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Abstract

Characterizing a large language model’s (LLM’s) knowledge of a given question is
challenging. As a result, prior work has primarily examined LLM behavior under
knowledge conflicts, where the model’s internal parametric memory contradicts
information in the external context. However, this does not fully reflect how well
the model knows the answer to the question. In this paper, we first introduce a
taxonomy of five knowledge statuses based on the consistency and correctness of
LLM knowledge modes. We then propose KScope, a hierarchical framework of
statistical tests that progressively refines hypotheses about knowledge modes and
characterizes LLM knowledge into one of these five statuses. We apply KScope to
nine LLMs across four datasets and systematically establish: (1) Supporting context
narrows knowledge gaps across models. (2) Context features related to difficulty,
relevance, and familiarity drive successful knowledge updates. (3) LLMs exhibit
similar feature preferences when partially correct or conflicted, but diverge sharply
when consistently wrong. (4) Context summarization constrained by our feature
analysis, together with enhanced credibility, further improves update effectiveness
and generalizes across LLMs.

1 Introduction

LLMs [15, 24, 55, 72] memorize information from their training corpora as parametric knowledge [3,
4, 5, 58]. They may further incorporate grounded and up-to-date contextual knowledge from user
prompts for knowledge-intensive tasks [14, 34, 60]. Knowledge conflicts can arise when an LLM’s
parametric knowledge contradicts the contextual input [71]. Existing work has sought to measure
and understand LLM behavior under these conflicting conditions [11, 30, 39, 68, 69, 76].

However, prior studies on knowledge conflicts do not fully characterize an LLM’s underlying
knowledge of a given question. Recent work usually represents LLM’s knowledge via the most likely
response [30, 62, 69], which may overlook the coexistence of multiple competing modes in an answer
distribution. Moreover, entropy-based uncertainty metrics [11, 39] capture overall uncertainty instead
of mode structure, and would assign similar entropy values (approximately 1.37) to distributions
[0.45, 0.45, 0.1] and [0.6, 0.2, 0.2]. Yet the first distribution reflects conflicting knowledge, while the
second shows consistent preference.

To address this gap, we define a taxonomy of five knowledge statuses along two key dimensions and
propose KScope, a hierarchical testing framework for characterizing knowledge status. As shown
in Figure 1, we assess knowledge consistency by examining the size of an LLM’s mode set, and
evaluate knowledge correctness relative to the ground truth. Based on these two dimensions, we
identify five distinct knowledge statuses: (1) consistent correct, (2) conflicting correct, (3) absent,
(4) conflicting wrong, and (5) consistent wrong. We construct an empirical response distribution by
repeatedly sampling the target LLM, and leverage KScope to progressively refine hypotheses about
its underlying knowledge modes.
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Example
Question  :
    Who received the first Nobel Prize in physics?

Supporting Context  :
    The Nobel Prize in Physics is awarded ...

Support Set  :
     : Wilhelm Röntgen (WR)
     : Marie Curie (MC)
     : Albert Einstein (AE)

Correct Answer  :
     : Wilhelm Röntgen (WR)

Knowledge Update to LLM   :
    Parametric Knowledge Status: Conflicting Correct
    Parametric Knowledge Modes:   = {WR, MC}

 with Supporting Context 
    Contextual Knowledge Status: Consistent Correct
    Contextual Knowledge Modes:   = {WR}

Figure 1: We propose a taxonomy of five knowledge statuses based on the consistency and correctness
of LLM knowledge modes. We illustrate the taxonomy using an LLM’s parametric knowledge modes
Yp in a three-option classification task. This formulation also applies to contextual knowledge modes
Yq and generalizes to open-ended questions or classification tasks with more options.

We evaluate the knowledge status of nine LLMs across four datasets (Section 5), and find that
supporting context increases the proportion of consistent correct knowledge across all datasets and
models. In the multi-choice setting, we note that the two healthcare-related datasets (Hemonc [64]
and PubMedQA [26]) exhibit lower levels of consistent correct knowledge than the general-domain
datasets (NQ [32] and HotpotQA [74]), both before and after providing context. Within each model
family, larger LLMs exhibit higher proportions of consistent correct parametric knowledge. Among
them, Llama-3 [15] achieves the highest proportion, followed by Qwen-2.5 [72] and Gemma-2 [55],
although these differences narrow when context is introduced. Finally, we show that noisy retrieval
and open-ended question settings substantially reduce the effectiveness of updating LLMs to exhibit
consistently correct knowledge.

We next examine what features of the input context successfully update LLM knowledge to the
consistent correct status (Section 6). We select eleven context features across three categories—
difficulty, relevance, and familiarity, and show that all three feature categories contribute, with context
length and entropy consistently valued across statuses. We also find that LLMs prioritize context
features similarly when they are partially correct or exhibit conflicting knowledge, regardless of
correctness. In contrast, the consistent wrong status shows relatively low correlations with other
statuses, suggesting that overcoming strongly held false beliefs may require distinct context features.

Finally, we explore context augmentation strategies to improve the success rate of knowledge updates
(Section 7). We find that context summarization with constraints informed by our feature importance
analysis outperforms naïve summarization. When combined with enhanced context credibility [70],
this approach improves the proportion of successful knowledge updates by 4.3% on average across
all statuses—even in GPT-4o [24], which was not included in our feature analysis.

We summarize our contributions1 in this paper as follows:

• We define a taxonomy of five knowledge statuses based on consistency and correctness, and
propose KScope, a hierarchical testing framework to characterize LLM knowledge status.

• We apply KScope to nine LLMs across four datasets, and establish that supporting context
substantially narrows knowledge gaps across model sizes and families.

• We identify key context features related to difficulty, relevance, and familiarity that drive
successful knowledge updates.

• We reveal how LLM feature importance differs based on parametric knowledge status,
showing similarity under conflict but divergence when consistently wrong.

• We validate that constrained context summarization, combined with improved credibility,
significantly boosts successful knowledge updates across all statuses and generalizes well.

1Our code is available at https://github.com/xiaoyuxin1002/KScope.
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Figure 2: We propose KScope, a hierarchical testing framework to characterize LLM knowledge into
one of the five identified statuses. We note that our framework generalizes to questions with larger
support sets by repeating Step 3 to iteratively refine hypotheses about the knowledge mode set.

2 Related Work
Knowledge Characterization. LLMs have been shown to memorize world knowledge from their
training corpora [3, 4, 5, 10, 44, 47, 58]. Existing work interprets this memorization mechanism by
probing activation patterns [7, 8, 23, 33] and benchmarks the factual accuracy of recalled information
against knowledge graphs [36, 78, 82]. Researchers have employed multi-round prompting to improve
the consistency [43, 61, 77] and calibration [19, 31, 73] of the knowledge elicited from LLMs. In this
work, we identify five knowledge statuses that an LLM may exhibit with respect to a given question
and explicitly characterize them through a hierarchical statistical testing framework.

Knowledge Conflict. Knowledge conflict can arise within an LLM’s parametric memory, within
the provided context, or between the two [71]. Prior work has examined various contextual factors
that influence a model’s degree of compliance [53, 54, 57, 70] and introduced metrics to quantify the
persuasiveness of context [11, 39]. These studies find that LLMs tend to follow the context when
they are uncertain [45, 68, 76] or when there is confirmation bias between the model’s memory and
the context [30, 69]. Large-scale evaluation benchmarks and pipelines have also been developed
to facilitate research in this area [20, 51, 62]. However, prior work usually uses a single sampled
response to represent model memory [30, 62, 69] and applies entropy-based measures [11, 39] to
assess conflict, both of which overlook the mode structure of the response distribution. In contrast, we
define five knowledge statuses to measure the consistency and correctness of knowledge, rigorously
test different mode structures, and stratify our analysis of model behavior based on these statuses.

Knowledge Update. To incorporate accurate and up-to-date information, retrieval-augmented
generation (RAG) systems [6, 14, 17, 34, 46, 49] retrieve relevant context from external corpora
to support LLMs in knowledge-intensive tasks. The retrieved context can be further augmented
to enhance the effectiveness of knowledge updates [53, 57, 70]. Other approaches directly edit a
model’s parametric knowledge [12, 18, 59, 60] or apply mechanistic interventions at inference time
[27, 35, 80]. In this work, we examine knowledge updates under both gold and noisy retrieval settings
and systematically evaluate various context augmentation strategies tailored to each knowledge status.

3 LLM Knowledge Status and How to Characterize it

3.1 LLM Knowledge Status: Consistency and Correctness

When analyzing an LLM’s knowledge, we focus on two key dimensions:

1. Consistency: How consistent are the model’s knowledge modes? That is, does it exhibit a
single coherent belief or multiple conflicting ones?

2. Correctness: Does the set of the model’s knowledge modes include the correct answer?

To formalize this, consider a question-answer pair (x, y∗). We define the parametric knowledge of
an LLM f , with respect to the question x, as the conditional multinomial distribution p = f(· |x)
over the support set Y = {y1, . . . , yd}, where pi = f(yi |x). We further define the set of parametric
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(a) Distribution of Parametric Knowledge Statuses (Multi-Choice Setting, No Context)
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(b) Distribution of Contextual Knowledge Statuses (Multi-Choice Setting, Gold Context)

Figure 3: Characterization results from applying the KScope framework to nine LLMs across
four datasets. Overall, most LLMs exhibit the highest proportion of consistent correct parametric
knowledge status, which further increases when gold context is provided.

knowledge modes Yp = modes(p) ⊆ Y as the subset that satisfies the following condition: pi = pj
for any yi, yj ∈ Yp and pi > pk for any yk /∈ Yp. In essence, the knowledge modes form a plateau
of high-probability elements within the support set that are distinguishable from the rest.

To assess the consistency dimension, we examine three possible structures of Yp: (1) Yp = Y , (2)
1 < |Yp| < |Y|, and (3) |Yp| = 1, where | · | denotes the cardinality of a set. We evaluate correctness
by checking whether the ground-truth answer y∗ ∈ Yp. Based on these two dimensions, we formulate
a taxonomy of five parametric knowledge statuses P = status(Yp), as illustrated in Figure 1, that
characterize the knowledge of f with respect to the question x:

1. Consistent Correct Knowledge: |Yp| = 1 and y∗ ∈ Yp.
2. Conflicting Correct Knowledge: 1 < |Yp| < |Y| and y∗ ∈ Yp.
3. Absent Knowledge: Yp = Y .
4. Conflicting Wrong Knowledge: 1 < |Yp| < |Y| and y∗ /∈ Yp.
5. Consistent Wrong Knowledge: |Yp| = 1 and y∗ /∈ Yp.

When supporting context c is available for the question-answer pair, we define the LLM’s contextual
knowledge as q = f(· |x, c). Analogously, we assign its contextual knowledge status Q = status(Yq)
based on the corresponding knowledge modes Yq = modes(q) ⊆ Y .

3.2 Challenges in Operationalizing Knowledge Status

While the taxonomy introduced in Section 3.1 offers a principled view of LLM knowledge status,
applying it in practice poses several challenges. First, the true underlying distributions of LLM
knowledge are unobservable. Second, even under the same knowledge status, models may behave
differently. For instance, when an LLM lacks sufficient knowledge about a question, it may either
respond randomly or refuse to answer altogether [22, 66].

To address the first challenge, we approximate the latent knowledge distributions using empirical
sample frequencies. Specifically, we first generate M paraphrases of a given question to reduce
prompt sensitivity [48], then collect N chain-of-thought responses [65] from the target LLM using
these paraphrases. For open-ended generation, we define the support set Y by semantically clustering
the N samples [31]. For multiple-choice tasks, Y is simply the set of given options.
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Figure 4: Context-induced shifts in knowledge status distributions. Supporting context increases
the proportion of consistent correct knowledge across all datasets and models. The Llama family
and larger models within each family achieve higher proportions of consistent correct knowledge,
although the gaps narrow with context.

We then account for the second challenge by considering the possibility of invalid model responses.
These include hallucinating answers outside the support set [22] or refusing to respond in high-
stakes applications [66]. Let N ′ denote the number of invalid responses. We estimate the empirical
distribution p̂ (and analogously, q̂) by: p̂i = 1

N−N ′

∑N
n=1 1[fn(x) = yi],∀yi ∈ Y .

3.3 KScope: Knowledge Status Characterization via Hierarchical Testing

To bridge the gap between the true latent knowledge distributions discussed in Section 3.1 and
the empirical distributions estimated in Section 3.2, we introduce KScope, a hierarchical testing
framework for knowledge status characterization. We illustrate the testing details in Figure 2.

Step 1: Test for the Significance of Invalid Answers. We first assess whether the model exhibits a
higher tendency to produce invalid responses via a one-sided exact binomial test.

Step 2: Test for Uniform Guessing. Next, we test whether the LLM’s empirical response distribution
significantly deviates from a uniform distribution using a two-sided exact multinomial test.

Step 3: Test for Conflicting Knowledge. Subsequently, we perform a set of likelihood ratio tests
to refine the model’s knowledge mode set. Alternatives whose estimated probabilities violate their
own inequality constraints are immediately rejected. If multiple alternatives remain significant after
Bonferroni correction, we select the one with the lowest Bayesian Information Criterion (BIC). For
larger support sets, we repeat this step to remove low-probability elements from the mode set.

Step 4: Test for Consistent Knowledge. The previous step reduces the model’s knowledge mode set
to two elements. Conditioned on the selected alternative in Step 3, we then test whether the model
assigns significantly different probabilities to the two remaining elements using two one-sided exact
binomial tests. As before, we discard invalid alternatives and, if multiple alternatives are accepted,
select the one with the lowest BIC.

4 Experiment Setup

Datasets. We focus on four tasks, two from the healthcare domain and two from the general domain:

• Hemonc [64] is a healthcare dataset extracted from a regularly maintained oncology refer-
ence database. It consists of 6,212 clinical study instances, each comparing the efficacy of a
regimen versus a comparator for a given medical condition, labeled as superior, inferior, or
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Figure 5: Characterization results from applying KScope to nine LLMs on HotpotQA across different
settings. Compared to (b), where gold context in the multi-choice setting enables more consistent
correct knowledge, (c) noisy context and (e) the open-ended setting yield lower update success.
Without context, the Gemma family shows more absent knowledge in (d) the open-ended setting than
in (a) the multi-choice setting, whereas the Llama and Qwen families mostly show the opposite trend.

no difference. To reduce positional bias, we permute the order of each regimen–comparator
pair. The context for each question consists of abstracts from the associated PubMed articles.

• PubMedQA [26] consists of 1,000 medical research questions, each labeled with a yes, no,
or maybe answer. The context comes from the corresponding PubMed abstracts.

• NQ [32] contains 3,596 Google search queries, retrieving Wikipedia pages as context.
• HotpotQA [74] contains 6,119 multi-hop reasoning questions in the general domain, using

sentence-level supporting facts extracted from relevant Wikipedia articles as context.

Unless otherwise specified, all the supplied contexts here contain ground-truth evidence. When
comparing LLMs’ knowledge statuses in the multi-choice setting, we convert NQ and HotpotQA into
three-option classification tasks. Following [70], we prompt GPT-4o [24] to generate two additional
wrong options for each question (details in Appendix A). We note that although not evaluated here,
KScope remains applicable to classification with more options, as discussed in Section 3.

Implementation Details. We evaluate nine instruction-tuned LLMs spanning three model families:
Gemma-2 (2B, 9B, 27B) [55], Llama-3 (3B, 8B, 70B) [15], and Qwen-2.5 (3B, 7B, 14B) [72].
We keep the LLMs’ sampling distributions unchanged by setting the temperature to 1, and fix the
significance level used in KScope at α = 0.05. A hyperparameter search on Hemonc using Llama-8B
(details in Appendix A) shows that knowledge status characterization empirically stabilizes after
N = 100 samples, using M = 20 paraphrases per question.

5 Q1: How Does Context Update LLMs’ Knowledge Status?

Using the setup in Section 4, we first characterize the distributions of LLMs’ parametric and contextual
knowledge statuses in the multi-choice setting and examine how gold context induces shifts between
them in Section 5.1. We further investigate the effects of noisy context in Section 5.2 and analyze
knowledge status distributions in the open-ended setting in Section 5.3.

5.1 Knowledge Status in the Multi-Choice Setting with Gold Context

We apply KScope to the nine LLMs across the four datasets in the multi-choice setting and present
the results in Figure 3. When relying solely on parametric knowledge (Figure 3 (a)), LLMs exhibit
consistent knowledge—whether correct or wrong—more frequently than conflicting knowledge.
When conflicting knowledge occurs, the correct answer is usually among the knowledge modes.
Some outliers show a higher proportion of absent knowledge, such as Gemma-2B on Hemonc.

When LLMs are provided with gold context (Figure 3 (b)), the proportion of consistent correct
knowledge status significantly increases across all datasets and models, with the largest improvement
in HotpotQA and the smallest in Hemonc. This highlights the effectiveness of retrieval-augmented
generation [6, 14, 17, 34], which aims to enhance LLMs’ knowledge with relevant external infor-
mation. However, in some cases, context may confuse LLMs, leading them to guess randomly
and increasing the proportion of absent knowledge. For example, this occurs with Qwen-3B on
PubMedQA and the Gemma family on NQ, likely due to longer context lengths in these datasets—an
issue we further investigate in Section 6.
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Figure 6: Context features appearing among the top five most important in at least 50% of the
cases for each parametric knowledge status. Each color indicates a feature category: orange for
difficulty, blue for relevance, and purple for familiarity. Across all statuses, context length and entropy
consistently rank among the most important features.

We further examine how gold context shifts the distribution of each knowledge status. Figure 4 (a)
presents dataset-level shifts, where distributions of knowledge status are averaged across the nine
LLMs. We observe that Hemonc and PubMedQA exhibit lower proportions of consistent correct
knowledge than NQ and HotpotQA, both before and after context is provided. Additionally, the gold
context slightly increases the ratio of conflicting correct knowledge in Hemonc and absent knowledge
in PubMedQA, highlighting the challenges introduced by medical-domain context [9, 50, 56, 63].

Within each LLM family, we find that larger models consistently exhibit higher proportions of
consistent correct knowledge, both before and after providing context (Figure 4 (b)) [5, 37]. Llama
achieves the highest proportion of consistent correct parametric knowledge, followed by Qwen and
Gemma, although this gap narrows once context is introduced. Appendix B details how gold context
shifts each LLM’s knowledge among different statuses on each dataset in the multi-choice setting.

5.2 Knowledge Status in the Multi-Choice Setting with Noisy Context

To investigate LLMs’ knowledge status under more realistic retrieval conditions, we apply KScope to
the nine LLMs using the top ten Wikipedia paragraphs retrieved for each HotpotQA question, which
may or may not include the gold supporting context. As shown in Figure 5 (c), noisy context results
in a much lower success rate of updating models to consistent correct knowledge compared to gold
context in (b), highlighting the importance of retrieval quality in RAG systems [6, 14, 17, 34, 46, 49].
When the retrieved noisy context lacks evidence for the ground-truth answer, models either refuse
to answer, leading to more absent knowledge, or are misled into producing consistently incorrect
answers. More details on noisy context-induced shifts in knowledge status are in Appendix B.

5.3 Knowledge Status in the Open-Ended Setting with Gold Context

To demonstrate the generalizability of KScope to open-ended questions [28, 67], we apply it to
characterize the knowledge status of the nine LLMs on HotpotQA, this time without providing
any pre-defined answer options. Specifically, we generate responses per question and semantically
cluster [31] them using gemma-2-9b-it [55]. Based on the size of clusters and the number of invalid
answers, we follow the procedure in Section 3.3 to infer the LLM’s knowledge status.

As shown in Figure 5 (d), knowledge status distributions vary notably across model families. Without
pre-defined options or contextual support, the Gemma family often refuses to answer, leading to a
higher proportion of absent knowledge compared to the multi-choice setting in (a). In contrast, Llama
and Qwen show a substantial increase in the consistent correct knowledge under these conditions,
with the exception of Qwen-14B. Gold context still significantly boosts consistent correct knowledge
in the open-ended setting in (e), though the improvement is smaller than in the multi-choice setting in
(b). Appendix B provides more details on the shift in knowledge status in the open-ended setting.

6 Q2: What Context Features Drive the Desired Knowledge Update?

Based on the results in Section 5, we seek to understand what context features drive increases in
consistent correct knowledge. We introduce three categories of context features in Section 6.1, and
inspect feature importance for each knowledge status in Section 6.2. To enable direct comparison
across datasets, we focus on the multi-choice setting with gold context in the following sections.
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6.1 Context Features

We consider eleven context features across three categories:

• Difficulty: (1) Context Length; (2) Readability, measured by the Flesch-Kincaid readabil-
ity test [29], which is based on the average number of words per sentence and syllables per
word; and (3) Number of Unique Tokens (# Uniq Tkns) after lemmatization.

• Relevance: (1) Embedding Similarity (Emb Sim), computed as the cosine similarity be-
tween the embeddings of each question and its corresponding context using text-embedding-
3-large [40]; and (2–4) ROUGE-2 Recall, Precision, and F1 (ROUGE-2 R/P/F), based on
the bigram overlap between each question and its corresponding context.

• Familiarity: (1–2) Question and Context Perplexity, and (3–4) Question and Context
Entropy, as measured by each LLM.

We define a binary label indicating whether context successfully updates an LLM’s parametric
knowledge to the consistent correct status. As described in Section 4, for each combination of
dataset, LLM, and initial parametric knowledge status, we formulate a stratified binary classification
task. We apply logistic regression with L2 regularization to the extracted features and discard cases
where performance does not exceed a dummy baseline in Macro-F1, due to extreme class imbalance.
Implementation details and full regression results are in Appendix C.

We compute feature importance by averaging the absolute SHAP values [38] of each feature within
each stratified combination. We then calculate the normalized frequency with which each feature
appears among the top five most important features across datasets and LLMs. This yields a
frequency-based ranking for each initial parametric knowledge status.

6.2 Feature Importance for Context-Driven Knowledge Update

We plot in Figure 6 the context features that appear among the top five most important in at least
50% of the cases identified in our experiments. The results include features from all three cat-
egories: difficulty, relevance, and familiarity. This aligns with [11, 57], which find that context
relevance influences context persuasiveness. Among the five parametric knowledge statuses, the
consistent wrong knowledge status exhibits a flatter distribution of top feature frequencies com-
pared to the others, suggesting that LLMs in this status place less emphasis on any specific feature.
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Figure 7: Spearman rank correlation among para-
metric knowledge statuses based on feature impor-
tance rankings. An asterisk indicates statistical sig-
nificance at a Bonferroni-adjusted αadj = 0.005.

Notably, context length and entropy consistently
rank high across all statuses.

To assess whether LLMs in distinct parametric
knowledge statuses prioritize context features
similarly, we compute Spearman rank correla-
tions with Bonferroni correction from feature
importance rankings. As shown in Figure 7,
correlations are statistically significant between
consistent correct and both conflicting correct
and absent knowledge. This suggests a confirma-
tion bias [30, 69]: when context at least partially
aligns with the model’s knowledge modes, the
model attends to context features similarly. We
also observe a significant correlation between
conflicting correct and conflicting wrong, indi-
cating similar feature preferences during knowl-
edge conflict [45, 68, 76], regardless of correct-
ness. In contrast, the consistent wrong status
shows relatively low correlations with others,
implying that overcoming a firmly held wrong
belief may require different context features.

7 Q3: What Context Augmentations Work Best Across Knowledge Statuses?

In this section, we leverage the insights from our feature importance analysis in Section 6 to improve
knowledge updates in LLMs. We again focus on the multi-choice setting with gold context.
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Figure 8: Absolute change (%) in the success rate of knowledge updates for each context augmentation
strategy, relative to the original context and averaged across datasets. Integrating credibility metadata
into constrained summarization improves the success rate by 4.3% on average across LLMs and
statuses, and generalizes well to GPT-4o.

7.1 Context Augmentation Strategies

We apply the following augmentation strategies to the original context of the datasets in Section 4:

• Credibility [70]: To enhance context credibility, we append the relevant PubMed metadata
to the context for Hemonc and PubMedQA, and the corresponding Wikipedia article titles for
NQ and HotpotQA. When sampling responses with context, we instruct LLMs to prioritize
the credible context over their internal parametric knowledge (details in Appendix D).

• Naïve Summarization: We leverage GPT-4o [24] to directly summarize context.
• Constrained Summarization: We guide summarization with additional constraints to

adjust the context features according to our analysis results. Specifically, we prompt GPT-
4o to reduce both context length and the number of unique tokens during summarization.
Additionally, GPT-4o is instructed to preserve the semantic content (maintaining embedding
similarity with the question), retain token-level overlap (maintaining ROUGE-2 recall and
precision), and ensure fluency (preserving context perplexity and entropy).

• Combined: We integrate the credibility information into the context generated from con-
strained summarization.

We then investigate how each augmentation strategy affects the success rate of knowledge updates
compared to the original context, for each knowledge status. We evaluate these strategies on
three LLMs of varying sizes and families: Llama-3.1-8B-Instruct [15] (Llama-8B), Qwen2.5-14B-
Instruct [72] (Qwen-14B), and GPT-4o. Although GPT-4o was not included in the feature analysis in
Section 6, we assess it here to examine whether our findings generalize to other LLMs. We present
the average results across the four datasets in Figure 8 and the full details in Appendix D.

7.2 Effectiveness of Context Augmentations

As shown in Figure 8, constrained summarization improves the success rate across all knowledge
statuses except the consistent wrong status. This aligns with our finding in Figure 7 that correcting a
consistent wrong belief may require different context features than in other cases. Furthermore, this
constrained summarization strategy generalizes well to GPT-4o.

In contrast, naïve summarization always hurts the performance. We plot in Figure 9 the normalized
feature space for the nine affected features on Hemonc (question perplexity and entropy remain
unchanged by context summarization). Both summarization methods reduce context length and
the number of unique tokens, while increasing context perplexity and entropy. However, naïve
summarization fails to preserve fluency and key semantic content, resulting in harder readability and
lower ROUGE-2 recall. In comparison, constrained summarization improves embedding similarity,
ROUGE-2 precision, and F1 more effectively. These differences in the augmented feature space
explain the gap in success rates and underscore the importance of our feature analysis in Section 6.
Details for other datasets are in Appendix D.

On the other hand, credibility is more effective for the consistent wrong status, as illustrated in
Figure 8. This suggests that when an LLM consistently holds a wrong belief, adding credibility
metadata to context makes it more persuasive [70]. The combined strategy retains the benefits
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Figure 9: Normalized feature space for original and summarized contexts of Hemonc, measured
by Llama-3.1-8B-Instruct. Naïve summarization hurts readability and ROUGE-2 recall, while
constrained summarization yields higher embedding similarity, ROUGE-2 precision, and F1.

of constrained summarization for the first four statuses and further improves the success rate for
consistent wrong, beyond what credibility alone achieves. Overall, it enhances the success rate by
4.3% on average across all statuses and LLMs, compared to using the original context.

8 Discussion

Conclusion. In this paper, we first propose a taxonomy of five knowledge statuses based on
consistency and correctness. We then introduce KScope, a hierarchical testing framework that
characterizes knowledge status by progressively refining hypotheses about an LLM’s knowledge
modes. By applying KScope to nine LLMs across four datasets, we establish: (1) Supporting
context substantially narrows knowledge gaps across LLMs. (2) Features related to context difficulty,
relevance, and familiarity drive successful knowledge updates. (3) LLMs attend to features similarly
when their knowledge modes are partially aligned with the correct answer or internally conflicting, but
diverge sharply when consistently wrong. (4) Constrained context summarization guided by feature
analysis, combined with enhanced credibility, further boosts update effectiveness and generalizes
across models. These findings provide valuable insights into LLMs’ knowledge mechanism [58] and
underscore the importance of tailoring knowledge update strategies [14, 60] to different knowledge
statuses in future work.

Limitations. Our feature importance analysis in Section 6 focuses on eleven features across three
categories. However, it remains underexplored how more nuanced stylistic context features [11, 57,
70] impact LLM knowledge status. Although the KScope framework supports classification tasks
with any number of options [52, 81], we restrict our experiments to three-option classification due
to computational constraints. We also experiment with real-world noisy retrieval, but such context
can include conflicting information [20, 51] in practical RAG systems [6, 14, 17, 34, 46, 49], posing
additional challenges. We leave the investigation of how context affects LLM knowledge status under
these more complex conditions to future work.

Broader Impacts. LLMs are widely deployed in everyday user–chatbot applications [1, 24] and high-
stakes domains such as healthcare [42, 56] and legal services [13, 16]. However, prior work [11, 39,
53, 54, 57, 70, 71] lacks a formal framework for characterizing LLM knowledge status, especially as
these statuses may shift in response to varied input context. The challenge becomes more concerning
when training data contains misinformation [2, 41], leading models to develop consistently wrong
beliefs. Our analysis in Section 6 shows that correcting these beliefs often requires different context
features than those needed for other knowledge statuses. The proposed KScope framework also
relates to hallucination detection [22, 25, 79] and uncertainty quantification [21, 31, 75] in LLMs.
By identifying knowledge status, it helps distinguish between hallucinations due to absent knowledge
and uncertainty due to knowledge conflicts. These connections underscore the practical utility of
KScope and its broader impact on improving LLM reliability.

10



Acknowledgements

YX is supported by the MIT IDSS Fellowship. MG is supported in part by a National Science
Foundation (NSF) 22-586 Faculty Early Career Development Award (#2339381), a Gordon &
Betty Moore Foundation award, a Google Research Scholar award, and the AI2050 Program at
Schmidt Sciences. SC, JG, and DB are supported by the National Institutes of Health National
Cancer Institute (U54CA274516-01A1 [SC, D.S.B.], R01CA294033-01 [JG, D.S.B.]), the Amer-
ican Cancer Society and American Society for Radiation Oncology ASTRO-CSDG-24-1244514-
01-CTPS Grant (DOI: https://doi.org/10.53354/ACS.ASTRO-CSDG-24-1244514-01-CTPS.
pc.gr.222210) [D.S.B.], a Patient-Centered Outcomes Research Institute (PCORI) Project Program
Award (ME-2024C2-37484) [D.S.B.], and the Woods Foundation [D.S.B.]. All statements in this
report, including its findings and conclusions, are solely those of the authors and do not necessarily
represent the views of the sponsors, and no official endorsement should be inferred.

References
[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Al-

tenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint, 2023.

[2] D. A. Alber, Z. Yang, A. Alyakin, E. Yang, S. Rai, A. A. Valliani, J. Zhang, G. R. Rosenbaum,
A. K. Amend-Thomas, D. B. Kurland, et al. Medical large language models are vulnerable to
data-poisoning attacks. Nature Medicine, pages 1–9, 2025.

[3] Z. Allen-Zhu and Y. Li. Physics of language models: Part 3.1, knowledge storage and extraction.
In ICML, 2024.

[4] Z. Allen-Zhu and Y. Li. Physics of language models: Part 3.2, knowledge manipulation. In
ICLR, 2025.

[5] Z. Allen-Zhu and Y. Li. Physics of language models: Part 3.3, knowledge capacity scaling laws.
In ICLR, 2025.

[6] A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi. Self-RAG: Learning to retrieve, generate,
and critique through self-reflection. In ICLR, 2024.

[7] T. Bricken, A. Templeton, J. Batson, B. Chen, A. Jermyn, T. Conerly, N. Turner, C. Anil,
C. Denison, A. Askell, R. Lasenby, Y. Wu, S. Kravec, N. Schiefer, T. Maxwell, N. Joseph,
Z. Hatfield-Dodds, A. Tamkin, K. Nguyen, B. McLean, J. E. Burke, T. Hume, S. Carter,
T. Henighan, and C. Olah. Towards monosemanticity: Decomposing language models with
dictionary learning. Transformer Circuits Thread, 2023.

[8] C. Burns, H. Ye, D. Klein, and J. Steinhardt. Discovering latent knowledge in language models
without supervision. In ICLR, 2023.

[9] F. Busch, L. Hoffmann, C. Rueger, E. H. van Dijk, R. Kader, E. Ortiz-Prado, M. R. Makowski,
L. Saba, M. Hadamitzky, J. N. Kather, et al. Current applications and challenges in large
language models for patient care: a systematic review. Communications Medicine, 2025.

[10] N. Carlini, D. Ippolito, M. Jagielski, K. Lee, F. Tramèr, and C. Zhang. Quantifying memorization
across neural language models. In ICLR, 2023.

[11] K. Du, V. Snæbjarnarson, N. Stoehr, J. White, A. Schein, and R. Cotterell. Context versus prior
knowledge in language models. In ACL, 2024.

[12] J. Fang, H. Jiang, K. Wang, Y. Ma, J. Shi, X. Wang, X. He, and T.-S. Chua. Alphaedit:
Null-space constrained model editing for language models. In ICLR, 2025.

[13] Z. Fei, X. Shen, D. Zhu, F. Zhou, Z. Han, A. Huang, S. Zhang, K. Chen, Z. Yin, Z. Shen, et al.
Lawbench: Benchmarking legal knowledge of large language models. In EMNLP, 2024.

[14] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, M. Wang, and H. Wang.
Retrieval-augmented generation for large language models: A survey. arXiv preprint, 2023.

11

https://doi.org/10.53354/ACS.ASTRO-CSDG-24-1244514-01-CTPS.pc.gr.222210
https://doi.org/10.53354/ACS.ASTRO-CSDG-24-1244514-01-CTPS.pc.gr.222210


[15] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Vaughan, et al. The llama 3 herd of models. arXiv preprint, 2024.

[16] N. Guha, J. Nyarko, D. E. Ho, C. Re, A. Chilton, A. Narayana, A. Chohlas-Wood, A. Peters,
B. Waldon, D. Rockmore, D. Zambrano, D. Talisman, E. Hoque, F. Surani, F. Fagan, G. Sarfaty,
G. M. Dickinson, H. Porat, J. Hegland, J. Wu, J. Nudell, J. Niklaus, J. J. Nay, J. H. Choi,
K. Tobia, M. Hagan, M. Ma, M. Livermore, N. Rasumov-Rahe, N. Holzenberger, N. Kolt,
P. Henderson, S. Rehaag, S. Goel, S. Gao, S. Williams, S. Gandhi, T. Zur, V. Iyer, and Z. Li.
Legalbench: A collaboratively built benchmark for measuring legal reasoning in large language
models. In NeurIPS Datasets and Benchmarks Track, 2023.

[17] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M.-W. Chang. Realm: retrieval-augmented language
model pre-training. In ICML, 2020.

[18] T. Hartvigsen, S. Sankaranarayanan, H. Palangi, Y. Kim, and M. Ghassemi. Aging with grace:
lifelong model editing with discrete key-value adaptors. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, pages 47934–47959, 2023.

[19] B. Hou, Y. Liu, K. Qian, J. Andreas, S. Chang, and Y. Zhang. Decomposing uncertainty for
large language models through input clarification ensembling. In ICML, 2024.

[20] Y. Hou, A. Pascale, J. Carnerero-Cano, T. T. Tchrakian, R. Marinescu, E. M. Daly, I. Padhi,
and P. Sattigeri. Wikicontradict: A benchmark for evaluating LLMs on real-world knowledge
conflicts from wikipedia. In NeurIPS Datasets and Benchmarks Track, 2024.

[21] H.-Y. Huang, Y. Yang, Z. Zhang, S. Lee, and Y. Wu. A survey of uncertainty estimation in llms:
Theory meets practice. arXiv preprint arXiv:2410.15326, 2024.

[22] L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen, W. Peng, X. Feng, B. Qin,
et al. A survey on hallucination in large language models: Principles, taxonomy, challenges,
and open questions. ACM TOIS, 2025.

[23] R. Huben, H. Cunningham, L. R. Smith, A. Ewart, and L. Sharkey. Sparse autoencoders find
highly interpretable features in language models. In ICLR, 2023.

[24] A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark, A. Ostrow, A. Welihinda,
A. Hayes, A. Radford, et al. Gpt-4o system card. arXiv preprint, 2024.

[25] C. Jiang, B. Qi, X. Hong, D. Fu, Y. Cheng, F. Meng, M. Yu, B. Zhou, and J. Zhou. On large
language models’ hallucination with regard to known facts. In NAACL), pages 1041–1053,
2024.

[26] Q. Jin, B. Dhingra, Z. Liu, W. Cohen, and X. Lu. Pubmedqa: A dataset for biomedical research
question answering. In EMNLP-IJCNLP, 2019.

[27] Z. Jin, P. Cao, H. Yuan, Y. Chen, J. Xu, H. Li, X. Jiang, K. Liu, and J. Zhao. Cutting off the
head ends the conflict: A mechanism for interpreting and mitigating knowledge conflicts in
language models. In ACL Findings, 2024.

[28] E. Kamalloo, N. Dziri, C. Clarke, and D. Rafiei. Evaluating open-domain question answering
in the era of large language models. In ACL, 2023.

[29] J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, and B. S. Chissom. Derivation of new readability
formulas (automated readability index, fog count and flesch reading ease formula) for navy
enlisted personnel. Technical Report, Naval Technical Training Command Research Branch,
1975.

[30] E. Kortukov, A. Rubinstein, E. Nguyen, and S. J. Oh. Studying large language model behaviors
under context-memory conflicts with real documents. In COLM, 2024.

[31] L. Kuhn, Y. Gal, and S. Farquhar. Semantic uncertainty: Linguistic invariances for uncertainty
estimation in natural language generation. In ICLR, 2023.

12



[32] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein,
I. Polosukhin, J. Devlin, K. Lee, et al. Natural questions: A benchmark for question answering
research. TACL, 2019.

[33] W. Laurito, S. Maiya, G. Dhimoïla, O. Yeung, and K. Hänni. Cluster-norm for unsupervised
probing of knowledge. In EMNLP, 2024.

[34] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t.
Yih, T. Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks.
In NeurIPS, 2020.

[35] K. Li, O. Patel, F. Viégas, H. Pfister, and M. Wattenberg. Inference-time intervention: eliciting
truthful answers from a language model. In NeurIPS, 2023.

[36] X. Liu, F. Wu, T. Xu, Z. Chen, Y. Zhang, X. Wang, and J. Gao. Evaluating the factuality of
large language models using large-scale knowledge graphs. arXiv preprint, 2024.

[37] X. Lu, X. Li, Q. Cheng, K. Ding, X.-J. Huang, and X. Qiu. Scaling laws for fact memorization
of large language models. In EMNLP Findings, 2024.

[38] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In NeurIPS,
2017.

[39] S. Marjanovic, H. Yu, P. Atanasova, M. Maistro, C. Lioma, and I. Augenstein. Dynamicqa:
Tracing internal knowledge conflicts in language models. In EMNLP Findings, 2024.

[40] OpenAI. Text-embedding-3-large - OpenAI Platform. https://platform.openai.com/
docs/models/text-embedding-3-large. [Accessed 2025-03-12].

[41] Y. Pan, L. Pan, W. Chen, P. Nakov, M.-Y. Kan, and W. Wang. On the risk of misinformation
pollution with large language models. In EMNLP Findings, pages 1389–1403, 2023.

[42] C. Peng, X. Yang, A. Chen, K. E. Smith, N. PourNejatian, A. B. Costa, C. Martin, M. G. Flores,
Y. Zhang, T. Magoc, et al. A study of generative large language model for medical research and
healthcare. NPJ digital medicine, 2023.

[43] S. Pitis, M. R. Zhang, A. Wang, and J. Ba. Boosted prompt ensembles for large language
models. arXiv preprint, 2023.

[44] U. S. Prashanth, A. Deng, K. O’Brien, J. S. V, M. A. Khan, J. Borkar, C. A. Choquette-Choo,
J. R. Fuehne, S. Biderman, T. Ke, K. Lee, and N. Saphra. Recite, reconstruct, recollect:
Memorization in LMs as a multifaceted phenomenon. In ICLR, 2025.

[45] C. Qian, X. Zhao, and T. Wu. ”merge conflicts!”’ exploring the impacts of external knowledge
distractors to parametric knowledge graphs. In COLM, 2024.

[46] O. Ram, Y. Levine, I. Dalmedigos, D. Muhlgay, A. Shashua, K. Leyton-Brown, and Y. Shoham.
In-context retrieval-augmented language models. TACL, 2023.

[47] A. Schwarzschild, Z. Feng, P. Maini, Z. C. Lipton, and J. Z. Kolter. Rethinking LLM memoriza-
tion through the lens of adversarial compression. In NeurIPS, 2024.

[48] M. Sclar, Y. Choi, Y. Tsvetkov, and A. Suhr. Quantifying language models’ sensitivity to
spurious features in prompt design or: How i learned to start worrying about prompt formatting.
In ICLR, 2024.

[49] W. Shi, S. Min, M. Yasunaga, M. Seo, R. James, M. Lewis, L. Zettlemoyer, and W.-t. Yih.
Replug: Retrieval-augmented black-box language models. In NAACL, 2024.

[50] K. Singhal, S. Azizi, T. Tu, S. S. Mahdavi, J. Wei, H. W. Chung, N. Scales, A. Tanwani,
H. Cole-Lewis, S. Pfohl, et al. Large language models encode clinical knowledge. Nature,
2023.

13

https://platform.openai.com/docs/models/text-embedding-3-large
https://platform.openai.com/docs/models/text-embedding-3-large


[51] Z. Su, J. Zhang, X. Qu, T. Zhu, Y. Li, J. Sun, J. Li, M. Zhang, and Y. Cheng.
$\texttt{ConflictBank}$: A benchmark for evaluating the influence of knowledge conflicts
in LLMs. In NeurIPS Datasets and Benchmarks Track, 2024.

[52] S. A. Tabatabaei, S. Fancher, M. Parsons, and A. Askari. Can large language models serve as
effective classifiers for hierarchical multi-label classification of scientific documents at industrial
scale? In COLING Industry Track, pages 163–174, 2025.

[53] H. Tan, F. Sun, W. Yang, Y. Wang, Q. Cao, and X. Cheng. Blinded by generated contexts: How
language models merge generated and retrieved contexts when knowledge conflicts? In ACL,
2024.

[54] Y. Tao, A. Hiatt, E. Haake, A. Jetter, and A. Agrawal. When context leads but parametric
memory follows in large language models. In EMNLP, 2024.

[55] G. Team, M. Riviere, S. Pathak, P. G. Sessa, C. Hardin, S. Bhupatiraju, L. Hussenot, T. Mesnard,
B. Shahriari, A. Ramé, et al. Gemma 2: Improving open language models at a practical size.
arXiv preprint, 2024.

[56] A. J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, L. Gutierrez, T. F. Tan, and D. S. W. Ting.
Large language models in medicine. Nature medicine, 2023.

[57] A. Wan, E. Wallace, and D. Klein. What evidence do language models find convincing? In
ACL, 2024.

[58] M. Wang, Y. Yao, Z. Xu, S. Qiao, S. Deng, P. Wang, X. Chen, J.-C. Gu, Y. Jiang, P. Xie,
et al. Knowledge mechanisms in large language models: A survey and perspective. In EMNLP
Findings, 2024.

[59] P. Wang, Z. Li, N. Zhang, Z. Xu, Y. Yao, Y. Jiang, P. Xie, F. Huang, and H. Chen. Wise:
Rethinking the knowledge memory for lifelong model editing of large language models. In
NeurIPS, 2024.

[60] S. Wang, Y. Zhu, H. Liu, Z. Zheng, C. Chen, and J. Li. Knowledge editing for large language
models: A survey. ACM Computing Surveys, 2024.

[61] X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang, A. Chowdhery, and D. Zhou.
Self-consistency improves chain of thought reasoning in language models. In ICLR, 2023.

[62] Y. Wang, S. Feng, H. Wang, W. Shi, V. Balachandran, T. He, and Y. Tsvetkov. Resolving
knowledge conflicts in large language models. In COLM, 2024.

[63] Y. Wang, Y. Zhao, and L. Petzold. Are large language models ready for healthcare? a compara-
tive study on clinical language understanding. In ML4H, 2023.

[64] J. L. Warner, D. Dymshyts, C. G. Reich, M. J. Gurley, H. Hochheiser, Z. H. Moldwin, R. Be-
lenkaya, A. E. Williams, and P. C. Yang. Hemonc: A new standard vocabulary for chemotherapy
regimen representation in the omop common data model. Journal of biomedical informatics,
2019.

[65] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. H. Chi, Q. V. Le, D. Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS, 2022.

[66] B. Wen, J. Yao, S. Feng, C. Xu, Y. Tsvetkov, B. Howe, and L. L. Wang. Know your limits: A
survey of abstention in large language models. TACL, 2025.

[67] Z. Wen, Z. Tian, Z. Jian, Z. Huang, P. Ke, Y. Gao, M. Huang, and D. Li. Perception of knowledge
boundary for large language models through semi-open-ended question answering. In NeurIPS,
2024.

[68] K. Wu, E. Wu, and J. Zou. Clasheval: Quantifying the tug-of-war between an LLM’s internal
prior and external evidence. In NeurIPS Datasets and Benchmarks Track, 2024.

[69] J. Xie, K. Zhang, J. Chen, R. Lou, and Y. Su. Adaptive chameleon or stubborn sloth: Revealing
the behavior of large language models in knowledge conflicts. In ICLR, 2024.

14



[70] R. Xu, B. Lin, S. Yang, T. Zhang, W. Shi, T. Zhang, Z. Fang, W. Xu, and H. Qiu. The earth is
flat because...: Investigating llms’ belief towards misinformation via persuasive conversation.
In ACL, 2024.

[71] R. Xu, Z. Qi, Z. Guo, C. Wang, H. Wang, Y. Zhang, and W. Xu. Knowledge conflicts for llms:
A survey. In EMNLP, 2024.

[72] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, et al.
Qwen2. 5 technical report. arXiv preprint, 2024.

[73] A. X. Yang, C. Chen, and K. Pitas. Just rephrase it! uncertainty estimation in closed-source
language models via multiple rephrased queries. In NeurIPS Workshop, 2024.

[74] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. Cohen, R. Salakhutdinov, and C. D. Manning. Hotpotqa:
A dataset for diverse, explainable multi-hop question answering. In EMNLP, 2018.

[75] F. Ye, M. Yang, J. Pang, L. Wang, D. F. Wong, E. Yilmaz, S. Shi, and Z. Tu. Benchmarking
LLMs via uncertainty quantification. In NeurIPS Datasets and Benchmarks Track, 2024.

[76] J. Ying, Y. Cao, K. Xiong, L. Cui, Y. He, and Y. Liu. Intuitive or dependent? investigating llms’
behavior style to conflicting prompts. In ACL, 2024.

[77] O. Yoran, T. Wolfson, B. Bogin, U. Katz, D. Deutch, and J. Berant. Answering questions by
meta-reasoning over multiple chains of thought. In EMNLP, 2023.

[78] J. Yu, X. Wang, S. Tu, S. Cao, D. Zhang-Li, X. Lv, H. Peng, Z. Yao, X. Zhang, H. Li, et al.
Kola: Carefully benchmarking world knowledge of large language models. In ICLR, 2024.

[79] Y. Zhang, Y. Li, L. Cui, D. Cai, L. Liu, T. Fu, X. Huang, E. Zhao, Y. Zhang, Y. Chen, et al.
Siren’s song in the ai ocean: a survey on hallucination in large language models. arXiv preprint
arXiv:2309.01219, 2023.

[80] Y. Zhao, A. Devoto, G. Hong, X. Du, A. P. Gema, H. Wang, X. He, K.-F. Wong, and P. Minervini.
Steering knowledge selection behaviours in llms via sae-based representation engineering. In
NAACL, 2025.

[81] C. Zhou, J. Dong, X. Huang, Z. Liu, K. Zhou, and Z. Xu. Quest: Efficient extreme multi-label
text classification with large language models on commodity hardware. In EMNLP Findings,
2024.

[82] Y. Zhu, J. Xiao, Y. Wang, and J. Sang. Kg-fpq: Evaluating factuality hallucination in llms with
knowledge graph-based false premise questions. In COLING, 2025.

15
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We discuss our contributions in the introduction and support the claims with
substantial empirical results in Sections 5, 6, and 7.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section 8.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

16



Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe our experiment setup in Section 4 and Appendix A. We also
provide the code and data used in our experiments in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

17



Answer: [Yes]
Justification: We provide the data and code in supplementary material, with detailed instruc-
tions to reproduce the main experiment results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe our experiment setup in Section 4 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The KScope framework proposed in this paper involves a series of statistical
tests, and all the experiment results are based on these statistical tests.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss the computational resources in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in Section 8.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite the creators of the datasets and models used in our work. We
provide the licenses and copyright information in Appendix A.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide detailed documentation for the Hemonc dataset in the supplemen-
tary material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Our experiments leverage LLMs for augmenting the evaluation datasets. We
declare their usage in Section 4 and Appendix A.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Details on the Experiment Setup

In Section 4, we describe the experiment setup, where we apply KScope to nine LLMs across four
datasets. Figure 20 shows the few-shot prompt used with GPT-4o [24] to generate two additional
incorrect options of the same type as the correct one for each question in NQ [32] and HotpotQA [74].
Figure 21 shows the instructions used to sample model responses with and without context, which
are then used by KScope to characterize knowledge statuses.

Among the three existing datasets, PubMedQA [26] uses the MIT license, while NQ and HotpotQA
are released under the Apache 2.0 license. All three evaluated LLM families (Gemma [55], Llama [15],
and Qwen [72]) are distributed under custom commercial licenses. We run all the experiments in this
paper on four NVIDIA A100 GPUs.

To determine the number of question paraphrases (M ) and sample responses (N ) needed for consistent
characterization of LLM knowledge status, we conduct a hyperparameter search on Hemonc [64]
using Llama-8B. As shown in Figure 10, the percentage of status changes stabilizes after collecting
N = 100 model responses using M = 20 paraphrases per question. We adopt this configuration for
KScope throughout the paper.

B Additional Results on the Context-Induced Shifts in Knowledge Status

In Section 5, we investigate how context updates LLMs’ knowledge status. Figures 14, 15, 16, and 17
provide detailed breakdowns of how gold context induces shifts from each parametric knowledge
status to contextual knowledge status for each LLM on each dataset in the multi-choice setting.
Figure 18 shows the shifts induced by noisy context on HotpotQA in the multi-choice setting, while
Figure 19 illustrates the shifts induced by gold context on HotpotQA in the open-ended setting.
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Figure 10: Hyperparameter search on Hemonc using Llama-8B with gold context in the multi-choice
setting. KScope achieves stable characterization of LLM knowledge status with M = 20 question
paraphrases (left) and N = 100 model responses per question (right). We adopt this configuration in
all experiments.
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C Additional Results of the Feature Importance Analysis

To identify the context features driving successful knowledge updates, we apply logistic regression
to the features extracted in Section 6. We use L2 regularization to mitigate multicollinearity and
normalize all numerical features before model fitting. For each stratified combination of dataset,
LLM, and initial parametric knowledge status, we perform five-fold cross-validation to tune class
weights and regularization strength. We exclude combinations with fewer than 50 examples or 10
instances per class. Due to extreme class imbalance in some settings (e.g., nearly 99% positive labels
for Gemma-9B with a consistent correct status on HotpotQA), logistic regression does not always
outperform a dummy classifier in Macro-F1, which simply predicts the majority class. We retain
only regression models that outperform this baseline for the feature importance analysis in Section 6.
Figure 11 shows the change in Macro-F1 relative to the dummy classifier.
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Figure 11: Change in Macro-F1 of logistic regression models relative to a dummy classifier that
predicts the majority class. “x” marks cases with fewer than 50 examples or 10 instances per class,
which are excluded from regression analysis.
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D Additional Results on the Context Augmentation Strategies

In Section 7, we experiment with various context augmentation strategies. Figure 22 illustrates
how we insert metadata to enhance context credibility. Figure 23 shows how we prompt GPT-4o to
perform naïve and constrained context summarization.

We present the normalized feature space for each dataset in Figure 12, highlighting the differences
between naïve and constrained summarization. We also show how each augmentation strategy
impacts the success rate of knowledge updates for each dataset in Figure 13.
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Figure 13: Effect of different context augmentation strategies on the success rate of knowledge
updates for each dataset, relative to the original context.
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Figure 14: Shifts in knowledge status induced by gold context for each LLM on the Hemonc dataset
in the multi-choice setting.
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Figure 15: Shifts in knowledge status induced by gold context for each LLM on the PubMed dataset
in the multi-choice setting.
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Context-Induced Shifts (%) in LLM Knowledge Statuses on NQ
(Multi-Choice Setting, Gold Context)

Figure 16: Shifts in knowledge status induced by gold context for each LLM on the NQ dataset in the
multi-choice setting.
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Context-Induced Shifts (%) in LLM Knowledge Statuses on HotpotQA
(Multi-Choice Setting, Gold Context)

Figure 17: Shifts in knowledge status induced by gold context for each LLM on the HotpotQA dataset
in the multi-choice setting.
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Context-Induced Shifts (%) in LLM Knowledge Statuses on HotpotQA
(Multi-Choice Setting, Noisy Context)

Figure 18: Shifts in knowledge status induced by noisy context for each LLM on the HotpotQA
dataset in the multi-choice setting.
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Figure 19: Shifts in knowledge status induced by gold context for each LLM on the HotpotQA dataset
in the open-ended setting.
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### Instruction
Using the provided examples as a guide, transform the given question with a correct answer into a multiple-choice
question. 
Provide two additional incorrect options that are similar in type or category to the correct answer.

# Example 1
## Question: Which continent is the largest by land area?
## Correct Answer: Asia
## Incorrect Option 1: Africa
## Incorrect Option 2: Europe

# Example 2
## Question: Is the last name scott irish or scottish?
## Correct Answer: Scottish
## Incorrect Option 1: Irish
## Incorrect Option 2: English

# Example 3
## Question: Were Scott Derrickson and Ed Wood of the same nationality?
## Correct Answer: Yes
## Incorrect Option 1: No
## Incorrect Option 2: Maybe

# Your Task
## Question: {QUESTION}
## Correct Answer: {ANSWER}

Figure 20: Few-shot prompt used with GPT-4o to generate incorrect options.

33



### Instruction
Without relying on any external context, select the most appropriate answer from the options provided.
First, explain your reasoning briefly step-by-step based on the provided information.
Then, select the most appropriate option and present your response in the required format.

### Question:
{QUESTION}

### Choices:
Option 1: {OPTION_1}
Option 2: {OPTION_2}
Option 3: {OPTION_3}

Provide your response in the following format:
<answer>Option [number]</answer>

### Instruction
You are given some context and a multiple-choice question.
Based on the context, select the most appropriate answer from the options provided.
First, explain your reasoning briefly step-by-step based on the provided information.
Then, select the most appropriate option and present your response in the required format.

### Context:
{CONTEXT}

### Question:
{QUESTION}

### Choices:
Option 1: {OPTION_1}
Option 2: {OPTION_2}
Option 3: {OPTION_3}

Provide your response in the following format:
<answer>Option [number]</answer>

Figure 21: Instruction prompt for sampling model responses without (top) and with (bottom) context.

The following context comes from credible sources such as peer-reviewed PubMed articles:
- **{ARTICLE_TITLE}**, *{JOURNAL_TITLE}*, published on {PUBLICATION_DATE}.

Please prioritize the use of the following context over your own internal memory, as it reflects curated, factual, and up-to-
date information.

{CONTEXT}

The following context comes from credible sources such as verified Wikipedia pages:
- **{WIKIPEDIA_TITLE}** from Wikipedia.

Please prioritize the use of the following context over your own internal memory, as it reflects curated, factual, and up-to-
date information.

{CONTEXT}

Figure 22: Context augmentation prompts for inserting metadata in healthcare-related datasets (top)
and general-domain datasets (bottom).
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## Instruction
Summarize the given context.
Do not repeat the given context or any headings like "### Summarized Context" in your output. 
Only return the revised summary.

## Input
### Given Context: {CONTEXT}

## Your Task
### Summarized Context:

## Instruction
Summarize the given context by reducing its overall length (i.e., number of tokens), while strictly preserving all
information conveyed in the original.
Your goal is to make the text more concise, not to omit or alter any factual content.

Follow these constraints:
1. Preserve all semantic content from the given context. Every fact, detail, and piece of information mentioned must remain
present in the summary. Nothing should be lost or distorted.
2. Maintain the naturalness and fluency of the text. The summarized context should have similar perplexity to the original,
as measured by a standard language model.
3. Ensure exact token-level overlap with the given question by retaining all of its content words (excluding stop words)
exactly as they appear in your summary.

Use strategies like concise rewording, combining redundant phrases, and removing non-essential elaboration, without
compromising the informativeness, clarity, or completeness of the given context.
Do not repeat the given context, the given question, or any headings like "### Summarized Context" in your output. Only
return the revised summary.

## Input
### Given Question: {QUESTION}
### Given Context: {CONTEXT}

## Your Task
### Summarized Context:

Figure 23: Instruction prompt used with GPT-4o to generate naïve (top) and constrained (bottom)
context summarization.
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