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Abstract

Model-based reinforcement learning (RL) has
shown great promise due to its sample efficiency,
but still struggles with long-horizon sparse-reward
tasks, especially in offline settings where the agent
learns from a fixed dataset. We hypothesize that
model-based RL agents struggle in these envi-
ronments due to a lack of long-term planning
capabilities, and that planning in a temporally
abstract model of the environment can alleviate
this issue. In this paper, we make two key contri-
butions: 1) we introduce an offline model-based
RL algorithm, IQL-TD-MPC, that extends the
state-of-the-art Temporal Difference Learning for
Model Predictive Control (TD-MPC) with Im-
plicit Q-Learning (IQL); 2) we propose to use
IQL-TD-MPC as a Manager in a hierarchical set-
ting with any off-the-shelf offline RL algorithm as
a Worker. More specifically, we pre-train a tempo-
rally abstract IQL-TD-MPC Manager to predict
“intent embeddings”, which roughly correspond
to subgoals, via planning. We empirically show
that augmenting state representations with intent
embeddings generated by an IQL-TD-MPC man-
ager significantly improves off-the-shelf offline
RL agents’ performance on some of the most chal-
lenging D4RL benchmark tasks. For instance, the
offline RL algorithms AWAC, TD3-BC, DT, and
CQL all get zero or near-zero normalized eval-
uation scores on the medium and large antmaze
tasks, while our modification gives an average
score over 40.
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1. Introduction
Model-based reinforcement learning (RL), in which the
agent learns a predictive model of the environment and uses
it to plan and/or train policies (Ha and Schmidhuber, 2018;
Hafner et al., 2019; Schrittwieser et al., 2020), has shown
great promise due to its sample efficiency compared to its
model-free counterpart (Ye et al., 2021; Micheli et al., 2022).
Most prior work focuses on learning single-step models of
the world, with which planning can be computationally ex-
pensive and model prediction errors may compound over
long horizons (Argenson and Dulac-Arnold, 2021; Clavera
et al., 2020). As a result, model-based RL still struggles
with long-horizon sparse-reward tasks, whereas some ev-
idence suggests that humans are able to combine spatial
and temporal abstractions to plan efficiently over long hori-
zons (Botvinick and Weinstein, 2014). Modeling the world
at a higher level of abstraction can enable predicting long-
term future outcomes more accurately and efficiently.

The challenge of long-horizon sparse-reward tasks is partic-
ularly prominent in offline RL, where an agent must learn
from a fixed dataset rather than from exploring an environ-
ment (Levine et al., 2020; Prudencio et al., 2023; Lange
et al., 2012; Ernst et al., 2005). The offline setting is key to
training RL agents safely, but poses unique challenges such
as value mis-estimation (Levine et al., 2020).

In this paper, we study offline model-based RL, and hypoth-
esize that planning in a learned temporally abstract model
of the environment can produce significant improvements
over “flat” algorithms that do not use temporal abstraction.
Our paper makes two key contributions:

• Section 3: We propose IQL-TD-MPC, an offline model-
based RL algorithm that combines the state-of-the-art
online RL algorithm Temporal Difference Learning for
Model Predictive Control (TD-MPC) (Hansen et al.,
2022) with the popular offline RL algorithm Implicit
Q-Learning (IQL) (Kostrikov et al., 2022). This combi-
nation requires several non-trivial design decisions.

• Section 4: We show how to use IQL-TD-MPC as a
Manager in a temporally abstracted hierarchical setting
with any off-the-shelf offline RL algorithm as a Worker.
To achieve this hierarchy, we pre-train an IQL-TD-MPC



Manager to output “intent embeddings” via MPC plan-
ning, then during Worker training and evaluation, simply
concatenate these embeddings to the environment states.
These intent embeddings roughly correspond to sub-
goals1 set k steps ahead, thanks to the coarser timescale
used when training the Manager. A benefit of this con-
catenation strategy is its simplicity: it does not require
modifying Worker training algorithms or losses.

See Fig. 1 for an overview of our framework. Experimen-
tally, we study the popular D4RL benchmark (Fu et al.,
2020). We begin by showing that IQL-TD-MPC is far su-
perior to vanilla TD-MPC and is on par with several other
popular offline RL algorithms. Then, we show the signifi-
cant benefits of our proposed hierarchical framework. For
instance, the well-established offline RL algorithms Ad-
vantage Weighted Actor Critic (AWAC) (Nair et al., 2020),
Twin Delayed DDPG Behavioral Cloning (TD3-BC) (Fu-
jimoto and Gu, 2021), Decision Transformer (DT) (Chen
et al., 2021), and Conservative Q-Learning (CQL) (Kumar
et al., 2020) all get zero or near-zero normalized evalua-
tion score on the medium and large antmaze variants of
D4RL, whereas they obtain an average score of over 40
when used as Workers in our hierarchical framework. De-
spite the superior performance of our approach on the maze
navigation tasks, our empirical analysis shows that such
hierarchical reasoning can be harmful in fine-grained lo-
comotion tasks like the D4RL half-cheetah. Overall, our
results suggest that model-based planning in a temporal
abstraction of the environment can be a general-purpose
solution to boost the performance of many different offline
RL algorithms, on complex tasks that benefit from higher-
level reasoning. Video results are available at https:
//sites.google.com/view/iql-td-mpc.

2. Preliminaries
In this section, we briefly recap the offline RL setting, then
provide a detailed review of TD-MPC.

2.1. Markov Decision Processes and Offline
Reinforcement Learning

We consider the standard infinite-horizon Markov Decision
Process (MDP) (Puterman, 1990) setting with continuous
states and actions, defined by a tuple (S,A, P,R, γ, p0)
where S ⊆ Rn is the state space, A ⊆ Rm is the ac-
tion space, P (s′ | s, a) is the transition probability dis-
tribution function, R : S × A 7→ R is the reward func-
tion, γ ∈ (0, 1) is the discount factor, and p0(s) is the
initial state distribution function. The reinforcement learn-
1We generally do not call the intent embeddings “subgoals” in this
paper because the Worker is not explicitly optimized to achieve
them; instead, we are simply concatenating them to environment
states.

ing (RL) objective is to find a policy π(a | s) that max-
imizes the expected infinite sum of discounted rewards:
Es0∼p0,at∼π(·|st),st+1∼P (·|st,at) [

∑∞
t=0 γ

tR(st, at)].

In offline RL (Levine et al., 2020; Prudencio et al., 2023),
the agent learns from a fixed dataset rather than collect-
ing its own data in the environment. One key challenge
is dealing with out-of-distribution actions: if the learned
policy samples actions for a given state that were not seen
in the training set, the model may mis-estimate the value of
these actions, leading to poor behavior. Imitation learning
methods like Behavioral Cloning (BC) sidestep this issue by
mimicking the behavior policy used to generate the dataset,
but may perform sub-optimally with non-expert data (Hus-
sein et al., 2017).

2.2. Temporal Difference Model Predictive Control
(TD-MPC)

Our work builds on TD-MPC (Hansen et al., 2022), an algo-
rithm that combines planning in a latent space using Model
Predictive Control (MPC) with actor-critic Temporal Differ-
ence (TD) learning. The components of TD-MPC (with θ
denoting the set of all parameters) are the following:

• An encoder hθ : S → Rd mapping a state s to its latent
representation z = hθ(s).

• A forward dynamics model fθ : Rd ×A → Rd, predict-
ing the next latent state ẑ′ = fθ(z, a).

• A reward predictor Rθ : Rd × A → R computing
expected rewards r̂ = Rθ(z, a).

• A policy πθ : Rd × A → R+ used to sample actions
a ∼ πθ(· | z).

• A critic Qθ : Rd × A → R computing state-
action values Qθ(z, a) that estimate Q-values under πθ:
Qθ(hθ(s), a) ≃ Qπθ (s, a) ≜ Eπθ

[
∑

t≥0 γ
tRθ(st, at) |

s0 = s, a0 = a)].

The parameters θ of these components are learned
by minimizing several losses over sub-trajectories
(s0, a0, r1, s1, a1, . . . , rT , sT ) sampled from the replay
buffer, where T is the horizon:

• A critic loss based on the TD error, LQ = (Qθ(ẑt, at)−
[rt+1 + γQθ−(zt+1, πθ(zt+1))])

2, where we denote by
πθ(z) a sample from πθ(· | z) and ẑt = fθ(ẑt−1, at−1),
with ẑ0 = z0 = hθ(s0).

• A reward prediction loss, LR = (Rθ(ẑt, at)− rt+1)
2.

• A forward dynamics loss (also called “latent state con-
sistency loss”), Lf = ∥fθ(ẑt, at)−hθ−(st+1)∥2, where
θ− are “target” parameters obtained by an exponential
moving average of θ.

• A policy improvement loss, Lπ = −Qθ(ẑt, πθ(ẑt)),
only optimized over the parameters of πθ.

The first three losses are combined through a weighted sum,
L = cfLf + cRLR + cQLQ, which trains hθ, fθ, Rθ, and

https://sites.google.com/view/iql-td-mpc
https://sites.google.com/view/iql-td-mpc


Figure 1. Overview of our hierarchical framework. The Manager is a model-based IQL-TD-MPC agent (inspired by Kostrikov et al.
(2022) and Hansen et al. (2022)) that operates on a coarse timescale to generate intent embeddings gt. To do so, the Manager performs
Model Predictive Control over H planning steps (which is kH environment steps), using a learned policy πM

θ , dynamics model fM
θ ,

reward function RM
θ , and critic QM

θ . Each intent gt is concatenated with the state st and given to the Worker to output actions at. This
Worker can be any offline RL algorithm.

Qθ. The policy πθ is trained independently by minimizing
Lπ without propagating gradients through either hθ or Qθ.

TD-MPC alternates between model training and acting in
the environment. At inference time, TD-MPC plans in the
latent space with MPC, which proceeds in three steps: (1)
From current state s0, set the first latent z0 = hθ(s0), then
generate nπ action sequences by unrolling the policy πθ

through the forward model fθ over T steps: at ∼ πθ(· | zt)
and zt+1 = fθ(zt, at). (2) Find optimal action sequences us-
ing Model Predictive Path Integral (MPPI) (Williams et al.,
2015), which iteratively refines the mean and standard de-
viation of a Gaussian with diagonal covariance, starting
from the above nπ action sequences combined with nr ad-
ditional random sequences sampled from the current Gaus-
sian. The quality of an action sequence is obtained by∑T−1

t=0 γtRθ(zt, at)+γTQθ(zT , aT ), i.e., unrolling the for-
ward dynamics model for T steps, using the reward predictor
to estimate the sum of rewards, and then bootstrapping with
the value estimate of the critic. (3) Randomly select one
from the best ne action sequences from the last iteration of
the previous step with weight proportional to its quality, and
execute its first action in the environment.

3. Offline Model-Based RL via Implicit
Q-Learning (IQL) and TD-MPC

In this section, we present IQL-TD-MPC, a framework that
extends TD-MPC to the offline RL setting via Implicit Q-
Learning (IQL) (Kostrikov et al., 2022). As we show in our
experiments, naively training a vanilla TD-MPC agent on
offline data performs poorly, as the model may suffer from

out-of-distribution generalization errors when the training
set has limited coverage. For instance, the state-action value
function Qθ may “hallucinate” very good actions never seen
in the training set, and then the policy πθ would learn to
predict these actions. This could steer MPC planning into
areas of the latent representation very far from the training
distribution, compounding the error further.

IQL addresses the challenge of out-of-distribution actions
by combining two ideas:

• Approximating the optimal value functions Q∗ and V ∗

with TD-learning using only actions from the training
set D. This is achieved using the following loss on Vθ:2

LV,IQL = E(s,a)∼D[L
τ
2(Qθ−(s, a)− Vθ(s))], (1)

where Lτ
2 is the asymmetric squared loss Lτ

2(u) =
|τ − 1u<0|u2, and τ ∈ (0.5, 1) is a hyper-parameter
controlling the “optimality” of the learned value func-
tions. The state-action value function Qθ is optimized
through the standard one-step TD loss:

LQ,IQL = E(s,a,r,s′)∼D[(Qθ(s, a)− (r + γVθ(s
′)))2]. (2)

• Learning a policy using Advantage Weighted Regres-
sion (Peng et al., 2019), minimizing the loss:

Lπ,IQL = −E(s,a)∼D[exp(βAθ(s, a)) log πθ(a | s)], (3)

with advantage Aθ(s, a) = Qθ−(s, a)−Vθ(s), and β >
0 an inverse temperature hyper-parameter. The gradient
of Lπ,IQL flows only through πθ, not through Aθ.

2For convenience, when describing the original IQL algorithm, we
re-use notations Vθ , Qθ , and πθ even though they take raw states
s as input rather than latent states z.



IQL avoids the out-of-distribution actions problem by re-
stricting the policy to mimic actions from the data, while
still outperforming the behavior policy by upweighting the
best actions under Qθ and Vθ.

To integrate IQL into TD-MPC (refer to Section 2.2), we
first replace the TD-MPC policy improvement loss Lπ with
the IQL policy loss Lπ,IQL (Eq. 3). This necessitates train-
ing an additional component not present in TD-MPC: a state
value function Vθ to optimize LV,IQL (Eq. 1) and LQ,IQL

(Eq. 2). As in TD-MPC (and contrary to IQL), all models
are applied on learned latent states z. The state-action value
function Qθ may be trained with either the TD-MPC critic
loss LQ or the IQL critic loss LQ,IQL; the difference is
whether bootstrapping is done using Qθ itself or using Vθ.
Our experiments typically use LQ as we found it to give
better results in practice.

This is not enough, however, to fully solve the out-of-
distribution actions problem. The MPC planning may still
prefer actions that lead to high-return states under Rθ and
Qθ, and hence exploit these models’ blind spots. We pro-
pose the following fix: skip the iterative MPPI refinement
of actions during planning, instead keeping only the best ne

sequences of actions among the nπ policy samples. This
is a special case of the TD-MPC planning algorithm dis-
cussed in Section 2.2 where the number of random action
sequences nr is set to zero.

However, this fix brings in another issue: in the original
implementation of TD-MPC, actions are sampled from the
policy πθ by a ∼ N (µθ(z), σ

2), where µθ is a learned
mean and σ decays linearly towards a fixed hyper-parameter
value. If σ is too low, then the policy is effectively deter-
ministic and all nπ samples will be nearly identical, which
is problematic in our case because we are using nr = 0. If
σ is too high, then we again run into the problem of out-
of-distribution actions. To avoid having to carefully tune σ,
we learn a stochastic policy that outputs both µθ(z) and a
state-dependent σθ(z).3

With the above changes (using IQL losses, using only sam-
ples from the policy for planning, and learning a stochastic
policy), IQL-TD-MPC preserves TD-MPC’s ability to plan
efficiently in a learned latent space, while benefiting from
IQL’s robustness to distribution shift in the offline setting.

4. IQL-TD-MPC as a Hierarchical Planner
We now turn to our second contribution, which is a hier-
archical framework (Fig. 1) that uses IQL-TD-MPC as a
Manager with any off-the-shelf offline RL algorithm as a
Worker. This hierarchy aims to endow the agent with the

3Our policy implementation is based on the Soft Actor-Critic
(SAC) code from Yarats and Kostrikov (2020).

ability to reason at longer time horizons. Indeed, although
TD-MPC uses MPC planning to select actions, its planning
horizon is typically short: Hansen et al. (2022) use a horizon
of 5, and found no benefit from increasing it further due to
compounding model errors. For sparse-reward tasks, this
makes the planner highly dependent on the quality of the
bootstrap estimates predicted by the critic Qθ, which may
be challenging to get right under complex dynamics.

We address this challenge by making IQL-TD-
MPC operate as a Manager at a coarser timescale
(adding the superscript M ), processing trajectories
(s0, a

M
0 , rMk , sk, a

M
k , . . . , rMkH , skH) where:

• k is a hyper-parameter controlling the coarseness of the
latent timescale, such that each latent transition skips
over k low-level environment steps.

• H is the planning horizon; therefore, the effective
environment-level horizon is kH .

• rMtk =
∑tk

i=(t−1)k+1 ri, that is, Manager rewards sum
up over the previous k environment steps.

• aMtk is an abstract action “summarizing” the transition
from stk to s(t+1)k.

How should these abstract actions be defined (Pertsch et al.,
2021; Rosete-Beas et al., 2023)? Prior work learned an
autoencoder that can reconstruct the next latent state (Man-
dlekar et al., 2020; Li et al., 2022), and one could define the
abstract action as the latent representation of such an autoen-
coder. We adopt a similar approach in spirit, but tailored
to our TD-MPC setup. Specifically, we train an “inverse
dynamics” model bMθ in the latent space (instead of the raw
environment state space):

aMtk = bMθ (zMtk , z
M
(t+1)k), (4)

where zMi = hM
θ (si) is the Manager encoding of state si.

bMθ is trained implicitly by backpropagating through at the
gradient of the total loss. Similar to Director (Hafner et al.,
2022), we found discrete actions to help, and thus modify
the policy πM

θ to output discrete actions (see Appendix A
for details).

Once trained, the IQL-TD-MPC Manager can be used to
generate “intent embeddings” to augment the state represen-
tation of any Worker that acts in the environment. We define
the intent embedding gt ∈ Rd at time t as the difference
between the predicted next latent state and the current latent
state:

gt = fM
θ (zMt , aMt )− zMt , (5)

where when training the Worker, aMt comes from the inverse
dynamics model: aMt = bMθ (zMt , zMt+k). Note that we apply
the intent embedding on each environment step, so Eq. 5
does not index by k.

The Worker can be any policy π. Its states are concatenated
with the intent embeddings: at ∼ π(· | CONCAT(st, gt)).



Since intent embeddings are in the Manager’s latent space,
the Manager may be trained independently from the Worker.
In practice, we pre-train a single Manager for a task and
use it with a range of different Workers (see Section 5.2 for
experiments). A benefit of this concatenation strategy is its
simplicity: it does not require modifying Worker training
algorithms or losses, only appending intent embeddings to
states during (i) offline dataset loading and (ii) evaluation.

4.1. Why are intent embeddings beneficial for offline
RL?

Before turning to experiments, we provide an intuitive ex-
planation for why we believe augmenting states with intent
embeddings can be beneficial. For simplicity, we focus on
the well-understood BC algorithm, but we note that many
other offline RL algorithms such as AWAC, IQL, and TD3-
BC use the BC objective in some way, and thus the intuition
may also carry over to these algorithms.

We first provide an information-theoretic argument to ex-
plain why intent embedding should make the imitation
learning objective easier to optimize. One of the primary
obstacles in long-horizon sparse-reward offline RL is the
ambiguity surrounding the relationship between each state-
action pair in a dataset and its corresponding long-term
objective. By incorporating intent embeddings derived from
MPC planning into state-action pairs, our framework pro-
vides offline RL algorithms with a more well-defined as-
sociation between each state-action pair and the objective
being targeted. For a BC policy π : S 7→ A, we typi-
cally train π to match the state-action pairs in the offline
dataset. With intent embeddings, the agent can instead learn
π′ : S × Rd 7→ A, which maps a pair of state and intent
random variables (St, Gt) to an action random variable At.
Since At is not independent of Gt given St, the mutual
information I((St, Gt);At) ≥ I(St;At), so (St, Gt) con-
tains at least as much information about At as St does on
its own when learning a BC policy via imitation learning.

The above argument explains why it should be easier to
optimize the BC objective when training the Worker, thanks
to the additional information contained in the intent embed-
ding. This can be particularly beneficial on offline datasets
built from a mixture of varied policies (Fu et al., 2020).
In addition to simplifying the task of the BC Worker, the
Manager is trained to provide “good” intent embeddings at
inference time. This is achieved through the MPC-based
planning procedure of IQL-TD-MPC, by identifying a se-
quence of abstract actions (aMt , aMt+k, . . . , a

M
t+kH) that leads

to high expected return (according to RM
θ and QM

θ when
unrolling fM

θ ). The intent embedding gt, obtained from
aMt through Eq. 5, is then used to condition the Worker
policy, similar to prior work on goal-conditioned imitation
learning (Mandlekar et al., 2020; Lynch et al., 2020).

5. Experiments
Our experiments aim to answer three questions: (Q1) How
does IQL-TD-MPC perform as an offline RL algorithm,
compared to both the original TD-MPC algorithm and other
offline RL algorithms? (Q2) How much benefit do we
obtain by using IQL-TD-MPC as a Manager in a hierarchical
setting? (Q3) To what extent are the observed benefits
actually coming from our IQL-TD-MPC algorithm?

Experimental Setup. We focus on continuous control tasks
of the D4RL benchmark (Fu et al., 2020), following the
experimental protocol from CORL (Tarasov et al., 2022):
training with a batch size of 256 and reporting the normal-
ized score (0 is random, 100 is expert) at the end of training,
averaged over 100 evaluation episodes. Averages and stan-
dard deviations are reported over 5 random seeds. Each
experiment was run on an A100 GPU. Training for a single
seed (including both pre-training the Manager and training
the Worker) took ∼ 5 hours on average. See Appendix C
for all hyper-parameters.

5.1. (Q1) How does IQL-TD-MPC perform as an offline
RL algorithm?

We begin with a preliminary experiment to verify that IQL-
TD-MPC is a viable offline RL algorithm. For this exper-
iment, we compare IQL-TD-MPC, TD-MPC, and several
offline RL algorithms from the literature on various tasks.
See Table 1 for results. There are several key trends we can
observe. First, vanilla TD-MPC does not perform well in
general, and completely fails in the more difficult variants
of the antmaze task. This is expected because TD-MPC is
not designed to train from offline data. The one exception is
the umaze environment in maze2d, where TD-MPC actually
outperforms IQL-TD-MPC by a significant margin. We
hypothesize that this is because the dynamics of this envi-
ronment are very simple, and the data provides adequate
coverage to learn effective TD-MPC models, while the con-
servative expectile updates of IQL-TD-MPC cause learning
to be slower. The other trend we see is that IQL-TD-MPC
is generally on par with the other offline RL algorithms.
This confirms our hypothesis that IQL-TD-MPC is a viable
model-based offline RL algorithm.

5.2. (Q2) How much benefit do we obtain by using
IQL-TD-MPC as a Manager?

Now, we turn to the main results of our work, where we
demonstrate the benefits of using IQL-TD-MPC as a Man-
ager with a range of different non-hierarchical offline RL
algorithms as Workers. For this experiment, we used of-
fline RL algorithms from the CORL repository as Workers.
We concatenated intent embeddings output by the Manager
to the environment states seen by these Workers during



Table 1. Normalized scores of IQL-TD-MPC, other offline RL algorithms (IQL (Kostrikov et al., 2022), TT (Janner et al., 2021),
TAP (Jiang et al., 2022)) and TD-MPC on D4RL after 1M training steps. IQL results are from Tarasov et al. (2022). TT and TAP results
are from their papers, except for antmaze-umaze-diverse and maze2d, which we reproduced with the default hyperparameters because
they were not reported. Each entry shows the mean over 100 episodes and 5 seeds, and the standard deviation over seeds. Bolded numbers
are within one standard deviation of the best result in each row.

Dataset
Algorithm

IQL TT TAP TD-MPC IQL-TD-MPC

antmaze-umaze-v2 87.5± 2.6 100.0 ± 0.0 81.5± 2.8 44.6± 28.2 52.0± 46.0
antmaze-umaze-diverse-v2 66.2 ± 13.8 21.5± 2.9 68.5 ± 3.3 0.0± 0.0 72.6 ± 26.6
antmaze-medium-play-v2 71.5± 12.6 93.3 ± 6.4 78.0± 4.4 1.8± 3.91 88.8 ± 5.9

antmaze-medium-diverse-v2 70.0± 10.9 100.0 ± 0.0 85.0± 3.6 0.0± 0.0 40.3± 34.2
antmaze-large-play-v2 40.8± 12.7 66.7± 12.2 74.0 ± 4.4 0.0± 0.0 66.6± 13.7

antmaze-large-diverse-v2 47.5± 9.5 60.0± 12.7 82.0 ± 5.0 0.0± 0.0 4.0± 4.1
antmaze-ultra-play-v0 9.2± 6.7 20.0 ± 10.0 22.0 ± 4.1 0.0± 0.0 20.6 ± 16.0

antmaze-ultra-diverse-v0 22.5 ± 8.3 33.3 ± 12.2 26.0 ± 4.4 0.0± 0.0 3.6± 10.1
maze2d-umaze-v1 37.7± 2.0 36.7± 2.1 58.6 ± 1.4 76.4 ± 20.8 40.9± 45.3

maze2d-medium-v1 35.5± 1.0 32.7± 1.1 −3.9± 0.3 85.3± 15.8 161.0 ± 11.3
maze2d-large-v1 49.6± 22.0 33.2± 1.0 −2.1± 0.1 121.6 ± 27.0 158.9 ± 77.1

halfcheetah-medium-v2 48.3± 0.11 46.9± 0.4 45.0± 0.1 45.7± 14.6 57.4 ± 0.1
halfcheetah-medium-replay-v2 44.2± 1.2 41.9± 2.5 40.8± 0.6 45.7± 5.0 49.2 ± 1.3
halfcheetah-medium-expert-v2 94.6± 0.2 95.0 ± 0.2 91.8± 0.8 −1.0± 0.9 44.8± 8.5

both training and evaluation. Once the boilerplate code was
written, the changes to the CORL algorithms were straight-
forward, since they typically only required adding two lines
of code to (i) augment states in the offline dataset and (ii)
wrap the evaluation environment.

Table 2 shows the results of this experiment, for the fol-
lowing CORL Workers: AWAC, BC, DT, IQL, TD3-BC,
and CQL. Overall, we observe a dramatic improvement in
performance for all these agents compared to their baseline
versions, whose only difference is the lack of intent embed-
dings concatenated to state vectors. Interestingly, vanilla
AWAC / BC / DT / TD3-BC all get a zero score on the large
and ultra variants of the antmaze task, while with our modi-
fication, they are able to learn to solve the task. This shows
that the intent embeddings produced by the Manager are
highly useful, and can be used to compensate for the lack of
long-term planning abilities in off-the-shelf RL agents.

Notably, our approach slightly worsens performance on the
half-cheetah locomotion tasks. A likely explanation is that
these tasks are more about fine-grained control and thus
have less natural hierarchical structure for our framework
to exploit. The intent embeddings are trained by having the
Manager look at states k timesteps ahead, but lookahead
may not help but even hurt on these tasks as it restricts the
pool of candidate actions the Worker is considering.

In Fig. 2, we visualize an episode of the BC agent on the
antmaze-large-play-v2 task, in order to qualitatively under-
stand the benefits of our framework. On the left, we see
that without intent embeddings, the ant gets stuck close to

the start of the maze, never reaching the goal. On the right,
we see that the ant reaches the goal, guided by the intent
embeddings visualized in green. To generate these green
visualizations, we trained a separate decoder alongside the
IQL-TD-MPC Manager that converts the intent embeddings
(in the Manager’s latent space) back into the raw environ-
ment state space, which contains the position and velocity of
the ant. The green dot shows the position, and the green line
attached to the dot shows the velocity (speed is the length of
the line). This decoder was trained on a reconstruction loss
and did not affect the training of the other models. Over-
all, this visualization shows that the intent embeddings are
effectively acting as latent-space subgoals that the Worker
exploits to learn a more effective policy.

5.3. (Q3) To what extent are the observed benefits
coming from IQL-TD-MPC?

One may wonder whether the strong results in Table 2 are
simply due to a “regularization” effect, or whether the in-
tent embeddings simply tie-break the stochasticity of the
behavior policy. We conduct an ablation to address this: we
run our framework, but replace the intent embeddings with
random vectors of the same dimensionality, with entries
drawn uniformly from (0, 1). See Table 3 for results.

Across nearly all tasks and algorithms, we found no statis-
tically significant difference between the baseline and the
ablation. This means that the Workers typically learned to
ignore the random vectors. Comparing against the clear ben-
efits of our proposed method in Table 2, we can conclude



Table 2. Results of our hierarchical framework, where we append IQL-TD-MPC Manager intents to states in various offline RL algorithms
taken from the CORL repository (Tarasov et al., 2022). Each table entry is of the form “baseline evaluation score → our evaluation
score”. In either case, we report scores after 500K steps of training; in general, we found that all agents plateaued after this point. For our
hierarchical framework, these 500K steps correspond to 300K steps of pre-training the Manager, followed by 200K steps of training the
CORL Worker. All entries report a mean over 5 independent random seeds; see Table 4 in Appendix B for standard deviations. Green
entries indicate statistically significant improvement, while red entries indicate statistically significant degradation.

Dataset
Algorithm

AWAC BC DT IQL TD3-BC CQL

antmaze-umaze-v2 51 → 86 52 → 78 64 → 89 44 → 80 90 → 82 67 → 69
antmaze-umaze-diverse-v2 53 → 60 49 → 48 55 → 38 60 → 51 45 → 53 37 → 36
antmaze-medium-play-v2 0 → 36 0 → 52 0 → 43 70 → 64 0.2 → 60 0.8 → 33

antmaze-medium-diverse-v2 0.8 → 16 0.2 → 20 0.2 → 33 63 → 30 0.4 → 21 0.2 → 14
antmaze-large-play-v2 0 → 67 0 → 50 0 → 53 54 → 70 0 → 46 0 → 19

antmaze-large-diverse-v2 0 → 40 0 → 38 0 → 31 31 → 46 0 → 29 0 → 16
antmaze-ultra-play-v0 0 → 18 0 → 18 0 → 10 9 → 16 0 → 20 0 → 5

antmaze-ultra-diverse-v0 0 → 37 0 → 35 0 → 10 22 → 27 0 → 29 0.6 → 5
maze2d-umaze-v1 77 → 78 3 → 64 26 → 63 41 → 77 39 → 77 −14 → 7

maze2d-medium-v1 43 → 67 3 → 70 13 → 71 32 → 78 101 → 47 104 → 16
maze2d-large-v1 193 → 132 −1 → 94 3 → 96 42 → 135 69 → 126 53 → 64

halfcheetah-medium-v2 49 → 45 42 → 45 42 → 47 47 → 43 47 → 44 46 → 44
halfcheetah-medium-replay-v2 45 → 41 34 → 40 39 → 37 44 → 40 44 → 39 45 → 32
halfcheetah-medium-expert-v2 95 → 80 57 → 84 63 → 52 92 → 79 86 → 76 90 → 45

Table 3. Ablation results, where we replace Manager intent em-
beddings with random vectors. Each table entry is of the form
“baseline evaluation score → ablation evaluation score”. We re-
port scores after 500K steps of training. All entries report a mean
over 5 independent random seeds; see Table 5 in Appendix B for
standard deviations. Red entries indicate statistically significant
degradation.

Dataset
Algorithm

AWAC BC IQL TD3-BC

antmaze-medium-play-v2 0 → 0 0 → 0 70 → 66 0.2 → 0
antmaze-medium-diverse-v2 0.8 → 0.2 0.2 → 0 63 → 71 0.4 → 0.2

antmaze-large-play-v2 0 → 0 0 → 0 54 → 25 0 → 0
antmaze-large-diverse-v2 0 → 0 0 → 0 31 → 37 0 → 0
halfcheetah-medium-v2 49 → 49 42 → 42 47 → 47 47 → 47

halfcheetah-medium-replay-v2 45 → 43 34 → 34 44 → 43 44 → 44
halfcheetah-medium-expert-v2 95 → 93 57 → 61 92 → 90 86 → 87

that IQL-TD-MPC was critical; it guides the Workers in a
more impactful way than just regularization.

Interestingly, Table 3 shows that the Workers have learned
to ignore the random vectors in half-cheetah (performance
is unchanged), while in Table 2, our modification harmed
performance. This confirms that the intent embeddings
are correlated with environment states in a way that RL
algorithms do not ignore, which may help or hurt depending
on how much hierarchical structure the task has.

6. Related Work
6.1. Offline Reinforcement Learning

In offline reinforcement learning (Levine et al., 2020; Pru-
dencio et al., 2023; Lange et al., 2012; Ernst et al., 2005),
the agent learns from a fixed offline dataset. Li et al.
(2022) learn a generative model of potential goals to pur-
sue given the current state, along with a goal-conditioned
policy trained by CQL, from a combination of the task re-
ward with a goal-reaching reward. Planning is performed
by optimizing goals (with CEM) to maximize those rewards
as estimated by the value function of the policy over the
planning horizon. In our work, by contrast, our intent em-
beddings are defined in the Manager’s learned latent space,
and we can use this Manager with any offline RL Worker.
The recently proposed POR algorithm (Xu et al., 2022)
learns separate “guide” and “execute” policies, where the
“guide” policy abstracts out the action space. Our Manager
can also be seen as such a guide that would plan over longer
time horizons.

A recent line of work uses Transformers (Vaswani et al.,
2017) to model the trajectories in the offline dataset (Janner
et al., 2021; Chen et al., 2021). Jiang et al. (2022) propose
the Trajectory Autoencoding Planner (TAP), that models a
trajectory by a sequence of discrete tokens learned by a Vec-
tor Quantised-Variational AutoEncoder (VQ-VAE, van den
Oord et al., 2017), conditioned on the initial state. This
enables efficient search with a Transformer-based trajec-
tory generative model. One can relate this approach to ours



Figure 2. Visualization of an episode of the Behavioral Cloning (BC) agent on the antmaze-large-play-v2 task. On the left, without intent
embeddings, the ant gets stuck close to the start of the maze, never reaching the goal. On the right, the ant reaches the goal, guided by the
intent embeddings whose decoding is visualized in green. We see that the intent embeddings act as latent-space subgoals.

by interpreting the generation of encoded trajectories as
the Manager, and the decoding into actual actions as the
Worker. However, this distinction is somewhat artificial
since in contrast to our approach, the Manager provides an
intent embedding that encodes an entire predicted trajec-
tory, rather than a single state. In addition, TAP relies on a
Monte-Carlo “return-to-go” estimator to bootstrap search,
while we explicitly learn a temporally abstract Manager
value function.

Play-LMP (Lynch et al., 2020) encodes goal-conditioned
sub-trajectories in a latent space through a conditional
sequence-to-sequence VAE (Sohn et al., 2015), which can
be used to sample latent plans that are decoded through
a goal-conditioned policy. However, there is no notion of
optimizing a task reward here: instead, the desired goal state
must be provided as input to the model to solve a task.

6.2. Hierarchical Reinforcement Learning

Though our work focuses on the offline setting, we highlight
a few related works in the online setting. Director (Hafner
et al., 2022) trains Manager and Worker policies in imagina-
tion, where the Manager actions are discrete representations
of goals for the Worker, learned from the latent representa-
tion of a world model. Although we re-use a similar discrete
representation for Manager actions, this approach differs
from our work in several ways: it focuses on the online
setting, there is no planning during inference, and the world
model is not temporally abstract. Our work may be related
to the literature on option discovery (Sutton et al., 1999;
Bagaria and Konidaris, 2020; Daniel et al., 2016; Brunskill
and Li, 2014). In our proposed hierarchical framework, the
intent embeddings output by our Manager can be seen as
latent skills (Pertsch et al., 2021; Rosete-Beas et al., 2023)
that the Worker conditions on to improve its learning effi-
ciency. Finally, our work can be seen as an instantiation

of one piece of the H-JEPA framework laid out by LeCun
(2022): we learn a Manager world model at a higher level of
temporal abstraction, which works in tandem with a Worker
to optimize rewards.

7. Limitations and Future Work
In this paper, we propose a non-trivial extension of TD-MPC
to the offline setting based on IQL, and leverage its superior
planning abilities as a temporally extended Manager in a
hierarchical architecture. Our experiments confirm the ben-
efits of this hierarchical framework in guiding offline RL
algorithms.

Our algorithm still suffers from a number of limitations that
we intend to tackle in future work: (1) Our method hurts
performance on some locomotion tasks (Table 2), which
require fine-grained control. It is unsurprising that hierarchy
does not help in such contexts; however, further investiga-
tion is required to confirm our intuition for why the Worker
algorithms are unable to simply ignore these harmful intent
embeddings. (2) The Worker agent may also be improved
by actively planning toward the intent embedding set by
the Manager. For instance, the Worker itself could be an
IQL-TD-MPC agent modeling the world at the original envi-
ronment timescale, unlike the temporally abstract Manager.
(3) Our Manager’s timescale is defined by a fixed hyper-
parameter k. This could instead be set dynamically by the
Manager, and included in the intent embedding concate-
nated to the environment state. (4) Similar to the TD-MPC
algorithm we build on, our approach is computationally
intensive, both during Manager pre-training and inference,
because we need to unroll the Manager’s world model to
obtain the intent embeddings. A potential avenue to speed
it up could be to represent the world model as a Trans-
former (Vaswani et al., 2017; Micheli et al., 2022), for more
efficient rollouts.
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Appendix

A. Discrete Manager Actions in IQL-TD-MPC
Similar to Hafner et al. (2022), we define the Manager’s action as a vector of several categorical variables. The inverse
dynamics model bMθ (Eq. 4) takes latent states zMtk and zM(t+1)k as input and outputs a matrix of L× C logits, representing
L categorical distributions with C categories each. The model then samples a C-dimensional one-hot vector from each
of the L distributions, and flattens the results into a sparse binary vector of length L × C. See Figure G.1 from Hafner
et al. (2022) for a visualization. This sparse binary vector serves as the “action” chosen by the Manager. The model is
optimized end-to-end together with all other components of IQL-TD-MPC using straight-through gradients (Bengio et al.,
2013). Unlike Hafner et al. (2022), we did not include a KL-divergence regularization term in the model objective as we
found regularizing the distribution towards some uniform prior hurts the final performance. In all our experiments, we used
L = 8 and C = 10.

As a result of this change, we must also change the Manager policy network πM
θ to output discrete actions. Hence, we

modify πM
θ to output L categorical distributions of size C (applying a softmax instead of the squashed Normal distribution

used for continuous actions in IQL-TD-MPC). The behavioral cloning term log πθ(a | s) in the IQL policy loss (Eq. 3) thus
becomes a cross-entropy loss over the C categories. This loss is summed over the L categorical distributions, which are
treated independently.



B. Standard Deviation Tables
We provide standard deviations accompanying the results in the main text. Table 4 provides standard deviations for Table 2,
and Table 5 provides standard deviations for Table 3.

Table 4. Standard deviations accompanying the means reported in Table 2. The table is formatted in the same way, so all these standard
deviations are in the same positions as their corresponding means.

Dataset
Algorithm

AWAC BC DT IQL TD3-BC CQL

antmaze-umaze-v2 9 → 12 6 → 2 4 → 3 4 → 4 3 → 3 7 → 3
antmaze-umaze-diverse-v2 10 → 8 5 → 7 6 → 11 7 → 18 6 → 3 21 → 3
antmaze-medium-play-v2 0 → 13 0 → 8 0 → 11 5 → 6 0.4 → 4 0.8 → 10

antmaze-medium-diverse-v2 1 → 9 0.4 → 8 0.5 → 11 6 → 7 0.5 → 1 0.4 → 6
antmaze-large-play-v2 0 → 10 0 → 3 0 → 3 9 → 7 0 → 8 0 → 5

antmaze-large-diverse-v2 0 → 5 0 → 5 0 → 7 11 → 9 0 → 1 0 → 5
antmaze-ultra-play-v0 0 → 8 0 → 4 0 → 2 6 → 8 0 → 6 0 → 2

antmaze-ultra-diverse-v0 0 → 12 0 → 8 0 → 3 8 → 18 0 → 7 0.8 → 2
maze2d-umaze-v1 38 → 5 4 → 9 12 → 1 1 → 3 14 → 2 0.8 → 42

maze2d-medium-v1 21 → 21 5 → 7 3 → 7 7 → 10 49 → 8 15 → 42
maze2d-large-v1 20 → 35 0.5 → 8 2 → 8 21 → 30 21 → 66 61 → 90

halfcheetah-medium-v2 0.2 → 0.1 0.2 → 0.2 0.3 → 0.5 0.3 → 0.4 0.2 → 0.3 0.1 → 0.1
halfcheetah-medium-replay-v2 0.1 → 0.3 0.7 → 0.7 0.2 → 1 0.3 → 1 0.2 → 1 0.4 → 5
halfcheetah-medium-expert-v2 0.8 → 9 6 → 4 7 → 5 0.9 → 7 8 → 5 2 → 2

Table 5. Standard deviations accompanying the means reported in Table 3. The table is formatted in the same way, so all these standard
deviations are in the same positions as their corresponding means.

Dataset
Algorithm

AWAC BC IQL TD3-BC

antmaze-medium-play-v2 0 → 0 0 → 0 5 → 2 0.4 → 0
antmaze-medium-diverse-v2 1 → 0.4 0.4 → 0 6 → 7 0.5 → 0.4

antmaze-large-play-v2 0 → 0 0 → 0 9 → 6 0 → 0
antmaze-large-diverse-v2 0 → 0 0 → 0 11 → 12 0 → 0
halfcheetah-medium-v2 0.2 → 0.3 0.2 → 0.2 0.3 → 0.1 0.2 → 0.4

halfcheetah-medium-replay-v2 0.1 → 0.4 0.7 → 1 0.3 → 0.7 0.2 → 0.4
halfcheetah-medium-expert-v2 0.8 → 2 6 → 5 0.9 → 2 8 → 5



C. Hyper-parameters
In this section, we list all hyper-parameters used in experiments. Table 6 contains hyper-parameters that were already present
in the original TD-MPC algorithm (or that we added to slightly tweak its behavior, e.g., the ability to disable Prioritized
Experience Replay or to use the policy mean in the TD target instead of a sample). Changes compared to the original
TD-MPC implementation (https://github.com/nicklashansen/tdmpc) are bolded.

Table 7 lists the hyper-parameters for IQL-TD-MPC, related to integrating the IQL losses and making the continuous policy
πθ stochastic. Table 8 lists the hyper-parameters for using IQL-TD-MPC as a Manager (using a discrete stochastic policy
πθ, as discussed in Appendix A).

Table 6. TD-MPC hyper-parameters that we use in our IQL-TD-MPC algorithm. Bolded values are those that were modified compared to
the original TD-MPC implementation from Hansen et al. (2022). We found no benefit to increasing the planning horizon beyond 2 in
the offline setting. The motivation for changing nπ and nr is described in Section 3. We disabled Prioritized Experience Replay out of
caution in the offline setting, to be sure that the initial arbitrary priority (assigned to all transitions in the buffer after loading the dataset)
would not artificially bias the sampling distribution (a problem that does not occur in the online setting, where each new transition gets
assigned the maximum priority seen so far). Decreasing the learning rate and using the policy mean for bootstrapping were found to lead
to more stable results for some tasks. Using a smaller batch size was purely for the purpose of fair comparison with prior results reported
in the literature.

hyper-parameter Value in TD-MPC Value in IQL-TD-MPC
γ 0.99 0.99

latent dimension 50 50
planning horizon H 5 2

CEM population size 512 512
CEM #policy actions (nπ) 25 512
CEM #random actions (nr) 487 0

CEM elite size (ne) 64 64
CEM iterations 6 6

CEM momentum coefficient 0.1 0.1
CEM temperature 0.5 0.5

enable Prioritized Experience Replay yes no
learning rate 10−3 3 · 10−4

batch size 512 256
MLP hidden size 512 512

encoder / decoder hidden size 256 256
bootstrapping value on last planning state Qθ(s, πθ(sH)) Qθ(s,Ea∼πθ(a|sH)[a])

bootstrapping value in TD target Qθ(s
′, πθ(s

′)) Qθ(s
′,Ea′∼πθ(a

′|s′)[a
′])

reward loss coefficient (cR) 0.5 0.5
critic loss coefficient (cQ) 0.1 0.1

consistency loss coefficient (cf ) 2 2
temporal coefficient (ρ) 0.5 0.5

gradient clipping threshold 10 10
θ− update frequency 2 2
θ− update momentum 0.01 0.01

https://github.com/nicklashansen/tdmpc


Table 7. Hyper-parameters that we introduced specifically for our IQL-TD-MPC algorithm in the “flat” (non-hierarchical) setting described
in Section 3. These hyper-parameters were used to obtain the results in Table 1. The action clipping threshold clips actions from the offline
dataset to avoid infinite loss Lπ,IQL (Eq. 3). The entropy bonus weight is the coefficient of an extra term we add to Lπ,IQL to maximize
entropy so as to prevent policy collapse. This term is approximated as log πθ(s), where πθ(s) is a random action sampled from πθ(· | s).

hyper-parameter Value in IQL-TD-MPC
IQL τ 0.9
IQL β 3

exponential advantage threshold 100
loss for critic Qθ LQ (exception: LQ,IQL for antmaze-{medium,large,ultra}-* tasks)

critic loss LV,IQL coefficient 0.1
stochastic policy log σ (std) range (−5, 2)

stochastic policy action clipping threshold 0.99
stochastic policy entropy bonus weight 0.1

Table 8. Hyper-parameters that were used specifically for our IQL-TD-MPC algorithm in the setting described in Section 4 where IQL-
TD-MPC is a Manager. These hyper-parameters were used to obtain the results in Table 2 and Table 3. Compared to “flat” IQL-TD-MPC
(Table 6 and Table 7), we decreased the latent dimension as we found no benefit in using higher values, while increasing the planning
horizon for the Manager proved useful. The reward scale factor scales down manager rewards in tasks where otherwise summing rewards
over k timesteps can lead to high Q-values and an explosion of critic losses. The IQL inverse temperature β is also updated accordingly to
“cancel out” the effect of this rescaling in the advantage weight computation.

hyper-parameter Value in IQL-TD-MPC when used as a Manager
latent dimension 10

planning horizon H 4
reward scale factor 0.1 for maze2d and locomotion tasks, 1.0 for antmaze tasks

IQL τ 0.9
IQL β 3/reward scale factor

exponential advantage threshold 100
loss for critic Qθ LQ (exception: LQ,IQL for antmaze-{medium,large,ultra}-* tasks)

critic loss LV,IQL coefficient 0.1
latent timescale coarseness k 8

discrete policy L (Appendix A) 8
discrete policy C (Appendix A) 10


