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Abstract

We study the problem of PAC learning γ-margin halfspaces with Massart noise.
We propose a simple proper learning algorithm, the Perspectron, that has sample
complexity Õ((ϵγ)−2) and achieves classification error at most η + ϵ where η is
the Massart noise rate. Prior works [DGT19b, CKMY20] came with worse sample
complexity guarantees (in both ϵ and γ) or could only handle random classification
noise [DDK+23, KIT+23] — a much milder noise assumption. We also show
that our results extend to the more challenging setting of learning generalized
linear models with a known link function under Massart noise, achieving a similar
sample complexity to the halfspace case. This significantly improves upon the
prior state-of-the-art in this setting due to [CKMY20], who introduced this model.

1 Introduction
We study the problem of learning halfspaces with a margin, one of the oldest problems in the field
of machine learning dating to work of Rosenblatt [Ros58]. Specifically, we consider the following
formulation of this problem, where the label distribution is corrupted by Massart noise [MN06],
where we use the following notation for halfspace hypotheses hw : Rd → {±1}:

hw(x) := sign (w · x) , for w ∈ Rd. (1)

Definition 1 (Massart halfspace model). Let η ∈ [0, 1
2 ] and γ ∈ (0, 1). We say that a distribution D

on Bd × {±1} is an instance of the η-Massart halfspace model with margin γ if the following hold.

• There exists w⋆ ∈ Rd such that ∥w⋆∥ = 1,4 and Dx has margin γ with respect to w⋆,5 i.e.,
Prx∼Dx [|w∗ · x| < γ] = 0.

• For all x ∈ supp(Dx), there is an η(x) ∈ [0, η] such that Pr [y ̸= hw⋆(x) | x] = η(x).

We note that Definition 1 extends straightforwardly to general halfspaces up to rescaling (i.e., with
larger domain size bounds and constant shift terms), as discussed in Remark 2.
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The Massart noise model of Definition 1 for halfspaces (and more generally, binary classification
problems) has garnered interest from the statistics, machine learning, and algorithms communities
for a variety of reasons. This noise model was originally introduced as an intermediate noise model,
between the simpler (from an algorithmic design standpoint) random classification noise (RCN)
model [AL88], and the more challenging agnostic model [Hau92b, KSS94]. In the RCN model, η(x)
in Definition 1 is restricted to be η pointwise, i.e., the noise level is uniform; polynomial-time PAC
learning has long since known to be tractable under RCN [Byl94, BFKV98]. On the other hand, in
the agnostic model (where learning is computationally intractable under well-studied conjectures
[GR06, FGKP06, Dan16]), an adversary is allowed to arbitrarily modify an η fraction of labels. As
observed by [Slo88], the Massart noise model of Definition 1 is equivalent to allowing an oblivious
adversary control an η fraction of labels, where the η fraction is crucially sampled independently at
random. It was stated as a longstanding open question [Coh97, Blu03] whether this obliviousness of
the adversary impacts the polynomial-time tractability of learning halfspaces, even with a margin.

For additional motivation, it is reasonable to consider Massart noise to be a more realistic model
of real-life noise (even when benign) when compared to the RCN model, as it allows for some
amount of non-uniformity. This made Definition 1 a possibly tractable way to relax the noise
assumption, without running into the aforementioned computational barriers for agnostic learning.
In a series of recent exciting developments, in large part spurred by the breakthrough work of
[DGT19b] who gave an (improper) polynomial-time PAC learning algorithm in the Massart halfspace
model, significant algorithmic advances have been made towards understanding the polynomial-
time tractability of learning under Massart noise [ABHU15, DGT19b, DKTZ20a, CKMY20, ZL21,
DKK+22]. However, less is understood about the fine-grained sample and computational complexity
of these problems, which is potentially of greater interest from a practical perspective.

We investigate this question of fine-grained complexity for the Massart halfspace model, inspired by
a line of recent work on semi-random models [BS95], a popular framework for understanding the
overfitting of algorithms to their modeling assumptions. To motivate semi-random models, observe
that from a purely information-theoretic standpoint, one might suspect that learning under Massart
noise is actually easier than RCN; the noise level η(x) is only allowed to decrease, giving more
“signal” with respect to w⋆. However, this modification poses challenges when designing algorithms,
e.g., because it breaks independence between y and x beyond the value sign(w⋆ · x). Indeed, this is
reflected in our current knowledge of halfspace learning algorithms. While it is known that one can
learn halfspaces with margin γ under the RCN model to ϵ error (in the zero-one loss) using Õ((ϵγ)−2)

samples [DDK+23, KIT+23], state-of-the-art learners under Massart noise use Õ(γ−4ϵ−3) samples
(if required to be proper) [CKMY20] or Õ(min(γ−4ϵ−3, γ−3ϵ−5)) samples (otherwise) [DGT19b].
The semi-random model framework posits that this discrepancy reflects a lack of robustness in the
current algorithmic theory for learning halfspaces, due to their overfitting to the RCN assumption.

For many statistical learning problems, new algorithms have been developed under semi-random
modeling assumptions, with guarantees matching, or nearly-matching, classical algorithms under the
corresponding fully random models [CG18, KLL+23, JLM+23, GC23, BGL+24]. This leads us to
our motivating problem, which aims to accomplish this goal for learning halfspaces.

Is it possible to design algorithms for learning in the Massart halfspace model
with sample complexities matching the state-of-the-art for learning in the RCN model?

(2)

1.1 Our results

As our main contribution, we resolve (2) in the affirmative in the setting of Definition 1. We also
extend our results a substantial generalization of this model in Definition 2.

Massart halfspace model. We begin with our basic result in the setting of the Massart halfspace
model, Definition 1. Our goal in this setting is to find a proper hypothesis halfspace hw(x) =
sign(w · x) for w ∈ Bd, achieving good zero-one loss ℓ0-1 (see Section 2 for a definition) over
examples (x, y) drawn from the distribution D. Our main result to this end is the following.
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Theorem 1 (Informal, see Theorem 3). Let D be an instance of the η-Massart halfspace model
with margin γ, and let ϵ ∈ (0, 1). Then, Perspectron (Algorithm 1) returns w ∈ Bd such that
ℓ0-1(w) ≤ η + ϵ with probability 0.99,6 using Õ(γ−2ϵ−2) samples and Õ(dγ−2ϵ−4) time.

We pause to comment on Theorem 1. First, our error guarantee is of the form η + ϵ rather than
the more stringent goal of ℓ0-1(w

⋆) + ϵ = Ex∼Dx [η(x)] + ϵ. There is strong evidence that this
distinction is necessary for polynomial-time algorithms in the statistical query (SQ) framework of
[Kea98], which our algorithm is an instance of, due to [CKMY20, DK20, NT22]. Next, the sample
complexity bound of Theorem 1 matches the results of [DDK+23, KIT+23], the state-of-the-art under
the milder RCN model. There is evidence that the dependences in Theorem 1 on both ϵ−1 and γ−1 are
individually tight. In particular, [MN06] shows the sample complexity of the problem is Ω̃(γ−2ϵ−1),
and [DDK+23] shows any efficient algorithm in the SQ framework must use Ω̃(γ−1/2ϵ−2) samples.
We also remark that we can assume without loss of generality that η is known (see Appendix B.1).

Finally, as mentioned, prior to our work, the best-known polynomial-time learners under Defini-
tion 1 had sample complexities Õ(min(γ−4ϵ−3, γ−3ϵ−5)) [CKMY20, DGT19b]. In Table 1, we
summarize relevant sample complexity bounds for learning variants of halfspace models with noise.

Source RCN Massart Proper Sample Complexity

[DGT19b] ✓ ✗ ✓ γ−4ϵ−2

[DDK+23, KIT+23] ✓ ✗ ✓ γ−2ϵ−2

[DGT19b] ✓ ✓ ✗ γ−3ϵ−5

[CKMY20] ✓ ✓ ✓ γ−4ϵ−3

Theorem 1 ✓ ✓ ✓ γ−2ϵ−2

Table 1: Sample complexities of learning halfspaces with γ margin, omitting logarithmic factors and
failure probabilities for brevity. All the algorithms above run in polynomial time.

Massart generalized linear models. Our second result is an extension of Theorem 1 to the more
challenging setting of learning generalized linear models (GLMs) with a known link function σ
under Massart noise. As before, we only consider distributions that have a margin with respect to the
optimal halfspace. We now formally define the setting we study.

Definition 2 (Massart GLM). Let σ : [−1, 1]→ [−1, 1] be an odd, non-decreasing function. We say
that a distribution D on Bd × {±1} is an instance of the σ-Massart generalized linear model (GLM)
with margin γ if the following conditions hold.

1. There exists w⋆ ∈ Rd such that ∥w⋆∥ = 1 and Pr[|w∗ · x| < γ] = 0.

2. For all x ∈ supp(Dx), it holds that η(x) := Pr[y ̸= hw⋆(x) | x] ≤ 1−|σ(w⋆·x)|
2 .

Remark 1. We remark that the assumption that σ is odd is also commonly used in prior works
(see, e.g., [CN08, DKTZ20a, CKMY20]). We further show that our result extends to σ with bounded
asymmetry, albeit with a weaker error guarantee (see Definition 3 and Theorem 4).

To provide intuition for Definition 2, observe that that if η(x) = 1−|σ(w⋆·x)|
2 for some x ∈ supp(Dx),

then E [y | x] = |σ(w⋆ · x)|sign(w⋆ · x) = σ(w⋆ · x), i.e., Definition 2 corresponds to the standard
GLM definition. In Definition 2 (compared to Definition 1), we replace the fixed noise rate upper
bound η with a data-dependent upper bound which is monotone (i.e., decreases as |w⋆ · x| grows
more confident). That is, Definition 2 generalizes the problem of learning Massart halfspaces, which
follows by taking σ(t) = (1− 2η)sign(t) for all t ∈ [−1, 1].

When working with a Massart GLM D, we define optRCN := E(x,y)∼D[ 1−|σ(w⋆·x)|
2 ]. Note that in the

special case of a Massart halfspace model, we simply have optRCN = η. As in the case of Massart half-

6The formal variant, Theorem 3, gives high-probability bounds at a mild polylogarithmic overhead in sample
and runtime complexities.
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spaces, known SQ lower bounds make competing with opt := ℓ0-1(w
⋆) := Pr(x,y)∼D [y ̸= hw⋆(x)]

an intractable target, so our focus is again on attaining ℓ0-1(w) ≈ optRCN.

To our knowledge, the model in Definition 2 was first studied in [CKMY20], though we note
that similar models have been considered in prior works [ZLC17, HKLM20, DKTZ20a], which we
describe and compare to Definition 2 in Section 1.3. In [CKMY20], the parameterization of this model
is slightly different; they assume σ is L-Lipschitz and that Prx∼Dx [|σ(w∗ · x)| ≥ γ] = 1, i.e., they
impose a margin on σ(w∗ · x) rather than w∗ · x. This implies our margin assumption (with γ ← γ

L
in Definition 2), but not vice versa. Under their slightly more restrictive assumptions, [CKMY20]
claims a runtime which is an unspecified polynomial in Lγ−1ϵ−1, that is at least Ω̃(L4γ−4ϵ−6) when
specialized to the halfspace case (see their Theorems 5.2 and 6.14). On the other hand, we achieve
improved rates extending our simple algorithmic approach for the Massart halfspace case in this more
challenging setting.

Theorem 2 (Informal, see Theorem 4). Let D be an instance of the σ-Massart GLM with margin
γ, and let ϵ ∈ (0, 1). There is an algorithm returning w ∈ Bd so that ℓ0-1(w) ≤ optRCN + ϵ with
probability 0.99, using Õ(γ−2ϵ−4) samples and Õ(dγ−2ϵ−6) time.

In particular, parameterizing our problem using the margin and Lipschitz assumptions in [CKMY20]
(with γ ← γ

L ), we obtain an improved sample complexity of Õ(L2γ−2ϵ−4).

1.2 Technical overview
Learning Massart halfspaces. Our learning algorithms are inspired by the certificate framework
for learning with semi-random noise developed in [DKTZ20d, CKMY20]. In that framework, given
a sub-optimal hypothesis w, i.e., with error Pr(x,y)∼D[sign(w · x) ̸= y] ≥ η + ϵ, the goal is to
construct a certificate of sub-optimality in the form of a separating hyperplane between w and the
target w∗, i.e., a vector g such that g · w ≥ g · w⋆ ⇐⇒ g · (w − w⋆) ≥ 0. Given such a
separating hyperplane, prior works rely on cutting-plane methods (e.g., [Vai96]) or on first-order
regret minimization methods to learn a hypothesis achieving the target error.

We first describe our algorithm in the halfspace setting, by motivating our choice of a certificate. Prior
work [CKMY20] achieving a proper Massart halfspace learner uses the gradient of the Leaky-ReLU
objective ℓη(t) := (1 − η)max(0, t) − ηmax(0,−t) conditioned on a band around the current
hypothesis w as a separating hyperplane. That is, they argue that for some appropriate interval I , it
holds that E[∇ℓη(−yw · x) | x ·w ∈ I] · (w −w∗) ≥ 0. This yields a sample complexity scaling
as Õ(ϵ−3) because one has to sample condionally from the band I and estimate the gradient of the
Leaky-ReLU on these samples up to error ϵ, as well as additional overhead in γ−1 due to use of
expensive outer loops taking advantage of these certificates, such as cutting-plane methods.

To avoid the sample complexity overhead of this conditioning (implemented via rejection sampling),
we use a simple reweighting scheme pointwise, which puts a larger weight of |w · x|−1 (an inverse
margin) on points closer to the boundary of our current hypothesis hw. Intuitively, this reweighting is
a soft implementation of the hard conditioning done in [CKMY20]. This is motivated by our first
important observation: any significantly sub-optimal hypothesis w with ℓ0-1(w) ≥ η + ϵ satisfies

E

[
∇ℓη(−yw · x)
|w · x|

]
· (w −w⋆) ≥ ϵ,

proven in Lemma 1. This suggests using g = E[∇ℓη(−yw ·x)|w ·x|−1] (rather than E[∇ℓη(−yw ·
x) | x ·w ∈ I] as in [CKMY20]) as our certificate, which we can estimate via a single sample.

While reweighting by the inverse margin |w ·x|−1 gives a separating hyperplane certificate, it may be
impossible to estimate this certificate from few samples, e.g., if the weight |w ·x|−1 is often very large,
which introduces significant variance. For instance, even if Dx has margin with respect to a target
w⋆, this is not necessarily true with respect to the current hypothesis w (without further distributional
assumptions on Dx). To overcome this, we change our pointwise reweighting to be less aggressive
and instead use (|w ·x|+γ)−1. In Lemma 2, we exploit the margin assumption about Dx to show that
when ℓ0-1(w) ≥ η+ϵ, it is still the case that E[∇ℓη(−yw·x)(|w·x|+γ)−1]·(w−w∗) ≥ ϵ. Moreover,
we still have an unbiased estimator for this separating hyperplane E[∇ℓη(−yw · x)(|w · x|+ γ)−1],
and the estimator is bounded in Euclidean norm by γ−1 with probability 1 by our margin assumption.
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Standard concentration inequalities now show Õ(γ−2ϵ−2) samples suffice to obtain a separation
oracle with high probability. Plugging this certificate into oracle-efficient cutting-plane methods
(e.g., [Vai96]) implies an algorithm with sample complexity Õ(γ−4ϵ−2) (after a random projection
process [AV99] to reduce to Õ(γ−2) dimensions). This already improves upon the prior best-known
Õ(γ−4ϵ−3) sample complexity. We further improve our dependence on γ by using it in a perceptron-
like regret minimization scheme, where at every step we update the current hypothesis w using the
aforementioned bounded unbiased estimator of our certificate, see Lemma 3 and Algorithm 1. Overall,
our algorithm iterates the following very simple update for a step-size λ > 0 and β := 1− 2η:

w(t+1) ← w(t) − λ(βsign(w(t) · x(t))− y(t))
x(t)

|w(t) · x(t)|+ γ
with w(0) ← 0 . (3)

Since at every step we perform an (approximate) perspective projection (|w ·x|+γ)−1 on our sample,
we call Algorithm 1 which iterates the update in Equation (3) the Perspectron.

Learning Massart GLMs. For learning Massart GLMs (Definition 2), we use a similar certificate-
based approach. While it is simple to show reweighting with the inverse margin |w · x|−1 still works
in this case (see Lemma 5), using the bounded reweighting (|w · x|+ γ)−1 does not. Instead we use
a new reweighting of of the form (|w · x|+ αγ) where α = O(ϵ) (see Lemma 6). Using a similar
iterative method as the Perspectron defined in (3), we obtain our sample complexity of Õ(γ−2ϵ−4)
for learning Massart GLMs.

1.3 Related work

We briefly survey some additional related works here. First, a common worst-case assumption used in
statistical learning is that the label noise is adversarial (a.k.a. agnostic) [Hau92a]. In that setting, a lot
of progress has been made for learning halfspaces when the underlying distribution satisfies structural
assumptions (e.g., it is Gaussian or log-concave) [KKMS05, KOS08, ABHU15, DKS18, DKTZ20c,
DKTZ22]. For learning halfspaces with a margin, the best-known agnostic results have runtime
and sample complexity that depend exponentially on the margin γ and/or the accuracy parameter ϵ
[SSS09, LS11, DKM19]. Another important line of work [DKTZ20d, DKK+20, ZL21] has focused
on learning halfspaces under Tsybakov noise: a semi-random noise model that extends Massart
noise, but is still easier than the agnostic setting. We also note that variants of Definition 2 have
appeared before: the generalized Tsybakov low noise condition of [HKLM20] is a close relative
which imposes different noise rates within and outside a margin, and the strong Massart noise of
[ZLC17, DKTZ20a] is an instance of Definition 2 without the margin restriction.

Our algorithms rely on the certificate framework developed in [DKTZ20b, CKMY20] and the Leaky-
ReLU loss that has been extensively used in prior works on learning with random classification and
Massart label noise [Byl98, DGT19a, CKMY20, DKT21]. Our main technical contribution is a new
certificate that relies on an inverse-margin reweighting scheme and can be estimated using a single
sample at every iteration. Similar, “inverse-margin” reweighting schemes have been used for learning
general halfspaces [CKMY20] and online linear classification [DKTZ24]. Those results have no
implications for the sample complexity of the problem studied here. Finally, we mention that a local
reweighting scheme that is somewhat similar in spirit to ours (but very different in its implementation)
was previously employed by [KLL+23], for a different semi-random statistical learning problem.

1.4 Limitations and open problems

One interesting open direction is providing improved sample complexity guarantees for more gen-
eral noise models. For example, the misspecified GLM framework (Definition 3.2, [CKMY20])
generalizes Definition 2 to include an additional misspecification parameter ζ such that η(x) ≤
1−|σ(w∗·x)|

2 + ζ. Our approach does not directly apply in this setting, since ζ = 0 is important for
our separation oracle result of Lemma 6. A different interesting generalization of the noise model
corresponds to the case where the link function σ is unknown, which the [CKMY20] algorithm
can handle (at a much higher sample complexity). While our algorithms require knowledge of
σ, it would be interesting to explore whether techniques from learning single-index models (e.g.,
[KS09, GGKS23, ZWDD24]) can be used to extend our algorithms in this setting.
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A clear next step is to design efficient algorithms with sample complexities independent of the margin
but still linear in the dimension d.7, e.g., with an ≈ dϵ−2 sample complexity. In prior work [DKT21]
such an algorithm is given, albeit with a significantly worse poly(dϵ−1) sample complexity.

2 Preliminaries

We denote vectors in lower-case boldface, and ∥x∥ is the Euclidean norm of x ∈ Rd. We use Bd to
denote the unit ball in Rd, i.e. Bd := {x ∈ Rd | ∥x∥ ≤ 1}. We use ΠBd(w) := min{1, 1

∥w∥}w to
denote the Euclidean projection of a vector w ∈ Rd onto Bd. We let 0d be the all-zeroes vector in
dimension d. We reserve the overline notation x̄ to denote the unit vector in the direction of x, i.e.
x̄ := x

∥x∥ . We let sign : R→ {±1} be defined so sign(t) = 1 iff t ≥ 0. We use 1{E} to denote the
0-1 indicator of a random event E , Pr[E ] to denote its probability, and E to denote the expectation
operator. The support of a distribution D is denoted supp(D), and [N ] := {i ∈ N | i ≤ N}.
Throughout the paper we study the problem of learning a binary classifier, given labeled examples
from a distribution D over labeled examples (x, y) ∈ Rd × {0, 1}, under various models on the
distribution to be discussed. We refer to the x-marginal of D by Dx, and the conditional distribution
of the label y | x by Dy(x). We will primarily be interested in learning halfspace hypotheses, which
for w ∈ Rd are the corresponding functions hw : Rd → {±1} defined by hw(x) := sign (w · x). We
also denote the zero-one loss of a halfspace hypothesis hw corresponding to w ∈ Rd as follows, when
the distribution D over labeled examples is clear from context: ℓ0-1(w) := Pr(x,y)∼D [hw(x) ̸= y].
We define the Leaky-ReLU function with parameter λ > 0 as ℓλ(t) := (1 − λ)max(0, t) −
λmax(0,−t). Given vectors w,x and y ∈ {±1}, it holds that the (sub) gradient of ℓλ(−yw · x)
with respect to w is∇wℓλ(−yw · x) = 1

2 ((1− 2λ)sign(w · x)− y) · x. We also provide some brief
remarks on how to extend Definition 1 to more general settings here.

Remark 2. Definition 1 extends straightforwardly to the case where Dx has margin γ and is
supported on a subset of R · Bd for R ̸= 1, by rescaling so R ← 1 and γ ← γ

R , as halfspace
hypotheses and our label noise assumptions only depend on signs. Other than these margin and
support assumptions, we make no additional distributional assumptions about the x-marginal Dx.
Further, due to working in the distributional assumption-free setting, we can assume with up to
constant factor loss(in margin) that the halfspace is homogeneous, i.e., has no constant shift term. That
is, given a halfspace sign(w ·x+ b) with ∥w∥ , |b| ≤ 1, after a feature expansion (e : x 7→ 1√

2
(x, 1))

the halfspace hw′(z) = sign((w, b) ·z) is homogeneous while still having a margin≥ γ
2 with respect

to w′ = 1√
1+b2

(w, b). Finally, the Massart noise model of [MN06] is defined for any hypothesis
class and is not tied to halfspaces. Since we focus on learning halfspaces with a margin, we combined
the hypothesis class {hw}w∈Rd with the noise model in Definition 1 for simplicity.

3 Massart halfspaces

In this section, we give our result on learning Massart halfspaces with margin. Our proof is surpris-
ingly short, and we separate it into its two main components: a structural lemma in Section 3.1 which
shows how to estimate a separating hyperplane given a sub-optimal w, and a perceptron-like analysis
of a stochastic iterative method in Section 3.2.

3.1 Separating hyperplanes for Massart halfspaces
We prove our main structural lemma here, used to argue the progress of our iterative method. As
highlighted in Section 1.2, we show that when the current ℓ0-1(w) ≥ η + ϵ, we can construct an
unbiased estimator for a separating hyperplane between w and the target vector w⋆.

Warmup: an “unbounded” separating hyperplane. Before presenting the full proof, we first give
a separating hyperplane that works for any feature distribution — even without margin assumptions.
The proposed separating hyperplane works due to the fact that we can express the zero-one in terms
of the Leaky-ReLU which is a convex function, as was previously observed by [DGT19b].

7By standard random-projection procedures [AV99], the dimension d is comparable to γ−2 under a γ-margin
assumption, and therefore our sample complexity is nearly-linear in the “dimension.”
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Lemma 1 (Separating hyperplane for Massart halfspaces). Let D be an instance of the η-
Massart halfspace model, and w ∈ Rd has classification error ℓ0-1(w) ≥ η + ϵ. It holds that

E(x,y)∼D

[
∇wℓη(−yw·x)

|w·x|

]
· (w −w∗) ≥ ϵ .

Proof. We recall Claim 2.1 from [DGT19b]: for all w,x, it holds that Ey∼Dy(x) [ℓλ(−yw · x)] =
(Pry∼Dy(x) [sign(w · x) ̸= y]−λ)·|w·x|. In particular, we have E(x,y)∼D

[
ℓη(−yw·x)

|w·x|

]
= ℓ0-1(w)−

η. From the convexity of ℓη(−yw ·x), we obtain that∇wℓη(−yw ·x) · (w−w∗) ≥ ℓη(−yw ·x)−
ℓη(−yw∗ · x). By dividing both sides by |w · x| and taking expectation over x and y, we obtain

E
x,y

[
∇w(ℓη(−yw · x)

|w · x|

]
· (w −w∗) ≥ E

x,y

[
ℓη(−yw · x)
|w · x|

]
− E

x,y

[
ℓη(−yw∗ · x)
|w · x|

]
≥ ϵ ,

where the last inequality follows from the following facts: (1) for all x, it holds that
Ey∼Dy(x) [ℓη(−yw∗ · x)] = (Pry∼Dy(x) [sign(w

∗ · x) ̸= y]−η)·|w∗·x| = (η(x)−η)·|w∗·x| ≤ 0,

and (2) Ex,y

[
ℓη(−yw·x)

|w·x|

]
= ℓ0-1(w)− η ≥ ϵ. This completes the proof.

A “bounded” separating hyperplane for γ-margin Massart halfspaces. Our claim in the previous
lemma was very general: it works for any marginal distribution. However, as discussed in Section 1.2,
the unbounded nature of this separating hyperplane may make it impossible to estimate from samples.
To overcome this, we propose a new candidate hyperplane: Ex,y

[
∇wℓη(−yw·x)

|w·x|+γ

]
. We prove that this

candidate is indeed a separating hyperplane by leveraging the fact that we have margin γ with respect
to the optimal halfspace w∗. Recall from Section 2 that∇wℓη(−yw·x) = 1

2 ((1−2η)sign(w·x)−y).

Lemma 2 (Bounded separating hyperplane for Massart halfspaces). Let D be an instance of the
η-Massart halfspace model with margin γ (with respect to w⋆) and define β = 1− 2η. If w ∈ Rd

has ℓ0-1(w) ≥ η + ϵ, it holds that

E
(x,y)∼D

[
(βsign(w · x)− y)

x

|w · x|+ γ

]
· (w −w∗) ≥ 2ϵ .

Proof. We first observe that by the definition of the Massart halfspace model, Ey∼Dy(x)[y] =
(1− 2η(x))sign(w∗ · x) = β(x)sign(w⋆ · x), where β(x) := 1− 2η(x). Therefore, we have that

I := E
(x,y)∼D

[
(βsign(w · x)− y)

(w · x−w∗ · x)
|w · x|+ γ

]
= E

x∼Dx

[
(βsign(w · x)− β(x)sign(w∗ · x)) (w · x−w∗ · x)

|w · x|+ γ

]
.

We denote by g(x) := (βsign(w · x)− β(x)sign(w∗ · x)) (w·x−w∗·x)
|w·x|+γ , which we bound differently

based on whether x falls in the agreement region A :=
{
x ∈ Bd | hw⋆(x) = hw(x)

}
. For x ∈ A,

g(x) =
(
βsign(w · x)− β(x)sign(w∗ · x)

) (w · x−w∗ · x)
|w · x|+ γ

=
(
β − β(x)

) |w · x| − |w∗ · x|
|w · x|+ γ

≥ β − β(x) .

The second equality follows from the fact that sign(w∗ · x) = sign(w · x). The final inequality
holds since β − β(x) ≤ 0 and |w·x|−|w∗·x|

|w·x|+γ ≤ 1. Similarly, for x /∈ A, an analogous calculation

yields g(x) =
(
β+β(x)

) |w·x|+|w∗·x|
|w·x|+γ ≥ β+β(x) . The first equality holds because sign(w∗ ·x) ̸=

sign(w · x) and the final inequality follows since |w∗ · x| ≥ γ from the margin assumption. Thus

I ≥ E
x∼Dx

[
1{x ∈ A}(β − β(x)

]
+ E

x∼Dx

[
1{x /∈ A}(β + β(x))

]
. (4)
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We will now use our lower bound on ℓ0-1(w), which we relate to Equation (4). We have ℓ0-1(w) =
Ex∼Dx [1 {x ∈ A} η(x)] + Ex∼Dx [1 {x ̸∈ A} (1− η(x))] = Ex∼Dx [1 {x ̸∈ A}β(x)] +
Ex∼Dx [η(x)]. Next, by our definition β(x) = 1− 2η(x), rearranging and expanding we have:

ℓ0-1(w)− η = E
x∼Dx

[1{x /∈ A}β(x)] + 1

2
E

x∼Dx

[β − β(x)]

= E
x∼Dx

[1{x /∈ A}β(x)] + 1

2
E

x∼Dx

[(1{x ∈ A}+ 1{x /∈ A})(β − β(x))]

=
1

2
E

x∼Dx

[1{x /∈ A}(β(x) + β)] +
1

2
E

x∼Dx

[1{x ∈ A}(β − β(x))] . (5)

We finish the proof by combining Equation (4), Equation (5), and ℓ0-1(w)− η ≥ ϵ.

3.2 Perspectron

We now present and analyze Perspectron, our algorithm for learning Massart halfspaces.

Algorithm 1: Perspectron
1 Input: {xi, yi}i∈[T1+T2] ⊂ Rd × {±1} drawn i.i.d. from D in the η-Massart halfspace

model with margin γ, step size λ > 0, failure probability δ ∈ (0, 1
2 )

2 β ← 1− 2η, N ← ⌈log2( 2δ )⌉, T ← ⌈
T1

N ⌉
3 H ← ∅
4 for j ∈ [N ] do
5 w1,j ← 0d

6 for t ∈ [min(T, T1 − (j − 1)T )] do
7 i← (j − 1)T + t

8 wt+1,j ← wt,j − λβsign(wt,j ·xi)−yi

|wt,j ·xi|+γ xi

9 end
10 H ← H ∪ {wt,j}t∈[min(T,T1−(j−1)T )]

11 end
12 S ← {xi, yi}T1+T2

i=T1+1

13 w← argminw∈H Pr(x,y)∼unif.S [hw(x) ̸= y]
14 Return: hw

We begin by giving a self-contained analysis of a single loop j ∈ [N ] of Line 6 to Line 9, showing
that for sufficiently large T , at least one iterate achieves small ℓ0-1 with constant probability.

Lemma 3. Let {xi, yi}i∈[T ] ∼i.i.d. D, where D is an instance of the η-Massart halfspace model
with margin γ with respect to w⋆. Consider iterating, from w1 := 0d,

wt+1 ← wt − λ
βsign(wt · xt)− yt

|wt · xt|+ γ
xt, (6)

for β := 1− 2η, λ := γ

2
√
T

. Then if T ≥ 16
ϵ2γ2 , Pr[mint∈[T ] ℓ0-1(w

t) ≥ η + ϵ
2 ] ≤

1
2 .

Proof. Throughout the proof, say w ∈ Rd is bad iff ℓ0-1(w) ≥ η + ϵ
2 , and let Et denote the event

that all of the iterates {ws}s∈[t] updated according to (6) are bad. Define the potential function
Φt := E[1 {Et} · ∥w⋆ −wt∥2] for all t ∈ [T ]. On expanding the expression for the squared norm
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and using the fact that 1 {Et+1} ≤ 1 {Et},

Φt+1 ≤ E
[
1 {Et} ·

∥∥w⋆ −wt+1
∥∥2]

≤ Φt + λ2 E

[∥∥∥∥βsign(wt · xt)− yt

|wt · xt|+ γ
xt

∥∥∥∥2
]

− 2λE

[
1 {Et} ·

βsign(wt · xt)− yt

|wt · xt|+ γ
xt · (wt −w⋆)

]
≤ Φt +

4λ2

γ2
− 2λPr [Et]E

[
βsign(wt · xt)− yt

|wt · xt|+ γ
xt · (wt −w⋆) | Et

]
≤ Φt +

4λ2

γ2
− 2λϵPr [Et] .

Here, the third inequality used xt ∈ Bd and |βsign(wt · xt) − yt| ≤ 2, and the fourth applied
Lemma 2. Now using that Φ1 ≤ ∥w⋆∥2 = 1, ΦT+1 ≥ 0, and Pr[Et] ≥ Pr[ET ] for t ∈ [T ], we have
2λϵTPr [ET ] ≤ 1 + 4λ2T

γ2 . The conclusion Pr [ET ] ≤ 1
2 follows from our choices of λ, T .

We next analyze the hypothesis selection step in Line 13.

Lemma 4 (Hypothesis selection). Suppose there exists ŵ ∈ H with ℓ0-1(w) ≤ η + ϵ
2 . Then if

T2 ≥ 8
ϵ2 log(

2|H|
δ ), with probability ≥ 1− δ the w returned by Line 13 satisfies ℓ0-1(w) ≤ η + ϵ.

Proof. Because S is independent of H , Hoeffding’s inequality and a union bound implies that∣∣Pr(x,y)∼unif.S [hw(x) ̸= y]− ℓ0-1(w)
∣∣ ≤ ϵ

4 with probability ≥ 1− δ, for all w ∈ H . Conditioning
on this event, ℓ0-1(w) > η + ϵ yields a contradiction:

ℓ0-1(w)− ϵ

4
≤ Pr

(x,y)∼unif.S
[hw(x) ̸= y] ≤ Pr

(x,y)∼unif.S
[hŵ(x) ̸= y] ≤ ℓ0-1(ŵ) +

ϵ

4
≤ η +

3ϵ

4
.

We are now ready to state and prove our main theorem.

Theorem 3 (Learning γ-margin Massart halfspaces). Let D be an instance of the η-Massart
halfspace model with margin γ, and let ϵ, δ ∈ (0, 1). Algorithm 1 with T1 ≥ 16

ϵ2γ2 ⌈log2( 2δ )⌉,
T2 ≥ 8

ϵ2 log(
4|T1|
δ ) returns w such that ℓ0-1(w) ≤ η + ϵ with probability ≥ 1 − δ, using

O((ϵγ)−2 log(δ−1) + ϵ−2 log((ϵγδ)−1)) samples and O(dϵ−4γ−2 log(δ−1) log((ϵγδ)−1) time.

Proof. First, applying Lemma 3 to each of the N independent runs of Line 6 to Line 9 shows that
the premise of Lemma 4 is met except with probability δ

2 . The correctness claim then follows
from Lemma 4. The sample complexity is immediate, and the runtime bound follows because the
bottleneck operation is computing the value of hw(x) for all (x, y) ∈ S and w ∈ H .

4 Massart generalized linear models
In this section, we present a key piece of intuition motivating our extension to the Massart GLM noise
model (see Definition 2), deferring a full proof to Appendix A. In this setting, instead of being upper
bounded by a fixed constant η, the noise rate is data-dependent and upper bounded by 1−σ(w⋆·x)

2
where σ is odd non-decreasing and w⋆ is the optimal halfspace. Inspired by our approach in Section 3,
we propose a novel separating hyperplane based on the previously described reweighting scheme. We
argue in this section that Ex,y

[ (σ(w·x)−y)
|w·x| x

]
is a valid separating hyperplane, generalizing Lemma 1.

Lemma 5 (Separating hyperplane for Massart GLMs). Let D be an instance of the σ-Massart GLM
model with margin γ (with respect to halfspace w⋆), and w ∈ Rd has ℓ0-1(w) ≥ optRCN + ϵ. We
have that E(x,y)∼D

[ (σ(w·x)−y)
|w·x| x

]
· (w −w∗) ≥ 2ϵ .
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Proof Sketch. We use the definition of sets A, β(x) from Lemma 2. By expanding out the expression
for ℓ0-1(w) similarly to Lemma 2, we obtain that 1

2 ·E(x,y)∼D [(|σ(w∗ · x)| − β(x))1{x ∈ A}]+ 1
2 ·

E(x,y)∼D [(|σ(w∗ · x)|+ β(x))1{x /∈ A}] ≥ ϵ. Let g(x) = (σ(w·x)−y)
|w·x| · (w−w∗). Now, we argue

that Ex∼Dx [g(x)] is greater than the left hand side of the previous inequality. We do a case analysis.
For x ∈ A, we observe that g(x) ≥ (|σ(w∗ ·x)|−β(x)) |w·x|−|w∗·x|

|w·x| ≥ (|σ(w∗ ·x)|−β(x)). Here,
we obtained the first inequality by adding and subtracting the corresponding term with σ(w∗ · x) and
then using monotonicity. The final inequality follows from the fact that β(x) ≥ |σ(w∗ · x)|. For
x /∈ A, we obtain that g(x) = (|σ(w · x)|+ β(x)) |w·x|+|w∗·x|

|w·x| ≥ (|σ(w∗ · x)|+ β(x)) where we

obtain the inequality by doing a case analysis: (1) |w · x| ≤ |w∗ · x|, in this case |w·x|+|w∗·x|
|w·x| ≥ 2

and 2β(x) ≥ (|σ(w∗ · x)|+ β(x)) and (2), |w · x| ≥ |w∗ · x|, in this case |σ(w · x)| ≥ |σ(w∗ · x)|
and hence we are done. Now, taking the expectation of g(x) completes the proof of the claim.

However, we are met with the same obstacle as before: |w · x| can be arbitrarily small. The previous
approach of adding γ to the denominator does not work immediately. Instead, we add the rescaled
term ϵ

2−ϵ · γ. Adding a smaller term in the denominator increases the bound on the norm of the
increments in each step, resulting to a larger bound on the number of iterations (and, therefore, sample
complexity) by a factor of ϵ−2. However, this rescaling is useful to obtain an analogue of Lemma 2
for the case of Massart GLMs (Lemma 6). The rescaling essentially accounts for the part of the
distribution where |w · x| is smaller than |w∗ · x| and the signs disagree. This is important because
the size of |w · x| is quantitatively more significant in the Massart GLM case.

Combining this with a modified version of the Perspectron algorithm and analysis (see Algorithm 2),
we obtain our final result with sample complexity Õ(γ−2ϵ−4) (see Theorem 4).
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A Massart GLMs
In this section, we prove our result regarding learning in the Massart generalized linear model with
a margin. Our analysis is similar to that of Section 3 but requires a modified version of Lemma 2,
which gives a “bounded" separating hyperplane in the case of Massart GLM (Lemma 6). We first
state the definition of our model again (slightly generalized to relax the assumption that σ is odd).

Definition 3 (Massart GLM). Let σ : [−1, 1]→ [−1, 1] be a non-decreasing function. We say that a
distribution D on Bd × {±1} is an instance of the σ-Massart generalized linear model (GLM) with
constant shift τ and margin γ with respect to w⋆ if the following conditions hold.

•
∣∣|σ(t)| − |σ(−t)|∣∣ ≤ τ for all t ∈ [0, 1].

• There exists w⋆ ∈ Rd such that ∥w⋆∥ = 1 and Pr[|w⋆ · x| < γ] = 0.

• For all x ∈ supp(Dx), there is an η(x) ∈ [0, 1−|σ(w⋆·x)|
2 ] such that

Pr
y∼Dy(x)

[y ̸= hw⋆(x)] = η(x).

We state and prove the following lemma which provides a separating hyperplane in this setting.

Lemma 6 (Separating Hyperplane). Let D be a distribution on Rd×{±1} such satisfying Definition 3.
Let w ∈ Rd be such that Pr(x,y)∼D[sign(w ·x) ̸= y] ≥ Ex∼Dx

[ 1−|σ(w∗·x)|+τ
2

]
+ ϵ. Then, we have

E
(x,y)∼D

[
(σ(w.x)− y)

x

|w · x|+ αγ

]
· (w −w∗) ≥ ϵ , for α = ϵ/(2− ϵ).

Proof. Let A = {x ∈ Rd | sign(w · x) = sign(w∗ · x)} and B = {x ∈ Rd | sign(w · x ̸=
sign(w∗ · x)}. We have that

I = E
(x,y)∼D

[
(σ(w · x)− y)

x

|w · x|+ αγ

]
· (w −w∗)

= E
x∼Dx

[
(σ(w · x)− β(x)sign(w∗ · x)) · (w · x−w∗ · x)

|w · x|+ αγ

]
Define g(x) = (σ(w · x)− β(x)sign(w∗ · x)) · (w·x−w∗·x)

|w·x|+αγ . We analyze g(x) separately for x ∈ A

and x ∈ B .

First consider points x in A. For any x ∈ A, we have that

g(x) =
(
σ(w · x)− σ(w∗ · x) + σ(w∗ · x)− β(x)sign(w∗ · x)

)
· (w · x−w∗ · x)
|w · x|+ αγ

≥
(
|σ(w∗ · x)|sign(w∗ · x)− β(x)sign(w∗ · x)

)
· (w · x−w∗ · x)
|w · x|+ αγ

≥
(
|σ(w∗ · x)| − β(x)

)
· |w · x| − |w

∗ · x|
|w · x|+ αγ

≥ |σ(w∗ · x)| − β(x) .

The second inequality follows from the fact that (σ(w · x)− σ(w∗ · x)) · (w · x−w∗ · x) ≥ 0 since
σ is monotonically increasing. The third inequality holds because sign(w · x) = sign(w∗ · x). The
final inequality is true because |w·x|−|w∗·x|

|w·x|+αγ ≤ 1 and β(x) ≥ |σ(w∗ · x)|.

We now consider the case where x ∈ B. Since sign(w · x) ̸= sign(w∗ · x), we have that g(x) =(
|σ(w · x)| + β(x)

)
· |w·x|+|w∗·x|

|w·x|+αγ . We split B into two finer regions. Define B1 = {x ∈ B |
|w · x| ≥ |w∗ · x|} and B2 = {x ∈ B | |w · x| < |w∗ · x|}. First, consider x ∈ B1. We have
that |σ(w · x)| ≥ max(0, |σ(−w · x)| − τ). We also have that |σ(−w · x|) ≥ |σ(w∗ · x)| since
|w · x| ≥ |w∗ · x| and σ is monotone non-decreasing. Also, observe that |w·x|+|w∗·x|

|w·x|+αγ ≥ 1 since
|w∗ · x| ≥ γ. Thus, we obtain that g(x) ≥ max(0, |σ(w∗ · x)| − τ) + β(x). Finally, we consider
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x ∈ B2. Let c(x) = |w∗·x|
|w·x| . We have that

g(x) ≥ β(x)
|w∗ · x|+ |w · x|
|w · x|+ αγ

≥ β(x)
1 + |w∗·x|

|w·x|

1 + α γ
|w∗·x|

|w∗·x|
|w·x|

≥ β(x)
1 + c(x)

1 + αc(x)
≥ (2− ϵ)β(x) .

The third inequality follows from the fact that |w∗ · x| ≥ γ and the last inequality is true because
1+c
1+αc ≥ 2 − ϵ for any c ≥ 1 when α = ϵ

2−ϵ . Since 1 ≥ β(x) ≥ |σ(w∗ · x)|, we have that
g(x) ≥ β(x) + |σ(w∗ · x)| − ϵ.

Thus, we obtain that
I ≥ E

(x,y)∼D
[
(
|σ(w∗ · x)| − β(x)

)
1{x∈A}]

+ E
(x,y)∼D

[
(
max(0, |σ(w∗ · x)| − τ) + β(x)

)
1{x∈B}]− ϵ (7)

We now use our assumption on the error of w. We have that

ϵ ≤ Pr(x,y)∼D[sign(w · x) ̸= y]− E
x∼Dx

[
1− |σ(w∗ · x)|

2

]
= E

(x,y)∼D

[
1{x ∈ A}1− β(x)

2

]
+ E

(x,y)∼D

[
1{x ∈ B}1 + β(x)

2

]
− E

x∼Dx

[
1− |σ(w∗ · x)|

2

]
=

1

2
· E
(x,y)∼D

[(
|σ(w∗ · x)| − β(x)

)
1{x ∈ A}

]
+

1

2
· E
(x,y)∼D

[(
max(0, |σ(w∗ · x)| − τ)β(x)

)
1{x ∈ B}

]
Plugging this into Equation (7), we obtain that I ≥ 2ϵ− ϵ ≥ ϵ. This completes the proof.

We can now prove our main theorem about Massart GLMs. The algorithm we use, Algorithm 2, is a
modified version of the Perspectron algorithm (Algorithm 1), where we subsitute the value of the
parameter γ with γ · ϵ

2−ϵ and the updates involve the function σ.

Theorem 4. Let D be an instance of the σ-Massart GLM with constant shift τ and margin γ with
respect to w⋆, and let ϵ, δ ∈ (0, 1). Algorithm 2 with , T1 ≥

(
32

ϵ4γ2

)
⌈log2( 2δ )⌉, T2 ≥ 8

ϵ2 log(
4|T1|
δ )

returns w such that ℓ0-1(w) ≤ Ex∼Dx

[
1−|σ(w∗·x|+τ

2

]
+ ϵ with probability ≥ 1− δ, using

O

(
log( 1δ )

ϵ4γ2
+

log( 1
ϵγδ )

ϵ2

)
samples and O

(
d log( 1δ ) log(

1
ϵδ )

ϵ6γ2

)
time.

Algorithm 2: GLMPerspectron

1 Input: {xi, yi}i∈[T1+T2] ⊂ Rd × {±1} drawn i.i.d. from D in the σ-Massart GLM model
with margin γ, parameter α ∈ (0, 1), step size λ > 0, failure probability δ ∈ (0, 1

2 )

2 β ← 1− 2η, N ← ⌈log2( 2δ )⌉, T ← ⌈
T1

N ⌉
3 H ← ∅
4 for j ∈ [N ] do
5 w1,j ← 0d

6 for t ∈ [min(T, T1 − (j − 1)T )] do
7 i← (j − 1)T + t

8 wt+1,j ← wt,j − λσ(wt,j ·xi)−yi

|wt,j ·xi|+γ·α xi

9 end
10 H ← H ∪ {wt,j}t∈[min(T,T1−(j−1)T )]

11 end
12 S ← {xi, yi}T1+T2

i=T1+1

13 w← argminw∈H Pr(x,y)∼unif.S [hw(x) ̸= y]
14 Return: hw
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Proof. Given Lemma 6, the first step of the proof is exactly analogous to the proof of Lemma 3, i.e.,
we can show the following claim.

Claim 1. Let {xi, yi}i∈[T ] ∼i.i.d. D, where D satisfies Definition 3. Consider iterating, from
w1 := 0d,

wt+1 ← wt − λ
σ(wt · xt)− yt

|wt · xt|+ γϵ/(2− ϵ)
xt, (8)

for λ := γϵ

(2−ϵ)
√
2T

. Then if T ≥ 32
ϵ4γ2 , Pr[mint∈[T ] ℓ0-1(w

t) ≥ Ex∼Dx

[
1−|σ(w∗·x|+τ

2

]
+ ϵ

2 ] ≤
1
2 .

The proof is analogous to the proof of Lemma 3, but we use γϵ/(2− ϵ) in the place of γ. To amplify
the success probability and finish the proof, we once more use Lemma 4.

B Omitted proofs
B.1 Learning with unknown noise rate
In this section, we can obtain the same sample complexity (upto logarithmic factors) as Theorem 3
even when the noise rate η is unknown to the learner. The argument is the following: we argue that
our separating hyperplane (Lemma 2) is tolerant to O(ϵ) noise in the parameter η. We can then
discretize the interval [0, 1/2] into intervals of size ϵ and run the training algorithm multiple times for
these different choices. Then, we can output the hypothesis with lowest validation error among the
classifiers output by these different runs of the algorithm. We now argue that this idea indeed works.

Lemma 7. If D is an instance of the η-Massart halfspace model with margin γ with respect to w⋆,
and w ∈ Rd has ℓ0-1(w) ≥ η + ϵ,

E
(x,y)∼D

[
(β̃sign(w · x)− y)

x

|w · x|+ γ

]
· (w −w∗) ≥ 2ϵ, for β̃ ∈ ((1− 2η)− ϵ, (1− 2η)] .

Proof. The proof is almost identical to the proof of Lemma 2 except for a few steps. We highlight
the differences. We reuse the notation from the previous proof.

First consider x /∈ A, we observe that using the same argument as before, we now obtain

g(x) ≥ β̃ + β(x) ≥ β + β(x)− ϵ.

In the case of x ∈ A, since β(x) ≥ β ≥ β̃, we obtain

g(x) ≥ (β̃ − β(x)) ≥ β − β(x)− ϵ.

Using this, we can can complete the proof by repeating the steps of the previous proof.

Having proved this, our algorithm is simple, run over the (1/(2ϵ)) choices of β̃ in [0, 1/2] and run
the algorithm from Theorem 3 for each choice, reusing the same samples in the different run’s of the
algorithm. The correctness follows Lemma 7 and the proof of Theorem 3 since one of the the choices
of parameters must lie in the interval ((1− 2η)− ϵ, (1− 2η)].
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide proofs and/or references for all claims made in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We thoroughly discuss the assumptions under which our results hold, as well
as their scope and comparison with related work, in an explicit limitations and future work
section.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
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should reflect on how these assumptions might be violated in practice and what the
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used reliably to provide closed captions for online lectures because it fails to handle
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address problems of privacy and fairness.
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include experiments.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments requiring code.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We read the code of ethics and our work conforms with the stated code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our work is of theoretical nature, focusing on improving the reliability of a
basic learning algorithm. We do not foresee any direct path to any negative applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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