KScope: A Framework for Characterizing the Knowledge Status of Language Models

Yuxin Xiao¹, Shan Chen², Jack Gallifant²,

Danielle Bitterman², Thomas Hartvigsen³, Marzyeh Ghassemi¹

¹Massachusetts Institute of Technology, ²Harvard University, ³University of Virginia yuxin102@mit.edu

Abstract

Characterizing a large language model's (LLM's) knowledge of a given question is challenging. As a result, prior work has primarily examined LLM behavior under knowledge conflicts, where the model's internal parametric memory contradicts information in the external context. However, this does not fully reflect how well the model knows the answer to the question. In this paper, we first introduce a taxonomy of five knowledge statuses based on the consistency and correctness of LLM knowledge modes. We then propose KScope, a hierarchical framework of statistical tests that progressively refines hypotheses about knowledge modes and characterizes LLM knowledge into one of these five statuses. We apply KScope to nine LLMs across four datasets and systematically establish: (1) Supporting context narrows knowledge gaps across models. (2) Context features related to difficulty, relevance, and familiarity drive successful knowledge updates. (3) LLMs exhibit similar feature preferences when partially correct or conflicted, but diverge sharply when consistently wrong. (4) Context summarization constrained by our feature analysis, together with enhanced credibility, further improves update effectiveness and generalizes across LLMs.

1 Introduction

LLMs [15, 24, 55, 72] memorize information from their training corpora as *parametric knowledge* [3, 4, 5, 58]. They may further incorporate grounded and up-to-date *contextual knowledge* from user prompts for knowledge-intensive tasks [14, 34, 60]. Knowledge conflicts can arise when an LLM's parametric knowledge contradicts the contextual input [71]. Existing work has sought to measure and understand LLM behavior under these conflicting conditions [11, 30, 39, 68, 69, 76].

However, prior studies on knowledge conflicts do not fully characterize an LLM's underlying knowledge of a given question. Recent work usually represents LLM's knowledge via the most likely response [30, 62, 69], which may overlook the coexistence of multiple competing modes in an answer distribution. Moreover, entropy-based uncertainty metrics [11, 39] capture overall uncertainty instead of mode structure, and would assign similar entropy values (approximately 1.37) to distributions [0.45, 0.45, 0.1] and [0.6, 0.2, 0.2]. Yet the first distribution reflects conflicting knowledge, while the second shows consistent preference.

To address this gap, we define a taxonomy of five knowledge statuses along two key dimensions and propose KScope, a hierarchical testing framework for characterizing knowledge status. As shown in Figure 1, we assess *knowledge consistency* by examining the size of an LLM's mode set, and evaluate *knowledge correctness* relative to the ground truth. Based on these two dimensions, we identify five distinct knowledge statuses: (1) consistent correct, (2) conflicting correct, (3) absent, (4) conflicting wrong, and (5) consistent wrong. We construct an empirical response distribution by repeatedly sampling the target LLM, and leverage KScope to progressively refine hypotheses about its underlying knowledge modes.

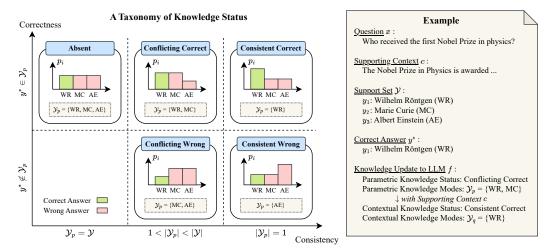


Figure 1: We propose a taxonomy of five knowledge statuses based on the consistency and correctness of LLM knowledge modes. We illustrate the taxonomy using an LLM's parametric knowledge modes \mathcal{Y}_p in a three-option classification task. This formulation also applies to contextual knowledge modes \mathcal{Y}_q and generalizes to open-ended questions or classification tasks with more options.

We evaluate the knowledge status of nine LLMs across four datasets (Section 5), and find that supporting context increases the proportion of consistent correct knowledge across all datasets and models. In the multi-choice setting, we note that the two healthcare-related datasets (Hemonc [64] and PubMedQA [26]) exhibit lower levels of consistent correct knowledge than the general-domain datasets (NQ [32] and HotpotQA [74]), both before and after providing context. Within each model family, larger LLMs exhibit higher proportions of consistent correct parametric knowledge. Among them, Llama-3 [15] achieves the highest proportion, followed by Qwen-2.5 [72] and Gemma-2 [55], although these differences narrow when context is introduced. Finally, we show that noisy retrieval and open-ended question settings substantially reduce the effectiveness of updating LLMs to exhibit consistently correct knowledge.

We next examine what features of the input context successfully update LLM knowledge to the consistent correct status (Section 6). We select eleven context features across three categories—difficulty, relevance, and familiarity, and show that all three feature categories contribute, with context length and entropy consistently valued across statuses. We also find that LLMs prioritize context features similarly when they are partially correct or exhibit conflicting knowledge, regardless of correctness. In contrast, the consistent wrong status shows relatively low correlations with other statuses, suggesting that overcoming strongly held false beliefs may require distinct context features.

Finally, we explore context augmentation strategies to improve the success rate of knowledge updates (Section 7). We find that context summarization with constraints informed by our feature importance analysis outperforms naïve summarization. When combined with enhanced context credibility [70], this approach improves the proportion of successful knowledge updates by 4.3% on average across all statuses—even in GPT-40 [24], which was not included in our feature analysis.

We summarize our contributions¹ in this paper as follows:

- We define a taxonomy of five knowledge statuses based on consistency and correctness, and propose KScope, a hierarchical testing framework to characterize LLM knowledge status.
- We apply KScope to nine LLMs across four datasets, and establish that supporting context substantially narrows knowledge gaps across model sizes and families.
- We identify key context features related to difficulty, relevance, and familiarity that drive successful knowledge updates.
- We reveal how LLM feature importance differs based on parametric knowledge status, showing similarity under conflict but divergence when consistently wrong.
- We validate that constrained context summarization, combined with improved credibility, significantly boosts successful knowledge updates across all statuses and generalizes well.

Our code is available at https://github.com/xiaoyuxin1002/KScope.

KScope: Knowledge Status Characterization via Hierarchical Testing

Step	Statistical Test	Null Hypothesis	Alternative Hypothesis	If Significant p-value	If Insignificant p-value
(1) Test for the Significance of Invalid Answers	One-Sided Exact Binomial Test	$\mathbb{P}(f(x) \in \mathcal{Y}) = \ \mathbb{P}(f(x) otin \mathcal{Y}) = rac{1}{2}$	$\mathbb{P}(f(x) otin\mathcal{Y})>rac{1}{2}$	Absent Knowledge	Proceed ↓
(2) Test for Uniform Guessing	Two-Sided Exact Multinomial Test	$p_i = rac{1}{ \mathcal{Y} }, orall y_i \in \mathcal{Y}$	$p_i eq rac{1}{ \mathcal{Y} }, \exists y_i \in \mathcal{Y}$	Proceed ↓	Absent Knowledge
(3) Test for Conflicting Knowledge	Likelihood Ratio Test	$p_i = rac{1}{ \mathcal{Y} }, orall y_i \in \mathcal{Y}$	$\begin{array}{l} \text{(a) } p_1 = p_2 = \frac{\hat{p}_1 + \hat{p}_2}{2} > p_3 = \hat{p}_3 \\ \text{(b) } p_1 = p_3 = \frac{\hat{p}_1 + \hat{p}_3}{2} > p_2 = \hat{p}_2 \\ \text{(c) } p_2 = p_3 = \frac{\hat{p}_2 + \hat{p}_3}{2} > p_1 = \hat{p}_1 \end{array}$	Proceed Accordingly \	Absent Knowledge
(4) Test for Consistent Knowledge	One-Sided Exact Binomial Test	$p_1'=p_2'=rac{1}{2}$	(a) $p_1' = \frac{\hat{p}_1}{\hat{p}_1 + \hat{p}_2} > p_2' = \frac{\hat{p}_2}{\hat{p}_1 + \hat{p}_2}$ (b) $p_1' = \frac{\hat{p}_1}{\hat{p}_1 + \hat{p}_2} < p_2' = \frac{\hat{p}_2}{\hat{p}_1 + \hat{p}_2}$	Consistent Correct / Wrong Knolwedge (depending on correctness)	Conflicting Correct / Wrong Knowledge (depending on correctness)

Figure 2: We propose KScope, a hierarchical testing framework to characterize LLM knowledge into one of the five identified statuses. We note that our framework generalizes to questions with larger support sets by repeating Step 3 to iteratively refine hypotheses about the knowledge mode set.

2 Related Work

Knowledge Characterization. LLMs have been shown to memorize world knowledge from their training corpora [3, 4, 5, 10, 44, 47, 58]. Existing work interprets this memorization mechanism by probing activation patterns [7, 8, 23, 33] and benchmarks the factual accuracy of recalled information against knowledge graphs [36, 78, 82]. Researchers have employed multi-round prompting to improve the consistency [43, 61, 77] and calibration [19, 31, 73] of the knowledge elicited from LLMs. In this work, we identify five knowledge statuses that an LLM may exhibit with respect to a given question and explicitly characterize them through a hierarchical statistical testing framework.

Knowledge Conflict. Knowledge conflict can arise within an LLM's parametric memory, within the provided context, or between the two [71]. Prior work has examined various contextual factors that influence a model's degree of compliance [53, 54, 57, 70] and introduced metrics to quantify the persuasiveness of context [11, 39]. These studies find that LLMs tend to follow the context when they are uncertain [45, 68, 76] or when there is confirmation bias between the model's memory and the context [30, 69]. Large-scale evaluation benchmarks and pipelines have also been developed to facilitate research in this area [20, 51, 62]. However, prior work usually uses a single sampled response to represent model memory [30, 62, 69] and applies entropy-based measures [11, 39] to assess conflict, both of which overlook the mode structure of the response distribution. In contrast, we define five knowledge statuses to measure the consistency and correctness of knowledge, rigorously test different mode structures, and stratify our analysis of model behavior based on these statuses.

Knowledge Update. To incorporate accurate and up-to-date information, retrieval-augmented generation (RAG) systems [6, 14, 17, 34, 46, 49] retrieve relevant context from external corpora to support LLMs in knowledge-intensive tasks. The retrieved context can be further augmented to enhance the effectiveness of knowledge updates [53, 57, 70]. Other approaches directly edit a model's parametric knowledge [12, 18, 59, 60] or apply mechanistic interventions at inference time [27, 35, 80]. In this work, we examine knowledge updates under both gold and noisy retrieval settings and systematically evaluate various context augmentation strategies tailored to each knowledge status.

3 LLM Knowledge Status and How to Characterize it

3.1 LLM Knowledge Status: Consistency and Correctness

When analyzing an LLM's knowledge, we focus on two key dimensions:

- 1. **Consistency**: How consistent are the model's knowledge modes? That is, does it exhibit a single coherent belief or multiple conflicting ones?
- 2. **Correctness**: Does the set of the model's knowledge modes include the correct answer?

To formalize this, consider a question-answer pair (x, y^*) . We define the parametric knowledge of an LLM f, with respect to the question x, as the conditional multinomial distribution $\mathbf{p} = f(\cdot \mid x)$ over the support set $\mathcal{Y} = \{y_1, \dots, y_d\}$, where $p_i = f(y_i \mid x)$. We further define the set of parametric

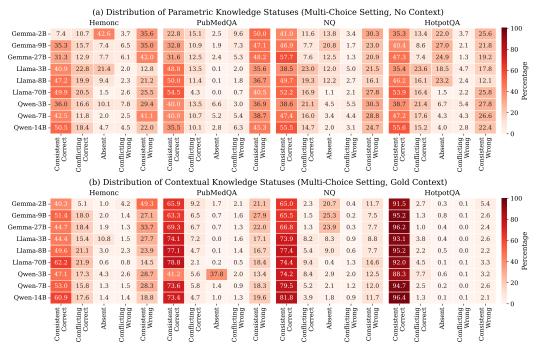


Figure 3: Characterization results from applying the KScope framework to nine LLMs across four datasets. Overall, most LLMs exhibit the highest proportion of consistent correct parametric knowledge status, which further increases when gold context is provided.

knowledge modes $\mathcal{Y}_p = \operatorname{modes}(\mathbf{p}) \subseteq \mathcal{Y}$ as the subset that satisfies the following condition: $p_i = p_j$ for any $y_i, y_j \in \mathcal{Y}_p$ and $p_i > p_k$ for any $y_k \notin \mathcal{Y}_p$. In essence, the knowledge modes form a plateau of high-probability elements within the support set that are distinguishable from the rest.

To assess the consistency dimension, we examine three possible structures of \mathcal{Y}_p : (1) $\mathcal{Y}_p = \mathcal{Y}$, (2) $1 < |\mathcal{Y}_p| < |\mathcal{Y}|$, and (3) $|\mathcal{Y}_p| = 1$, where $|\cdot|$ denotes the cardinality of a set. We evaluate correctness by checking whether the ground-truth answer $y^* \in \mathcal{Y}_p$. Based on these two dimensions, we formulate a taxonomy of five parametric knowledge statuses $P = \operatorname{status}(\mathcal{Y}_p)$, as illustrated in Figure 1, that characterize the knowledge of f with respect to the question x:

- 1. Consistent Correct Knowledge: $|\mathcal{Y}_p| = 1$ and $y^* \in \mathcal{Y}_p$.
- 2. Conflicting Correct Knowledge: $1 < |\mathcal{Y}_p| < |\mathcal{Y}|$ and $y^* \in \mathcal{Y}_p$.
- 3. Absent Knowledge: $\mathcal{Y}_p = \mathcal{Y}$.
- 4. Conflicting Wrong Knowledge: $1 < |\mathcal{Y}_p| < |\mathcal{Y}|$ and $y^* \notin \mathcal{Y}_p$.
- 5. Consistent Wrong Knowledge: $|\mathcal{Y}_p| = 1$ and $y^* \notin \mathcal{Y}_p$.

When supporting context c is available for the question-answer pair, we define the LLM's contextual knowledge as $\mathbf{q} = f(\cdot \mid x, c)$. Analogously, we assign its contextual knowledge status $Q = \operatorname{status}(\mathcal{Y}_q)$ based on the corresponding knowledge modes $\mathcal{Y}_q = \operatorname{modes}(\mathbf{q}) \subseteq \mathcal{Y}$.

3.2 Challenges in Operationalizing Knowledge Status

While the taxonomy introduced in Section 3.1 offers a principled view of LLM knowledge status, applying it in practice poses several challenges. First, the true underlying distributions of LLM knowledge are unobservable. Second, even under the same knowledge status, models may behave differently. For instance, when an LLM lacks sufficient knowledge about a question, it may either respond randomly or refuse to answer altogether [22, 66].

To address the first challenge, we approximate the latent knowledge distributions using empirical sample frequencies. Specifically, we first generate M paraphrases of a given question to reduce prompt sensitivity [48], then collect N chain-of-thought responses [65] from the target LLM using these paraphrases. For open-ended generation, we define the support set $\mathcal Y$ by semantically clustering the N samples [31]. For multiple-choice tasks, $\mathcal Y$ is simply the set of given options.

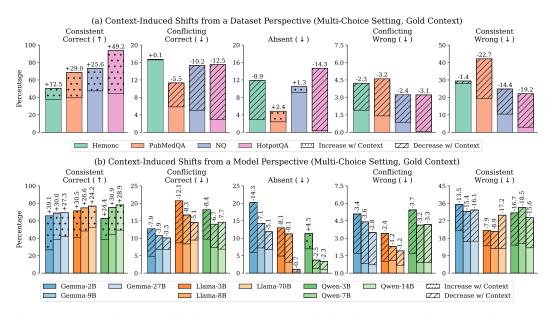


Figure 4: Context-induced shifts in knowledge status distributions. Supporting context increases the proportion of consistent correct knowledge across all datasets and models. The Llama family and larger models within each family achieve higher proportions of consistent correct knowledge, although the gaps narrow with context.

We then account for the second challenge by considering the possibility of invalid model responses. These include hallucinating answers outside the support set [22] or refusing to respond in high-stakes applications [66]. Let N' denote the number of invalid responses. We estimate the empirical distribution $\hat{\mathbf{p}}$ (and analogously, $\hat{\mathbf{q}}$) by: $\hat{p}_i = \frac{1}{N-N'} \sum_{n=1}^{N} \mathbb{1}[f_n(x) = y_i], \forall y_i \in \mathcal{Y}$.

3.3 KScope: Knowledge Status Characterization via Hierarchical Testing

To bridge the gap between the true latent knowledge distributions discussed in Section 3.1 and the empirical distributions estimated in Section 3.2, we introduce **KScope**, a hierarchical testing framework for knowledge status characterization. We illustrate the testing details in Figure 2.

Step 1: Test for the Significance of Invalid Answers. We first assess whether the model exhibits a higher tendency to produce invalid responses via a one-sided exact binomial test.

Step 2: Test for Uniform Guessing. Next, we test whether the LLM's empirical response distribution significantly deviates from a uniform distribution using a two-sided exact multinomial test.

Step 3: Test for Conflicting Knowledge. Subsequently, we perform a set of likelihood ratio tests to refine the model's knowledge mode set. Alternatives whose estimated probabilities violate their own inequality constraints are immediately rejected. If multiple alternatives remain significant after Bonferroni correction, we select the one with the lowest Bayesian Information Criterion (BIC). For larger support sets, we repeat this step to remove low-probability elements from the mode set.

Step 4: Test for Consistent Knowledge. The previous step reduces the model's knowledge mode set to two elements. Conditioned on the selected alternative in Step 3, we then test whether the model assigns significantly different probabilities to the two remaining elements using two one-sided exact binomial tests. As before, we discard invalid alternatives and, if multiple alternatives are accepted, select the one with the lowest BIC.

4 Experiment Setup

Datasets. We focus on four tasks, two from the healthcare domain and two from the general domain:

• **Hemonc** [64] is a healthcare dataset extracted from a regularly maintained oncology reference database. It consists of 6,212 clinical study instances, each comparing the efficacy of a regimen versus a comparator for a given medical condition, labeled as superior, inferior, or

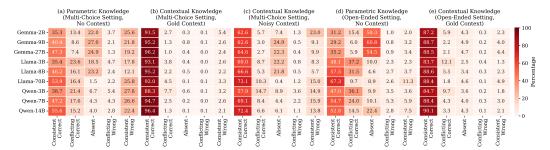


Figure 5: Characterization results from applying KScope to nine LLMs on HotpotQA across different settings. Compared to (b), where gold context in the multi-choice setting enables more consistent correct knowledge, (c) noisy context and (e) the open-ended setting yield lower update success. Without context, the Gemma family shows more absent knowledge in (d) the open-ended setting than in (a) the multi-choice setting, whereas the Llama and Qwen families mostly show the opposite trend.

no difference. To reduce positional bias, we permute the order of each regimen–comparator pair. The context for each question consists of abstracts from the associated PubMed articles.

- **PubMedQA** [26] consists of 1,000 medical research questions, each labeled with a yes, no, or maybe answer. The context comes from the corresponding PubMed abstracts.
- NQ [32] contains 3,596 Google search queries, retrieving Wikipedia pages as context.
- HotpotQA [74] contains 6,119 multi-hop reasoning questions in the general domain, using sentence-level supporting facts extracted from relevant Wikipedia articles as context.

Unless otherwise specified, all the supplied contexts here contain ground-truth evidence. When comparing LLMs' knowledge statuses in the multi-choice setting, we convert NQ and HotpotQA into three-option classification tasks. Following [70], we prompt GPT-40 [24] to generate two additional wrong options for each question (details in Appendix A). We note that although not evaluated here, KScope remains applicable to classification with more options, as discussed in Section 3.

Implementation Details. We evaluate nine instruction-tuned LLMs spanning three model families: Gemma-2 (2B, 9B, 27B) [55], Llama-3 (3B, 8B, 70B) [15], and Qwen-2.5 (3B, 7B, 14B) [72]. We keep the LLMs' sampling distributions unchanged by setting the temperature to 1, and fix the significance level used in KScope at $\alpha=0.05$. A hyperparameter search on Hemonc using Llama-8B (details in Appendix A) shows that knowledge status characterization empirically stabilizes after N=100 samples, using M=20 paraphrases per question.

5 Q1: How Does Context Update LLMs' Knowledge Status?

Using the setup in Section 4, we first characterize the distributions of LLMs' parametric and contextual knowledge statuses in the multi-choice setting and examine how gold context induces shifts between them in Section 5.1. We further investigate the effects of noisy context in Section 5.2 and analyze knowledge status distributions in the open-ended setting in Section 5.3.

5.1 Knowledge Status in the Multi-Choice Setting with Gold Context

We apply KScope to the nine LLMs across the four datasets in the multi-choice setting and present the results in Figure 3. When relying solely on parametric knowledge (Figure 3 (a)), LLMs exhibit consistent knowledge—whether correct or wrong—more frequently than conflicting knowledge. When conflicting knowledge occurs, the correct answer is usually among the knowledge modes. Some outliers show a higher proportion of absent knowledge, such as Gemma-2B on Hemonc.

When LLMs are provided with gold context (Figure 3 (b)), the proportion of consistent correct knowledge status significantly increases across all datasets and models, with the largest improvement in HotpotQA and the smallest in Hemonc. This highlights the effectiveness of retrieval-augmented generation [6, 14, 17, 34], which aims to enhance LLMs' knowledge with relevant external information. However, in some cases, context may confuse LLMs, leading them to guess randomly and increasing the proportion of absent knowledge. For example, this occurs with Qwen-3B on PubMedQA and the Gemma family on NQ, likely due to longer context lengths in these datasets—an issue we further investigate in Section 6.

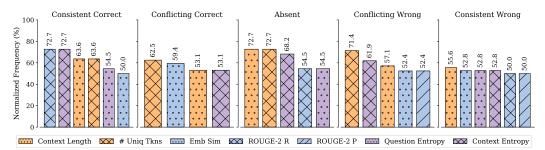


Figure 6: Context features appearing among the top five most important in at least 50% of the cases for each parametric knowledge status. Each color indicates a feature category: orange for difficulty, blue for relevance, and purple for familiarity. Across all statuses, context length and entropy consistently rank among the most important features.

We further examine how gold context shifts the distribution of each knowledge status. Figure 4 (a) presents dataset-level shifts, where distributions of knowledge status are averaged across the nine LLMs. We observe that Hemonc and PubMedQA exhibit lower proportions of consistent correct knowledge than NQ and HotpotQA, both before and after context is provided. Additionally, the gold context slightly increases the ratio of conflicting correct knowledge in Hemonc and absent knowledge in PubMedQA, highlighting the challenges introduced by medical-domain context [9, 50, 56, 63].

Within each LLM family, we find that larger models consistently exhibit higher proportions of consistent correct knowledge, both before and after providing context (Figure 4 (b)) [5, 37]. Llama achieves the highest proportion of consistent correct parametric knowledge, followed by Qwen and Gemma, although this gap narrows once context is introduced. Appendix B details how gold context shifts each LLM's knowledge among different statuses on each dataset in the multi-choice setting.

5.2 Knowledge Status in the Multi-Choice Setting with Noisy Context

To investigate LLMs' knowledge status under more realistic retrieval conditions, we apply KScope to the nine LLMs using the top ten Wikipedia paragraphs retrieved for each HotpotQA question, which may or may not include the gold supporting context. As shown in Figure 5 (c), noisy context results in a much lower success rate of updating models to consistent correct knowledge compared to gold context in (b), highlighting the importance of retrieval quality in RAG systems [6, 14, 17, 34, 46, 49]. When the retrieved noisy context lacks evidence for the ground-truth answer, models either refuse to answer, leading to more absent knowledge, or are misled into producing consistently incorrect answers. More details on noisy context-induced shifts in knowledge status are in Appendix B.

5.3 Knowledge Status in the Open-Ended Setting with Gold Context

To demonstrate the generalizability of KScope to open-ended questions [28, 67], we apply it to characterize the knowledge status of the nine LLMs on HotpotQA, this time without providing any pre-defined answer options. Specifically, we generate responses per question and semantically cluster [31] them using gemma-2-9b-it [55]. Based on the size of clusters and the number of invalid answers, we follow the procedure in Section 3.3 to infer the LLM's knowledge status.

As shown in Figure 5 (d), knowledge status distributions vary notably across model families. Without pre-defined options or contextual support, the Gemma family often refuses to answer, leading to a higher proportion of absent knowledge compared to the multi-choice setting in (a). In contrast, Llama and Qwen show a substantial increase in the consistent correct knowledge under these conditions, with the exception of Qwen-14B. Gold context still significantly boosts consistent correct knowledge in the open-ended setting in (e), though the improvement is smaller than in the multi-choice setting in (b). Appendix B provides more details on the shift in knowledge status in the open-ended setting.

6 Q2: What Context Features Drive the Desired Knowledge Update?

Based on the results in Section 5, we seek to understand what context features drive increases in consistent correct knowledge. We introduce three categories of context features in Section 6.1, and inspect feature importance for each knowledge status in Section 6.2. To enable direct comparison across datasets, we focus on the multi-choice setting with gold context in the following sections.

6.1 Context Features

We consider eleven context features across three categories:

- **Difficulty**: (1) **Context Length**; (2) **Readability**, measured by the Flesch-Kincaid readability test [29], which is based on the average number of words per sentence and syllables per word; and (3) **Number of Unique Tokens** (# Uniq Tkns) after lemmatization.
- **Relevance**: (1) **Embedding Similarity** (Emb Sim), computed as the cosine similarity between the embeddings of each question and its corresponding context using text-embedding-3-large [40]; and (2–4) **ROUGE-2 Recall**, **Precision**, and **F1** (ROUGE-2 R/P/F), based on the bigram overlap between each question and its corresponding context.
- Familiarity: (1–2) Question and Context Perplexity, and (3–4) Question and Context Entropy, as measured by each LLM.

We define a binary label indicating whether context successfully updates an LLM's parametric knowledge to the consistent correct status. As described in Section 4, for each combination of dataset, LLM, and initial parametric knowledge status, we formulate a stratified binary classification task. We apply logistic regression with L2 regularization to the extracted features and discard cases where performance does not exceed a dummy baseline in Macro-F1, due to extreme class imbalance. Implementation details and full regression results are in Appendix C.

We compute feature importance by averaging the absolute SHAP values [38] of each feature within each stratified combination. We then calculate the normalized frequency with which each feature appears among the top five most important features across datasets and LLMs. This yields a frequency-based ranking for each initial parametric knowledge status.

6.2 Feature Importance for Context-Driven Knowledge Update

We plot in Figure 6 the context features that appear among the top five most important in at least 50% of the cases identified in our experiments. The results include features from all three categories: difficulty, relevance, and familiarity. This aligns with [11, 57], which find that context relevance influences context persuasiveness. Among the five parametric knowledge statuses, the consistent wrong knowledge status exhibits a flatter distribution of top feature frequencies compared to the others, suggesting that LLMs in this status place less emphasis on any specific feature. Notably, context length and entropy consistently

rank high across all statuses.

To assess whether LLMs in distinct parametric knowledge statuses prioritize context features similarly, we compute Spearman rank correlations with Bonferroni correction from feature importance rankings. As shown in Figure 7, correlations are statistically significant between consistent correct and both conflicting correct and absent knowledge. This suggests a confirmation bias [30, 69]: when context at least partially aligns with the model's knowledge modes, the model attends to context features similarly. We also observe a significant correlation between conflicting correct and conflicting wrong, indicating similar feature preferences during knowledge conflict [45, 68, 76], regardless of correctness. In contrast, the consistent wrong status shows relatively low correlations with others, implying that overcoming a firmly held wrong belief may require different context features.

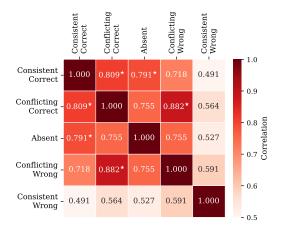


Figure 7: Spearman rank correlation among parametric knowledge statuses based on feature importance rankings. An asterisk indicates statistical significance at a Bonferroni-adjusted $\alpha_{\text{adj}}=0.005$.

7 Q3: What Context Augmentations Work Best Across Knowledge Statuses?

In this section, we leverage the insights from our feature importance analysis in Section 6 to improve knowledge updates in LLMs. We again focus on the multi-choice setting with gold context.

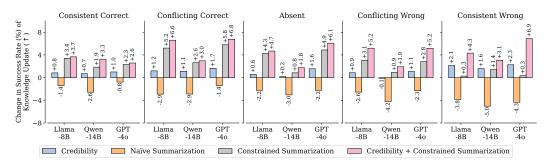


Figure 8: Absolute change (%) in the success rate of knowledge updates for each context augmentation strategy, relative to the original context and averaged across datasets. Integrating credibility metadata into constrained summarization improves the success rate by 4.3% on average across LLMs and statuses, and generalizes well to GPT-40.

7.1 Context Augmentation Strategies

We apply the following augmentation strategies to the original context of the datasets in Section 4:

- Credibility [70]: To enhance context credibility, we append the relevant PubMed metadata to the context for Hemonc and PubMedQA, and the corresponding Wikipedia article titles for NQ and HotpotQA. When sampling responses with context, we instruct LLMs to prioritize the credible context over their internal parametric knowledge (details in Appendix D).
- Naïve Summarization: We leverage GPT-40 [24] to directly summarize context.
- Constrained Summarization: We guide summarization with additional constraints to adjust the context features according to our analysis results. Specifically, we prompt GPT-40 to reduce both context length and the number of unique tokens during summarization. Additionally, GPT-40 is instructed to preserve the semantic content (maintaining embedding similarity with the question), retain token-level overlap (maintaining ROUGE-2 recall and precision), and ensure fluency (preserving context perplexity and entropy).
- Combined: We integrate the credibility information into the context generated from constrained summarization.

We then investigate how each augmentation strategy affects the success rate of knowledge updates compared to the original context, for each knowledge status. We evaluate these strategies on three LLMs of varying sizes and families: Llama-3.1-8B-Instruct [15] (Llama-8B), Qwen2.5-14B-Instruct [72] (Qwen-14B), and GPT-4o. Although GPT-4o was not included in the feature analysis in Section 6, we assess it here to examine whether our findings generalize to other LLMs. We present the average results across the four datasets in Figure 8 and the full details in Appendix D.

7.2 Effectiveness of Context Augmentations

As shown in Figure 8, constrained summarization improves the success rate across all knowledge statuses except the consistent wrong status. This aligns with our finding in Figure 7 that correcting a consistent wrong belief may require different context features than in other cases. Furthermore, this constrained summarization strategy generalizes well to GPT-40.

In contrast, naïve summarization always hurts the performance. We plot in Figure 9 the normalized feature space for the nine affected features on Hemonc (question perplexity and entropy remain unchanged by context summarization). Both summarization methods reduce context length and the number of unique tokens, while increasing context perplexity and entropy. However, naïve summarization fails to preserve fluency and key semantic content, resulting in harder readability and lower ROUGE-2 recall. In comparison, constrained summarization improves embedding similarity, ROUGE-2 precision, and F1 more effectively. These differences in the augmented feature space explain the gap in success rates and underscore the importance of our feature analysis in Section 6. Details for other datasets are in Appendix D.

On the other hand, credibility is more effective for the consistent wrong status, as illustrated in Figure 8. This suggests that when an LLM consistently holds a wrong belief, adding credibility metadata to context makes it more persuasive [70]. The combined strategy retains the benefits

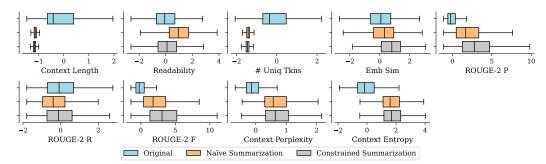


Figure 9: Normalized feature space for original and summarized contexts of Hemonc, measured by Llama-3.1-8B-Instruct. Naïve summarization hurts readability and ROUGE-2 recall, while constrained summarization yields higher embedding similarity, ROUGE-2 precision, and F1.

of constrained summarization for the first four statuses and further improves the success rate for consistent wrong, beyond what credibility alone achieves. Overall, it enhances the success rate by 4.3% on average across all statuses and LLMs, compared to using the original context.

8 Discussion

Conclusion. In this paper, we first propose a taxonomy of five knowledge statuses based on consistency and correctness. We then introduce KScope, a hierarchical testing framework that characterizes knowledge status by progressively refining hypotheses about an LLM's knowledge modes. By applying KScope to nine LLMs across four datasets, we establish: (1) Supporting context substantially narrows knowledge gaps across LLMs. (2) Features related to context difficulty, relevance, and familiarity drive successful knowledge updates. (3) LLMs attend to features similarly when their knowledge modes are partially aligned with the correct answer or internally conflicting, but diverge sharply when consistently wrong. (4) Constrained context summarization guided by feature analysis, combined with enhanced credibility, further boosts update effectiveness and generalizes across models. These findings provide valuable insights into LLMs' knowledge mechanism [58] and underscore the importance of tailoring knowledge update strategies [14, 60] to different knowledge statuses in future work.

Limitations. Our feature importance analysis in Section 6 focuses on eleven features across three categories. However, it remains underexplored how more nuanced stylistic context features [11, 57, 70] impact LLM knowledge status. Although the KScope framework supports classification tasks with any number of options [52, 81], we restrict our experiments to three-option classification due to computational constraints. We also experiment with real-world noisy retrieval, but such context can include conflicting information [20, 51] in practical RAG systems [6, 14, 17, 34, 46, 49], posing additional challenges. We leave the investigation of how context affects LLM knowledge status under these more complex conditions to future work.

Broader Impacts. LLMs are widely deployed in everyday user—chatbot applications [1, 24] and high-stakes domains such as healthcare [42, 56] and legal services [13, 16]. However, prior work [11, 39, 53, 54, 57, 70, 71] lacks a formal framework for characterizing LLM knowledge status, especially as these statuses may shift in response to varied input context. The challenge becomes more concerning when training data contains misinformation [2, 41], leading models to develop consistently wrong beliefs. Our analysis in Section 6 shows that correcting these beliefs often requires different context features than those needed for other knowledge statuses. The proposed KScope framework also relates to hallucination detection [22, 25, 79] and uncertainty quantification [21, 31, 75] in LLMs. By identifying knowledge status, it helps distinguish between hallucinations due to absent knowledge and uncertainty due to knowledge conflicts. These connections underscore the practical utility of KScope and its broader impact on improving LLM reliability.

Acknowledgements

YX is supported by the MIT IDSS Fellowship. MG is supported in part by a National Science Foundation (NSF) 22-586 Faculty Early Career Development Award (#2339381), a Gordon & Betty Moore Foundation award, a Google Research Scholar award, and the AI2050 Program at Schmidt Sciences. SC, JG, and DB are supported by the National Institutes of Health National Cancer Institute (U54CA274516-01A1 [SC, D.S.B.], R01CA294033-01 [JG, D.S.B.]), the American Cancer Society and American Society for Radiation Oncology ASTRO-CSDG-24-1244514-01-CTPS Grant (DOI: https://doi.org/10.53354/ACS.ASTRO-CSDG-24-1244514-01-CTPS.pc.gr.222210) [D.S.B.], a Patient-Centered Outcomes Research Institute (PCORI) Project Program Award (ME-2024C2-37484) [D.S.B.], and the Woods Foundation [D.S.B.]. All statements in this report, including its findings and conclusions, are solely those of the authors and do not necessarily represent the views of the sponsors, and no official endorsement should be inferred.

References

- [1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. *arXiv preprint*, 2023.
- [2] D. A. Alber, Z. Yang, A. Alyakin, E. Yang, S. Rai, A. A. Valliani, J. Zhang, G. R. Rosenbaum, A. K. Amend-Thomas, D. B. Kurland, et al. Medical large language models are vulnerable to data-poisoning attacks. *Nature Medicine*, pages 1–9, 2025.
- [3] Z. Allen-Zhu and Y. Li. Physics of language models: Part 3.1, knowledge storage and extraction. In *ICML*, 2024.
- [4] Z. Allen-Zhu and Y. Li. Physics of language models: Part 3.2, knowledge manipulation. In *ICLR*, 2025.
- [5] Z. Allen-Zhu and Y. Li. Physics of language models: Part 3.3, knowledge capacity scaling laws. In ICLR, 2025.
- [6] A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi. Self-RAG: Learning to retrieve, generate, and critique through self-reflection. In *ICLR*, 2024.
- [7] T. Bricken, A. Templeton, J. Batson, B. Chen, A. Jermyn, T. Conerly, N. Turner, C. Anil, C. Denison, A. Askell, R. Lasenby, Y. Wu, S. Kravec, N. Schiefer, T. Maxwell, N. Joseph, Z. Hatfield-Dodds, A. Tamkin, K. Nguyen, B. McLean, J. E. Burke, T. Hume, S. Carter, T. Henighan, and C. Olah. Towards monosemanticity: Decomposing language models with dictionary learning. *Transformer Circuits Thread*, 2023.
- [8] C. Burns, H. Ye, D. Klein, and J. Steinhardt. Discovering latent knowledge in language models without supervision. In *ICLR*, 2023.
- [9] F. Busch, L. Hoffmann, C. Rueger, E. H. van Dijk, R. Kader, E. Ortiz-Prado, M. R. Makowski, L. Saba, M. Hadamitzky, J. N. Kather, et al. Current applications and challenges in large language models for patient care: a systematic review. *Communications Medicine*, 2025.
- [10] N. Carlini, D. Ippolito, M. Jagielski, K. Lee, F. Tramèr, and C. Zhang. Quantifying memorization across neural language models. In *ICLR*, 2023.
- [11] K. Du, V. Snæbjarnarson, N. Stoehr, J. White, A. Schein, and R. Cotterell. Context versus prior knowledge in language models. In *ACL*, 2024.
- [12] J. Fang, H. Jiang, K. Wang, Y. Ma, J. Shi, X. Wang, X. He, and T.-S. Chua. Alphaedit: Null-space constrained model editing for language models. In *ICLR*, 2025.
- [13] Z. Fei, X. Shen, D. Zhu, F. Zhou, Z. Han, A. Huang, S. Zhang, K. Chen, Z. Yin, Z. Shen, et al. Lawbench: Benchmarking legal knowledge of large language models. In *EMNLP*, 2024.
- [14] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, M. Wang, and H. Wang. Retrieval-augmented generation for large language models: A survey. *arXiv preprint*, 2023.

- [15] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten, A. Vaughan, et al. The llama 3 herd of models. *arXiv preprint*, 2024.
- [16] N. Guha, J. Nyarko, D. E. Ho, C. Re, A. Chilton, A. Narayana, A. Chohlas-Wood, A. Peters, B. Waldon, D. Rockmore, D. Zambrano, D. Talisman, E. Hoque, F. Surani, F. Fagan, G. Sarfaty, G. M. Dickinson, H. Porat, J. Hegland, J. Wu, J. Nudell, J. Niklaus, J. J. Nay, J. H. Choi, K. Tobia, M. Hagan, M. Ma, M. Livermore, N. Rasumov-Rahe, N. Holzenberger, N. Kolt, P. Henderson, S. Rehaag, S. Goel, S. Gao, S. Williams, S. Gandhi, T. Zur, V. Iyer, and Z. Li. Legalbench: A collaboratively built benchmark for measuring legal reasoning in large language models. In *NeurIPS Datasets and Benchmarks Track*, 2023.
- [17] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M.-W. Chang. Realm: retrieval-augmented language model pre-training. In *ICML*, 2020.
- [18] T. Hartvigsen, S. Sankaranarayanan, H. Palangi, Y. Kim, and M. Ghassemi. Aging with grace: lifelong model editing with discrete key-value adaptors. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, pages 47934–47959, 2023.
- [19] B. Hou, Y. Liu, K. Qian, J. Andreas, S. Chang, and Y. Zhang. Decomposing uncertainty for large language models through input clarification ensembling. In *ICML*, 2024.
- [20] Y. Hou, A. Pascale, J. Carnerero-Cano, T. T. Tchrakian, R. Marinescu, E. M. Daly, I. Padhi, and P. Sattigeri. Wikicontradict: A benchmark for evaluating LLMs on real-world knowledge conflicts from wikipedia. In *NeurIPS Datasets and Benchmarks Track*, 2024.
- [21] H.-Y. Huang, Y. Yang, Z. Zhang, S. Lee, and Y. Wu. A survey of uncertainty estimation in llms: Theory meets practice. *arXiv preprint arXiv:2410.15326*, 2024.
- [22] L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen, W. Peng, X. Feng, B. Qin, et al. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. *ACM TOIS*, 2025.
- [23] R. Huben, H. Cunningham, L. R. Smith, A. Ewart, and L. Sharkey. Sparse autoencoders find highly interpretable features in language models. In *ICLR*, 2023.
- [24] A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark, A. Ostrow, A. Welihinda, A. Hayes, A. Radford, et al. Gpt-4o system card. *arXiv preprint*, 2024.
- [25] C. Jiang, B. Qi, X. Hong, D. Fu, Y. Cheng, F. Meng, M. Yu, B. Zhou, and J. Zhou. On large language models' hallucination with regard to known facts. In *NAACL*), pages 1041–1053, 2024.
- [26] Q. Jin, B. Dhingra, Z. Liu, W. Cohen, and X. Lu. Pubmedqa: A dataset for biomedical research question answering. In EMNLP-IJCNLP, 2019.
- [27] Z. Jin, P. Cao, H. Yuan, Y. Chen, J. Xu, H. Li, X. Jiang, K. Liu, and J. Zhao. Cutting off the head ends the conflict: A mechanism for interpreting and mitigating knowledge conflicts in language models. In *ACL Findings*, 2024.
- [28] E. Kamalloo, N. Dziri, C. Clarke, and D. Rafiei. Evaluating open-domain question answering in the era of large language models. In *ACL*, 2023.
- [29] J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, and B. S. Chissom. Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel. *Technical Report, Naval Technical Training Command Research Branch*, 1975.
- [30] E. Kortukov, A. Rubinstein, E. Nguyen, and S. J. Oh. Studying large language model behaviors under context-memory conflicts with real documents. In COLM, 2024.
- [31] L. Kuhn, Y. Gal, and S. Farquhar. Semantic uncertainty: Linguistic invariances for uncertainty estimation in natural language generation. In *ICLR*, 2023.

- [32] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee, et al. Natural questions: A benchmark for question answering research. *TACL*, 2019.
- [33] W. Laurito, S. Maiya, G. Dhimoïla, O. Yeung, and K. Hänni. Cluster-norm for unsupervised probing of knowledge. In EMNLP, 2024.
- [34] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. In *NeurIPS*, 2020.
- [35] K. Li, O. Patel, F. Viégas, H. Pfister, and M. Wattenberg. Inference-time intervention: eliciting truthful answers from a language model. In *NeurIPS*, 2023.
- [36] X. Liu, F. Wu, T. Xu, Z. Chen, Y. Zhang, X. Wang, and J. Gao. Evaluating the factuality of large language models using large-scale knowledge graphs. *arXiv* preprint, 2024.
- [37] X. Lu, X. Li, Q. Cheng, K. Ding, X.-J. Huang, and X. Qiu. Scaling laws for fact memorization of large language models. In *EMNLP Findings*, 2024.
- [38] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In *NeurIPS*, 2017.
- [39] S. Marjanovic, H. Yu, P. Atanasova, M. Maistro, C. Lioma, and I. Augenstein. Dynamicqa: Tracing internal knowledge conflicts in language models. In *EMNLP Findings*, 2024.
- [40] OpenAI. Text-embedding-3-large OpenAI Platform. https://platform.openai.com/docs/models/text-embedding-3-large. [Accessed 2025-03-12].
- [41] Y. Pan, L. Pan, W. Chen, P. Nakov, M.-Y. Kan, and W. Wang. On the risk of misinformation pollution with large language models. In *EMNLP Findings*, pages 1389–1403, 2023.
- [42] C. Peng, X. Yang, A. Chen, K. E. Smith, N. PourNejatian, A. B. Costa, C. Martin, M. G. Flores, Y. Zhang, T. Magoc, et al. A study of generative large language model for medical research and healthcare. *NPJ digital medicine*, 2023.
- [43] S. Pitis, M. R. Zhang, A. Wang, and J. Ba. Boosted prompt ensembles for large language models. *arXiv preprint*, 2023.
- [44] U. S. Prashanth, A. Deng, K. O'Brien, J. S. V, M. A. Khan, J. Borkar, C. A. Choquette-Choo, J. R. Fuehne, S. Biderman, T. Ke, K. Lee, and N. Saphra. Recite, reconstruct, recollect: Memorization in LMs as a multifaceted phenomenon. In *ICLR*, 2025.
- [45] C. Qian, X. Zhao, and T. Wu. "merge conflicts!" exploring the impacts of external knowledge distractors to parametric knowledge graphs. In *COLM*, 2024.
- [46] O. Ram, Y. Levine, I. Dalmedigos, D. Muhlgay, A. Shashua, K. Leyton-Brown, and Y. Shoham. In-context retrieval-augmented language models. *TACL*, 2023.
- [47] A. Schwarzschild, Z. Feng, P. Maini, Z. C. Lipton, and J. Z. Kolter. Rethinking LLM memorization through the lens of adversarial compression. In *NeurIPS*, 2024.
- [48] M. Sclar, Y. Choi, Y. Tsvetkov, and A. Suhr. Quantifying language models' sensitivity to spurious features in prompt design or: How i learned to start worrying about prompt formatting. In *ICLR*, 2024.
- [49] W. Shi, S. Min, M. Yasunaga, M. Seo, R. James, M. Lewis, L. Zettlemoyer, and W.-t. Yih. Replug: Retrieval-augmented black-box language models. In *NAACL*, 2024.
- [50] K. Singhal, S. Azizi, T. Tu, S. S. Mahdavi, J. Wei, H. W. Chung, N. Scales, A. Tanwani, H. Cole-Lewis, S. Pfohl, et al. Large language models encode clinical knowledge. *Nature*, 2023.

- [51] Z. Su, J. Zhang, X. Qu, T. Zhu, Y. Li, J. Sun, J. Li, M. Zhang, and Y. Cheng. \$\texttt{ConflictBank}\$: A benchmark for evaluating the influence of knowledge conflicts in LLMs. In *NeurIPS Datasets and Benchmarks Track*, 2024.
- [52] S. A. Tabatabaei, S. Fancher, M. Parsons, and A. Askari. Can large language models serve as effective classifiers for hierarchical multi-label classification of scientific documents at industrial scale? In COLING Industry Track, pages 163–174, 2025.
- [53] H. Tan, F. Sun, W. Yang, Y. Wang, Q. Cao, and X. Cheng. Blinded by generated contexts: How language models merge generated and retrieved contexts when knowledge conflicts? In ACL, 2024.
- [54] Y. Tao, A. Hiatt, E. Haake, A. Jetter, and A. Agrawal. When context leads but parametric memory follows in large language models. In *EMNLP*, 2024.
- [55] G. Team, M. Riviere, S. Pathak, P. G. Sessa, C. Hardin, S. Bhupatiraju, L. Hussenot, T. Mesnard, B. Shahriari, A. Ramé, et al. Gemma 2: Improving open language models at a practical size. arXiv preprint, 2024.
- [56] A. J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, L. Gutierrez, T. F. Tan, and D. S. W. Ting. Large language models in medicine. *Nature medicine*, 2023.
- [57] A. Wan, E. Wallace, and D. Klein. What evidence do language models find convincing? In ACL, 2024.
- [58] M. Wang, Y. Yao, Z. Xu, S. Qiao, S. Deng, P. Wang, X. Chen, J.-C. Gu, Y. Jiang, P. Xie, et al. Knowledge mechanisms in large language models: A survey and perspective. In *EMNLP Findings*, 2024.
- [59] P. Wang, Z. Li, N. Zhang, Z. Xu, Y. Yao, Y. Jiang, P. Xie, F. Huang, and H. Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large language models. In *NeurIPS*, 2024.
- [60] S. Wang, Y. Zhu, H. Liu, Z. Zheng, C. Chen, and J. Li. Knowledge editing for large language models: A survey. ACM Computing Surveys, 2024.
- [61] X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang, A. Chowdhery, and D. Zhou. Self-consistency improves chain of thought reasoning in language models. In *ICLR*, 2023.
- [62] Y. Wang, S. Feng, H. Wang, W. Shi, V. Balachandran, T. He, and Y. Tsvetkov. Resolving knowledge conflicts in large language models. In *COLM*, 2024.
- [63] Y. Wang, Y. Zhao, and L. Petzold. Are large language models ready for healthcare? a comparative study on clinical language understanding. In *ML4H*, 2023.
- [64] J. L. Warner, D. Dymshyts, C. G. Reich, M. J. Gurley, H. Hochheiser, Z. H. Moldwin, R. Belenkaya, A. E. Williams, and P. C. Yang. Hemonc: A new standard vocabulary for chemotherapy regimen representation in the omop common data model. *Journal of biomedical informatics*, 2019.
- [65] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. H. Chi, Q. V. Le, D. Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In *NeurIPS*, 2022.
- [66] B. Wen, J. Yao, S. Feng, C. Xu, Y. Tsvetkov, B. Howe, and L. L. Wang. Know your limits: A survey of abstention in large language models. *TACL*, 2025.
- [67] Z. Wen, Z. Tian, Z. Jian, Z. Huang, P. Ke, Y. Gao, M. Huang, and D. Li. Perception of knowledge boundary for large language models through semi-open-ended question answering. In *NeurIPS*, 2024.
- [68] K. Wu, E. Wu, and J. Zou. Clasheval: Quantifying the tug-of-war between an LLM's internal prior and external evidence. In *NeurIPS Datasets and Benchmarks Track*, 2024.
- [69] J. Xie, K. Zhang, J. Chen, R. Lou, and Y. Su. Adaptive chameleon or stubborn sloth: Revealing the behavior of large language models in knowledge conflicts. In *ICLR*, 2024.

- [70] R. Xu, B. Lin, S. Yang, T. Zhang, W. Shi, T. Zhang, Z. Fang, W. Xu, and H. Qiu. The earth is flat because...: Investigating llms' belief towards misinformation via persuasive conversation. In *ACL*, 2024.
- [71] R. Xu, Z. Qi, Z. Guo, C. Wang, H. Wang, Y. Zhang, and W. Xu. Knowledge conflicts for llms: A survey. In EMNLP, 2024.
- [72] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, et al. Qwen2. 5 technical report. *arXiv preprint*, 2024.
- [73] A. X. Yang, C. Chen, and K. Pitas. Just rephrase it! uncertainty estimation in closed-source language models via multiple rephrased queries. In *NeurIPS Workshop*, 2024.
- [74] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. Cohen, R. Salakhutdinov, and C. D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. In *EMNLP*, 2018.
- [75] F. Ye, M. Yang, J. Pang, L. Wang, D. F. Wong, E. Yilmaz, S. Shi, and Z. Tu. Benchmarking LLMs via uncertainty quantification. In *NeurIPS Datasets and Benchmarks Track*, 2024.
- [76] J. Ying, Y. Cao, K. Xiong, L. Cui, Y. He, and Y. Liu. Intuitive or dependent? investigating llms' behavior style to conflicting prompts. In *ACL*, 2024.
- [77] O. Yoran, T. Wolfson, B. Bogin, U. Katz, D. Deutch, and J. Berant. Answering questions by meta-reasoning over multiple chains of thought. In *EMNLP*, 2023.
- [78] J. Yu, X. Wang, S. Tu, S. Cao, D. Zhang-Li, X. Lv, H. Peng, Z. Yao, X. Zhang, H. Li, et al. Kola: Carefully benchmarking world knowledge of large language models. In *ICLR*, 2024.
- [79] Y. Zhang, Y. Li, L. Cui, D. Cai, L. Liu, T. Fu, X. Huang, E. Zhao, Y. Zhang, Y. Chen, et al. Siren's song in the ai ocean: a survey on hallucination in large language models. *arXiv preprint arXiv:2309.01219*, 2023.
- [80] Y. Zhao, A. Devoto, G. Hong, X. Du, A. P. Gema, H. Wang, X. He, K.-F. Wong, and P. Minervini. Steering knowledge selection behaviours in llms via sae-based representation engineering. In NAACL, 2025.
- [81] C. Zhou, J. Dong, X. Huang, Z. Liu, K. Zhou, and Z. Xu. Quest: Efficient extreme multi-label text classification with large language models on commodity hardware. In *EMNLP Findings*, 2024.
- [82] Y. Zhu, J. Xiao, Y. Wang, and J. Sang. Kg-fpq: Evaluating factuality hallucination in llms with knowledge graph-based false premise questions. In COLING, 2025.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We discuss our contributions in the introduction and support the claims with substantial empirical results in Sections 5, 6, and 7.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in Section 8.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our experiment setup in Section 4 and Appendix A. We also provide the code and data used in our experiments in the supplementary material.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide the data and code in supplementary material, with detailed instructions to reproduce the main experiment results.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We describe our experiment setup in Section 4 and Appendix A.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The KScope framework proposed in this paper involves a series of statistical tests, and all the experiment results are based on these statistical tests.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We discuss the computational resources in Appendix A.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in Section 8.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We properly cite the creators of the datasets and models used in our work. We provide the licenses and copyright information in Appendix A.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We provide detailed documentation for the Hemonc dataset in the supplementary material.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Our experiments leverage LLMs for augmenting the evaluation datasets. We declare their usage in Section 4 and Appendix A.

Guidelines

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Additional Details on the Experiment Setup

In Section 4, we describe the experiment setup, where we apply KScope to nine LLMs across four datasets. Figure 20 shows the few-shot prompt used with GPT-40 [24] to generate two additional incorrect options of the same type as the correct one for each question in NQ [32] and HotpotQA [74]. Figure 21 shows the instructions used to sample model responses with and without context, which are then used by KScope to characterize knowledge statuses.

Among the three existing datasets, PubMedQA [26] uses the MIT license, while NQ and HotpotQA are released under the Apache 2.0 license. All three evaluated LLM families (Gemma [55], Llama [15], and Qwen [72]) are distributed under custom commercial licenses. We run all the experiments in this paper on four NVIDIA A100 GPUs.

To determine the number of question paraphrases (M) and sample responses (N) needed for consistent characterization of LLM knowledge status, we conduct a hyperparameter search on Hemonc [64] using Llama-8B. As shown in Figure 10, the percentage of status changes stabilizes after collecting N=100 model responses using M=20 paraphrases per question. We adopt this configuration for KScope throughout the paper.

B Additional Results on the Context-Induced Shifts in Knowledge Status

In Section 5, we investigate how context updates LLMs' knowledge status. Figures 14, 15, 16, and 17 provide detailed breakdowns of how gold context induces shifts from each parametric knowledge status to contextual knowledge status for each LLM on each dataset in the multi-choice setting. Figure 18 shows the shifts induced by noisy context on HotpotQA in the multi-choice setting, while Figure 19 illustrates the shifts induced by gold context on HotpotQA in the open-ended setting.

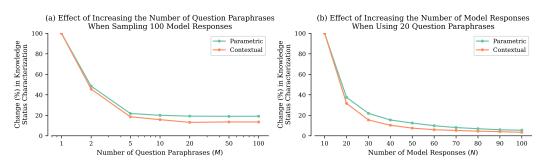


Figure 10: Hyperparameter search on Hemonc using Llama-8B with gold context in the multi-choice setting. KScope achieves stable characterization of LLM knowledge status with M=20 question paraphrases (left) and N=100 model responses per question (right). We adopt this configuration in all experiments.

C Additional Results of the Feature Importance Analysis

To identify the context features driving successful knowledge updates, we apply logistic regression to the features extracted in Section 6. We use L2 regularization to mitigate multicollinearity and normalize all numerical features before model fitting. For each stratified combination of dataset, LLM, and initial parametric knowledge status, we perform five-fold cross-validation to tune class weights and regularization strength. We exclude combinations with fewer than 50 examples or 10 instances per class. Due to extreme class imbalance in some settings (e.g., nearly 99% positive labels for Gemma-9B with a consistent correct status on HotpotQA), logistic regression does not always outperform a dummy classifier in Macro-F1, which simply predicts the majority class. We retain only regression models that outperform this baseline for the feature importance analysis in Section 6. Figure 11 shows the change in Macro-F1 relative to the dummy classifier.

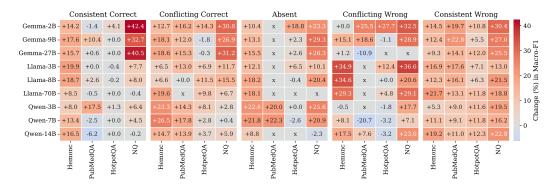


Figure 11: Change in Macro-F1 of logistic regression models relative to a dummy classifier that predicts the majority class. "x" marks cases with fewer than 50 examples or 10 instances per class, which are excluded from regression analysis.

D Additional Results on the Context Augmentation Strategies

In Section 7, we experiment with various context augmentation strategies. Figure 22 illustrates how we insert metadata to enhance context credibility. Figure 23 shows how we prompt GPT-40 to perform naïve and constrained context summarization.

We present the normalized feature space for each dataset in Figure 12, highlighting the differences between naïve and constrained summarization. We also show how each augmentation strategy impacts the success rate of knowledge updates for each dataset in Figure 13.

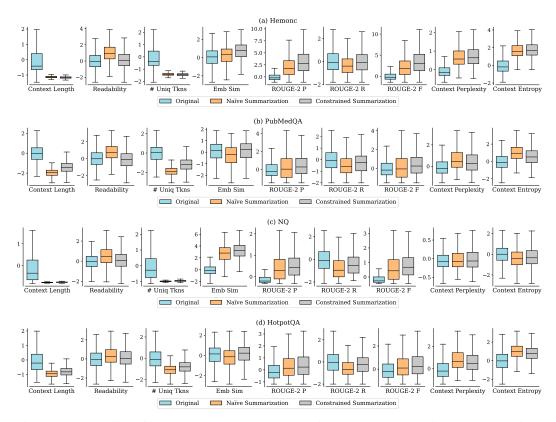


Figure 12: Normalized feature space per dataset, comparing naïve and constrained summarization.

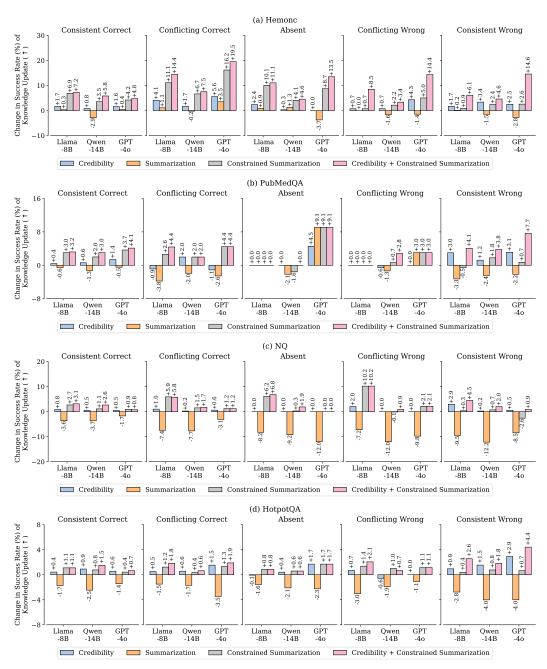


Figure 13: Effect of different context augmentation strategies on the success rate of knowledge updates for each dataset, relative to the original context.

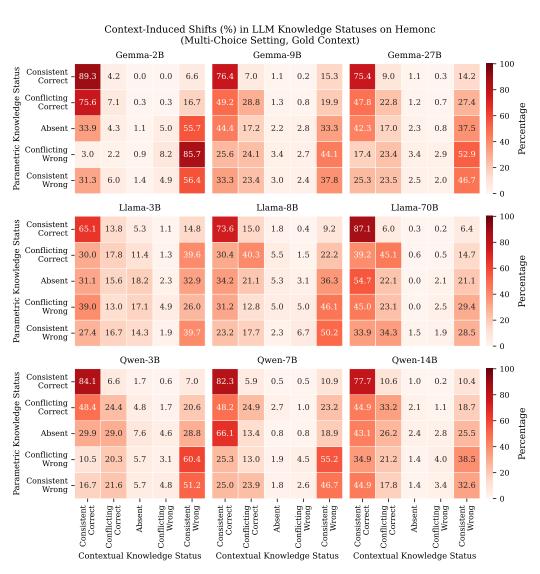


Figure 14: Shifts in knowledge status induced by gold context for each LLM on the Hemonc dataset in the multi-choice setting.

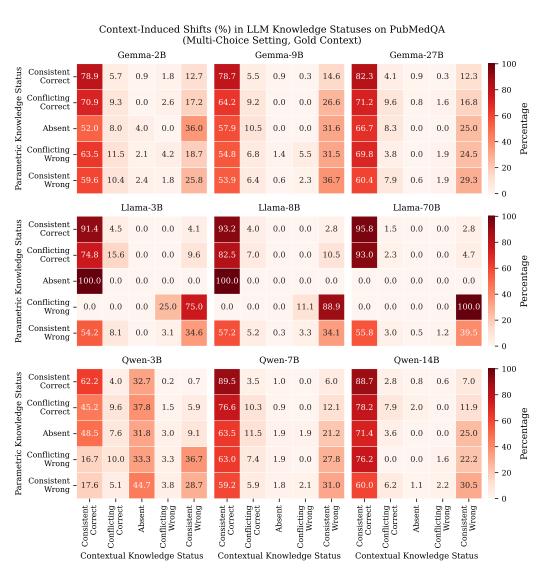


Figure 15: Shifts in knowledge status induced by gold context for each LLM on the PubMed dataset in the multi-choice setting.

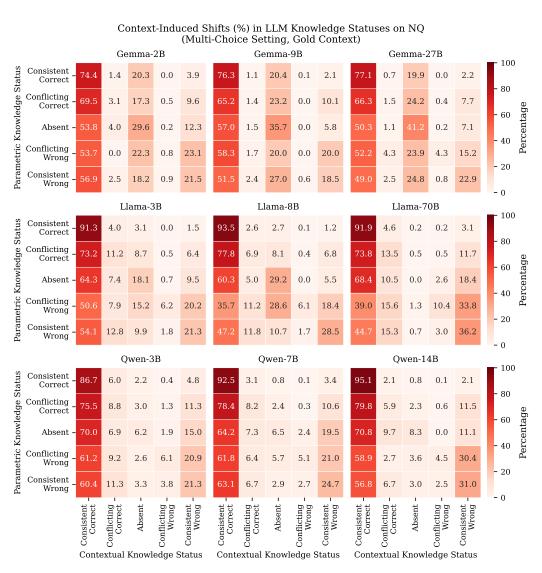


Figure 16: Shifts in knowledge status induced by gold context for each LLM on the NQ dataset in the multi-choice setting.

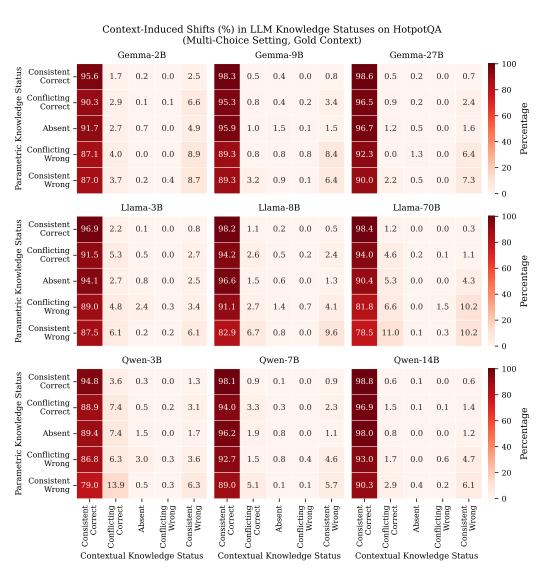


Figure 17: Shifts in knowledge status induced by gold context for each LLM on the HotpotQA dataset in the multi-choice setting.

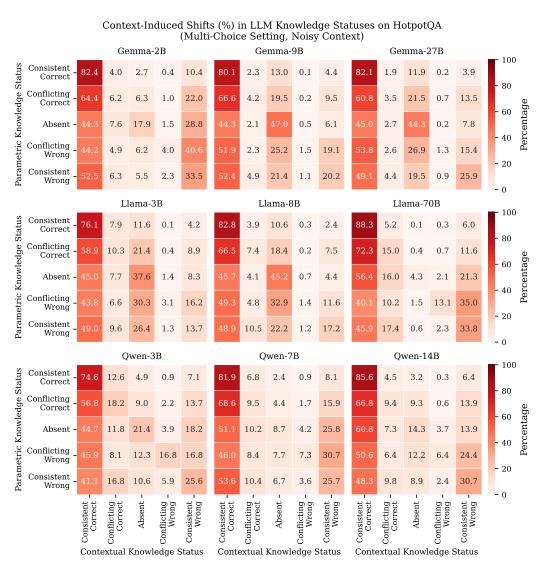


Figure 18: Shifts in knowledge status induced by noisy context for each LLM on the HotpotQA dataset in the multi-choice setting.

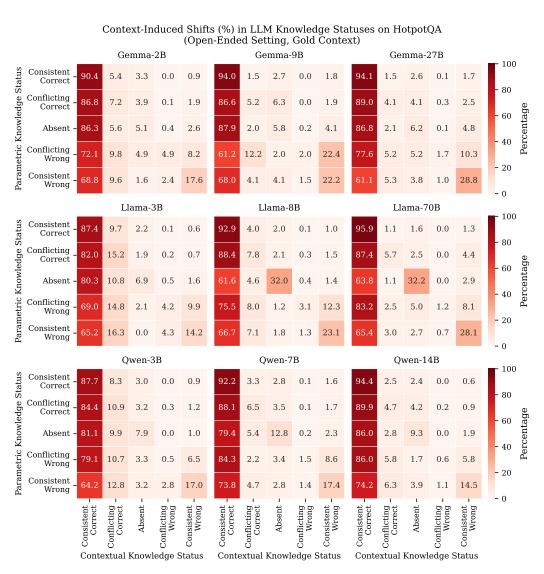


Figure 19: Shifts in knowledge status induced by gold context for each LLM on the HotpotQA dataset in the open-ended setting.

```
### Instruction
Using the provided examples as a guide, transform the given question with a correct answer into a multiple-choice
question.
Provide two additional incorrect options that are similar in type or category to the correct answer.
# Example 1
## Question: Which continent is the largest by land area?
## Correct Answer: Asia
## Incorrect Option 1: Africa
## Incorrect Option 2: Europe
# Example 2
## Question: Is the last name scott irish or scottish?
## Correct Answer: Scottish
## Incorrect Option 1: Irish
## Incorrect Option 2: English
# Example 3
## Question: Were Scott Derrickson and Ed Wood of the same nationality?
## Correct Answer: Yes
## Incorrect Option 1: No
## Incorrect Option 2: Maybe
# Your Task
## Question: {QUESTION}
## Correct Answer: {ANSWER}
```

Figure 20: Few-shot prompt used with GPT-40 to generate incorrect options.

```
### Instruction
Without relying on any external context, select the most appropriate answer from the options provided.
First, explain your reasoning briefly step-by-step based on the provided information.
Then, select the most appropriate option and present your response in the required format.
### Question:
{QUESTION}
### Choices:
Option 1: {OPTION_1}
Option 2: {OPTION 2}
Option 3: {OPTION 3}
Provide your response in the following format:
<answer>Option [number]</answer>
### Instruction
You are given some context and a multiple-choice question.
Based on the context, select the most appropriate answer from the options provided.
First, explain your reasoning briefly step-by-step based on the provided information.
Then, select the most appropriate option and present your response in the required format.
### Context:
{CONTEXT}
### Question:
{QUESTION}
### Choices:
Option 1: {OPTION 1}
Option 2: {OPTION_2}
Option 3: {OPTION_3}
Provide your response in the following format:
<answer>Option [number]</answer>
```

Figure 21: Instruction prompt for sampling model responses without (top) and with (bottom) context.

```
The following context comes from credible sources such as peer-reviewed PubMed articles:

- **{ARTICLE_TITLE}**, *{JOURNAL_TITLE}**, published on {PUBLICATION_DATE}.

Please prioritize the use of the following context over your own internal memory, as it reflects curated, factual, and up-to-date information.

{CONTEXT}

The following context comes from credible sources such as verified Wikipedia pages:

- **{WIKIPEDIA_TITLE}** from Wikipedia.

Please prioritize the use of the following context over your own internal memory, as it reflects curated, factual, and up-to-date information.

{CONTEXT}
```

Figure 22: Context augmentation prompts for inserting metadata in healthcare-related datasets (top) and general-domain datasets (bottom).

```
## Instruction
Summarize the given context.
Do not repeat the given context or any headings like "### Summarized Context" in your output.
Only return the revised summary.

## Input
### Given Context: {CONTEXT}

## Your Task
### Summarized Context:
```

Instruction

Summarize the given context by reducing its overall length (i.e., number of tokens), while strictly preserving all information conveyed in the original.

Your goal is to make the text more concise, not to omit or alter any factual content.

Follow these constraints:

- 1. Preserve all semantic content from the given context. Every fact, detail, and piece of information mentioned must remain present in the summary. Nothing should be lost or distorted.
- 2. Maintain the naturalness and fluency of the text. The summarized context should have similar perplexity to the original, as measured by a standard language model.
- 3. Ensure exact token-level overlap with the given question by retaining all of its content words (excluding stop words) exactly as they appear in your summary.

Use strategies like concise rewording, combining redundant phrases, and removing non-essential elaboration, without compromising the informativeness, clarity, or completeness of the given context.

Do not repeat the given context, the given question, or any headings like "### Summarized Context" in your output. Only return the revised summary.

```
## Input
### Given Question: {QUESTION}
### Given Context: {CONTEXT}

## Your Task
### Summarized Context:
```

Figure 23: Instruction prompt used with GPT-40 to generate naïve (top) and constrained (bottom) context summarization.