SegdDiff: Unveiling Open-Vocabulary Segmentation
in Text-to-Image Diffusion Transformers
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Figure 1: We introduce Seg4Diff, a systematic framework designed to analyze and enhance the
emergent semantic grounding capabilities of multi-modal diffusion transformer (MM-DiT) blocks in
text-to-image diffusion transformers (DiTs). Here, semantic grounding expert refers to a specific
MM-DiT block responsible for establishing semantic alignment between text and image features.

Abstract

Text-to-image diffusion models excel at translating language prompts into photore-
alistic images by implicitly grounding textual concepts through their cross-modal
attention mechanisms. Recent multi-modal diffusion transformers extend this by
introducing joint self-attention over concatenated image and text tokens, enabling
richer and more scalable cross-modal alignment. However, a detailed understand-
ing of how and where these attention maps contribute to image generation remains
limited. In this paper, we introduce Seg4Diff (Segmentation for Diffusion), a
systematic framework for analyzing the attention structures of MM-DiT, with a
focus on how specific layers propagate semantic information from text to image.
Through comprehensive analysis, we identify a semantic grounding expert layer,
a specific MM-DiT block that consistently aligns text tokens with spatially co-
herent image regions, naturally producing high-quality semantic segmentation
masks. We further demonstrate that applying a lightweight fine-tuning scheme
with mask-annotated image data enhances the semantic grouping capabilities of
these layers and thereby improves both segmentation performance and generated
image fidelity. Our findings demonstrate that semantic grouping is an emergent
property of diffusion transformers and can be selectively amplified to advance both
segmentation and generation performance, paving the way for unified models that
bridge visual perception and generation.
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1 Introduction

The emergence of text-to-image (T2I) diffusion models have revolutionized visual content creation
by allowing users to generate photorealistic images from natural-language prompts [46l 22, [52]]. The
success of these models imply that text-to-image diffusion models are highly capable of associating
visual and textual representations, as the generated images accurately reflect the given textual prompt.

In this regard, a growing body of work shows that this semantic grounding is encoded in the cross-
modal attention maps of the diffusion models [20, 41} 49| 43]], which have already been actively
exploited for generative downstream tasks such as image editing, inpainting and personalization [48],
20, |5, 39]]. Furthermore, several studies [60} 54] show that the cross-attention maps can be used
to perform visual perception tasks such as open-vocabulary semantic segmentation, revealing that
diffusion models can double as training-free segmentation models. However, the attention map
produced by the standard U-Net-based [47, 146] models is often noisy and spatially fragmented [6]],
limiting the fidelity of the resulting masks when leveraged without heuristic refinement.

Recent advances replace the U-Net architecture with diffusion transformers (DiTs) [42], which
benefits from the strong representation power and scalability of transformers for achieving state-
of-the-art image generation quality. In particular, the multi-modal diffusion transformer (MM-
DiT) [15} 153} 3] introduces multi-modal attention, which concatenates text and image tokens and
applies joint self-attention, enabling richer cross-modal interaction. This encourages us to explore the
internal representations and the characteristics of the MM-DiT-based models. However, as opposed
to U-Net based models, which have been extensively studied [38]], DiT-based models and their
characteristics remain underexplored, in which a detailed understanding of how and where these
attention maps contribute to image generation remains limited.

In this paper, we first conduct an in-depth analysis of the joint attention mechanism in MM-DiT mod-
els. We characterize the distribution of attention scores to discover active cross-modal interaction, and
complement this with feature similarity measure and norm analysis to assess which modality—textual
or visual—exerts greater influence on the output representations. Together, these perspectives isolate
a small subset of layers that consistently align textual semantics with contiguous image regions.
These observations motivate us to further analyze this emergent semantic grounding capability.

Subsequently, we propose an open-vocabulary segmentation scheme leveraging MM-DiT, which
demonstrates that the identified layer, semantic grounding expert, yields high-quality segmentation
masks, confirming their inherently competitive capability for open-vocabulary semantic segmentation.
Extended analysis reveals that these attention map is in fact further decomposed into attention heads,
which capture distinct parts of the semantic region and finally sum up to construct a complete semantic
mask. Moreover, without explicit class information, we reveal that <pad> tokens can decompose the
image into meaningful semantic regions, acting as anchors for the unconditional generation.

Building on these findings, we introduce a lightweight fine-tuning scheme, called mask alignment
for segmentation and generation (MAGNET), that explicitly strengthens semantic grouping by
leveraging mask-annotated image data in selected MM-DiT layers. Our primary motivation is
to reinforce the emergent segmentation capability of these layers, enabling more accurate open-
vocabulary semantic masks. Interestingly, this targeted adaptation also yields a modest but consistent
improvement in image synthesis quality as a by-product of enhancing the cross-modal semantic
alignment. Taken together, our stepwise analysis and selective refinement establish semantic grouping
as a salient property of diffusion transformers for text-conditioned image generation—one that can
be leveraged with minimal compute to advance both dense recognition and generative fidelity. These
results illuminate the internal dynamics of diffusion transformers and point toward unified models
that excel at both generation and perception.

In summary, our contributions are as follows:

* We provide in-depth analysis and investigation of learned representations of MM-DiT within
its multi-modal attention layers.

* We identify critical layers in MM-DiT that are essential for preserving text-conditioned
semantics throughout the generation process, which reveals strong semantic grounding.

* We demonstrate a zero-shot segmentation scheme to extract segmentation masks from
the specific layers, and further enhance generation quality by enhancing their localization
capability.



2 Related Work

Emergent properties of diffusion models. Diffusion models, which generate images by iteratively
denoising Gaussian noise, have transformed generative modeling [22}52]]. U-Net-based text-to-image
models [46]] surpassed GANs [[18]], while recent transformer backbones [42] further raised the bar.
In particular, multi-modal diffusion transformer (MM-DIiT) [[15], achieve stronger scalability and
semantic alignment by fusing image and text tokens through joint attention. Beyond generation,
pretrained diffusion models have been adapted to perception tasks such as correspondence [67, 56],
segmentation [S9], tracking [37], depth estimation [29,26] and video understanding [58]]. On the other
hand, inspired by Prompt-to-Prompt [20], which first proposed to leverage the cross-modal attention
maps of text-to-image diffusion models revealing that text information is delicately aggregated into
image generation via the attention mechanism, a rich line of works explored attention maps in different
areas, such as image editing [[7] and conditional generation [1]. Building on this, we focus specifically
on analyzing the joint attention mechanism of MM-DiT, uncovering its rich semantic structure and
its potential for segmentation. This perspective not only bridges generation and perception but also
highlights attention as a central building block for semantic reasoning in diffusion models.

Leveraging diffusion models for perception tasks. Recently, text-to-image diffusion models [46),
43| [15]] have been adapted beyond generation to tackle discriminative vision tasks with remarkable
success. For segmentation, ODISE [64] integrates a frozen diffusion backbone with CLIP, while
adapter-based methods [68]] leverage cross-attention for referring segmentation. For geometry,
lightweight fine-tuning of diffusion model for depth or normal estimation [63,|17] enhances spatial
detail and generalization. In correspondence, methods like DiffMatch [40] achieve robustness to
textureless regions, while leveraging frozen features [S6] still rival supervised baselines [9} 10, 24].
Collectively, these works show that diffusion models encode rich priors transferable to perception.
However, most approaches treat diffusion feature as static representations, leaving the role of internal
attention mechanism underexplored, particularly in architectures like MM-DiT.

Diffusion models for segmentation. Diffusion models [4}[15] excel at photorealistic image synthe-
sis by aligning semantic cues between images and text, which has spurred efforts to repurpose their
learned representations for segmentation. For example, OVDiff [28] synthesizes class-specific support
images and extracts their features to form prototypes that guide open-vocabulary segmentation, while
DiftSegmenter [60] mines self- and cross-attention maps from pretrained text-to-image diffusion
models to localize arbitrary objects. Building on these insights, iSeg [54] applies an entropy-reduction
step to self-attention maps and iteratively fuses them with cross-attention to progressively sharpen
segmentation, and Diffseg [57] demonstrates that self-attention features alone can be converted di-
rectly into masks. Meanwhile, DiffCut [13]] frames unsupervised segmentation as a graph-partitioning
problem over diffusion features. Our work not only probes the latent representations learned by
diffusion models but also leverages them to jointly enhance both image generation and segmentation.

3 SegdDiff: Segmentation for Diffusion

3.1 Motivation and Overview

The remarkable success of diffusion models in text-guided image generation [46| |43]] is primarily
attributed to their attention mechanisms [46l 20], with recent architectures like multi-modal diffusion
transformer (MM-DiT) [[15]] further enhancing performance through joint attention over image and text
modalities. Despite these advancements, the precise interactions within these multi-modal attention
mechanisms remain largely underexplored. In this regard, our work aims to deeply investigate these
internal interactions to elucidate the principles underlying their success, and based on these insights,
we propose a simple yet effective training scheme to transfer the learned representations to the
semantic segmentation task.

We begin by briefly reviewing rectified flow framework [36] and multi-modal attention mechanism in
MM-DiT in Sec. Then, in Sec. we delve into how text and image tokens interact in attention
mechanism of MM-DiT. Building on this, we identify key layers critical for image-text alignment and
thereby results in faithful image generation, where we introduce zero-shot segmentation framework to
leverage this semantic grounding capability. Subsequently, we propose learning strategy that jointly
enhances both segmentation and generative capabilities in Sec.



3.2 Preliminaries

Rectified flow framework. While diffusion models reverse a predefined process using simulated
data [22,|52], conditional flow matching (CFM) [35] trains continuous normalizing flows without
simulation by framing generative modeling as regression between analytic conditional vector fields
and a learnable velocity field. Rectified Flow [36] further simplifies this framework by adopting
a deterministic linear interpolation between data and noise distributions. Specifically, given a data
sample z¢ ~ Pyaa and a noise sample € ~ N(0, I'), the interpolation at time ¢ € [0, 1] is defined as:

= (1 —t)xg +te, €~N(0,1). (1)
The corresponding ground-truth velocity field along this path is constant and given by
us(xs) = € — xg.
Let v (x;) denote the predicted velocity field parameterized by the model. The training objective
minimizes the discrepancy between v () and u¢ (), leading to the flow matching (FM) loss

Lo = Ei14(0,1), wo~pans, e~ (0,1) || 0t () — Ut($t)’|2- )

Multi-modal attention. Building upon this formulation, transformer-based architecture known as
multi-modal diffusion transformer (MM-DiT), which is exemplified by Stable Diffusion 3 (SD3) [13],
results in significant improvements in generation capability. At its core, MM-DiT employs a multi-
modal attention (MM-Attn) mechanism that simultaneously processes image and text modalities.

Given input image I and text 7, let Zimg € R"*? and ze € R be the image and text
embeddings, where h and w is the height and width of image latent, and [ is the text token length. For
each modality m € {I, T}, query, key, and value embeddings Q,,, K,,, and V,,, are channel-wise
split to Q”,, K", and V. for each attention head h € {1,2,--- , H}, where H is the number of
heads. These embeddings are concatenated into Q", K" and V" € R(w+Dx(dx) respectively:
Q" =[QnQz], K"=[Kp;Kp], V' =[V];Vr), 3)
where dy, is the attention embedding dimension and [-; -] denotes token-wise concatenation. Sub-
sequently, these results are leveraged to produce multi-head attention score A", which is then
multiplied with value tokens to produce attention output O". The final MM-Atn(Zimg, Teext) after
output projection Py is then split back into image and text embeddings for downstream processing:

Al = softmax(Qh(Kh)T/\/a)7 @)

oM = Ahvh, )

MM-Attn(Timg, Trext) = Po([AV?, ..., AHVH]), (6)

where [, ] denotes channel-wise concatenation. The MM-Attn module is designed to handle four

distinct types of query-to-key interaction: image-to-image (I2I), image-to-text (I2T), text-to-image
(T2I), and text-to-text (T2T), which we denote Aoy, Ajor, Aror and Aot respectively. These four
pathways are illustrated in Fig.[2(a), where we particularly focus on Ao for analysis.

3.3 Emergent Semantic Alignment

In this section, we investigate the interactions between iyg and ey in DiT. To do so, we decompose
and analyze attention scores and the resulting features across all heads and layers. For all the analysis,
we sample 50 text prompts consisting of diverse linguistic and stylistic nature from DrawBench [49]
and then generate corresponding images using the pretrained model. For clarity, we report results at
timestep t = 8 and ¢ = 28; additional analyses over other timesteps are provided in Appx. In
addition, we focus on Stable Diffusion 3 architecture in our main analysis, where analysis on other
MM-DiT variants such as Stable Diffusion 3.5 [53]] and Flux [3]] can be found in Appx. @

Decomposing joint image-text attention. We start by visualizing and quantifying the attention
scores to assess interaction strengths between image and text tokens in MM-Attn. As shown in Fig. 2]
(b) and (c), we compute layer-wise attention scores and aggregate them by interaction type, equivalent
to Eq. | Fig.[2|(b) reveals that 12T scores are disproportionately higher than 121, even though the
I2T region in (a) is roughly 40x smaller than 121, indicating that I2T dominates the overall attention
budget. Conversely, Fig.[2|(c) shows that T2I interactions are relatively smaller than T2T, suggesting
that text tokens primarily self-attend to preserve semantic anchors. Based on these findings, we focus
our subsequent analysis on I2T interactions, where further discussion can be found in Appx.
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Figure 2: Multi-modal attention mechanism. (a) Conceptual visualization of the attention map.
(b—c) Ratios of attention assigned to image vs. text tokens. The dotted line denotes the ratio under
uniform attention. Higher cross-modal proportions are observed in Ao and Apoy.
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Figure 3: PCA visualization of query, key and value projections. PCA results demonstrate that
some layers exhibit strong positional bias, whereas some layers show clear semantic groups.

Attention feature analysis. To understand R
how MM-DiT’s strong image-text interaction
operates, we analyze feature space of MM-Attn.
Feature PCA visualized in Fig. [3| highlights sev- €
eral layers indicate that query and key features 2
are semantically well aligned, whereas other
layers display stronger positional biases. We &
further analyze the average norm of the value-
projected features at each layer, which is com- [T 1], == Pomptiokns
puted as 3 Zf\il |V#]|2 for image, text and ac- Layer

tual prompt tokens, which excludes following
padding tokens. The attention norm serves as
a proxy for the dominance of aggregated infor-
mation, i.e., how strongly each key token in-
fluences a query token [32]. As shown in Fig.
El, similar layers—particularly the 9" MM-DiT
block—exhibit notably high attention norms for
text tokens compared to that of image tokens. This pattern suggests that text information is injected
primarily into semantically aligned image-token regions at these specific layers.

=== |mage tokens
== Text tokens
=== Prompttokens

Figure 4: Attention feature analysis. The L2
norm of the value projection for image and text
tokens reveals that certain layers exhibit signifi-
cantly stronger value magnitudes for text tokens
compared to image tokens.

Attention perturbation for image-text alignment. Building on this observation, we test whether
these layers causally drive image synthesis and image—text alignment. Following SEG [25]], we apply
Gaussian blur to the image-to-text (I2T) attention maps of selected layers and regenerate images,
which is shown in Fig.[3] If these layers mediate alignment, attenuating their attention should reduce
semantic fidelity. Indeed, perturbing specific layers—which matches with semantically well-aligned
layers in our previous analysis—induces clear mismatches between text and content, confirming their
critical role in aligning image and text.

We then convert this perturbation into a lightweight guidance mechanism to both validate and exploit
the effect. Rather than directly perturbing the sample, we guide the standard denoising trajectory
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Figure 6: Effect of perturbed I2T guidance. Guiding specific layer with perturbed I2T attention
score significantly enhances image quality.

with a negatively perturbed companion sample [[1 23]]. Specifically,

€o(z1) = €o(we; Arar) + s(€o(we; Arar) — é0(ae; Arar)), 7

where €y is the guided noise estimate, €y the standard estimate, € is the perturbed noise estimate
with Ajop, which is the perturbed version of Ajo7, and s > 0 a guidance scale. As shown in Fig. El
this procedure substantially improves image quality while modifying only the specific layer’s 12T
attention regions.

Together, these findings indicate that (i) semantically well-aligned layers are essential for injecting
text conditioning into the image, and (ii) overall synthesis quality hinges disproportionately on
these layers—consistent with [2]], which likewise identifies particular MM-DiT layers as crucial for
effective image editing.

3.4 Emergent Semantic Grouping

From the previous analysis, we identified MM-DiT layers that exhibit stronger, more critical multi-
modal interactions than others and encode rich semantic structure. We now examine whether this
semantic grounding manifests from a segmentation perspective.

Specifically, we focus on the semantic grounding capability within the I2T attention maps. Obtaining
segmentation prediction begins by encoding the input image I into a latent representation iy, using
a VAE encoder Eyag. To ensure reliable segmentation fidelity, we use an intermediate noisy latent,
generated by linearly interpolating the clean latent Eyag(I) with random noise € ~ A(0,1) at a
denoising timestep ¢, following the rectified flow formulation [15} 36]. This technique preserves
spatial structure while retaining semantic content, where the ablation on timestep choice can be found
in Appx.[B.I] Meanwhile, a text prompt 7" is formed by concatenating the ground-truth classnames
existing in the input image (e.g., "car mountain sky water") and encoded into text embeddings T
via a text encoder E7:

Timg :t'EVAE(I) —|—(1 —t) ‘€, (8)
Ttext = ET (T) (9)

Both embeddings, Zing and T, are fed into the MM-DiT blocks. In each layer, let A’}QT be the
attention map from image tokens to a specific text token for head h. We compute the mean 12T
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Figure 7: Open-vocabulary semantic segmentation scheme in our framework. We generate
segmentation masks by interpreting the I2T attention scores, where the score map for each text token
serves as a direct measure of image-text similarity to produce the final prediction.
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Figure 9: Deeper analysis on multi-modal attention mechanism. (a) multi-granularity behavior
of token-level and head-level attention, and (b) emergent semantic grouping on <pad> tokens in
unconditional generation scenario.

attention map, Ao € RMXXHdk by averaging 12T attention A%, € Rw>x!Xdk across all heads,

which is then reshaped to construct a mask logit M) € R"*“*! corresponding to each text token
index j. Formally, the overall process is summarized by the following equations:

Apr = ZAIQTa (10)
MU) = Reshape(A%)T) eRM™ forj=1,...,L (1D

Since a single classname may correspond to mul-

tiple text tokens, we average their respective

attention maps to produce a single logit map “

per class. This results in a final logit tensor

P € RMwxC 'where C is the number of entire o

classes. The final prediction is obtained by apply- % *

ing an argmax operation at each pixel location to =

assign the most likely class. 111 o = mioUAvE
we MACC === mACC Avg

We visualize the qualitative results in Fig. El and 65 —— PACC == pACCAE
quantitative results in F]g@ Detailed exp]ana_ LI T R B B B B B B R R R
tion regarding evaluation metrics, pACC, mACC Layer

and mloU, can be found in Appx. @.The result Figure 8: Segmentation performance across
shows that specific layers are responsible for se- layers. Semantic grounding quality varies across

mantic grounding, where 9" layer performs the MM-DiT layers, peaking in the middle blocks and
best, which aligns with previously identified in specifically at the 9™ layer.

above. We refer to layers as semantic grounding
expert layers.

Multi-granularity semantic grouping in multi-head attention. We further decompose attention
map of semantic grounding expert layer into individual heads to see how each text token captures
complete semantic region. Fig. 9] (a) visualizes head- and token-level attention map of for the
highlighted text token, A%, and Aja7 respectively. The attention heads focus on a distinct semantic
part of the object, such as ears and legs of a bear. Subsequently, token-level attention map precisely
delineates the target semantics, demonstrating an inherent multi-granular grouping capability.
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Figure 10: Lightweight fine-tuning pipeline via mask alignment. We introduce a simple yet
effective mask alignment strategy that strengthens the I2T attention maps in the semantic grounding
expert layer during additional diffusion fine-tuning with a LoRA adapter.

Unsupervised semantic grouping in <pad> tokens. This grouping behavior also emerges during
unconditional generation, where the entire text sequence is set to <pad>. As shown in Fig. [9] (b),
attention maps from individual <pad> tokens—despite lacking explicit semantics—consistently
attend to coherent regions, with different token positions specializing in different objects or parts.
This allows the model to discover and segment meaningful groups, and these attention maps can thus
serve as effective proposals for training-free unsupervised segmentation. To leverage this, we adapt
the segmentation scheme in Fig.[/| Instead of using the attention map of a classname token, we select
the best-matching mask from the proposals generated by the <pad> tokens.

3.5 Boosting Segmentation and Generation

Motivated by our layer-wise analysis and the causal perturbation study in Sec. which identified a
specific semantic grounding expert layer in MM-DiT as the key mediator of image—text alignment, we
introduce a simple, lightweight LoRA fine-tuning scheme, called mask alignment for segmentation
and generation (MAGNET), that directly strengthens alignment in this layer. The goal is to boost
semantic grouping in its I2T attention while preserving the model’s generation quality; empirically,
this improves both zero-shot segmentation and image synthesis.

Specifically, we optimize two complementary losses. First, for each prediction v;(x;) we apply a
flow-matching loss Ly to supervise the diffusion process. Second, to enhance the semantic grouping
expressed by the expert layer’s 12T attention, we add a mask loss L ack-

Specifically, to compute £,,,5k, We extract the [ - H 12T attention maps from the semantic grounding
expert layer for [ text tokens and H heads and normalize each map to form candidate mask logits.
We then perform bipartite matching between these candidates and the ground-truth masks to obtain
one-to-one assignments [8]]. Since we do not consider classification, we match masks solely based on
the mask loss. For each matched pair, the loss is computed similarly as bipartite matching criterion:

Lmask = )\focal [:focal + /\dice Edicey (12)
where Lgycq is focal loss, Lgice 1 Dice loss, and Agocal, Adice Weight their contributions.

Finally, the total objective is
Etotal = ‘CFM + )\mask Emaska (13)
with A5k controlling the strength of mask alignment.

4 Experiments

4.1 Implementation Details

For zero-shot inference, the diffusion process is fixed at timestep ¢ = 8 of 28 using the flow-matching
Euler discrete scheduler. Training uses 10k images from either SA-1B [30] or COCO [34], with
captions generated by CogVLM [61] following SD3’s procedure [15]. Head-level attention maps are
used for SA-1B and token-level maps for COCO to match mask granularity. Images are processed at
1024 x 1024 resolution, and each transformer layer is equipped with a LoRA module of rank r» = 16,
trained using AdamW with Ir = 1 x 107°, default 3 parameters, and weight decay. Training runs on
two NVIDIA A6000 GPUs with per-device batch size 4 and gradient accumulation for an effective
batch size of 16.



Model | Arch. | Train. | VOC20 Object PC59 ADE City “Model | Arch. | Train. | VOC21 PC59 Object Stwff-27 City ADE
ProxyCLIP B3] ‘ CLIP-H/14 ‘ 83.3 49.8 39.6 242 420 ReCO [50] CLIP-L/14 25.1 19.9 15.7 26.3 193 112
CorrCLIP fg6] CLIP-H/14 918 2 179 288 499 MaskCLIP (14] CLIP-B/16 388 236 206 196 100 98
DiffSegmenter SD15 N 664 400 459 242 124 MaskCu DINO-B/8 538 434 301 417 187 357
iSeg SDI1.5 ‘ _ ‘ 89 573 392 242 248  DiffSeg [57] SD1.5 498 488 232 42 168 377
DiffCut (131 SSD-1B {19] 620 541 320 461 284 424
SegdDiff sD3 - 892 620 490 342 265
SegdDiff SD3.5 - 86.1 578 434 307 238 SegdDiff SD3 ‘ - ‘ 549 526 385 497 242 449
SegdDiff Flux I-dev | - 83.1 506 382 239 171  SegdDiff SD3.5 - 523 529 368 471 242 415
SegdDiff + MAGNET | SD3 SA-1B | 89.1 62.0 491 347 254 SegdDiff + MAGNET | SD3 SA-IB | 55.1 528 390 508 242 450
SegdDiff + MAGNET | SD3 ‘ COCO ‘ 898 629 512 352 200 _SegdDiff + MAGNET | SD3 COCO | 561 535 388 535 244 454

Table 1: Open-vocabulary semantic segmen- Table 2: Unsupervised segmentation performance.
tation performance. Cross-modal alignment Although not specifically designed for unsupervised
in the I2T attention maps of the semantic semantic segmentation, exploiting the emergent se-
grounding expert layer yields competitive re- mantic grouping of <pad> tokens in the I2T attention
sults, further enhanced by mask alignment. ~ maps achieves competitive results.

(b) Unsupervised ségmentation
Figure 11: Qualitative results on segmentation. Through our Diff4Seg, MM-DiT demonstrates
strong performance in (a) open-vocabulary semantic segmentation and (b) unsupervised segmentation.
Additional results are provided in Appx. El

(a) Open-vocabulary semantic segmentation

4.2 SegdDiff for Segmentation

Experimental setting. We evaluate our method on two tasks: open-vocabulary semantic seg-
mentation and unsupervised segmentation. For open-vocabulary semantic segmentation, we report
mloU on the validation sets of Pascal VOC [16], COCO-Object [34], Pascal Context-59 [16]], and
ADE20K [69]], excluding the background class. We compare U-Net diffusion-based segmentation
methods [60, 53] as well as CLIP-based approaches [33 66]. We note that CLIP-based methods
process entire classnames for prediction, which is not identical to our evaluation setting. For un-
supervised segmentation, we report mloU on the validation sets of PascalVOC, Pascal Context-59,
COCO-Object, COCO-Stuff-27 [34], Cityscapes [12]], and ADE20K. We adopt mask proposal evalu-
ation protocol of DiffSeg [57]], including the background class for PascalVOC, Pascal Context-59,
and COCO-Object in line with DiffCut [13]. We compare with training-free methods built on diverse
backbones, including CLIP [50, [70], DINO [62]], and U-Net diffusion models [57, 13].

Results. Tab.[T|summarizes our open-vocabulary semantic segmentation results. Remarkably, using
only this single layer without any refinement or postprocessing, our approach achieves competitive
performance on Pascal VOC and COCO-Object dataset. Moreover, ours are robust on more complex
datasets, where DiT architecture benefits from the larger and consistent spatial resolution throughout
the entire layers. This result shows that MM-DiT inherently learned fine-grained semantic grounding
capability during the generation process. On the other hand, as shown in Tab. 2] our method
achieves competitive performance on unsupervised segmentation. This strong outcome indicates
that an emergent knowledge of semantic grouping exists within the model’s multi-modal attention
layers, which effectively function as learnable proxies for semantic classes—even when occupied by
content-free <pad> tokens.

4.3 SegdDiff for Boosting Segmentation and Generation

Experimental setting. We evaluate the image generation capability of Seg4Diff on three benchmark
datasets: Pick-a-pic [31]], MS-COCO [34], and SA-1B captions generated via CogVLM [61]. To
assess text-image coherence, we utilize CLIPScore [21]], which measures the semantic alignment
between the text prompt and the generated image. We report T2I-CompBench++ [27] to further
evaluate the fidelity and compositional quality of our generated images.



Method [ Training | Pick-a-Pic COCO _SA-1B | Mean Method | Training | Attribute binding |  Object relationships | Num. | Comp.

27.0252 260638 28.3422 | 27.1437 ‘ | Color  Shape Texture | 20 3D non | ‘
270547 262318 28.4476 | 270447 Baseline 07864 05644 0.7200 | 0.2435 03318  0.3124 | 0.5566

+MAGNET 07836 05679 07252 | 02330 03151 03113 | 0.5460
27.0409  26.2319 28.5553 | 27.2760 + MAGNET 07919 05687 07260 | 02301 03234 03120 | 05584

Baseline
+ MAGNET
+ MAGNET

SA-1B
Coco

SA-1B
COoCco

0.3719
0.3709
0.3735

Tabl? 3: CLIPScore on text-to-imgge gen- Table 4: T2I-Compbench++ performance. Mask
eration benchmarks. Mask alignment alignment enhances attribute binding, object relation-

consistently improves alignment with text ships, and compositional understanding compared to
prompts across various datasets. the baseline.

“Three cats and one dog sitting on the grass.” “The man at bat readies to swing at the pitch while the umpire looks on.”

Baseline

o
£
]
a
©
-]

three cats umpire

Figure 12: Effects of the proposed mask alignment. Mask alignment improves structural coherence
and alignment between image and text.

Baseline Ccoco Baseline Baseline

"Four dogs on the street."

w . | -

"A car on the left of a bus."

"A stack of 3 plates. A blue plate is on the ... "Two cats and one dog sitting on the grass." "Five red apples and one green apple on a
green plate is on the bottom." wooden table."

Figure 13: Qualitative results on image generation. Mask alignment improves compositional
accuracy by reducing structural errors, correcting object counts, and refining colors and textures.

Results. As shown in Tab. 3]and 4] our fine-tuning method improves image generation quality over
the baseline, achieving higher CLIPScores and better text-image alignment. On T2I-Compbench++,
the COCO-trained model shows clear gains in attribute binding, numerical concepts, and complex
scenes, which suggests our method effectively enhances the model’s ability to render objects with their
correct attributes. However, because our training scheme do not target reasoning on object interactions,
the baseline model maintains a marginal lead in rendering object relationships. Qualitative results in
Fig[12]and[I3]further confirm that ABoost corrects attention misalignments of the baseline, producing
more accurate and plausible images. Overall, our strategy effectively enhances object-centric image
generation as well as segmentation performance, as previously evidenced in Tab.[I|and [2]

5 Conclusion

This paper introduces Seg4Diff, a systematic framework that investigates the emergent capabilities of
multi-modal diffusion transformers towards open-vocabulary semantic segmentation. Through an
in-depth analysis of multi-modal attention mechanism, we identify semantic grounding expert layers
that are critical for aligning textual semantics with corresponding image regions. We demonstrate that
attention maps from these layers can be directly used to achieve competitive zero-shot segmentation
performance. To further enhance this capability, we introduce a lightweight fine-tuning method that
strengthens the semantic grouping in these expert layers. This targeted approach not only leads to
meaningful improvements in segmentation quality but also enhances the model’s generative fidelity.
Our findings reveal that semantic alignment is an intrinsic property of diffusion transformers that can
be selectively amplified with minimal computational cost. This work paves the way toward unified
models that bridge the gap between generation and perception, delivering both high-quality image
synthesis and accurate semantic understanding.
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A Further implementation detail

A.1 Model configuration

We utilize the Stable Diffusion 3 (SD3) [[15] model for our main analysis. SD3 originally incorporates
three vision-language text encoders: CLIP-G/14, CLIP-L/14 [44], and TS-XXL [45]. Due to memory
constraints, we disable the T5 encoder and use only the first 77 tokens from the two CLIP encoders.
We leverage the attention score from timestep ¢ = 8 of 28, where the attention logits are semantically
grouped well. Further ablation on timesteps can be found at Sec. [B.I] We used classifier-free
guidance [23]] with scale 7.5 for generation if not specified.

For training and segmentation evaluation, the input images are center-cropped if non-square and
resized to a resolution of 1024 x 1024. After VAE encoding, the image is further downsampled to
64 x 64 latent. The resulting attention maps are bilinear upsampled back to the original image size
for segmentation evaluation.

A.2 Text prompts for analysis

We borrowed text prompts from DrawBench [49]], where diverse categories are included to assess the
capability of generative models. From 200 prompts in total, we randomly sampled 50 prompts for
our analysis. The full list of selected prompts is shown in Fig[T4]

red colored car.

black colored dog. 27. An elephant is behind a tree. You can see the trunk on

blue colored dog.

red colored banana.

white colored sandwich.

yellow colored giraffe.

green cup and a blue cell phone.

horse riding an astronaut.

shark in the desert.

10. Three cars on the street.

11. One dog on the street.

12. Two dogs on the street.

13. One cat and one dog sitting on the grass.

14. Three cats and one dog sitting on the grass.

15. Three cats and two dogs sitting on the grass.

16. A triangular pink stop sign. A pink stop sign in the
shape of a triangle.

17. An illustration of a small green elephant standing
behind a large red mouse.

18. A small blue book sitting on a large red book.

19. A stack of 3 cubes. A red cube is on the top, sitting
on a red cube. The red cube is in the middle, sitting on a
green cube. The green cube is on the bottom.

20. A stack of 3 books. A green book is on the top,
sitting on a red book. The red book is in the middle,
sitting on a blue book. The blue book is on the bottom.

0N O WN R
e

21. A small vessel propelled on water by oars, sails, or an
engine.
22. A large plant-eating domesticated mammal with solid

hoofs and a flowing mane and tail, used for riding, racing,
and to carry and pull loads.

23. An American multinational technology company that
focuses on artificial intelligence, search engine, online
advertising, cloud computing, computer software, quantum
computing, e-commerce, and consumer electronics.

24. A large thick-skinned semiaquatic African mammal, with
massive jaws and large tusks.

25. A machine resembling a human being and able to
replicate certain human movements and functions automatically.
26. A grocery store refrigerator has pint cartons of milk
on the top shelf, quart cartons on the middle shelf, and
gallon plastic jugs on the bottom shelf.

one side and the back legs on the other.

28. A pear cut into seven pieces arranged in a ring.
29. Rbefraigerator.

30. Dininrg tablez.

31. An instqrumemnt used for cutting cloth, paper, axdz

othr thdin mteroial, consamistng of two blades lad one on
tvopb of the other and fhastned in tle mixdqdjle so as to
bllow them txo be pened and closed by thumb and fitngesr
inserted tgrough rings on kthe end oc thei vatndlzes.

32. A bicycle on top of a boat.

33. A car on the left of a bus.

34. Acersecomicke.

35. Artophagous.

36. Backlotter.

37. A photo of a confused grizzly bear in calculus class.
38. Photo of an athlete cat explaining it’s latest scandal
at a press conference to journalists.

39. Hyper-realistic photo of an abandoned industrial site
during a storm.

40. A real life photography of super mario, 8k Ultra HD.
41. Colouring page of large cats climbing the eifel tower
in a cyberpunk future.

42. Photo of a mega Lego space station inside a kid’s
bedroom.

43. A spider with a moustache bidding an equally gentlemanly
grasshopper a good day during his walk to work.

44. A bridge connecting Europe and North America on the
Atlantic Ocean, bird’s eye view.

45. A magnifying glass over a page of a 1950s batman comic.
46. A realistic photo of a Pomeranian dressed up like a
1980s professional wrestler with neon green and neon orange
face paint and bright green wrestling tights with bright
orange boots.

47. A sign that says ’Hello World’
48. A sign that says ’Diffusion’.
49. New York Skyline with ’NeurIPS’ written with fireworks

on the sky.
50. New York Skyline with ’Google Research Pizza Cafe’
written with fireworks on the sky.

Figure 14: Selected prompts for our analysis.

A.3 Attention perturbation

To assess the importance of image-to-text (I2T) attention alignment across layers, we applied a
Gaussian blur along the text token dimension of the I2T attention map. We used 1D Gaussian kernel
with standard deviation o = 9 and kernel size £ = 5 to accommodate the typical text token length.
The blur was applied to the attention logits after softmax, using reflective padding to preserve the
total attention mass per image token.
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A.4 Segmentation evaluation metrics

To assess layer-wise segmentation performance in Sec. [3.4] we use three standard metrics: pixel
accuracy (pACC), mean accuracy (mACC), and mean Intersection-over-Union (mloU). Each provides
a progressively more rigorous evaluation based on pixel-level true positives (TP), false positives (FP),
and false negatives (FN) for the number classes N. pACC reports the fraction of correctly classified
pixels over entire classes, which can be easily skewed by large classes like background. mACC

averages per-class accuracy, TPTi-ipFI\I’ treating all classes equally yet still ignoring FP; mlIoU is the

most comprehensive, computing intersection-over-union, sp—ry-

TP 1 TP 1 TP
ACC = 2= ACC= S oU=~-S"- (14
P STP+EN N TN V= F 2 mrmien (Y

For unsupervised segmentation, we forward a noised input image with a null prompt to obtain
the <pad> token attention maps. These maps are then greedily merged based on KL-divergence,
following the procedure in [S7]]. The resulting mask proposals are evaluated via bipartite matching
with ground-truth masks, while unmatched proposals are treated as false negatives.

A.5 Further details on image quality metrics.
For Pick-a-Pic, we generate 500 images for five random seeds respectively. We generated 5,000

images for MS-COCO and 1,000 images for SA-1B captions.

B Additional experiments

B.1 Ablation on timestep choice

Fig.[T5]shows segmentation performance throughout different timesteps applied to the input image.
Both PascalVOC and COCO-Object demonstrates the best performance on ¢ = 8 of 28, where we
report the segmentation performance.

Metric
Metric

Timestep Timestep
(a) PascalvOC (b) COCO-Object

Figure 15: Segmentation performance across denoising timesteps.

B.2 Comparison on I2T and T2I attention maps

Fig.[I6] presents attention maps for I2T and T2I directions corresponding to the highlighted keywords.
The I2T maps exhibit more complete and contiguous object masks, whereas T2I tends to capture
only partial or attenuated regions. This discrepancy likely stems from the distinct aggregation
roles: I2T attention directly updates image tokens based on textual queries, while T2I updates text
tokens conditioned on visual features. Given that the diffusion process ultimately operates on image
tokens to synthesize outputs, it is reasonable that I2T attention aligns more strongly with semantically
grounded image regions. Although this observation does not constitute a formal proof, the consistency
of the qualitative patterns, which is further visualized in Appx.[D.T]|across prompts supports this
interpretation.
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“One cat and one dog “A panda making panda latte
sitting on the grass.” a latte art.”

Figure 16: Comparison on I2T and T2I attention maps.

B.3 Ablation on normalization method

We conduct an ablation study to determine the optimal

method for normalizing attention scores. As shown in _Softmax  min-max | VOC  Object

Table 5] we evaluate the open-vocabulary semantic seg- X X 83.2 55.1
mentation performance across four configurations: using X v/ 85.2 53.5
scores before or after the softmax function, with and with- V4 X 89.0 61.8
out additional min-max normalization to scale the logit v e 88.3  57.0

between O to 1. The results indicate that using the raw
scores directly after the softmax function yields the best Table 5: Ablation on attention score
performance. Consequently, we adopt this scheme for all normalization methods.

subsequent experiments.

B.4 Segmentation performance per attention layer and head

We present semantic segmentation results obtained by leveraging the attention scores from individual
layers and heads in Fig[T7] For a comprehensive evaluation, we measured mIoU on the PASCAL VOC
dataset [16], including the background class. Our analysis reveals that the middle layers consistently
exhibit superior segmentation performance compared to early or late layers.

Segmentation Performence per Head
Laver1 [CHS 0.0 157 | 157 0
Layer 3 -

Layer 5

Layer 6

Layer 8

Layer 9
Layer 10
Layer 11
Layer 12
Layer 13
Layer 14
Layer 15

Layer 18
Layer 19

7
Layer 20
Layer 21 - X

Layer 22 2

Figure 17: mIoU score of each head.



B.5 Quantitative results on attention perturbation

We use CLIP-I, CLIP-T, and DINO scores to evaluate generation quality and alignment. CLIP-I
measures cosine similarity between CLIP embeddings of generated and reference images, reflecting
high-level perceptual fidelity. CLIP-T compares the CLIP embedding of a generated image with that
of the conditioning text, assessing image—text alignment. DINO instead computes cosine similarity
between self-supervised vision embeddings of generated and reference images, offering a language-
free measure of semantic similarity. Higher values indicate better fidelity or alignment, with CLIP-I
and DINO focusing on image—image consistency and CLIP-T on image—text consistency.

Aligned with the qualitative analysis in Sec. 9 Jayer, which we designated as a semantic
grounding expert in SD3, shows a noticeable drop on image fidelity score when perturbed.

0.305 L 0.9
o
° 0.300 L 0.8 S
= w0
S o
(9] =2
i =
a 0.295 4 0.7 E
= =
(@] a
=
(@]
0.290 0.6
CLIPT
CLIP-I
0.285 DINO 0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Layer

Figure 18: Image fidelity scores under layer-wise perturbations on SD3.

C Generalization to other baselines

While we mainly leverage Stable Diffusion 3 (SD3) [15] in our main analysis, we also apply our
analysis to the other MM-DiT variants, Stable Diffusion 3.5 (SD3.5) 53] and Flux.1-dev [3]. We can
similarly observe the correlation between value norm and segmentation performance among layers
for both models. While SD3.5 appears to have layer 9, identical to SD3, to exhibit strong semantic
grounding, Flux shows layer 12 and 17 to have a similar tendency. This hints that our observation
and methodology are not proprietary for SD3, but can be applied to other DiT-based diffusion models
with multi-modal attention, highlighting the generalizability of our insights and findings.
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C.1 Stable Diffusion 3.5
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Figure 19: Average L2-Norm of values across layers on SD3.5.
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Figure 20: Image fidelity scores under layer-wise perturbations on SD3.5.
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Figure 21: Segmentation performance across layers on SD3.5.
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C.2 Flux.1-dev
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Figure 22: Average L2-Norm of values across layers on Flux.
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Figure 23: Image fidelity scores under layer-wise perturbations on Flux. We evaluate only for the
first 19 layers, which employs MM-DiT architecture.
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Figure 24: Segmentation performance across layers on Flux.
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D Additional visualizations

D.1 Image-to-text (I2T) and text-to-image (T2I) attention map

We provide extended visualizations of image-to-text (I2T) and text-to-image (T2I) attention maps
in Fig. 23] The maps are taken from layer 9, where we observe strong semantic alignment between
visual and textual modalities. These results offer insight into the emergent cross-modal grounding

dynamics of the multi-modal diffusion transformer (MM-DiT).

<|sos|> street <|eos|>

12T

<|sos|> street . <|eos|>

<|sos|> i desert

T2I

“A shark in the desert.” <|sos|> i desert . <|eos|>

<|sos|>

engine

<|sos|> small vessel

engine <|eos|>

“A small vessel propelled
on water by oars, sails, or
an engine.”

pro pelled

~
[

Figure 25: Image-to-Text attention map visualization of all prompt tokens.
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D.2 Per-head attention maps

We present comprehensive visualizations of attention maps for individual heads in selected layers,
as shown in Fig[26|and Fig[27] These results illustrate that each attention head focuses on distinct
image regions. This effect is particularly pronounced in layer 9, where individual heads attend to
different parts of the corresponding semantic region.

“A brown bird and
a blue bear.”

Mean Individual Head Attention

Figure 26: Visualization of attention scores for all heads.

Layer 5

Layer 9

Layer 12
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Layer 7

Layer 8

Layer 9

“lllustration of a mouse using
a mushroom as an umbrella.”

Individual Head Attention

Figure 27: Visualization of attention scores for all heads.
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D.3 Statistics of attention score and norm

We present the statistics of L2 norms of value-projected features across all layers and heads in Fig 28]
Notably, layer 9 exhibits consistently large norms for text tokens, suggesting that text features strongly
dominate this layer. When restricting the analysis to the actual prompt tokens only, this trend becomes
even more pronounced.

On the other hand, we observe large image token norms in specific heads within layers 7 and 8, which
coincide with the heads that show strong segmentation performance in Fig.[T7] This suggests that
these heads are highly responsive to image-specific features and may play a crucial role in localizing
visual semantics prior to cross-modal alignment with text.

Text Token

mi‘e Token

7 T I TN I N T I T

Prompt Token

Figure 28: Average L2 norm of value tokens by layer and head.

D.4 PCA visualization of attention features

We provide PCA visualizations of the query-, key-, and value-projected image features across all
layers in Fig.[29] Most layers exhibit a strong positional bias, whereas layer 9 reveals distinct semantic
grouping. This suggests that image features become semantically well-grounded at layer 9, enabling
more meaningful cross-modal interactions.

D.5 Emergent behavior of <pad> tokens

In Fig.[30] we visualize all 77 tokens under the unconditional generation setting described in Sec. [3.4]
which includes <sos>, <eos>, and 75 <pad> tokens. Remarkably, we observe that individual <pad>
tokens attend to distinct semantic regions, despite the absence of explicit semantic information in the
text prompt.
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Figure 29: PCA visualization of query-, key-, and value-projected feature.
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Figure 30: Emergent behavior of <pad> tokens in unconditional generation.
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E Additional qualitative results for generation

We present extended results from attention perturbation experiments in Sec[3.3] Perturbations applied
to layers other than layer 9 result in minor degradation of image fidelity or structure while largely
preserving semantic content. In contrast, perturbing layer 9 leads to the generation of semantically
irrelevant images. Conversely, if we leverage this perturbed sample as a negative sample for the
guidance, we observe a substantial gain on the image quality. This strongly supports our claim that
layer 9 plays a critical role in cross-modal interaction, with a particular emphasis on aligning with the
text modality.

E.1 Extended I2T attention perturbation results
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Figure 31: Effect of applying attention perturbation at different layers during image generation.
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E.2 Extended I2T attention perturbation guidance results
. P ‘ B
;—-— & |
- | L
Layer O Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7
— E .
j ‘ ‘
“A large plant-eating ayer

Layer 8 Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15
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Layer 21 Layer 22 Layer 23

flowing mane and tail,
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Figure 32: Effect of applying attention perturbation guidance at different layers during image
generation.
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E.3 Image generation results of our trained models

Baseline coco SA1B

"The image captures an airport tarmac
during sunset. Several airplanes are parked,
with one prominently displaying the
'Philippine Airlines’ logo. The sky is painted
in hues of orange and yellow, and the
ground is illuminated by the setting sun,
casting a warm glow over the scene."

"The image depicts a playground setting
with a child on a yellow slide. The child is
wearing a beige hoodie with the words
'PLAY AREA' printed on it, gray pants, and
blue shoes. Behind the child, there's another
child partially visible, wearing a red outfit.
The playground has colorful elements,
including a yellow giraffe silhouette and
blue and red blocks."

Hello Worlld Hello World..

"A sign that says 'Hello World"."

-

e e | EEEs =
"The image captures a serene park setting
with a long paved pathway flanked by tall,
leafless trees on either side. On the right,
there are stone lanterns with intricate
designs, and a few visitors can be seen
walking along the path."

"A red book and a yellow vase."

Figure 33: Qualitative results of trained models.
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F Additional qualitative results for segmentation

F.1 Open-vocabulary semantic segmentation results

Figure 36: Open-vocabulary semantic segmentation results of Seg4Diff on ADE20K.
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F.2 Unsupervised segmentation results

rriirined)
‘ll“‘sa'.w.:ﬂ;:mwl\\ {

Figure 39: Unsupervised segmentation results of Seg4Diff on ADE20K.
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G Limitations of our method

Our method evaluates segmentation without postprocessing or upsampling, which limits performance
on extremely small objects. In addition, diffusion models may ground class names differently from
the ground-truth annotations, introducing an inherent mismatch that impacts accuracy. Addressing
this representation—annotation gap is an important direction for future work.

We focus on dense perception and image generation tasks, deferring reasoning-centric evaluations [65]]
(e.g., action recognition, spatial-relations QA) to future work, as our supervision targets segmentation
semantics rather than high-level reasoning. For simplicity, the loss is applied to a single “sweet-spot”
layer per backbone; broader layer/timestep exploration or auxiliary heads (e.g., optical flow, pose)
could yield further gains without changing our core findings.

33



NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

— You should answer [Yes] , ,or [NA]J.
— [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

— Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

— Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
— Keep the checklist subsection headings, questions/answers and guidelines below.
— Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: We state the claims and contributions in abstract and introduction, Section 1.
Guidelines:
— The answer NA means that the abstract and introduction do not include the claims made in the
paper.
— The abstract and/or introduction should clearly state the claims made, including the contribu-

tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

— The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

— It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are not discussed in the main paper but will be included in the
supplementary material.

Guidelines:
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The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

— The authors are encouraged to create a separate "Limitations" section in their paper.

— The paper should point out any strong assumptions and how robust the results are to vi-
olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

— The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

— The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

— The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

— If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

— While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer:

Justification: The paper includes mathematical formulations and algorithmic descriptions; however,
it does not present any formally stated theorems or lemmas accompanied by a complete set of
assumptions and rigorous proofs.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

— Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

— Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides sufficient details to reproduce the main experimental results,
including descriptions of the model architecture, training procedures, datasets used, and evaluation
metrics.
Guidelines:

— The answer NA means that the paper does not include experiments.

— If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

35



— If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

— Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

— While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We have released the code and data to support further reproducibility.
Guidelines:
The answer NA means that paper does not include experiments requiring code.
Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

— While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

— The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

— The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

— The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

— At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

— Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We provide experimenta setting/details in implementation detail section.
Guidelines:
— The answer NA means that the paper does not include experiments.

36


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

— The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

— The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide statistical value in analysis.
Guidelines:
— The answer NA means that the paper does not include experiments.
— The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

— The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

— The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

— The assumptions made should be given (e.g., Normally distributed errors).

— It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

— Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

— For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

— If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: We provide information on the computer resources in implementation detail section.
Guidelines:

— The answer NA means that the paper does not include experiments.

— The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

— The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

— The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research fully conforms to the NeurIPS Code of Ethics. It does not involve
any personally identifiable information, sensitive attributes, or human subjects, and no ethical
concerns were identified in the process of conducting this work.
Guidelines:
— The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

— If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.
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— The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

10. Broader impacts

11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA|

Justification: This work does not directly target any specific application domain. As such, the
work does not have any immediate or foreseeable impacts.
Guidelines:

— The answer NA means that there is no societal impact of the work performed.

— If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

— Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

— The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

— The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

— If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA|

Justification: This paper poses no such risks for misuse.

Guidelines:

— The answer NA means that the paper poses no such risks.

— Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

— Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

— We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: The paper uses publicly available datasets and pretrained models, all of which are
properly cited with their original sources.

Guidelines:
— The answer NA means that the paper does not use existing assets.
— The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

The authors should state which version of the asset is used and, if possible, include a URL.

— The name of the license (e.g., CC-BY 4.0) should be included for each asset.

— For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

— If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets| has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

— For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

— If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|

Justification: The paper does not release new assets.

Guidelines:

— The answer NA means that the paper does not release new assets.

— Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

— The paper should discuss whether and how consent was obtained from people whose asset is
used.

— At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsoourcing nor research with human subjects.
Guidelines:

— The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

— Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

— According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.
Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were

obtained?

Answer: [NA]

Justification: This paper does not involve crowdsoourcing nor research with human subjects.
Guidelines:

— The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

— Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

— We recognize that the procedures for this may vary significantly between institutions and

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.
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— For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
— The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.
— Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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