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ABSTRACT

Weakly supervised temporal action localization (WS-TAL) aims to localize ac-
tions in untrimmed videos using only video-level labels. Due to the absence
of frame-level annotations, classification predictions during the initial training
phase predominantly rely on the prior knowledge embedded in pre-trained video
foundation models. However, the foundation model’s inherent erroneous bi-
ases persist uncorrected during training, resulting in compounding error prop-
agation throughout the learning process. To address this issue, we develop a
dual-branch framework called Vision-Language Preference Optimization (VLPO)
that enhances WS-TAL tasks through systematic integration with vision-language
model. Our framework introduces two key components: (1) The Vision-Language
Fine-Tuning (VLFT) branch, which effectively establishes a multimodal feature
alignment mechanism through video-level supervision, conducts online adaptive
fine-tuning on the vision-language features. This significantly enhances the se-
mantic sensitivity of temporal localization under weakly-supervised conditions;
(2) The Preference Driven Optimization (PDO) branch, through the predictive
preferences provided by VLM, optimizes the traditional WSTAL framework and
actionness learning at the snippet-level from both class-aware and class-agnostic
perspectives, significantly enhancing the accuracy of action localization. Exten-
sive experiments on WS-TAL benchmarks demonstrate that VLPO significantly
outperforms state-of-the-art methods, showcasing its effectiveness in WS-TAL.
The source code will be released upon acceptance.

1 INTRODUCTION

Temporal action localization (TAL) has garnered significant research attention due to its broad ap-
plications in video understanding. This task aims to simultaneously identify action categories and
localize precise temporal boundaries within untrimmed videos. However, the labor-intensive nature
of temporal boundary annotation creates substantial scalability barriers for real-world deployment.
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Figure 1: The CAS of baseline with actionness learning in different training stage.

To address this limitation, WS-TAL has emerged as a practical paradigm that only requires video-
level category labels during training. Most existing WS-TAL methods [33; 13; 17; 9] first uniformly
divide the input video into snippet units, each containing a fixed number of frames, and extract
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snippet-level feature representations using pre-trained video foundation models (e.g., I3D [2], Slow-
Fast [5]). Subsequently, they adopt a Multi-Instance Learning (MIL) framework to learn and predict
Class Activation Sequences (CAS), aggregate high-confidence segments to obtain video-level rep-
resentations, and perform supervised learning based on video-level class labels.

However, due to the lack of precise snippet-level annotations, this approach suffers from significant
learning bias. During the early stages of training, the WS-TAL model relies heavily on the prior
knowledge of the pre-trained video foundation model for action localization, leading to a lot of
misidentification that cannot be effectively corrected through video-level supervision.

Several methods [20; 15; 17] introduce an actionness learning branch to learn class-agnostic action
information, thereby correcting the CAS predicted by the model backbone. This approach reduces
action misjudgments caused by scene information and has achieved significant improvements. How-
ever, these methods have a fundamental limitation: the actionness learning branch shares the same
source video snippet features with the backbone network, leading both to inherit the inherent biases
of the pre-trained video foundation model. As a result, there are some action misjudgments in the
backbone branch that cannot be corrected by actionness learning. As illustrated by the visualization
results in Fig. 1, the baseline model with actionness learning exhibits persistent misclassification
throughout the training process: the prediction confidence for some non-action snippets (e.g., back-
ground snippets) not only fails to decrease with training but instead shows a monotonically increas-
ing trend. This error accumulation effect ultimately results in a significant degradation of temporal
localization accuracy.

In recent years, vision-language models (VLMs) pre-trained on large-scale cross-modal datasets
have demonstrated strong transfer capabilities in tasks such as detection and segmentation. How-
ever, under the WS-TAL setting, it is not feasible to perform fine-grained snippet-level fine-tuning
directly on VLMs. Moreover, directly applying VLM to the WS-TAL task in a zero-shot manner
achieves an average mAP of only 14.9%, which is significantly lower than that of conventional WS-
TAL methods (42.2%). In summary, this paper proposes a dual-branch weakly supervised learning
framework based on VLM Preference Optimization, specifically addressing the fine-tuning of VLM
under weak supervision and its optimization for the WS-TAL task. The core innovation lies in break-
ing traditional homogeneous feature constraints and achieving bias correction through cross-modal
interaction.

Specifically, our VLPO framework includes two branches: (1) Vision-Language Fine-Tuning
branch: We develop a Cross-Modal Anchored Feature Alignment (CM-AFA) module, which em-
ploys a anchoring strategy to stabilize cross-modal learning in weakly supervised settings. Then,
We propose a Dynamic Selection Pooling (DSP) mechanism that utilizes preference matrix from
CM-AFA and actionness to adaptively pool foreground and background snippets, leading to en-
hanced robustness in video representations. (2) Preference Driven Optimization branch: we propose
the Preference Pseudo-label Generation (PPG) module to generate class-aware snippet-level super-
vision signals from VLM, thereby enhancing the localization accuracy of the backbone network.
Furthermore, we design the Actionness Pseudo-label Refinement (APR) module, which combines
temporal confidence calibration and contextual modeling to jointly optimize class-agnostic pseudo-
labels.

Our contributions are summarized as three-folds: (1) We propose the VLFT branch to enable ef-
fective fine-tuning of VLM under weakly supervision. (2) We introduce the PDO branch, which
optimize the WSTAL task by refining the prediction preferences of VLM from both class-aware
and class-agnostic perspectives. (3) We conduct extensive experiments on WS-TAL benchmarks,
demonstrating that VLPO outperforms existing state-of-the-art methods.

2 RELATED WORK

2.1 VISION-LANGUAGE PRE-TRAINING.

Recent years have witnessed significant advancements in vision-language models(VLMs) through
cross-modal representation alignment and generative pre-training, substantially enhancing perfor-
mance across multimodal tasks. Early approaches (e.g., , VSE++ [4]) employed dual-stream archi-
tectures with cross-modal attention mechanisms to achieve preliminary image-text joint learning,
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yet remained constrained by limited annotated datasets and single-task optimization. The integra-
tion of contrastive learning theory and large-scale pre-training paradigms has driven transforma-
tive progress. CLIP [23] established a transferable cross-modal semantic space through contrastive
alignment of 400 million image-text pairs, demonstrating robust generalization capabilities in zero-
shot classification and image-text retrieval tasks. BLIP [14] introduced a unified understanding-
generation framework, jointly optimizing image-text matching, caption generation, and visual ques-
tion answering via noisy data augmentation.

Temporal modeling extensions have further expanded VLMs’ applicability. VideoCLIP [30] ex-
tended CLIP’s contrastive framework to video-text alignment through multi-frame sampling and
temporal attention modules, validating its effectiveness in video retrieval and action recognition.
Subsequent work on VideoCLIP-XL [28] implemented targeted training for long-form textual de-
scriptions, enhancing the model’s comprehension capabilities.

2.2 WEAKLY SUPERVISED TEMPORAL ACTION LOCALIZATION.

WS-TAL is an approach that requires only video-level action class labels for supervision. Compared
to the fully supervised approach, the labeling cost of the weakly supervised approach decreases sub-
stantially. Many works [33; 10; 15; 16] use a MIL framework to address this problem. Specifically,
these works first perform classification at the snippet-level, then the top k snippets with the highest
scores in each category are aggregated to obtain the video-level predictions, and finally the model is
optimized according to the video-level labels.

Actionness refers to the action attributes that deviate from the action category information. In
ASL [20], the actionness branch is trained using the snippet-level class-agnostic pseudo-labels gen-
erated from the prediction results of the action classification branch. CoLA [33] computes actionness
by summing class activation scores across categories.

Recent studies have extended WS-TAL from purely visual approaches to multimodal frameworks
through the integration of language information. Li et al. [13] proposes a text-enhanced WTAL
framework through text-segment mining and video-text completion. PVLR [19] proposes a hu-
man action-aligned probabilistic embedding framework integrating VLP knowledge with distribu-
tion contrastive learning enhancement.
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VLPO框架由VLFT和VLO两个分支构成。在VLFT分支中，我们冻结VLM，通
过CM-AFA模块和DSP模块对VLM抽取的多模态片段特征进行微调，以更适
应弱监督时序动作任务。在VLO分支中，利用VLFT分支提供的视觉语言相似
度矩阵和视频级标注，设计VLPG模块优化类激活序列的学习以及设计VLPR
模块优化actionness learning。

Element-wise addition

Frozen

Figure 2: The framework of the proposed VLPO. It covers two parallel branches, named VLFT
and PDO. In the VLFT branch, we freeze the pre-trained VLM while implementing multi-modal
feature adaptation through two novel components: 1) CM-AFA module; 2) DSP module. These
components collectively refine the VLM features for enhanced compatibility with WS-TAL task.
In the PDO branch, we design dual optimization pathways using the vision-language preference
matrix transferred from VLFT: 1) PPG module optimizes CAS learning; 2) APR module enhances
actionness learning.
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3 METHOD

This section introduce the different components of our proposed VLPO framework. As shown
in Fig. 2, the VLPO framework consists of two branches, named Vision-Language Fine-Tuning
(VLFT) branch and Preference Driven Optimization (PDO) branch respectively.

3.1 PROBLEM FORMULATION AND PRELIMINARIES

In this work, we define V = {V1, ..., VN} as a batch of data with N videos and corresponding video-
level action category labels are Yi = {yi,1, ..., yi,C} = {0, 1}C for i-th video, where C means the
number of category. In the inference stage, the model predicts all action instances in a video, then
outputs a series of action instances with precise timestamps as {c, e, ts, te}, where c denotes the
predicted action class, e is the confidence score, ts and te represent the start time and end time of
the action instance.

Following most WS-TAL methods [22; 15; 16], we first divide an untrimmed video into a set of
snippets, where each snippet contains 16 frames. Then we use the I3D network [2] pre-trained on
the Kinetics-400 [2] to extract RGB and optical flow features for each snippet. The features of RGB
and optical flow are 1024-dimension. For the i-th video with T snippets, we concatenate RGB and
optical flow features to obtain feature X ∈ RT×2048.

Give a feature X extracted by the I3D, a temporal convolution layer followed by a ReLU function is
applied to embed the features X into the task-specific space. Specifically, we feed feature X into the
snippet-level classifier Fmil to obtain the class activation sequence A ∈ RT×C , i.e., A = Fmil(X),
where Fmil represent the classifier. C and T is the number of action categories and the number of
sampled snippets respectively.

To construct the classification scores of each action category at the video-level, we follow the main-
stream approach of aggregating the highest k scores across all segments for each action class and
then taking their average. By applying the softmax function to the aggregated scores, we obtain
the probability for each action category at the video-level: pc = σ( 1k

∑k
i=1 Topk(Ai,c)), where

pc denotes the category probability at the video-level on the c-th category, σ refers to the softmax
function.

Following the previous works [22; 20], we apply the cross-entropy loss function between the pre-
dicted video-level action probability distribution pc and the ground truth yc to optimize the model.
Specifically, we can formulate the classification cross-entropy loss as Lmil = −

∑C
c=1 yc log(pc).

Due to the outstanding effectiveness of actionness learning [20; 15], we have introduced it in the
baseline. we feed feature X into the class-agnostic snippet-level classifier Fact to obtain the action-
ness scores Sa ∈ RT×1.

Video snippets are divided into positive and negative sets, i.e., τp and τn, where positive set τp con-
tains k snippets with the highest scores in Sa, and negative set τn has all other snippets. Following
the ASL [20] model, we adopt actionness loss as:

Lact =
1

|τp|
∑
i∈τp

1− (Sa
i )

q

q
+

1

|τn|
∑
i∈τn

1− (1− Sa
i )

q

q
, (1)

where 0 <q ≤ 1 controls the noise tolerance and i represents the i-th snippet.

Our baseline is optimized using the combined loss,
Lbase = Lmil + Lact. (2)

3.2 VISION-LANGUAGE FINE-TUNING

Video VLMs such as VideoCLIP-XL [28] optimize model by aligning video-level vision semantics
and text descriptions, without involving fine-grained information perception at the snippet-level. The
inherent discrepancy between the pre-training objectives of VLMs and the requirements of temporal
action localization tasks leads to significant performance degradation in direct application. In order
to better adapt VLM to WS-TAL task, we design a CM-AFA module and a DSP module to fine tune
the features extracted by VLM.
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Figure 3: Details of the CM-AFA module.
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Figure 4: Details of the DSP module.

CM-AFA Module. Concretely, for the visual stream, we utilize the VLM vision encoder to extract
snippet-level features Xv ∈ RT×768. To bridge the domain gap between general visual representa-
tions and task-specific requirements, we implement a learnable linear projection layer Pt that trans-
forms feature Xv into task-adaptive representation Xpv ∈ RT×768. While for the textual stream,
we first convert the video label into text, such as “a video of action [cls]”, where “[cls]” is the ac-
tion category name, then feed them into the VideoCLIP-XL text encoder, to obtain textual features
Xt ∈ RC×768. Similar to the operation of visual stream, we use a learnable linear projection layer
to obtain projection text feature Xpt ∈ RC×768. Formally, Xpv = Pv(X

v), Xpt = Pt(X
t). To

enhance training robustness through bidirectional cross-modal alignment, we establish anchor points
using unimodal features and compute similarity scores (denoted as M t ∈ RT×C , Mv ∈ RT×C)
between each modality’s native representation and its counterpart’s projected features, as shown in
Fig. 3. The specific process is as follows:

M t = norm(Xv · ( (X
t +Xpt)

2
)
⊤

), Mv = norm(
(Xv +Xpv)

2
· (Xt)

⊤
). (3)

Compute the mean of M t and Mv to obtain preference matrix M = 1
2 (M

t +Mv). We formulate a
symmetric KL divergence loss to enforce distributional consistency between cross-modal similarity
measures. Formally,

Lkl =
1

2
(DKL(M

t||Mv) +DKL(M
v||M t)). (4)

DSP Module. Traditional MIL methods employ a coarse-grained Top-k temporal pooling strategy
to directly process CAS A, which suffers from action-background semantic confusion and leads
to insufficient discriminative feature learning. ASL [20], AICL [15] and our baseline incorporate
CAS into actionness sequences without distinguishing between action categories. Consequently,
only high-score snippets contribute effectively to foreground activation and background suppression,
while low-score snippets receive insufficient optimization. To address this limitation, we design a
Dynamic Selective Pooling module, as shown in Fig. 4. DSP enhances class activation via: (a)
Target Action Enhancement: Selects class-specific sequences from the CAS that align with video
labels and integrates them into the actionness sequences to enhance target action representation. (b)
Non-target Action Suppression: Incorporates sequences from unrelated classes into the background
score sequences to suppress non-target action snippets. The process is as follows:

Â =

{
yc · Ac + S, if yc = 1,

(1− yc) · Ac + (1− S), otherwise,
(5)

where S is the hybrid action score, obtained from Eq. 8. (c) Hybrid CAS Optimization: Top-k
indices (denoted as idx) are recorded for each class sequence in the hybrid CAS. Finally, video-
level prediction scores are obtained by aggregating the optimized snippet-level scores based on idx,
with supervision applied through video-level labels. Formally,

Lvl = −
C∑

c=1

yc log(p̂c), p̂c = σ(
1

k

∑
∀i∈idx

Mi,c), (6)

where Mi,c denotes the preference score of i-snippet on the c-th category, σ refers to the softmax
function.
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3.3 PREFERENCE DRIVEN OPTIMIZATION

The PDO branch integrates vision-language preference with video-level supervision signals to opti-
mize the WS-TAL task. This is achieved by designing two modules: PPG and APR, which respec-
tively optimize the class-aware class activation sequences and the class-agnostic actionness score
sequences through actionness learning.

PPG Module. The PPG module generates fine-grained snippet-level annotations to supervise the
learning of class activation sequences. Specifically, we first normalize the preference matrix M

along the temporal dimension, denote as M̂ , then identify corresponding sequence scores through
action categories annotated by video-level labels. We predefine a action threshold αh: for snippet
with scores exceeding αh, their annotations inherit the video-level labels. If there are multiple ac-
tion categories in the video-level labels, select the category with the highest corresponding sequence
score as the annotation. Snippets below αh are designated as background snippets and assigned uni-
form labels where each category receives an annotation value of 1

C . Force the entropy of background
snippets to be maximized, preventing them from achieving high scores on any action category. The
sinppet pseudo-labels are denoted as b ∈ RT×C . This mechanism establishes a collaborative su-
pervision paradigm combining hard and soft labels, significantly improving discriminative repre-
sentation learning in class activation sequences. Finally, we apply the cross-entropy loss function
between the CAS A and sinppet pseudo-labels b,

Lsnip = − 1

T

T∑
i=1

C∑
c=1

bi,c log(σ(Ai,c)). (7)

APR Module. The APR module employs a vision-language confidence calibration mechanism
combined with temporal context modeling to jointly optimize class-agnostic snippet-level pseudo-
labels through actionness learning. This approach effectively mitigates the label noise propagation
issue inherent in conventional weakly supervised methods. Specifically, we first process the snippets
features Xv extracted by the vision encoder of the VLM through temporal convolution Fva for
temporal modeling, thereby obtaining the temporal action scores Sv . Then fuse the temporal action
scores Sa with Sv to derive the hybrid action scores S, which is formulated as:

S = Sa + Sv, Sv = Fva(X
v). (8)

Following the baseline’s actionness learning framework, we initialize positive/negative sample sets
(denoted as Ap, An) via Top-k method. Formally,

Ap = {i|i ∈ Topk(S)}, An = {i|i /∈ Topk(S)}. (9)

Vision-language temporal confidence SM is computed as:

SM = M̂c, if yc = 1, (10)

where M̂ is the normalized operation of M , as mentioned in PPG module. And y is the video label.
Construct vision-language preference sample sets,

Bp = {i|SM
i > αh}, Bn = {i|SM

i < αl}, (11)

based on predefined thresholds αh and αl. Vision-language preference optimize positive/negative
sample sets:

Cp = (Ap −Bn) ∪Bp, Cn = {i|i /∈ Cp} (12)
We simplify Eq. 1 in the baseline as Lact = GCE(Sa, τp, τn, q), and the actionness loss after adding
the APR module is:

Lact = GCE(Sa, Cp, Cn, q) +GCE(Sv, Cp, Cn, q). (13)

3.4 FINAL OBJECTIVE FUNCTION

The overall loss function we need to optimize is

L = Lbase + λ1Lkl + λ2Lvl + λ3Lsnip, (14)

where the λ1, λ2, λ3 are the hyperparameters.

6
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Table 1: Performance comparison with SOTA methods on the THUMOS14 dataset. This table
reports the mAP values in IoU@{0.1:0.1:0.7}. The notation † denotes the incorporation of a vision-
language model.

Supervision Method Venue mAP@IoU (%) AVG
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1:0.7 0.3:0.7

Full
G-TAD [31] CVPR2020 - - 66.4 60.4 51.6 37.6 22.9 - 47.8

RCL [29] CVPR2022 - - 70.1 62.3 52.9 42.7 30.7 - 51.7

Weak

AICL [15] AAAI2023 73.1 67.8 58.2 48.7 36.9 25.3 14.9 46.4 36.8
Li et al. [13] CVPR2023 - - 56.2 47.8 39.3 27.5 15.2 - 37.2

Ren et al. [24] CVPR2023 71.8 67.5 58.9 49.0 40.0 27.1 15.1 47.0 35.6
Zhou et al. [36] CVPR2023 74.0 69.4 60.7 51.8 42.7 26.2 13.1 48.3 38.9
PivoTAL [25] CVPR2023 74.1 69.6 61.7 52.1 42.8 30.6 16.7 49.6 40.8

AFPS [17] NN2024 73.5 68.8 60.8 51.3 41.0 27.5 16.5 48.5 39.4
ISSF [32] AAAI2024 72.4 66.9 58.4 49.7 41.8 25.5 12.8 46.8 37.6

Hu et al. [9] CVPR2024 74.1 69.2 60.0 49.8 41.1 28.0 15.1 48.2 38.8
SAL [16] NN2024 76.3 71.6 63.7 54.2 41.8 29.0 17.9 50.6 41.3

Li et al. [13]† CVPR2023 - - 56.2 47.8 39.3 27.5 15.2 - 37.2
Ju et al. [12]† CVPR2023 73.5 68.8 61.5 53.8 42.0 29.4 16.8 49.4 40.8
PVLR [19]† MM2024 74.9 69.9 61.4 53.1 45.1 30.5 17.1 50.3 40.8

Zhang et al. [34]† CVPR2025 74.3 69.8 61.8 52.3 43.0 30.8 16.6 49.8 40.9

VLPO (Ours)† - 78.9 75.2 68.7 60.0 45.5 32.3 19.8 54.3(+3.7) 45.3(+4.0)

Table 2: Performance on the ActivityNet 1.2 and 1.3 datasets. AVG is the averaged mAP at the
thresholds {0.5:0.05:0.95}. The notation † denotes the incorporation of a vision-language model.

(a) ActivityNet 1.2

Sup. Method Venue mAP@IoU (%)
0.5 0.75 0.95 AVG

F. SSN [35] ICCV17 41.3 27.0 6.1 26.6

W.

ASL [20] CVPR21 40.2 - - 25.8
CoLA [33] CVPR21 42.7 25.7 5.8 26.1

DGCNN [26] MM22 42.0 25.8 6.0 26.2
Li et al. [18] MM22 41.6 24.8 5.4 25.2

DELU [3] ECCV22 44.2 26.7 5.4 26.9
DDG-Net [27] ICCV23 44.3 26.9 5.5 27.0
Ren et al. [24] CVPR23 44.2 26.1 5.3 26.5
Hu et al. [9] CVPR2024 45.1 27.7 5.5 27.6

SAL [16] NN2024 48.5 31.4 7.1 30.8

Ju et al. [12]† CVPR23 48.3 29.3 6.1 29.6
zhang et al. [34]† CVPR25 48.3 30.1 6.8 30.1

VLPO (Ours)† - 56.0 34.5 7.6 34.8

(b) ActivityNet 1.3

Sup. Method Venue mAP@IoU (%)
0.5 0.75 0.95 AVG

F. RCL [29] CVPR22 51.7 35.3 8.0 34.4
DiffTAD [21] CVPR23 56.1 36.9 9.0 36.1

W.

ASM-Loc [7] CVPR22 41.0 24.9 6.2 25.1
DGCNN [26] MM22 37.2 23.8 5.8 23.9
Li et al. [13] CVPR23 41.8 26.0 6.0 26.0

Ren et al. [24] CVPR23 41.8 25.4 5.2 25.5
PivoTAL [25] CVPR23 45.1 28.2 5.0 28.1

AFPS [17] NN24 43.9 27.1 6.3 27.3
ISSF [32] AAAI24 39.4 25.8 6.4 25.8

Li et al. [13]† CVPR23 41.8 26.0 6.0 26.0
PVLR [19]† MM24 43.6 27.4 6.5 27.4

VLPO (Ours)† - 50.7 32.8 7.8 32.9

4 EXPERIMENT

In this section, we conduct extensive experiments and visualize some results. For more experimental
results, please refer to the APPENDIX A.

4.1 DATASETS AND EVALUATION

THUMOS14 [11] contains 200 videos in the validation set and 213 videos in the test set with 20
action categories. ActivityNet1.3 [1] contains 10,024 training videos, 4,926 untrimmed validation
videos, and 5,044 videos for test whose action instance labels are withheld. This dataset contains
200 actions of different categories.

We use the mean Average Precision (mAP) with different temporal Intersection over Union (t-
IoU) thresholds to evaluate the performance. Specifically, the t-IoU thresholds for THUMOS14
are [0.1:0.1:0.7], and [0.5:0.05:0.95] for ActivityNet1.2 and 1.3.

4.2 IMPLEMENTATION DETAILS

We apply I3D [2] as video foundation model and pre-trained VideoCLIP-XL [28] is selected as
the VLM. Our model is trained using the learning rate 1e-4 for THUMOS14, and 1e-5 for Ac-
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tivityNet1.3. Consistent with the baseline we set T = 750, k = T/8 for THUMOS14 and
T = 50, k = T/4 for ActivityNet1.2 and 1.3. And we set q = 0.6 for all datasets. The
new hyperparameters introduced by the VLPO framework remain consistent across all datasets,
λ1 = 300, λ2 = 0.1, λ3 = 0.5, αh = 0.9, αl = 0.25.

4.3 COMPARISON WITH SOTA METHODS

As demonstrated in Tab. 1, which presents TAL performance on the THUMOS14 dataset. Compared
with weakly supervised methods, VLPO demonstrates substantial improvements over the current
SOTA method SAL, with relative gains of 5.0%, 5.8%, and 3.7% at IoU thresholds 0.3, 0.4, and 0.5,
respectively. Notably, our method achieves absolute improvements of 3.7% and 4.0% in average
mAP over SAL, establishing new SOTA performance. Tab. 2 shows the results on ActivityNet1.2
and 1.3.

VLPO demonstrates notable superiority over other VLM-based methods [13; 19; 12; 34]. For
distillation-based methodss [19; 12], due to the significant differences between VLM and WS-
TAL tasks, they lack reasonable task-adaptive fine-tuning. In the VLPO method, the VLM fea-
tures are fine-tuned through the VLFT branch and aligned with the WS-TAL task, enabling these
features to be utilized more effectively and thus achieving a more pronounced performance im-
provement. Moreover, VLPO leverages a vision-language pre-training model without LLM compo-
nents. This design yields substantial benefits in both model size and inference speed compared to
approaches [34] based on MLLMs.

Table 3: Ablation studies on THUMOS14 datasets.
“ACC” refers to the video-level classification accuracy.
CM-AFA module takes effect through Lkl and Lvl, while
PPG module takes effect through Lsnip.

Exp Lbase Lvl Lkl Lsnip DSP APR ACC AVG

1 ✓ 90.0 42.4
2 ✓ ✓ ✓ 93.3 50.6
3 ✓ ✓ ✓ ✓ 92.4 51.0
4 ✓ ✓ ✓ ✓ 90.5 45.0
5 ✓ ✓ ✓ ✓ ✓ 99.0 50.6
6 ✓ ✓ ✓ ✓ ✓ 99.5 52.1
7 ✓ ✓ ✓ ✓ ✓ 99.1 52.9
8 ✓ ✓ ✓ ✓ ✓ 90.5 47.8

9 ✓ ✓ ✓ ✓ ✓ ✓ 99.0 54.3

Table 4: Comparison of different fine-
tuning approaches for the VLFT branch
on the THUMOS14 dataset.

Fine-Tuning mAP@IoU (%) AVG
0.1 0.3 0.5 0.7

Zero-Shot 30.8 18.9 8.5 2.3 14.9
Training-Free 76.8 64.0 40.9 16.3 50.2
CLIP-Adapter 78.2 66.3 44.2 18.5 52.5

CM-AFA 78.9 68.7 45.5 19.8 54.3

4.4 ABLATION STUDY

Effectiveness of each component. To systematically validate the contribution of each component
in our framework, we conduct comprehensive ablation studies on THUMOS14, with quantitative
results summarized in Tab. 3. The baseline configuration (Exp 1) achieves 90.0% video-level classi-
fication accuracy (ACC) and 42.4% average (AVG) mAP. Exp 3 incorporates the CM-AFA and PPG
modules and achieves 92.4% accuracy and 51.0% AVG mAP. This represents an 8.6% improvement
in AVG mAP compared to the baseline. Exp 2, based on Exp 3 but excluding Lkl, achieves 93.3%
accuracy and 50.6% average mAP. Exp 4 integrates the CM-AFA and APR modules into the base-
line, yielding an ACC of 90.5% and an AVG mAP of 45.0%. In Exp 5-8, we systematically remove
individual modules from the complete VLPO framework to assess their respective contributions. In
Exp 5, removing the PPG module causes a 3.7% reduction in AVG mAP. In Exp 6, excluding the
APR module leads to a 2.2% decline in AVG mAP. In Exp 7, eliminating the Lkl results in a 1.4%
deterioration in AVG mAP. In Exp 8, removing the DSP module severely degrades performance,
with AVG mAP dropping by 6.5%. Exp 9 presents the performance of the complete VLPO frame-
work, which outperforms the baseline by 11.9% in AVG mAP, underscoring the necessity of all
integrated components.

Furthermore, our analysis reveals that the DSP module significantly enhances video-level classifi-
cation accuracy. Without the DSP module, the maximum achievable accuracy is 93.3%. However,
with the inclusion of the DSP module, the minimum observed accuracy is 99.0%. The DSP mod-
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Figure 5: Qualitative results on THUMOS14.

ule effectively promotes the separation of action and background, enabling more precise capture of
action snippets during temporal pooling.

Effectiveness of different fine-tuning approaches. To demonstrate the superiority of our CM-
AFA module, we conduct ablation studies comparing three distinct approaches: (1) Zero-Shot:
directly using VLM for snippet action prediction; (2) Training-free: using the VLPO framework
without VLM features fine-tuning; (3) CLIP-Adapter: VLPO framework with VLM fine-tuning via
method [6]. As shown in Tab. 4, the Zero-Shot approach achieves an AVG of merely 14.9%, sig-
nificantly lower than other methods. This indicates that directly employing pretrained VLM for
zero-shot prediction without integrating PDO branch or fine-tuning results in limited generaliza-
tion capability for temporal action localization tasks. Particularly under strict evaluation thresholds
(e.g., IoU=0.7), the performance plummets to 2.3%, demonstrating the inadequacy of zero-shot ap-
proach in meeting high-precision localization requirements. By introducing the PDO branch without
fine-tuning (Training-Free approach), the AVG substantially improves to 50.2%, marking a notable
enhancement over the zero-shot baseline. This suggests that structural optimization alone, even
without VLM fine-tuning, can significantly enhance the model’s capacity to capture spatiotemporal
features. The CLIP-Adapter method further elevates the AVG to 52.5%, yielding a 2.3% improve-
ment over the Training-Free approach. CM-AFA emerges as the best method with 54.3% AVG, sur-
passing the Training-Free approach by 4.1%. It achieves the highest mean average precision (mAP)
across all IoU thresholds (0.1-0.7), respectively. These results validate its robustness in weakly-
supervised scenarios and highlight its pivotal role in comprehensive performance enhancement.

4.5 QUALITATIVE RESULTS

We visualize some examples of the detected action instances in Fig. 5. For each example, the top
line represents the snippets of the video, the following three lines in order are the hybrid CAS Â
generated by the baseline model and our VLPO, and the ground truth of the action in the video. The
baseline framework incorporates actionness learning, but due to the inherent limitations of homol-
ogous features, numerous uncorrectable misjudgments persist. Our VLPO framework introduces
VLM to optimize the prior biases existing in traditional frameworks, effectively rectifying the false
positives observed in the baseline. The failure case of “LongJump” in Fig. 5 is mainly due to our
VLPO focusing on the jump action while ignoring the action context, such as the run-up and rising.
Weak supervision lacks snippet annotations, preventing models from learning run-up/rising are part
of“LongJump”. This stems from annotation limits (e.g., vague action boundaries), not model flaws.

5 CONCLUSION

In this work, we propose a novel WS-TAL framework named VLPO, which introduces a VLM to
assist in mitigating the prior bias issue inherent in conventional WS-TAL frameworks. The VLPO
framework fine-tunes the VLM through its VLFT branch and transfers preference information to
the WS-TAL task via the PDO branch. Our VLPO achieves significant improvements on three
mainstream datasets, substantially outperforming existing SOTA methods.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We will open-source all experimental code within one week after the paper is accepted.
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A APPENDIX

In this section, we first detail the specifics of the inference stage, followed by a comprehensive
supplement of experimental results.

A.1 INFERENCE STAGE

In the inference stage, we first calculate the video-level categorical probabilities p̂c (Eq. 6) that
indicates the possibility of each action class happened in a given video. Then we follow previous
works [8] to set a class threshold tclass to determine the action classes that would be localized in
the video. Based on the identified action categories, we find the corresponding activation sequence
from Â (Eq. 5). In practice, we use multiple action thresholds to process the activation sequence to
enrich the proposal sets with different-level scales. After obtaining the action proposals, we utilize
the Â to calculate the confidence score e for each proposal using Outer-Inter Score. In the end, we
remove the overlapping proposals using soft non-maximum suppression.

Table 5: Nosise robustness test of our VLPO. The AVG means average mAP under multiple t-IoU
thresholds as {0.1:0.1:0.7} on THUMOS14.

std 0 0.1 0.2 0.3

AVG 54.3 53.8 53.6 53.4

A.2 NOISE ROBUSTNESS TEST

Our method operates under a weakly-supervised setting where snippet-level pseudo-labels used in
training contain significantly noisy annotations. To test inference robustness, we add Gaussian noise
with mean=0 to input features and evaluate different standard deviations (std), as shown in Tab. 5.
Within a reasonable noise range, our model shows minimal performance fluctuation, demonstrating
a certain degree of robustness.
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Table 6: Sensitivity of λ1. The AVG means average mAP under multiple t-IoU thresholds as
{0.1:0.1:0.7} on THUMOS14.

λ1 100 200 300 400

AVG 53.9 54.1 53.8 53.8

Table 7: Sensitivity of λ2. The AVG means average mAP on THUMOS14.

λ2 0.05 0.1 0.2 0.3 0.4

AVG 53.7 54.3 54.1 53.8 53.8

A.3 HYPERPARAMETER ROBUSTNESS EVALUATION

Robustness evaluations are performed on the five hyperparameters (λ1, λ2, λ3, αh, αl) introduced in
the VLPO framework, and the results are presented in Tab. 6–10. The experimental results show that
the values of the hyperparameters varied within reasonable limits, and the AVG mAP of the model
fluctuated very little.

A.4 ABLATION OF TEXT PROMPT

We conduct additional tests on various text prompts (including some with interference), as shown in
the Tab. 11. As long as the prompt contains action categories (“[CLS]”) from the dataset, there is no
significant difference in performance.

A.5 EFFICIENCY EVALUATION

In our method, we prefer using Vision-Language Pre-training (VLP) models such as VideoCLIP-
XL [28], which does not include an LLM module and has a parameter count of only 400M, making
it a lightweight model. We test VideoCLIP-XL and found that extracting features from a 169-
second video takes only 0.36 seconds (on single RTX3090). This process can be fully parallelized
with the video foundation model (I3D). Due to the integration of a multimodal large language model
(MLLM) containing LLM components, the method introduced by [34] incurs a considerable over-
head in terms of model size. Compared with traditional WSTAL methods, our approach introduces
negligible additional inference time during the feature extraction stage. Excluding feature extraction
models (I3D/VLM), we have compiled the parameter counts of some open-source method and their
inference time on the full THUMOS14 test set, as concluded in the Tab. 12.

A.6 QUALITATIVE ILLUSTRATION

We visualize some examples of the detected action instances in Fig. 6. (a) shows a video of the
”CliffDiving” action, while (b) presents a video of the ”BaseballPitch” action. Baseline model
incorporates actionness learning, but due to its inherent prior bias, it predicts high action scores for
many background snippets, leading to a large number of false positive proposals in the prediction
results Our VLPO method significantly reduces false positive snippets in the prediction results by
incorporating VLM to mitigate prior bias.

B THE USE OF LARGE LANGUAGE MODELS

We use LLMs to polish the introduction section of this paper, making it more concise and under-
standable.
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Table 8: Sensitivity of λ3. The AVG means average mAP on THUMOS14.

λ3 0.1 0.3 0.5 0.7 0.9

AVG 54.2 54.3 54.3 53.9 53.6

Table 9: Sensitivity of αh. The AVG means average mAP on THUMOS14.

αh 0.85 0.86 0.88 0.9 0.92

AVG 53.3 53.6 53.8 54.3 53.5

Table 10: Sensitivity of αl. The AVG means average mAP on THUMOS14.

αl 0.15 0.2 0.25 0.3 0.35

AVG 54.0 54.0 54.3 54.2 53.8

Table 11: Ablation of text prompt. The AVG means average mAP on THUMOS14.

Prompt AVG

“[CLS]” 53.9
“find [CLS]” 54.1

“a video of [CLS]” 54.1
“a video of action [CLS]” 54.3

“an image of action [CLS]” 53.9
“avideoofaction[CLS]” 54.1

“a video of human action about [CLS]” 54.0

Table 12: Efficiency evaluation.The time for inference on all samples on the test set is taken as the
inference time.

Method Parameter Counts Inference Time

CO2-Net [8] 34.10M 7.40s
AICL [15] 6.30M 7.19s
SAL [16] 145.77M 7.82s

VLPO (Ours) 9.84M 7.20s
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Figure 6: Qualitative results on THUMOS14.
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