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sink

(a) “Can I wash my hands?” (b) “Brown Furnitures.”

laptop

(c) “Device to play game.”

Figure 1: Qualitative results of SOLE with various language instructions. SOLE is highly gen-
eralizable and can segment corresponding instances with various language instructions, including
but not limited to (a) visual questions, (b) attributes description, and (c) functional description.

ABSTRACT

In this paper, we investigate Open-Vocabulary 3D Instance Segmentation (OV-
3DIS) with free-form language instructions. Earlier works mainly rely on anno-
tated base categories for training which leads to limited generalization to unseen
novel categories. To mitigate the poor generalizability to novel categories, recent
works generate class-agnostic masks or projecting generalized masks from 2D to
3D, subsequently classifying them with the assistance of 2D foundation model.
However, these works often disregard semantic information in the mask genera-
tion, leading to sub-optimal performance. Instead, generating generalizable but
semantic-aware masks directly from 3D point clouds would result in superior out-
comes. To the end, we introduce Segment any 3D Object with LanguagE (SOLE),
which is a semantic and geometric-aware visual-language learning framework
with strong generalizability by generating semantic-related masks directly from
3D point clouds. Specifically, we propose a multimodal fusion network to in-
corporate multimodal semantics in both backbone and decoder. In addition, to
align the 3D segmentation model with various language instructions and enhance
the mask quality, we introduce three types of multimodal associations as supervi-
sion. Our SOLE outperforms previous methods by a large margin on ScanNetv2,
ScanNet200, and Replica benchmarks, and the results are even closed to the fully-
supervised counterpart despite the absence of class annotations in the training.
Furthermore, extensive qualitative results demonstrate the versatility of our SOLE
to language instructions.

1 INTRODUCTION

3D instance segmentation which aims at detecting, segmenting and recognizing object instances in
3D scenes is one of the crucial tasks for 3D scene understanding. Effective and generalizable 3D
instance segmentation has great potential in real-world applications, including but not limited to
autonomous driving, augmented reality (AR), and virtual reality (VR). Owing to its significance, 3D
instance segmentation has achieved remarkable success in the computer vision community (Schult
et al., 2022; Vu et al., 2022; He et al., 2022). Previous 3D instance segmentation models mainly focus
on the closed-set setting, where the training and testing stages share the same categories. However,
novel and unseen categories with various shapes and semantic meaning are inevitable in real-world
applications. Failure to segment such instances drastically narrows the scope of application.
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(a) Class agnostic 3D masks and classification (b) Semantic-aware 3D masks (ours)

Figure 2: Left (a) : Previous works train class-agnostic mask proposal module with only using mask
annotations. In the inference time, generated 3D masks are projected to 2D images and subsequently
classified with the help of 2D foundation model. Right (b) : In contrast, we train semantic-aware
mask proposal module with giving Multi-Modal Associations (MMA) and mask annotations as su-
pervision. With regarding both geometry and semantic information in the mask generation, our
SOLE can produce highly generalizable segments.

In view of the strong limitations of closed-set setting, open-set 3D instance segmentation (OS-3DIS)
that aims at detecting and segmenting unseen classes based on instructions is introduced and inves-
tigated in the community. Most of the works (Huang et al., 2023b; Ding et al., 2022b; Nguyen et al.,
2024) leverage category names or descriptions as segmentation instructions, which is also termed as
open-vocabulary 3D instance segmentation (OV-3DIS). The early approaches (Ding et al., 2022b;
Yang et al., 2023; Ding et al., 2023) split categories in each dataset into base and novel set. Only
base categories are available in the training stage, but the model is expected to segment novel cate-
gories during inference. Due to the lack of novel classes during training, these methods easily overfit
to the base categories and thus yielding sub-optimal performance on novel categories. In addition,
they suffer from severe performance degradation when they are evaluated on the data with different
distributions. In this regards, recent works (Takmaz et al., 2023; Huang et al., 2023b; Yan et al.,
2024; Lu et al., 2023) explore more generalizable OV-3DIS with the help of 2D foundation mod-
els (Radford et al., 2021; Oquab et al., 2023; Zhou et al., 2022b). Specifically, Nguyen et al. (2024);
Takmaz et al. (2023); Huang et al. (2023b) learn class-agnostic 3D masks from mask annotation and
then project the point clouds to 2D images to obtain class labels from foundation models (Fig. 2a).
Yan et al. (2024); Lu et al. (2023); Yin et al. (2024) predict 2D instances with 2D open-vocabulary
instance segmentation model (Zhou et al., 2022b) and fuse them to obtain 3D predictions. However,
class-agnostic masks and 2D projected masks ignore the semantic and geometry information in the
mask generation, respectively, leading to the sub-optimal performance (details in Appendix. E.1).
To this end, we investigate the OV-3DIS problem from the perspective of mask generator in this
paper (Fig. 2b). We propose the semantic-aware mask generator to obtain semantic-related masks
from 3D point clouds, yielding better and more generalizable 3D masks.

In this paper, we propose SOLE: Segment any 3D Object with LanguagE to circumvent the above-
mentioned issues for OV-3DIS. To realize generalizable open-set 3D instance segmentation, our
SOLE requires two main attributes: generating and classifying 3D masks directly from 3D point
clouds, and responsive to free-form language instructions. The 3D segmentation network is re-
quired to be aligned with language instructions to directly segment and classify instances from point
clouds. To this end, we build a multimodal fusion network with two main techniques: 1) Point-wise
CLIP features obtained from pre-trained multimodal 2D segmentation model (Ghiasi et al., 2022) are
incorporated to the backbone to enhance the generality of the model; 2) Cross-modality decoder is
introduced to integrate information from language-domain features, facilitating the effective fusion
of multimodal knowledge. Furthermore, we improve the generalization ability across various scene
and language instructions with a novel visual-language learning framework, training the 3D segmen-
tation network with three types of multimodal associations: 1) Mask-visual association aligns the
3D visual information with 2D visual information in the foundation model; 2) mask-caption associ-
ation aims at enabling the mask generation and classification from various language forms; and 3)
mask-entity association introduces fine-grained textual information into the framework, enhancing
the ability of instance segmentation. These associations improve the language instruction alignment
and enhance the 3D mask prediction with more abundant semantic information.

Equipped with a multimodal fusion network and three types of multimodal associations, our visual-
language learning framework (SOLE) outperforms previous works by a large margin on Scan-
Netv2 (Dai et al., 2017), ScanNet200 (Rozenberszki et al., 2022) and Replica (Straub et al., 2019)
benchmarks. Furthermore, SOLE can respond to free-form queries, including but not limited to
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questions, attributes description, and functional description (Fig. 1 and Fig. 7). In summary, our
contributions are as follows:

• We propose a visual-language learning framework for OV-3DIS, SOLE. A multimodal fusion
network is designed for SOLE, which can directly predict semantic-related masks from 3D point
clouds with multimodal information, leading to high-quality and generalizable segments.

• We propose three types of multimodal associations to improve the alignment between 3D seg-
mentation model with the language. The associations improve the mask quality and the response
ability to language instructions.

• SOLE achieves state-of-the-art results on ScanNetv2, Scannet200 and Replica benchmarks, and
the results are even close to the fully-supervised counterpart. In addition, extensive qualitative
results demonstrate that SOLE can respond to various language questions and instructions.

2 RELATED WORK

Closed-Set 3D Instance Segmentation. 3D instance segmentation aims at detecting, segmenting
and recognizing the object instances in 3D scenes. Previous works (He et al., 2021; 2022; Ngo
et al., 2023; Schult et al., 2022; Sun et al., 2023; Vu et al., 2022; Yi et al., 2019; Zhang et al., 2021;
Hou et al., 2019; Yang et al., 2019a; Chen et al., 2021; Dong et al., 2022; Jiang et al., 2020; Liu
et al., 2022; Wu et al., 2022) mainly consider the closed-set setting, where the training and testing
categories are the same. These methods vary in feature extraction and decoding process. With the
development of transformer models, mask prediction becomes a more efficient and effective way
than traditional box detection decoding approaches. Mask3D (Schult et al., 2022) samples a fixed
number of points across the scene as queries, and then directly predicts the final masks with attention
mechanism, achieving better results. However, closed-set methods lack the capability to handle the
unseen categories and thus hindering their application in the real world.

Open-Vocabulary 2D Segmentation. Owing to the recent success of large-scale vision-language
models (Alayrac et al., 2022; Cherti et al., 2023; Girdhar et al., 2023; Jia et al., 2021; Radford et al.,
2021; Yu et al., 2022; Yuan et al., 2021), notable achievements have been made in open-vocabulary
or zero-shot 2D segmentation (Ding et al., 2022a; Ghiasi et al., 2022; Gu et al., 2021; He et al.,
2023; Kuo et al., 2022; Li et al., 2022; Liang et al., 2023; Ma et al., 2022; Rao et al., 2022; Xu
et al., 2022; 2023; Zabari & Hoshen, 2021; Zhou et al., 2022a; Cho et al., 2023; Ma et al., 2023;
Yuan et al., 2024). The common key idea is to leverage 2D mulitmodal foundation models (Radford
et al., 2021; Jia et al., 2021) for the transfer of image-level embeddings to the pixel-level downstream
tasks. LSeg (Li et al., 2022), OpenSeg (Ghiasi et al., 2022), and OVSeg (Liang et al., 2023) align
pixel-level or mask-level visual features to text features from foundation model for open-vocabulary
semantic segmentation. Recently, Open-Vocabulary SAM (Yuan et al., 2024) integrates CLIP and
SAM, further exploring interactive open-world tasks. Other works such as X-Decoder (Zou et al.,
2023), FreeSeg (Qin et al., 2023) and SEEM (Zou et al., 2024) suggest more unified-framework for
open-vocabulary segmentation, include instance, panoptic, and referring segmentation.

Open-Vocabulary 3D Scene Understanding. The remarkable success achieved in open-vocabulary
2D segmentation (OV-2DS) has spurred several endeavors in open-vocabulary 3D segmentation.
However, the techniques in OV-2DS cannot be directly transferred to the 3D domain due to the lack
of 3D multimodal foundation model. Consequently, researchers propose to align 2D images and 3D
point clouds and thus lifting 2D foundation models to 3D. For open-vocabulary 3D semantic seg-
mentation, (Chen et al., 2023; Ding et al., 2022b; Ha & Song, 2022; Huang et al., 2023a; Jatavallab-
hula et al., 2023; Peng et al., 2023; Shafiullah et al., 2022; Shah et al., 2023) construct task-agnostic
point-wise feature representations from 2D foundation models (Radford et al., 2021), and then use
these features to query the open-vocabulary concepts within 3D scene. These works focus purely on
transferring semantic information from 2D to 3D, limiting the application for instance-level recogni-
tion tasks. In this regard, open-vocabulary 3D instance segmentation (OV-3DIS) (Ding et al., 2023;
Huang et al., 2023b; Takmaz et al., 2023; Lu et al., 2023; Nguyen et al., 2024; Yan et al., 2024) is
introduced to detect and segment instances of various categories in 3D scenes. PLA (Ding et al.,
2022b) and its variants (Yang et al., 2023; Ding et al., 2023) split the training categories into base
and novel classes, and train the model only with base class annotation. OpenMask3D (Takmaz et al.,
2023) and OpenIns3D (Huang et al., 2023b) learn class-agnostic 3D masks from mask annotations
and then use the corresponding 2D images to obtain class labels from foundation models. With
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Figure 3: Overall framework of SOLE. SOLE is built on transformer-based instance segmentation
model with multimodal adaptations. For model architecture, backbone features are integrated with
per-point CLIP features and subsequently fed into the cross-modality decoder (CMD). CMD aggre-
gates the point-wise features and textual features into the instance queries, finally segmenting the
instances, which are supervised by multimodal associations. During inference, predicted mask fea-
tures are combined with the per-point CLIP features, enhancing the open-vocabulary performance.

following similar paradigm, Open3DIS (Nguyen et al., 2024) further improves the quality of masks
by fusing 3D segments and 2D masks. Recently, researchers also investigate direct lifting of 2D
predictions from 2D instance segmentation model (Zhou et al., 2022b) to 3D without training (Yan
et al., 2024; Lu et al., 2023; Yin et al., 2024). However, previous works often disregard semantic
information in the mask generation, leading to the poor semantic generalization ability. Considering
the limitations of previous works, we significantly improve OV-3DIS by designing a visual-language
learning framework with a multimodal network and various multimodal associations.

3 METHOD

Objective. The goal of open-vocabulary 3D instance segmentation (OV-3DIS) with free-form lan-
guage instructions is defined as follows: Given a 3D point cloud P ∈ RM×C , the corresponding 2D
images I and the instance-level 3D masks m, we aim to train a 3D instance segmentation network
without ground-truth class annotations. During inference, given a text prompt q, the trained 3D
instance segmentation network must detect and segment corresponding instances.

Mask-Prediction Baseline. We build our framework on the transformer-based 3D instance segmen-
tation model Mask3D (Schult et al., 2022), which treats the instance segmentation task as the mask
prediction paradigm. Specifically, the transformer decoders with mask queries are used to segment
instances. Given Nq queries selected from the scene, cross attention is used to aggregate informa-
tion from the point clouds to instance queries. After several decoder layers, Nq queries become Nq

masks with corresponding semantic prediction. During training, Hungarian matching (Kuhn, 1955)
is adopted to match and train the model with ground truth labels and masks. At the inference stage,
Nq masks with correct semantic classification results are taken as the final outputs. Our SOLE
leverages the mask prediction paradigm with transformer-based architecture, where the model is
only trained with masks without ground truth labels to achieve generalizable OV-3DIS.

Overview. The overall architecture of SOLE is illustrated in Fig. 3. To realize open-vocabulary
instance segmentation with free-form language instructions, we improve the transformer-based in-
stance segmentation model with multimodal information: point-wise CLIP features in the backbone
(Sec. 3.1) and textual information in the decoder (Sec. 3.2). Furthermore, to achieve better general-
ization ability without ground truth class labels, we construct three types of multimodal associations
on target instances: mask-visual association, mask-caption association and mask-entity association
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Figure 4: Three types of multimodal association instance. For each ground truth instance mask,
we first pool the per-point CLIP features to obtain Mask-Visual Association fMVA. Subsequently,
fMVA is fed into CLIP space captioning model to generate caption and corresponding textual feature
fMCA for each mask, termed as Mask-Caption Association. Finally, noun phrases are extracted
from mask caption and the embeddings of them are aggregated via multimodal attention to get
Mask-Entity Association fMEA. The three multimodal associations are used for supervising SOLE
to acquire the ability to segment 3D objects with free-form language instructions.

to train SOLE. Equipped with the multimodal framework and associations, our SOLE can effectively
segment instances given various language prompts.

3.1 BACKBONE FEATURE ENSEMBLE

Initializing the backbone with pre-trained model (Jia et al., 2022; Zhao et al., 2023b;a) is an effi-
cient and effective way to improve the performance on the downstream tasks, especially when the
downstream data is not in abundance. For 3D open-set setting, leveraging 2D foundation model is
crucial due to the limited 3D data. We thus follow (Peng et al., 2023) to project pre-trained visual
features of 2D images to 3D point clouds based on the camera pose. To maintain the fine-grained
and generalizable features, we leverage OpenSeg (Ghiasi et al., 2022) as the 2D backbone. These
features contain visual information in the CLIP (Radford et al., 2021) feature space, which is aligned
with textual information.

Since CLIP feature space mainly focuses on semantic information due to the image-level contrastive
training, leveraging the projected features solely cannot achieve optimal performance on instance
segmentation. To this end, we train a 3D instance segmentation backbone and combine its features
f b ∈ RM×D with the projected 2D CLIP features fp ∈ RM×C :

f̃ b = concat(fp, f b) ∈ RM×(C+D), (1)

where M denotes the number of points while D and C denote the feature dimension of 3D instance
segmentation backbone and the projected 2D features, respectively. Note that features of different
resolutions are extracted from the 3D backbone and respectively incorporated with the 2D CLIP
features. As illustrated in Fig. 3, the same pooling strategy with 3D backbone is adopted to CLIP
features, aligning the resolution. Finally, incorporated point-wise features with multiple resolutions
are fed into cross modality decoder.

3.2 CROSS MODALITY DECODER (CMD)

Projected 2D CLIP features provide generalizable visual information but the language information
is not explicitly integrated, limiting the responsive ability to language instructions. To circumvent
this issue, we introduce Cross Modality Decoder (CMD) to incorporate textual information in the
decoding process of our framework. Specifically, each CMD module contains three attention lay-
ers. Instance queries first extract visual information from the CLIP-combined backbone features f̃ b.
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CLIP textual features are then projected to key and value in the second attention layer, incorporat-
ing the text domain knowledge. During the training, CLIP textual features are obtained from the
caption features of each target mask, fMCA ∈ RNc×C (See Sec. 3.3 for details), whereas, during the
inference, it can be the description of the query instance or other form of language instructions, such
as visual questions or functional attributes. Finally, self-attention is applied to the instance queries
to further improve the representation. By fusing the multimodal knowledge from CLIP with multi-
level CMD as the decoder, SOLE can respond to various language instructions with high-quality
results.

3.3 VISION-LANGUAGE LEARNING

We do vision-language learning to enable our SOLE towards generalizable OV-3DIS. To respond
effectively to various language instructions, we leverage multimodal information stemming from
target mask annotations, to supervise the segmentation network. Specifically, three types of super-
vision in hierarchical granularity are proposed: 1) mask-visual association, 2) mask-caption associ-
ation and 3) mask-entity association.

Mask-Visual Association (MVA). Using the correspondence between 2D images and 3D point
clouds, we can get the instance-level CLIP visual features fMVA ∈ RNm×C by averaging the per-
point CLIP features within the Nm target instance masks m = [m1,m2, . . . ,mNm ]. The instance-
level CLIP visual features can serve as the supervision to indirectly align the 3D segmentation
model to CLIP textual space. In addition, as the intermediate representation between 3D point
cloud and language, the mask-visual association is also the basis for the following two fine-grained
associations.

Mask-Caption Association (MCA). Despite being in the CLIP feature space, mask-visual associa-
tion is not an accurate and precision language supervision. Instead, directly supervising the model
with language instructions would yield better results. Due to the strong generalization ability of
CLIP (Radford et al., 2021), text generation from CLIP space is widely investigated in the com-
munity (Tewel et al., 2022; Mokady et al., 2021; Li et al., 2023). Since the instance-level CLIP
visual features fMVA in the mask-visual association is in CLIP visual space, we can feed them to
the CLIP space caption generation model (DeCap (Li et al., 2023)) to obtain the mask captions
c = [c1, c2, ..., cNm

]. The mask captions are then fed into CLIP textual model to extract the mask-
caption association fMCA. This association represents the language information for the instance
masks, used in CMD to fuse textual information during the training.

Mask-Entity Association (MEA). Although mask-caption association can provide detailed lan-
guage descriptions for both semantics and geometry, it may be ambiguous for specific categories.
As shown in the example of Fig. 4. The mask caption for a desk is “A wooden desk with a chair in
a room”. Such caption can lead to the confusion of the model between the chair and the desk, or
misinterpretation of the two instances as a single one. It is therefore important to introduce a more
fine-grained visual-language association for better semantic learning.

Since the objects are commonly the nouns in the caption, we can extract the entity-level descriptions
for the nouns and match them with the instances. Specifically, as illustrated in Fig. 4, we first extract
all the noun phrases ei for each mask caption ci and obtain the text feature of each noun phrase from
CLIP text encoder T as below:

E(ci) = ei = [e1, e2, . . . , eNi
e
], fei = T (ei) ∈ RNi

e×C , (2)

where E(·) denotes the NLP tool to extract noun phrases and N i
e denotes the number of nouns

obtained from mask caption ci. The entities can be matched to the mask in either a hard or soft
manner. Intuitively, the most similar entity can be viewed as the mask label. However, there are
two main issues with such a hard matching. First, the generated caption and the similarity results
may not be accurate, leading to wrong supervision. Second, although the entity is correct, hard
matching ignores the geometry information in the context and thus impairing the responsive ability
to language instructions. To this end, we propose a soft matching to get mask-entity association by
multimodal attention. Specifically, the aggregated entity feature for the i-th mask fMEA

i is obtained
based on the attention map Ac,e constructed by cosine similarity cos(·, ·) between mask feature and
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entity features:

fMEA
i = Ac,e · fei =

Ni
e∑
k

exp
(
cos

(
fMVA
i , feki

))∑Ni
e

j exp
(
cos

(
fMVA
i , f

ej
i

)) · feki , (3)

where fMVA
i denotes the mask-visual association feature for i-th mask, and feki is the CLIP textual

feature for k-th entity in the i-th mask caption. With the aggregated entity feature, the 3D mask can
be aligned with a specific instance category.

3.4 TRAINING AND INFERENCE

Training. The three types of multimodal associations are effective supervision to learn a gener-
alizable 3D instance segmentation model. We follow the mask prediction paradigm to train the
segmentation model, which matches the ground truth instances with the predicted masks via Hun-
garian matching (Kuhn, 1955). Specifically, the matching cost between i-th predicted mask and j-th
ground truth instance is calculated as:

C(i, j) =− λMMA

(
p
(
cos

(
fmi , fMVA

j

))
+ p

(
cos

(
fmi , fMCA

j

))
+ p

(
cos

(
fmi , fMEA

j

)))
+ λdiceLdice(i, j) + λBCELBCE(i, j),

(4)

where p(·) denotes the softmax probability following the cosine similarity between the predicted
instance and the ground truth. After matching the masks and ground truth instances, the model is
trained with the combination of mask and semantic loss.

Specifically, all three types of associations are used to semantically supervise the model. For each
association, we follow (Zhou et al., 2023) to use the combination of focal loss (Lin et al., 2017) and
dice loss, which can ensure the segmentation result for each class is independently generated. The
semantic multimodal association loss Lj

MMA for j-th ground truth mask is:

Lj
MMA =

∑
a

(
Lfocal(p̂

a
σ(j), y

a
j ) + Ldice(p̂

a
σ(j), y

a
j )
)
, (5)

where a ∈ {MVA,MCA,MEA} denotes three types of associations and yaj is the binary label for
matching. p̂aσ(j) = sigmoid(fmσ(j) · f

a
j ) is the semantic probability between the prediction with the

association a. The overall training loss is the combination of mask loss and semantic loss:

L =
1

Nm

Nm∑
j

(
λMMALj

MMA + λdiceLdice(m̂σ(j),mj) + λBCELBCE(m̂σ(j),mj)
)
, (6)

where m̂σ(j) denotes matched predicted mask with j-th target mask.

Inference. During inference, we combine the visual feature from CLIP with the predicted mask
feature to achieve better generalization ability. Specifically, after obtaining the 3D masks, per-point
CLIP features are pooled within the mask. The pooled CLIP feature and mask feature are then given
to the text classifier f t to obtain the respective classification probability Pm = p(cos(fm, f t)) and
Pp = p(cos(fp, f t)), and the final probability is yielded by soft geometric mean between them:

P = max (Pm,Pp)
τ ·min (Pm,Pp)

1−τ
, (7)

where τ is the exponent to increase confidence, which we set to 0.667 in this paper. For benchmark
evaluation, we use CLIP textual features of all category names as the classifier. For responding to
other language instructions, we use the CLIP textual feature of corresponding language instruction
as binary classifier.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets. We evaluate SOLE on the popular scene understanding datasets: ScanNetv2 (Dai et al.,
2017), ScanNet200 (Rozenberszki et al., 2022) and Replica (Straub et al., 2019) in both closed-
set and open-set 3D instance segmentation tasks. ScanNetv2 (Dai et al., 2017) is a popular indoor
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Table 1: The comparison of closed-set 3D instance segmentation setting on ScanNetv2. SOLE
is compared with mask-training methods and the fully-supervised counterpart (upper bound). SOLE
outperforms all the OV-3DIS methods and achieves competitive results with the fully-supervised
model. The best results are in bold while the second best results are underscored.

Method AP AP50 AP25 voxel size

OpenIns3D (Huang et al., 2023b) - 28.7 38.9 2cm
OpenMask3D (Takmaz et al., 2023) 31.0 39.5 44.0 2cm
Open3DIS (only 3D) (Nguyen et al., 2024) 31.3 42.4 47.8 2cm
SOLE w 4cm voxel size 30.8 52.5 70.9 4cm
SOLE w/o text sup 35.0 50.2 60.2 2cm
SOLE (ours) 44.4 (+13.1) 62.2 (+19.8) 71.4 (+23.6) 2cm

Mask3D (Schult et al., 2022) (fully sup) 55.2 73.7 83.5 2cm

Table 2: The comparison of closed-set 3D instance segmentation setting on ScanNet200. SOLE
is compared with mask training methods on the overall segmentation performance and on each
subset. SOLE significantly outperforms state-of-the-art methods on five out of the six evaluation
metrics under the same conditions using only proposals from a 3D Network.

Method AP AP50 AP25 APhead APcom APtail

OpenIns3D (Huang et al., 2023b) 8.8 10.3 14.4 16.0 6.5 4.2
OpenMask3D (Takmaz et al., 2023) 15.4 19.9 23.1 17.1 14.1 14.9
Open3DIS (only 3D) (Nguyen et al., 2024) 18.6 23.1 27.3 24.7 16.9 13.3
SOLE (ours) 20.1

(+1.5)

28.1
(+5.0)

33.6
(+6.3)

27.5
(+2.8)

17.6
(+0.7)

14.1
(-0.8)

Mask3D (fully sup) (Schult et al., 2022) 26.9 36.2 41.4 39.8 21.7 17.9

point cloud dataset with 18 instance classes, where “other furniture” class is disregarded due to its
ambigity. ScanNet200 (Rozenberszki et al., 2022) is a fine-grained annotated version of ScanNetv2
that contains 200 classes of head (66 categories), common (68 categories) and tail (66 categories)
subsets. For ScanNetv2 and ScanNet200, we evaluate the closed-set setting and the hierarchical
open-set setting. Replica (Straub et al., 2019) is a high-quality synthetic dataset annotated with 48
instance categories. Following (Takmaz et al., 2023), we evaluate on eight scenes in Replica for
open-set instance segmentation, including {office0, office1, office2, office3, office4, room0, room1
and room2.}
Implementation Details. Following the Mask3D (Schult et al., 2022), we adopt Minkowski-
UNet (Choy et al., 2019) as backbone. The feature backbone extracts point features in 5 scales,
while 4 layers of transformer decoder iteratively refine the instance queries. Our model is trained
for 600 epochs with AdamW (Loshchilov & Hutter, 2017) optimizer. The learning rate is set to
1× 10−4 with cyclical decay. In training, we set λMMA = 20.0, λdice = 2.0 and λBCE = 5.0 as the
loss weight.

Baselines. We compare SOLE mainly with recent mask-training methods (Takmaz et al., 2023;
Huang et al., 2023b; Nguyen et al., 2024). Mask-training methods (Takmaz et al., 2023; Huang
et al., 2023b; Nguyen et al., 2024) train class-agnostic mask generator with mask annotations and
get the semantic prediction with 2D foundation models. Evaluation is conducted under the same
conditions using only proposals from a 3D Network on all the categories. The proposed semantic-
aware mask generator can be combined with the classification techniques proposed by previous
works, further improving the performance (Appendix. D.2).

Evaluation Metric. Average precision (AP) of different IoU thresholds is adopted as the evaluation
metric, including AP under 25%, 50% IoU and the average AP from 50% to 95% IoU.

4.2 COMPARISON WITH PREVIOUS METHODS

Closed-Set 3D Instance Segmentation. We compare our SOLE with mask-training methods (Tak-
maz et al., 2023; Huang et al., 2023b; Nguyen et al., 2024) on the closed-set 3D instance segmenta-
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Table 3: The comparison of hierarchical open-set 3D instance segmentation setting on Scan-
Netv2 (Dai et al., 2017)→ScanNet200 (Rozenberszki et al., 2022). SOLE is compared with Open-
Mask3D and Open3DIS on both base and novel classes and achieves the best results.

Method Novel Classes Base Classes All Classes
AP AP50 AP25 AP AP50 AP25 AP APtail

OpenMask3D (Takmaz et al., 2023) 11.9 15.2 17.8 14.3 18.3 21.2 12.6 11.5
Open3DIS (only 3D) (Nguyen et al., 2024) 14.9 19.2 22.1 16.5 22.4 26.2 15.3 10.9
SOLE (ours) 19.1

(+4.2)

26.2
(+7.0)

30.7
(+8.6)

17.4
(+0.9)

26.2
(+3.8)

32.1
(+5.9)

18.7
(+3.4)

12.5
(+1.0)

Table 4: The comparison of open-set 3D instance segmentation setting on ScanNet200 (Rozen-
berszki et al., 2022)→Replica (Straub et al., 2019). SOLE outperforms state-of-the-art meth-
ods (Takmaz et al., 2023; Nguyen et al., 2024) on all the evaluation metrics.

Method Mask Training AP AP50 AP25

OpenIns3D (Huang et al., 2023b) ScanNet200 13.6 18.0 19.7
OpenMask3D (Takmaz et al., 2023) ScanNet200 13.1 18.4 24.2
Open3DIS (only 3D) (Nguyen et al., 2024) ScanNet200 14.9 18.8 23.6
SOLE (ours) ScanNet200 24.7 (+9.8) 31.8 (+13.0) 40.3 (+16.1)

tion setting. From the comparison results in Tab. 1, we can make the following observations. First,
with the same mask supervision, SOLE significantly surpasses state-of-the-art method (Nguyen
et al., 2024) by 13.1%, 19.8%, and 23.6% on AP, AP50 and AP25, respectively. Second, our SOLE
can even achieve competitive performance with the fully-supervised counterpart (44.4% v.s. 55.2%
in AP) despite not using the class labels. Finally, we provide two variants of SOLE to further verify
our effectiveness. SOLE w 4cm voxel size leverages 4cm voxel size instead of 2cm as in previous
works. Larger voxel size can save the memory requirements and speed up the model with the loss
of precision. Despite using a small voxel size, SOLE w 4cm voxel size is still on par with Open-
Mask3D and Open3DIS in AP, and largely outperforms them in AP50 and AP25. Furthermore, we
verify that the effectiveness of our framework is not limited to the caption model and NLP tools
by conducting experiments without any additional textual information, i.e. SOLE w/o text sup. In
this experiment, mask-caption association and mask-entity association is removed since the caption
is not available. The model can still achieve the state-of-the-art performance despite only trained
with mask-visual association. Additionally, we compare SOLE with mask-training methods on
ScanNet200 (Rozenberszki et al., 2022) in Tab. 2. All of the methods are evaluated on the overall
segmentation performance and the performance on each of the three subsets. SOLE outperforms
state-of-the-art methods (Nguyen et al., 2024; Takmaz et al., 2023) on five out of the six metrics
and achieves comparable performance on the tail classes. The results on ScanNet200 (Rozenberszki
et al., 2022) further demonstrate the effectiveness of our framework.

Hierarchical and Cross-Domain Open-Set 3DIS. To evaluate the generalization capability of our
work, we compare our SOLE with mask training methods (Huang et al., 2023b; Takmaz et al.,
2023; Nguyen et al., 2024) in open-set setting, using Scannet200 (Rozenberszki et al., 2022) and
Replica (Straub et al., 2019) datasets. For ScanNet200, both models are trained with mask an-
notations in ScanNetv2 (Dai et al., 2017). Following (Takmaz et al., 2023), 53 classes that are
semantically close to the ScanNet, are grouped as “Base”. The remaining 147 classes are grouped
as “Novel”. Both in-distribution (“base”) and out-of-distribution (“novel”) classes are reported in
Tab. 3. Our SOLE outperforms OpenMask3D (Takmaz et al., 2023) and Open3DIS (Nguyen et al.,
2024) by a large margin on both base and novel classes. Furthermore, to verify the generalization
ability of SOLE when both domain shift and category shift exist, we compare our framework with
all of the mask training methods on the synthetic Replica benchmark (Straub et al., 2019). Models
are trained on the annotated masks on ScanNet200. As shown in Tab. 4, our method further shows
superior robustness on more out-of-distribution data from Replica, achieving +9.8% improvement
in AP score compared to Open3DIS.

4.3 ABLATION STUDIES AND ANALYSIS

In this section, we conduct several ablation studies to validate our design choices. All of the studies
are evaluated on ScanNetv2 (Dai et al., 2017) dataset.
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Table 5: Multimodal fusion network.
No. fp f b CMD AP AP50 AP25 voxel size

1 ✓ ✓ 18.7 36.4 58.1 4cm
2 ✓ ✓ 25.4 47.0 66.0 4cm
3 ✓ ✓ ✓ 30.8 52.5 70.9 4cm

4 ✓ ✓ 42.8 60.5 68.9 2cm
5 ✓ ✓ ✓ 44.4 62.2 71.4 2cm

Table 6: Multimodal associations.
No. fMVA fMCA fMEA AP AP50 AP25 voxel size

1 ✓ 24.5 42.0 56.0 4cm
2 ✓ 30.4 53.0 68.7 4cm
3 ✓ 32.1 53.8 70.0 4cm
4 ✓ ✓ 29.1 50.9 66.8 4cm
5 ✓ ✓ 30.3 53.7 70.4 4cm
6 ✓ ✓ ✓ 30.8 52.5 70.9 4cm

tv

(a) fMEA

window

(b) fMV A, fMCA

window

(c) fMV A, fMCA, fMEA

Figure 5: Qualitative analysis on multimodal associations. Given the free-form language instruc-
tion, “I wanna see outside.”, SOLE trained only with fMEA captures the wrong object ((a)), whereas
it segments the related object when fMVA and fMCA are given as the supervision ((b) and (c)).

Multimodel Fusion Network. In Tab. 5, we conduct component analysis on multimodal fusion
network, validating the effectiveness of backbone feature ensemble and Cross-Modality Decoder
(CMD). As for the backbone feature ensemble, leveraging projected 2D CLIP features fp (first row)
as only backbone can have better semantic information but lack the 3D geometry detection ability,
leading to poor semantic recognition ability. In contrast, solely using 3D instance backbone fea-
ture f b (second row) cannot inherit the generalizable semantic information, resulting in sub-optimal
performance. Combining the two features (third row) can make full use of generalized semantic
information while learning good geometry detection ability from 3D masks, yielding optimal re-
sults. Additionally, Cross Modality Decoder (CMD) can further enhance the ability to understand
language instructions, improving AP by 1.6%.

Multimodal Associations. We analyze the components of multimodal associations (fMVA, fMCA,
and fMEA) in Tab. 6, reporting the scores of various combinations on ScanNetv2 (Dai et al., 2017)
with 4cm voxel size. We have the following observations. First, using any of multimodal associ-
ations can already achieve significant performance, outperforming previous state-of-the-art method
(OpenIns3D (Huang et al., 2023b)) with larger voxel size (lower resolution). Second, among the
three types of associations, mask-entity association fMEA is the most effective one on evaluation
metrics since it can align the masks with specific categories. Third, when combining fMEA with
the other two associations, the model suffers from performance degradation on AP and AP50 while
the performance improves on AP25. This observation shows that mask-visual association and mask-
caption association can help semantic learning but impair mask accuracy. To this end, we further
illustrate qualitative results in Fig. 5. Given a free-form language instruction instead of category
name, e.g., “I wanna see outside”, the model only using mask-entity association cannot segment the
correct instance (Fig. 5a) while the model incorporating the other associations (Fig. 5b and Fig. 5c)
can. Therefore, despite slightly impairing the performance on benchmark, mask-visual association
and mask-caption association are crucial to recognizing free-form language instructions, benefiting
the applications in real-world scenarios.

5 CONCLUSION

In this paper, we propose a novel framework, SOLE, for open-vocabulary 3D instance segmen-
tation with free-form language instructions. SOLE contains a multimodal fusion network and is
supervised with three types of multimodal associations, aiming at aligning the model with various
free-form language instructions. Our framework outperforms previous methods by a large margin
on three benchmarks while achieving competitive performance with the fully-supervised counter-
part. Moreover, extensive qualitative results demonstrate the versatility of our SOLE to language
instructions.
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Segment Any 3D Object with language
supplementary material

In this supplementary material, we provide more implementation details, introduce additional eval-
uation on free-form language instructions, and conduct more qualitative and quantitative analysis.

• More implementation details are provided in Sec. A.
• SOLE is evaluated on 3D visual grounding task to verify the responsive ability to free-form

language instructions in Sec. B
• Analysis of CLIP visual features are provided in Sec. C.
• Variants of SOLE are introduced in terms of scalability and compatibility in Sec. D.
• Analysis of semantic-aware mask generator are provided in Sec. E.
• More qualitative results about the mask caption and segmentation results are shown in

Sec. F.

A IMPLEMENTATION DETAILS

Segmentation Network. Following Mask3D (Schult et al., 2022), we use the transformer-based
mask-prediction paradigm to obtain instance mask and semantic features. The masks are initialized
from object queries and regressed by attention layers. For each 3D point cloud scene, we use farthest
point sampling (Qi et al., 2017) to get 150 points as object queries. After getting masks from the
segmentation model, we use DBSCAN (Ester et al., 1996) to break down non-contiguous masks
into smaller, spatially contiguous clusters to improve the mask quality. The maximum distance and
neighborhood points number are set to 0.95 and 1, respectively.

Text Information Generation and Extraction. To effectively generate a caption for each mask, we
use a caption model in CLIP space, i.e., DeCap (Li et al., 2023). DeCap is a lightweight transformer
model to generate captions from CLIP image embedding. It contains a 4-layer Transformer with
4 attention heads as the language model and the visual embedding is obtained from the pre-trained
ViT-L/32 CLIP model. We feed the mask features that are average pooled from the projected CLIP
visual features into the DeCap model to obtain the mask caption. Then the caption is integrated into
the text prompt “a {} in a scene.” to better align with our data, e.g. “a blue chair in a scene.”. With
the mask caption, noun phrases are extracted by the NLP library, TextBlob (Loria et al., 2018) and
spaCy (Honnibal & Montani, 2017), to get the mask-entity association.

B 3D VISUAL GROUNDING

To further verify the effectiveness of SOLE on various language instructions, we conduct experi-
ments on 3D visual grounding benchmark ScanRefer (Chen et al., 2020). 3D visual grounding aims
at localizing 3D objects with free-form text descriptions. Therefore, we query SOLE with each text
prompt in the ScanRefer validation set to get the corresponding instance, and then 3D bounding box
is obtained from the instance masks. The performance is evaluated on the matching accuracy with
IoU over 0.25 (ACC@25) and 0.5 (ACC@50).

Baselines. We compare SOLE with five specialist baseline models and one generalist model. Spe-
cialist models mean that the models are designed and trained for 3D visual grounding only while
generalist models are models that can address other tasks such as instance segmentation with class
names. For the specialist models, OCRand (Chen et al., 2020) uses an oracle with ground truth
bounding boxes of objects, and selects a random box that matches the object category. VoteRand (Qi
et al., 2019; Chen et al., 2020) leverages the pre-trained VoteNet (Qi et al., 2019) to predict bound-
ing boxes and randomly select a box of the correct semantic class. SCRC (Hu et al., 2016) and
One-stage (Yang et al., 2019b) are 2D approaches with 3D extension using back-projection. Scan-
Refer (Chen et al., 2020) uses a pre-trained VoteNet (Qi et al., 2019) with a trained GRU to select
a matching bounding box. For the generalist model, 3D-LLM directly predicts the location of the
bounding box corresponding to the text description via large language model. Note that except for
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Table 7: Results on ScanRefer (Chen et al., 2020) for 3D visual grounding task. SOLE achieves
the best performance on generalist models with weak supervision.

Method Type Supervision ACC@25 ACC@50

OCRand (Chen et al., 2020)

Specialist

Full 30.0 29.8
VoteRand (Qi et al., 2019; Chen et al., 2020) Full 10.0 5.3
SCRC (Hu et al., 2016) Full 18.7 6.5
One-stage (Yang et al., 2019b) Full 20.4 9.0
ScanRefer (Chen et al., 2020) Full 41.2 27.4

3D-LLM (flamingo) (Hong et al., 2023) Generalist Full 21.2 —
SOLE Zero-Shot 25.2 22.6

(a) K-Means clustering of fp (b) K-Means clustering of f b (c) K-Means clustering of f̃ b

Figure 6: K-means clustering of different backbone features. Different colors denote different
clusters.

OCRand and VoteRand where training is not required, the other four baseline models are trained or
fine-tuned on the ScanRefer training set. Differently, SOLE is only trained with instance segmenta-
tion masks of ScanNetv2 (Dai et al., 2017), without leveraging any labels in ScanRefer.

Results. As shown in Tab. 7, with instance mask annotation, SOLE outperforms the generalist
model 3D-LLM by 4% on ACC@25. In addition, SOLE can achieve competitive performance with
the fully-supervised specialist counterpart on ACC@50 (22.6% v.s. 27.4%). Such results demon-
strate the strong generalization ability and the effectiveness in responding to free-form language
instructions of our framework.

C ANALYSIS OF CLIP VISUAL FEATURE

CLIP visual features play an important role in the generalization ability of SOLE. In this section,
we further analyze the effectiveness of CLIP visual features in the backbone feature ensemble and
inference ensemble.

C.1 BACKBONE FEATURE ENSEMBLE

As shown in Tab. 5, solely using 3D instance backbone feature f b or projected CLIP visual feature
fp cannot achieve the best performance. 3D backbone features lack the generalized semantic infor-
mation while projected CLIP visual features lack the location and geometry information. To further
verify the effectiveness of the backbone feature ensemble, we visualize the clustering results of dif-
ferent features in Fig. 6. In Fig. 6a, all chairs are clustered together (the green cluster), showing that
the projected CLIP features contain good semantic information but cannot detect the instances. In
Fig. 6b, different instances within one category can be identified, e.g., chairs are in three clusters.
However, the semantic generalization ability is degraded. As in the highlighted red circle, the trash
can is detected by projected CLIP visual features (Fig. 6a) but misclassified to a chair cluster when
only using 3D backbone (Fig. 6b). Compared with using the two features separately, SOLE com-
bines the two features and thus achieves better semantic generalization ability (segmentation of the
trash can) and segmentation performance (chairs are clustered into six clusters). The visualization
results further demonstrate the effectiveness of the backbone feature ensemble.
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Table 8: Analysis on classification probability ensemble.
Results are reported on the ScanNetv2 (Dai et al., 2017)
dataset in 2cm voxel size.

Component AP AP50 AP25

w.o. Ensemble 42.2 58.6 66.9
hard geometric mean 43.7 61.1 70.1
soft geometric mean (ours) 44.4 62.2 71.4

Table 9: Analysis on τ . Results are
reported on the ScanNetv2 (Dai et al.,
2017) dataset in 2cm voxel size.

τ AP

0.1 44.1
0.334 44.2
0.667 (ours) 44.4
0.9 42.4

Table 10: Analysis of the light version of SOLE on ScanNetv2 (Dai et al., 2017). Despite of
performance drop, SOLE-light still outperforms mask-training methods with the fastest inference
time. The best results are in bold while the second best results are underscored.

Method AP AP50 AP25 Inference Time (s) voxel size

OpenIns3D (Huang et al., 2023b) - 28.7 38.9 16.3 2cm
OpenMask3D (Takmaz et al., 2023) 31.0 39.5 44.0 553.7 2cm
Open3DIS (only 3D) (Nguyen et al., 2024) 31.3 42.4 47.8 56.6 2cm
SOLE (ours) 44.4 62.2 71.4 454.2 2cm
SOLE-light 37.1 50.8 59.0 13.1 2cm

C.2 INFERENCE ENSEMBLE

During inference, we combine the CLIP visual features with the predicted mask feature to achieve
better generalization ability. Specifically, after obtaining the 3D masks, per-point CLIP features are
pooled within the mask. The pooled CLIP feature and mask feature are then fed into the classifier to
obtain the respective classification probability p(fm) and p(fp), and the final probability is yielded
by the ensemble of them. In Tab. 8, we compare three options to ensemble the class probabilities of
3D segmentation model and CLIP model. “w.o. Ensemble” denotes only using the prediction of 3D
segmentation model, and “hard geometric mean” refers to the standard geometric mean, formulated
as p(fm)τ · p(fp)1−τ . Our method, “soft geometric mean” (Eq. 7), shows the best results among
the ensemble methods, demonstrating the effectiveness of dynamically fusing the prediction from
two models. However, as shown in the first row, SOLE already achieves competitive performance
even without utilizing the CLIP prediction, further demonstrating the strong generalization ability of
our multimodal fusion network. We also analyze the parameter τ on soft geometric mean in Tab. 9.
SOLE is robust to τ while achieving the best result when it is 0.667.

D SOLE ++

As shown in Fig. 2, SOLE focuses more on the 3D semantic-aware mask generation than the se-
mantic classification. Therefore, SOLE itself can be used for fast segmentation and it can also be
combined with generalizable semantic classification and 2D mask refinement techniques proposed
by previous and concurrent works (Takmaz et al., 2023; Nguyen et al., 2024). By default, we use
the soft geometric mean to combine the CLIP visual feature with predicted mask feature for better
generalization ability. In this section, we investigate two variants of SOLE: the light version without
using any additional information for segmentation and the advanced version leveraging the semantic
classification techniques from other methods.

D.1 SOLE-LIGHT

SOLE-light introduces a light inference technique to exclude 2D foundation model (CLIP) used in
backbone feature ensemble and soft geometric mean. In Tab. 10, we compare performance and in-
ference time of SOLE-light to previous mask training methods (Takmaz et al., 2023; Huang et al.,
2023b; Nguyen et al., 2024) on ScanNetv2 (Dai et al., 2017) dataset. Removing the CLIP model sig-
nificantly improve the inference time by 30 times (454s v.s. 13s) with the performance drop to some
degree. However, SOLE-light still outperforms previous mask training methods by a large margin,
further demonstrating the strong generalization ability and good mask quality of our semantic-aware
mask generator.
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Table 11: Analysis of compatibility with previous works on ScanNet200 (Rozenberszki et al.,
2022). SOLE shows high compatibility with previous mask training methods, achieving state-of-
the-art performance when it is incorporated into Open3DIS framework.

Method 2D masks Classification AP AP50 AP25

OpenMask3D (Takmaz et al., 2023) ✘ OpenMask3D 15.4 19.9 23.1
Open3DIS (Nguyen et al., 2024) ✓ Open3DIS 23.7 29.4 32.8
SOLE (ours) ✘ SOLE 20.1 28.1 33.6
SOLE + OpenMask3D ✘ SOLE + OpenMask3D 20.2 28.5 33.2
SOLE + Open3DIS ✓ SOLE + Open3DIS 24.5 30.1 34.1

Table 12: Mask quality evaluation on ScanNet200 (Rozenberszki et al., 2022). SOLE signifi-
cantly outperforms Mask3D-CA in terms of mask quality and the performance is even comparable
to original Mask3D despite the absence of filtering step.

Method Semantic Guidance filtering AP AP50 AP25

Mask3D-CA None ✘ 23.1 29.9 33.4
SOLE (ours) MMA ✘ 43.5 56.2 62.5

Mask3D (Schult et al., 2022) GT labels ✓ 53.0 72.5 82.4
SOLE (ours) MMA ✓ 43.6 59.3 70.2

D.2 SOLE-ADVANCED

Previous works (Huang et al., 2023b; Takmaz et al., 2023; Nguyen et al., 2024) commonly use the
3D masks generated by a pre-trained class-agnostic mask generator and propose techniques to refine
and classify the masks with the help 2D vision large model (VLM). Since SOLE focuses more on
the semantic-aware 3D mask prediction, we introduce several variants of SOLE in Tab. 11 by in-
corporating the previous techniques into our framework and evaluate on ScanNet200 (Rozenberszki
et al., 2022). Specifically, “SOLE + OpenMask3D” further leverages the frame selection and mask
feature aggregation in OpenMask3D to improve the masks classification on top of SOLE. Similarly,
“SOLE + Open3DIS” uses 2D mask guidance and pointwise feature extraction in Open3DIS to im-
prove the masks and classification. As shown in Tab. 11, our model exhibits the high compatibility
with previous work and achieves the state-of-the-art performance (24.5%AP) on ScanNet200 when
it is combined with Open3DIS framework.

E SEMANTIC-AWARE MASK GENERATOR

One of the main contributions of SOLE is that we improve the mask generator with multimodal
associations and multimodal fusion network. In this section, we evaluate and analyze how semantic
information improves the mask quality.

E.1 QUALITY OF SEMANTIC-AWARE MASKS

In contrast to previous works (Huang et al., 2023b; Takmaz et al., 2023; Nguyen et al., 2024) that
disregard semantic information in the mask generation, our SOLE generates semantic-aware masks
with showing superior quality and generalizability. To investigate the impact of semantic informa-
tion to mask quality, Tab. 12 further examines the mask evaluation in the class-agnostic setting. We
first adjust Mask3D (Schult et al., 2022) to remove semantic-related parts by discarding classifica-
tion head and training it on only mask annotations. This Mask3D variant, denoted as Mask3D-CA,
is compared to SOLE in class agnostic 3DIS on ScanNet200 (Rozenberszki et al., 2022). During
the evaluation, we use all of the mask proposals without filtering the low quality masks. As shown
in Tab. 12, SOLE significantly outperforms Mask3D-CA on the mask quality, demonstrating the
effectiveness of semantic information in mask generation. We also show the performance of full-
supervised counterpart in Tab. 12, taking the class information into account but only evaluating the
mask quality. The fully-supervised Mask3D (Schult et al., 2022) leverages classification logits to
filter low-quality segments, which is their way to use semantic information to support mask gen-
eration. SOLE shows close performance to original Mask3D despite not filtering the low-quality
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Table 13: Analysis on caption influence for multimodal associations. SceneVerse generates cap-
tions based on ground truth class labels, which can further improves the performance of SOLE.

Method Caption GT Labels AP AP50 AP25

SOLE DeCap ✘ 20.1 28.1 33.6
SOLE SceneVerse ✓ 26.1 37.3 44.2

masks. When filtering the low-quality segments, the performance of SOLE can be further improved.
Comparing the second and fourth row in Tab. 12, our SOLE shows robust performance regardless
of whether filtering step is present or not. Since SOLE is aware of rich semantic information, it can
already generate high quality of masks without the requirements of post processing.

E.2 QUALITY OF SEMANTIC GUIDANCE

SOLE leverages DeCap to generate mask captions without any class labels. However, although the
generated captions contain rich semantic information, they are still not perfect due to the lack of
class label. In Tab. 13, we replace the generated caption with captions in SceneVerse (Jia et al.,
2024). SceneVerse (Jia et al., 2024) leverages LLM to generate mask captions given the mask and
class labels. With the better captions, SOLE can be further improved by 6% in AP on ScanNet200
dataset. These results demonstrate that better semantic information indeed help to learn a better mask
proposal modules and the label-free caption generator can still be improved, deserving investigation
in the future work.

F QUALITATIVE RESULTS

Visualization for Segmentation Results. In Fig. 1 and Fig. 7, we present qualitative results, demon-
strating that SOLE is capable of processing free-form language queries, including but not limited
to visual questions, attributes description, and functional description. More qualitative results are
presented by the video in supplementary material.

Visualization for Mask Captions. We provide the visualization for different masks and correspond-
ing generated captions in Fig. 8. The generated caption contains the semantic information of the 3D
object as well as the location for better 3D segmentation. As shown in the examples, more than one
nouns exist in the caption and thus we aggregate all the noun phrases with attention mechanism in
mask-entity association.
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sofa

“leather texture.”

sofa

“sofa with flower pattern.”

plants

“Green tree.”

clock

“What time is it?”

art pieces

“Art work.”

lamp

“Turn on the light.”

tv

“I want to watch movie.”

chairs

“Chairs near by the window.”

vending machine

“I’m hungry.”

trash bin

“Throwing away the garbage.”

window

“I wanna see outside.”

toilet

“Place I can pee.”

pillow

bed

“I’m sleepy.”

bathtub

shower curtain

“I want to take a shower.”

sofachairs

“Where can I sit?”

“bathroom.” “kitchen.”

microwave

refrigerator

stove stove hood

“Cooking the food.”

Figure 7: Qualitative results from SOLE. Our SOLE demonstrates open-vocabulary capability by
effectively responding to free-form language queries, including visual questions, attributes descrip-
tion and functional description.
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a microwave oven sitting inside of a small kitchen a trash can with a microwave on top of it a black refrigerator freezer sitting inside of a kitchen

a bed with white pillows and a large white comforter on top a black suitcase with a piece of luggage sitting on a floor a brown chair sitting in front of a desk with a black table 

a box of various items sitting on a cluttered place a painting hanging on the wall of a living room a kitchen area with a sink and counter top near cabinets

a computer monitor sitting on a desk 
in front of two computers 

a desk with a laptop, computer, papers 
and other items a plant with a white pot sitting on a table 

Figure 8: Qualitative examples for mask captions. Generated captions contain the semantic,
appearance, and geometric relationship of the corresponding object.
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