performance of classifying probes and generation-based prompting for Llama 3.1 70B on the LLMBar
dataset. All three methods suffer under adversarial prompting (non-bold subsets), however, both probing ap-
proaches remain significantly more robust than prompting.

In the case of the text quality datasets we can also370

report direct scoring on the original Likert scale of371

1-5, and a G-Eval-based (Liu et al., 2023) correc-372

tion of this approach.373

Unsupervised Probes Outperform Calibrated374

Prompting Methods We find for all six datasets375

and four model families, aside from a single test376

case (Qwen 2.5 0.5B), the use of unsupervised377

probes allows for significantly higher alignment378

with human judgement (Figure 2). We see this as379

evidence of a capability-gap between models’ abil-380

ities measured through the flexibility and capacity381

of their latent spaces and their abilities measured382

through standard prompting approaches. Such a 383

gap may narrow over time with the release of newer 384

models with higher instruction-following capabili- 385

ties, but it remains sizable for now. We therefore ad- 386

vocate the use of unsupervised probes for pairwise 387

comparison tasks in which labels are sparse/absent 388

over prompting methods alone. 389

These results, further broken down into each of 390

the six constituent datasets aggregated in Figure 2, 391

can be found in Appendix F. 392

5.2 Experiment 2: Supervised Probes 393

For many LLM-as-a-Judge tasks, it may be feasi- 394

ble to obtain a (small) number of labelled examples 395
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to guide the decision-making process of an LLM396

evaluator. In such cases, a supervised probe can397

be trained by replacing the PCA step above with a398

standard supervised classifier, as described in Sec-399

tion 3. For the same six datasets evaluated above,400

we train supervised probes on 5000 examples and401

examine their performance against corresponding402

unsupervised probes on the remaining held-out ex-403

amples.404

Supervised Probes Outperform Unsupervised405

Probes And Can Outperform Finetuning We406

find, as shown in Figure 3, that supervised probes407

often allow for a further increase in alignment with408

human raters. For particularly sensitive tasks in409

which supervised approaches are feasible, practi-410

tioners may opt to finetune a given model to im-411

prove its performance. We also find supervised412

probes are a competitive alternative to such an ap-413

proach, as shown for the Gemma 2 model family414

in Figure 3. For both the text quality and common415

sense reasoning tasks, supervised probes outper-416

form LoRA (Hu et al., 2022) and even full finetun-417

ing with the same number of training examples, at418

all model sizes 2.419

The results in Figure 3 may shed some light on420

the difficulty of the text quality and common sense421

reasoning tasks set up in our experiments. Note for422

the former, finetuned models actually perform rel-423

atively poorly, with a large capability gap against424

both unsupervised and supervised probes. In the425

common sense reasoning task, finetuning is much426

more competitive. We hypothesize this is due to427

the subjective vs objective nature of the two tasks.428

The evaluation of text on abstract features such429

as “coherence” and “empathy” (as is carried out430

in the NEWSROOM, SummEval, and HANNA431

datasets) is likely highly subjective, while common432

sense reasoning can be considered a much more433

objective task. This makes the latter much easier434

to learn during pretraining, and further improve435

on during finetuning. This is further reflected in436

the larger improvement in supervised over unsu-437

pervised probes for the text quality task: human-438

generated labels allow the probe-fitting process to439

efficiently align with raters. Conversely, finetun-440

ing approaches likely require many more labels to441

converge to this same distribution, with orders of442

magnitude more parameters requiring tuning over443

the logistic regression classifiers we train.444

2Details on the finetuning process performed are provided
in Appendix D.

This suggests a key advantage of probing ap- 445

proaches constructed through contrast pairs: the 446

salience of the desired knowledge or belief is in- 447

creased, facilitating easier learning of the task and 448

reductions in computational cost compared to fine- 449

tuning. We expect, in the limiting case of labelled 450

data, finetuning approaches will overtake probe per- 451

formance due to their higher flexibility. However, 452

for many realistic applications, labelled data can 453

be unreasonably expensive to obtain. 454

These results, broken down into each of the six 455

constituent datasets aggregated in Figure 3, can be 456

found in Appendix F. 457

5.3 Experiment 3: Probe Generalisation 458

In addition to offering advantages in both computa- 459

tional cost and performance for LLM-as-a-Judge 460

tasks, classifying probes yield key interpretability 461

insights into LLMs in general. We find evidence 462

they correlate with general features of belief or 463

judgement used by a given model. 464

Figure 5: Taking the example of Llama 3.1 70B, we find
most supervised probes are dissimilar while most unsu-
pervised probes are similar (up to sign), regardless of
the varying tasks in each of the six datasets considered.

This evidence, summarised in Table 1, comes 465

from an experiment into the generalisation of 466

probes under significant distributional changes. 467

Specifically, we train both supervised and unsu- 468

pervised probes using contrast pair differences of 469

activations from Llama 3.1 70B on each of the six 470

datasets examined in the above experiments, and 471

test each on the remaining five other datasets. 472

Classifying Probes Identify Generalising Fea- 473

tures Of Belief Or Judgement Generally, these 474

probes achieve high F1 scores, even when trained 475

and tested on very different tasks. Unsupervised 476

probes in particular generalise extremely well in 477

several cases, achieving F1 scores at or above 478

0.95. We hypothesize the contrast pair setup allows 479

probes to focus on task-independent features of 480
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F1-Score Probe
Supervised/Unsupervised NEWSROOM SummEval HANNA ROCStories MCTACO CaTeRS

E
va

lu
at

io
n

NEWSROOM - 0.63/0.77 0.65/0.77 0.78/0.77 0.78/0.77 0.64/0.77
SummEval 0.66/0.76 - 0.63/0.76 0.77/0.76 0.77/0.76 0.58/0.76
HANNA 0.67/0.71 0.62/0.71 - 0.71/0.71 0.71/0.71 0.59/0.70
ROCStories 0.87/0.99 0.78/0.99 0.79/0.98 - 0.99/0.99 0.71/0.99
MCTACO 0.79/0.95 0.67/0.95 0.70/0.95 0.96/0.95 - 0.74/0.95
CaTeRS 0.75/0.78 0.62/0.78 0.67/0.78 0.76/0.78 0.77/0.78 -

Table 1: Generalisation of classifying probes for Llama 3.1 70B. We train both supervised (left) and unsupervised
(right) probes on examples from a given dataset (columns), testing them on all five other datasets (rows) through
F1-score. The higher scoring probe of a given supervised/unsupervised pair is coloured. We find both sets of probes
generalise relatively well, and unsupervised probes in particular generalise very well on several occasions.

judgement, relying on models’ already vast knowl-481

edge and human alignment due to pretraining to482

infer the correct choice. Supervised probes can483

leverage information about a specific task, but this484

ultimately pushes the probe direction away from485

these task-independent features, leading to slightly486

worse generalisation than their unsupervised vari-487

ants.488

The better generalisation of unsupervised probes489

is supported by Figure 5, in which the cosine490

similarity between all probe directions across all491

datasets is plotted. Up to a sign flip, unsupervised492

probes are highly similar, with most having mag-493

nitude similarity above 0.7. Meanwhile, the dis-494

tribution for supervised probes is narrowly cen-495

tred around zero. It is possible that supervised496

probe similarity could be increased by training on497

more/diverse data, but it is striking that unsuper-498

vised probes trained on relatively different domains499

identify similar features. It is unclear however500

whether these features are causally relevant during501

the forward pass, to represent belief and judgement,502

but we investigate this further in Appendix B.503

5.4 Experiment 4: Ablation Study504

As a final test of classifying probes, we perform505

an ablation study of performance under different506

types of adversarial prompting strategies. To do so,507

we make use of the LLMBar dataset (Zeng et al.,508

2024) for evaluating instruction-following capabil-509

ities. This dataset is split into several subsets, all510

of which, other than the Normal and Natural sub-511

sets, are specifically designed to induce incorrect512

answers from LLM evaluators.513

Classifying Probes Are More Robust to Domain514

Shifts Than Prompting We train probes on the515

Normal and Natural subsets only, testing them on516

all other subsets, and comparing with generation-517

based prompting as before. Figure 4 shows, for 518

Llama 3.1 70b, how all methods suffer a perfor- 519

mance drop under adversarial prompts. However, 520

we note for all but one subset, this drop is sig- 521

nificantly less severe for probing approaches over 522

prompting; note in particular the results on the 523

Constraint subset for example. This finding holds 524

across different model sizes and families - our repli- 525

cations of this experiment on other models can be 526

found in Appendix C. This complements our results 527

on probe generalisation: the relative robustness of 528

classifying probes likely aids their ability to gener- 529

alise to different domains. 530

6 Conclusion 531

We explore the use of linear classifying probes, 532

both supervised and unsupervised, to perform pair- 533

wise comparisons in several standard LLM-as-a- 534

Judge tasks. Our approach of using contrast pair 535

differences to increase the salience of relevant “be- 536

lief” or “judgement” features proves to be greatly 537

effective; unsupervised probes consistently outper- 538

form calibrated generation-based evaluators across 539

several open-weights LLM families and model 540

sizes, without a significant increase in computa- 541

tional cost. In realistic scenarios with limited but 542

available ground-truth labels, we also find super- 543

vised probes outperform unsupervised methods 544

and can even outperform finetuning of the same 545

model. These probes generalise well to different 546

domains, and are more robust to (adversarial) distri- 547

butional shifts than prompting approaches. Our ex- 548

periments constitute the first comprehensive assess- 549

ment of both supervised and unsupervised probes 550

for LLM-as-a-Judge tasks against generation-based 551

approaches, with and without finetuning. They sug- 552

gest for practical applications, classifying probes 553

are a cost-efficient, robust, and powerful solution. 554
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Limitations555

Our experiments in Section 5.2 find supervised556

probes outperform finetuned (both LoRA (Hu et al.,557

2022) and full) generation-based evaluators given558

the same training data. It could be interesting to559

investigate how and when probe performance satu-560

rates, and relatedly whether finetuning approaches561

outperform probes in the limit of data availability.562

While this is outside the scope of our study, fu-563

ture work establishing the threshold at which this564

may (or may not) take place would better inform565

developers of best practices.566

Additionally, we focus the scope of LLM-as-a-567

Judge tasks covered in this work to those of pair-568

wise preferences, as this setup lends itself well to569

the use of binary classifying probes. We would570

be excited to see future work exploring the use571

of latent knowledge in direct-scoring tasks, where572

texts are rated on a numerical or Likert scale. This573

could be achieved through one-vs-rest or multi-574

class probes for example.575

Finally, there remain additional challenges to576

overcome with probing methods in general. Red-577

teaming studies and analyses (Farquhar et al., 2023;578

Laurito et al., 2024) find that prompts which can579

induce a language model into simulating a different580

quality of knowledge e.g., “You are a smart profes-581

sor...”, can significantly affect probe performance.582

Addressing this challenge proves to be particularly583

difficult for the research community, as it requires584

a much better understanding of knowledge repre-585

sentation within LLMs. For now, this presents a586

fundamental limitation of probing and other similar587

white-box approaches.588
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We follow strict compliance with all dataset and590

model licenses relevant in this work. AI assistants591

were used in the process of writing experimental592
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A On The Target Layer For Activation928

Harvesting929

All classifying probes examined in Section 5 are930

trained following the same process. One key step,931

as explained in Section 3, involves the harvesting932

of activations during the forward pass. In the con-933

trast pair setup, we do so on the token position of934

contrasting tokens at the last layer of a given model.935

Here, we briefly explore how necessary this choice936

is.937

We train supervised and unsupervised probes on938

models from the Gemma 2 and Llama 3.1 families939

on the MT-Bench dataset by harvesting activations940

on contrasting tokens at all layers of a given model.941

The performance of the downstream trained probes942

are compared in Figure 6 (supervised probes) and943

Figure 7 (unsupervised probes).944

A comparison of the two figures is striking, and945

reveals some of the key differences between super-946

vised and unsupervised linear probes. For both,947

average performance is poorer when probes are948

trained on the first half of a given model than the949

second. For supervised probes, the increase in per-950

formance is smooth: by around 40-50% of the way951

through the forward pass, they are able to learn as952

best they can for the given task.953

In contrast, we see a discontinuity in unsuper-954

vised probe performance. This discontinuity ap-955

pears after different numbers of layers depending956

on the model, but we note the larger the model957

the earlier it appears (for a given model family).958

This discontinuity sees performance jump from an959

F1 score of roughly 0.5 (a balance between pre-960

cision and recall, moderately better than random961

classification) to a maximum of roughly 0.8.962

Taking our results in Section 5.3 at face value,963

we hypothesize the main reason for this difference964

is the salience of the desired feature. Supervised965

probes are in a sense reflecting a quality of the la-966

tent space itself, and how easy/difficult it may be to967

identify any given feature within this space. Unsu-968

pervised probes, by design, rely on the assumption969

that the desired feature is the most salient of the970

contrast pair differences, rather than the existence971

of the feature at all.972

The results in Figure 7 suggest that in larger973

models this quality of salience is realised earlier in974

the forward pass, perhaps due to higher representa-975

tional capacity.976

Nonetheless, our decision to harvest activations977

at the last layer of a given model appears justi-978

fied, as performance in both Figure 6 and Figure 7 979

remains at its best through the last layer. For practi- 980

tioners, this is particularly convenient as extraction 981

of the last hidden state of a given model is more eas- 982

ily facilitated in common open-LLM frameworks 983

than earlier layers. 984

B Causal Analysis Of Probe Directions 985

Within the context of concept-based interpretability 986

of LLMs, the term feature is ill-defined. Specifi- 987

cally, it is unclear what exactly constitutes a “true” 988

feature of a given model. One possible definition 989

is causal in nature: were the ablation of a given 990

feature representation to result in a model unable to 991

represent said feature, it is in some sense “true” and 992

causally relevant during the forward pass. This idea 993

has been used to investigate and “steer” LLM fea- 994

tures in previous works such as Arditi et al. (2024) 995

and Rimsky et al. (2024), and we follow a similar 996

approach here to investigate the extent to which the 997

features identified by our supervised and unsuper- 998

vised probes are “true”. 999

We repeat the prompting experiments performed 1000

using the MT-Bench dataset with models from the 1001

Gemma 2 and Llama 3.1 families. However, for 1002

each model, we orthogonalize the last token’s em- 1003

bedding against either the supervised or unsuper- 1004

vised probe directions identified before, at all layers 1005

during the forward pass. That is, after each decoder 1006

block and the final layer normalisation, we perform 1007

the vector rejection, 1008

x′ = x− x · p
p · p

p, 1009

replacing the original hidden state vector x with x′ 1010

given the probe direction p, meaning the model’s 1011

computational operations are never permitted to 1012

write information along this probe direction. The 1013

difference in evaluator performances (from the 1014

baseline un-steered model) are shown in Table 2. 1015

We see negligible change in evaluator perfor- 1016

mance regardless of probe type, and consider this 1017

evidence against the hypothesis that the features 1018

classifying probes identify are true features used 1019

by a given language model during LLM-as-a-Judge 1020

evaluation. 1021

This may be due to the nature of high- 1022

dimensional space: it is likely there are several 1023

high-performing linear classifiers for such a task, 1024

and our probes are only ever able to identify one. 1025

It may also be the case that features used for the 1026

expression of a belief are different from those used 1027
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Figure 6: Performance of supervised probes trained on all layers of a given language model and evaluated on the
MT-Bench dataset. We see a relatively smooth increase in probe performance through the forward pass.

Figure 7: Performance of unsupervised probes trained on all layers of a given language model and evaluated on
the MT-Bench dataset. In contrast with Figure 6, we see a discontinuous jump in performance of unsupervised
probes at differing points during the first half of the forward pass.

to assess belief in a token already generated. Note1028

in the contrast pair setup, activations are harvested1029

at the contrasting token position, as opposed to the1030

token before. It may well be that our probes, in1031

particular our unsupervised probes, are identifying1032

features related to a model’s belief in its own ut-1033

terances, rather than features related to evaluation1034

itself. This raises intriguing questions regarding1035

how realistic off-policy vs on-policy experiments1036

with LLMs are, and we would be excited to see this1037

explored in future work.1038

C Additional Results For Our Ablation1039

Study1040

We repeat the experiments performed in Section 5.41041

on Gemma 2 2B, 9B, 27B, and Llama 3.1 8B. Re-1042

sults are consistent with our tests on Llama 3.1 70B1043

in that probes are, in general, more robust to adver-1044

sarial prompting strategies than generation-based1045

inference. Note this is particularly apparent with1046

the smallest model tested (Gemma 2 2B).1047

Results are shown in Figure 8 through to Fig-1048

ure 11.1049

D Details Of Supervised Finetuning 1050

Experiments 1051

For the experiments in Section 5.2 in which we 1052

compare supervised probe performance with fine- 1053

tuning for models Gemma 2 2B, 9B, and 27B. We 1054

use the OpenRLHF (Hu et al., 2024) library. For 1055

LoRA (Hu et al., 2022) finetuning we use a rank of 1056

64 and α of 64, targeting all modules. In all cases 1057

we train on a dataset of 5000 randomly chosen sam- 1058

ples for one epoch. Full training configs will be 1059

available in our code repository to be published. 1060

E Full Prompts for All Datasets 1061

E.1 Text Quality Datasets 1062

The text quality datasets NEWSROOM (Grusky 1063

et al., 2018), SummEval (Fabbri et al., 2020), and 1064

HANNA (Chhun et al., 2024) all present the task 1065

of the evaluation of generated text on high-level, 1066

abstract features or aspects. Each original dataset 1067

includes descriptions of these features, which we 1068

use in our evaluator prompts for additional context. 1069

These descriptions are listed in Table 3. 1070

The prompt formats for the NEWSROOM and 1071

SummEval datasets follow a very similar structure, 1072

14



Figure 8: Performance of classifying probes and standard prompting for Gemma 2 2B on the LLMBar dataset.

Figure 9: Performance of classifying probes and standard prompting for Gemma 2 9B on the LLMBar dataset.

Figure 10: Performance of classifying probes and standard prompting for Gemma 2 27B on the LLMBar dataset.

Figure 11: Performance of classifying probes and standard prompting for Llama 3.1 8B on the LLMBar dataset.
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∆ F1 Score Gemma 2 2B Gemma 2 9B Gemma 2 27B Llama 3.1 8B Llama 3.1 70B
Supervised -0.00 0.01 0.00 0.00 0.03

Unsupervised -0.01 0.01 0.00 0.01 0.03

Table 2: Change (∆ F1) in evaluator performance on the MT-Bench dataset following the ablation of a given probe
direction during the forward pass. For all models tested, we see neglibible change in the model’s capability when it
is unable to write information against the probe direction, suggesting these directions are not causally relevant for
evaluation.

as both assess the same exact task: a news article1073

CONTEXT is provided with given summaries (ITEMs).1074

We include the relevant DESCRIPTION according to1075

the ASPECT under study, consulting Table 3. For1076

the direct-scoring setting, the prompt template used1077

for NEWSROOM is:1078

Consider the following article and summary:1079

Article: {CONTEXT}1080

Summary: {ITEM}1081

{DESCRIPTION} Rate the {ASPECT} of this1082

summary from 1 to 5, where 1 represents1083

very low {ASPECT}, and 5 represents1084

excellent {ASPECT}. Responses must be a1085

single score.1086

For SummEval, the template is changed slightly,1087

to match the original dataset and paper:1088

Consider the following source and summary:1089

Source: {CONTEXT}1090

Summary: {ITEM}1091

{DESCRIPTION} Rate the {ASPECT} of this1092

summary from 1 to 5, where 1 represents1093

very low {ASPECT}, and 5 represents1094

excellent {ASPECT}. Responses must be a1095

single score.1096

For pairwise comparisons, we follow a very sim-1097

ilar template. For NEWSROOM:1098

Consider the following article:1099

Article: {CONTEXT}1100

Below are two summaries of the above1101

article:1102

Summary 1: {ITEM1}1103

Summary 2: {ITEM2}1104

{DESCRIPTION} Which summary is more1105

{ASPECT}? Responses must be a single1106

choice.1107

And for SummEval:1108

Consider the following source:1109

Source: {CONTEXT}1110

Below are two summaries of the above1111

source:1112

Summary 1: {ITEM1} 1113

Summary 2: {ITEM2} 1114

{DESCRIPTION} Which summary is more 1115

{ASPECT}? Responses must be a single 1116

choice. 1117

For the HANNA dataset, we evaluate stories 1118

generated from story-prompts. The above template 1119

is therefore adjusted slightly. For direct-scoring: 1120

Consider the following prompt and story: 1121

Prompt: {CONTEXT} 1122

Story: {ITEM} 1123

{DESCRIPTION} Rate the {ASPECT} of this 1124

story from 1 to 5, where 1 represents 1125

very low {ASPECT}, and 5 represents 1126

excellent {ASPECT}. Responses must be a 1127

single score. 1128

And for pairwise comparisons: 1129

Consider the following prompt: 1130

Prompt: {CONTEXT} 1131

Below are two stories inspired 1132

by the above prompt: 1133

Story 1: {ITEM1} 1134

Story 2: {ITEM2} 1135

{DESCRIPTION} Which story is more 1136

{ASPECT}? Responses must be a single 1137

choice. 1138

E.2 Common Sense Reasoning Datasets 1139

For the ROCStories (Mostafazadeh et al., 2016a), 1140

MCTACO citepzhou-etal-2019-going, and CateRS 1141

(Mostafazadeh et al., 2016b) datasets, the task is 1142

formatted only as one of pairwise comparisons. 1143

Additionally, in all cases the evaluator must pick 1144

the more sensible option, so all prompt templates 1145

are very similar. For ROCStories: 1146

Consider the following short story: 1147

Story: {STORY} 1148

Below are two statements: 1149

Statement 1: {STATEMENT1} 1150

Statement 2: {STATEMENT2} 1151

Considering the context of the above 1152
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Dataset Aspect Description
N

E
W

SR
O

O
M

Informativeness Informativeness is how well a summary of an article captures the
key points of the article.

Relevance The details provided in a relevant summary of an article are con-
sistent with details in the article.

Fluency In a fluent summary of an article the individual sentences are well-
written and grammatical.

Coherence In a coherent summary of an article the phrases and sentences fit
together and make sense collectively.

Su
m

m
E

va
l

Coherence Coherence is the collective quality of all sentences. A coherent
summary of a source should be well-structured and well-organized.
It should not be a heap of related information, but should build
from sentence to sentence to a coherent body of information about
the source.

Consistency Consistency is the factual alignment between a summary and
summarized source. A coherent summary contains only statements
that are entailed by the source document.

Fluency Fluency is the quality of individual sentences. A fluent summary of
a source should have no formatting problems, capitalization errors
or obviously ungrammatical sentences (e.g., fragments, missing
components) that make the text difficult to read.

Relevance Relevance is the selection of important content from a source. A
relevant summary should include only important information from
the source document.

H
A

N
N

A

Relevance A relevant story matches its prompt.
Coherence A coherent story makes sense.
Empathy An empathetic story allows the reader to understand the character’s

emotions.
Surprise A surprising story has a surprising end.

Engagement An engaging story allows the reader to engage with it.
Complexity A complex story is elaborate.

Table 3: Text descriptions of high-level abstract features/aspects in all text quality datasets. These are provided in
prompts for additional context.

story, which statement is more1153

consistent? Responses must be a single1154

choice.1155

With each STORY and STATEMENTs obtained from1156

the dataset directly.1157

Similarly for MCTACO:1158

Consider the following passage:1159

Passage: {PASSAGE}1160

Below is a question regarding1161

the above passage:1162

Question: {QUESTION}1163

Choice 1: {CHOICE1}1164

Choice 2: {CHOICE2}1165

Which answer is more sensible?1166

Responses must be a single choice. 1167

This dataset assesses common sense reasoning 1168

through a specific QUESTION for each PASSAGE. 1169

Lastly, for CaTeRS: 1170

The following list of statements 1171

form a story, however they are 1172

unordered: 1173

Unordered Statements: {UNORDERED} 1174

Below are two statements from this 1175

list: 1176

Statement 1: {STATEMENT1} 1177

Statement 2: {STATEMENT2} 1178

Determine the correct order of the 1179

above statements - which statement 1180

17



appears before the other? Responses1181

must be a single choice.1182

This dataset includes lists of unordered state-1183

ments, with the pairwise comparison task set up of1184

identifying the correct ordering of two such state-1185

ments, thereby assessing temporal understanding.1186

F Probe Performance by Dataset1187

We present the performance of supervised (Fig-1188

ure 12 to Figure 17) and unsupervised (Figure 18 to1189

Figure 23) probes on all constituent datasets of the1190

text quality (NEWSROOM (Grusky et al., 2018),1191

SummEval (Fabbri et al., 2020), HANNA (Chhun1192

et al., 2024)) and common sense reasoning (ROC-1193

Stories (Mostafazadeh et al., 2016a), MCTACO1194

(Zhou et al., 2019), CaTeRS (Mostafazadeh et al.,1195

2016b)) tasks examined in Section 5.1196
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Figure 12: Supervised probe performance on the NEWSROOM dataset.

Figure 13: Supervised probe performance on the SummEval dataset.

Figure 14: Supervised probe performance on the HANNA dataset.

Figure 15: Supervised probe performance on the ROCStories dataset.
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Figure 16: Supervised probe performance on the MCTACO dataset.

Figure 17: Supervised probe performance on the CaTeRS dataset.

Figure 18: Unsupervised probe performance on the NEWSROOM dataset.

Figure 19: Unsupervised probe performance on the SummEval dataset.
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Figure 20: Unsupervised probe performance on the HANNA dataset.

Figure 21: Unsupervised probe performance on the ROCStories dataset.

Figure 22: Unsupervised probe performance on the MCTACO dataset.

Figure 23: Unsupervised probe performance on the CaTers dataset.
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