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Abstract

Recent advances in large language model (LLM) reasoning, led by reinforcement
learning with verifiable rewards (RLVR), have inspired self-play post-training,
where models improve by generating and solving their own problems. While self-
play has shown strong in-domain and out-of-domain gains, the mechanisms behind
these improvements remain poorly understood. In this work, we analyze the training
dynamics of self-play through the lens of the Absolute Zero Reasoner, comparing
it against RLVR and supervised fine-tuning (SFT). Our study examines parameter
update sparsity, entropy dynamics of token distributions, and alternative proposer
reward functions. We further connect these dynamics to reasoning performance
using pass @k evaluations. Together, our findings clarify how self-play differs from
other post-training strategies, highlight its inherent limitations, and point toward
future directions for improving LLM math reasoning through self-play.

1 Introduction

Reinforcement learning with verifiable rewards (RLVR) has emerged as the leading method for
improving reasoning in large language models (LLMs), with notable successes in mathematics and
other verifiable domains [21, [12]. However, its benefits remain debated: recent studies argue that
RLVR primarily sharpens output distributions and improves sampling efficiency rather than fostering
genuine reasoning [31,[7]. Analyses of its training dynamics further show reduced policy entropy
and sparser parameter updates relative to supervised fine-tuning [6} 20].

Beyond RLVR, recent work has investigated the potential of self-play, an alternative paradigm where
models interact with themselves to drive improvement. For example, Zhao et al. [32] introduced
a framework where an LLM acts as both a proposer of coding problems and a solver, achieving
significant gains on out-of-domain mathematics benchmarks using only its own coding outputs and
without additional human-curated data. Similarly, other methods have shown the promise of self-play
for LLMs [15} 11, [13]]. The success of these methods highlights a critical need to understand how
models can improve without external supervision and whether these improvements reflect genuine
gains in reasoning ability.

In this work, we provide an analysis of the self-play approach, comparing its training dynamics
and performance against RLVR and SFT. We follow the passQFk experiments of Yue et al. [31]] to
rigorously assess whether self-play-trained models achieve stronger reasoning performance than
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Figure 1: Self-play models are still bounded by the base model. (Top row) Pass@k curves for
AZR-CODER-3B (red) and QWEN2.5-CODER-3B (blue). (Bottom row) Pass@k curves for AZR-
CODER-7B (red) and QWEN2.5-CODER-7B (blue).

their base counterparts. We study internal training dynamics through measures of policy entropy
and parameter update sparsity to shed light on how self-play shapes model behavior. Finally, we
investigate the role of the proposer component by modifying its reward function and we also track
how the distribution and difficulty of generated questions evolve throughout training.

2 Absolute Zero Reasoner

The Absolute Zero paradigm [32] is a self-play framework where a single model learns by simultane-
ously proposing and solving tasks. One implementation, the Absolute Zero Reasoner (AZR), uses a
unified LLM that acts as both a proposer, which generates a curriculum of tasks, and a solver, which
learns by solving them. After an environment validates each proposed task to create a problem with a
gold solution, the model is jointly optimized using a multitask advantage estimator, receiving rewards
for both task quality and solution accuracy. AZR is trained on three families of coding tasks designed
to capture abductive, deductive, and inductive reasoning; further implementation details are available
in Appendix [A]

3 Experiments

We adopt the Absolute Zero Reasoner (AZR) [32] codebase as our self-play framework. Due to
computational constraints, we only conduct experiments on QWEN2.5-CODER-3B and QWEN2.5-
CODER-7B.

We investigate the following research questions:

RQ1: Does self-play in AZR enable novel reasoning beyond the capacity of the base model?
RQ2: How does the difficulty of the questions proposed evolve over the course of training?
RQ3: Does AZR experience entropy collapse during training like RLVR-trained models?
RQ4: How does parameter update sparsity in self-play compare with RLVR and SFT?

RQS5: Does lowering the proposer’s target question difficulty improve model performance?

3.1 RQI1: Reasoning Capacity

Setup. We use an unbiased pass@Fk estimator [2]] to measure reasoning capacity, following the
experimental setup of Yue et al. [31] on benchmarks including MBPP+, HumanEval+, and AIME.

Results. We show that self-play improves performance at small k, but the base model performs
better at large k (Figure[I). This suggests gains from distributional sharpening [31} [7]. However, the
performance drop at large k is not statistically significant, suggesting it preserves the base model’s
capacity more effectively than standard RLVR. We hypothesize this is due to implicit data diversity
from the co-evolutionary training, a factor suggested to sustain pass@k gains in Liang et al. [[13].



We provide a formal argument for why AZR remains bounded by the reasoning capacity of the base
model, building on the analysis of Wu et al. 28], in Appendix [C]

AZR is effectively RLVR over a proposer-induced task distribution [32], and thus inherits
the same Invisible-Leash support limitation [28]]: self-play cannot assign probability mass
to solutions outside the base model’s support. As a result, AZR remains bounded by the
reasoning capacity of the base model, though unlike RLVR, the drop in pass@k performance
at larger k is less pronounced.

3.2 RQ2: Evolution of Question Difficulty

Setup. To study how question difficulty evolves,
we created a balanced dataset of 800 deductive
questions sampled from different training iter-
ations. For each question, we generated 8 re-
sponses using AZR-CODER-7B and QWEN2.5-
CODER-7B and measured the average response ‘
length and solve rate (denoted Tsoive in Equa-  Figure 2: AZR-CODER-7B adapts response
tion ). length to question difficulty while QWEN2.5-
CODER-7B does so at a lesser scale. (Left) Aver-
age response length at every 25th iteration. (Right)
Average solve rate at every 25th iteration.

Results. As shown in Figure[2] the proposer gen-
erates more difficult questions over time, which
in turn elicit longer responses, a trait associated
with improved reasoning [8} 3]. AZR produces
shorter responses for easier questions, consistent
with the idea of an optimal response length that avoids under or overthinking [29, [24]]. This suggests
self-play may teach the model to adjust its response length based on the perceived difficulty of a
question.

The proposer in AZR self-play generates increasingly difficult questions, and AZR appears to
adapt response lengths accordingly. This implicit sensitivity to difficulty may help the model
avoid both underthinking and overthinking.

3.3 RQ3: Entropy Collapse

Setup. Prior work has shown that RLVR post-training causes an entropy collapse, where a model
effectively trades exploration for validation accuracy [6]. We examine whether self-play exhibits a
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Figure 3: Policy entropy decays at different rates based on model size and setup. Policy entropy
curves for AZR-CODER-3B, AZR-CODER-3B with a frozen proposer, and AZR-CODER-7B.
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Results. As shown in Figure [3] self-play also
leads to entropy collapse, with the decay rate
depending on model size and setup. The frozen-
proposer variant (no PPO updates in the pro-
poser role) maintains higher entropy than the
standard 3B model, likely because in standard
self-play, both proposer and solver receive gra-  Figure 4: Proposer entropy stays higher than
dient updates, doubling optimization pressure solver entropy. Proposer, solver, and policy en-
and accelerating collapse. When decomposed  tropy curves for AZR-CODER-3B (left) and AZR-

by role (Figure[)), proposer entropy consistently Copgr-7B (right)
remains higher than solver entropy. Although

overall entropy decays, this suggests that encour-
aging proposer diversity could increase entropy and improve performance.

Self-play with AZR exhibits entropy collapse, with decay rates varying by model size
and proposer setup. Sustaining exploration may require explicit entropy regularization or
mechanisms for promoting diverse proposer outputs.

3.4 RQ4: Parameter Update Sparsity

Setup. Following Mukherjee et al. [20]], who
showed that supervised fine-tuning (SFT) pro-
duces dense parameter updates while reinforce-
ment learning (RL) is sparse, we analyze the
update sparsity of self-play. This metric mea-
sures the proportion of parameters unchanged

MMMMM

between two checkpoints: Figure 5: Self-play has distinct update sparsity
compared to RL-tuned and SFT models. Update

0 a1 16 — 60 sparsity comparison between public checkpoints

S(07,67) =1~ T () of fine-tuned models and their corresponding base

models: (left) QWEN2.5-CODER-3B and (right)
where ||-[|o counts non-zero clements. We  (wgN2.5-CODER-7B.

compare our self-play models (AZR-CODER)
against public SFT and RLVR checkpoints that
use the same base model.

Results. Figure [5|shows that self-play produces an intermediate level of parameter update sparsity,
denser than RLVR but sparser than SFT. For example, AZR-CODER-7B reaches about 45.7%
sparsity. This pattern likely reflects the dual nature of self-play, where the model both generates new
data and learns from solving it, leading to updates that are partly in-distribution yet still exploratory.

AZR self-play leads to intermediate update sparsity: denser than RLVR but sparser than SFT,
reflecting its dual role of data generation and solution.

3.5 RQS5: Proposer Reward Function

Setup. Prior work suggests that a solve rate near 0.5 yields strong gradient signals in RLVR with
GRPO-style advantage calculations [23| 30]]. Building on this, we test a modified reward to explicitly
encourage the proposer to generate questions of this difficulty:
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Figure 6: Training dynamics of different proposer rewards. (Left) Policy entropy training
dynamics. (Right) Validation accuracy training dynamics
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This function gives the maximum reward when the average solve rate, 7gve, is 0.5, incentivizing the
proposer to generate questions that are neither too easy nor too hard.

Results. As shown in Figure[6] this reward function had little effect on entropy dynamics and reduced
final validation accuracy by 2%. While Huang et al. [[L1] used it successfully in R-Zero, our results
suggest their gains stem from other system components.

Altering the proposer’s reward to target a 50% solve rate does not improve AZR perfor-
mance and slightly reduces validation accuracy. This suggests that reward shaping alone is
insufficient, with other components playing a larger role in AZR’s self-play gains.

4 Limitations & Future Work

Our study is limited in scope to a single self-play framework (AZR) and two model sizes (3B and
7B). The patterns we observe with AZR may not hold across other self-play frameworks or larger
models [[11,14]. Nevertheless, given the highly similar proposer—solver structures that most recent
self-play methods adopt, we expect that our findings are broadly informative.

There remain several promising directions for future research. First, self-play is still bounded by the
base model’s reasoning capacity, motivating approaches that can expand reasoning support or inject
probability mass into novel trajectories. Second, automatic curriculum learning within self-play could
elicit new capabilities if designed effectively. Third, given the distinctive parameter update sparsity
observed, it is worth investigating whether self-play mitigates or exacerbates catastrophic forgetting,
an effect linked to sparsity in prior RL studies [22,[20]. Finally, preventing entropy collapse remains
a key challenge; future work could explore proposer modifications or explicit entropy regularization
to sustain exploration during training.

5 Conclusion

Our analysis of the self-play framework AZR reveals that while its reasoning capacity is bounded
by the base model, the proposer is the critical component for improvement. The proposer drives
performance by generating a diverse and progressively difficult curriculum of questions. We find that
self-play exhibits a unique parameter update sparsity and still undergoes entropy collapse, pointing
to the proposer as the most promising target for future work. Finally, self-play shows distinctive
parameter update sparsity, raising questions about its relation to catastrophic forgetting and how
proposer rewards can be refined to provide stronger learning signals.
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A Absolute Zero Reasoner

Rewards. AZR assigns complementary rewards for the proposer and solver [32]]. The proposer is
incentivized to create tasks of moderate difficulty using a learnability reward based on the solver’s
average success rate. If a task is always solved or never solved, the proposer receives no reward,
while partially solvable tasks yield a higher reward:

“

r _ 0 if Fso]ve =0or FSOIVC =1
propose 1 — Feoe Otherwise

The solver receives a binary correctness reward for producing the ground-truth answer, where equality

is evaluated in Python:

Tsolve = H(y:y*) )

Both roles are further regularized with a format-aware penalty, ensuring adherence to the required
<think> and <answer> structure [8]]:

Tole  if the completion is passable
R = ¢ —0.5 if the completion is wrong but well formatted 6)
-1 if the completion has formatting errors

Learning Different Modes of Reasoning. AZR implements three reasoning modes over a coding
triplet (p, 4, 0) consisting of a program, input, and output [32]]. In deduction, the model predicts o from
(p, i), with outputs verified by type-aware equality. In abduction, it infers a plausible input 7 from
(p, 0), rewarding solutions that reproduce the correct output even when programs are non-bijective. In
induction, it synthesizes a program p from partial input—output pairs, with held-out examples used to
ensure generalization beyond memorization. Together, these modes enable reasoning across different
components of the triplet while using code execution as both an expressive interface and a verifiable
environment.

Learning Algorithm. Training in AZR begins by seeding task buffers with valid pro-
gram—input—output triplets generated from the base model, optionally starting from a trivial “zero”
triplet. Separate buffers are maintained for deduction, abduction, and induction, and each proposer
samples past triplets as in-context references to generate new tasks. Validity is enforced through
a lightweight pipeline that executes candidate programs, checks syntax and safety, and restricts to
deterministic outputs. To ensure stable training, if insufficient valid tasks are generated in a batch,
examples are backfilled from the existing buffers.

Once validated, tasks are presented to the solver in role-specific forms, and solutions are verified
by equality checks appropriate to deduction, abduction, or induction. Rewards are then assigned to
both proposer and solver, and model parameters are updated with Task-Relative REINFORCE++
(TRR++), which maintains separate baselines for each task-role combination. This structure reduces
variance across six training configurations and enables AZR to expand its curriculum and improve
through self-play.

B Related Works

B.1 Reinforcement Learning with Verifiable Rewards

A central advance in RLVR has been the development of critic-free algorithms such as Group Relative
Policy Optimization (GRPO), which reduced the computational cost of reinforcement learning for
LLM post-training [8]]. Building on this foundation, many works have refined GRPO and studied its
limitations.

For example, Liu et al. [16] identified bias in the advantage calculation of GRPO and proposed
removing the group standard deviation term. Yu et al. [30]] introduced DAPO, which incorporates
techniques such as dynamic sampling, filtering out overly easy or difficult samples that provide little



gradient signal, and a clip higher method to encourage higher entropy. Acting as a broad empirical
study, Liu et al. [[17] demonstrated that simple design choices such as combining group-level mean
with batch-level variance for advantage estimation, together with token-level loss aggregation, are
sufficient to outperform both GRPO and more complex variants like DAPO.

Many works have also investigated RLVR from an entropy perspective as well. Cui et al. [[6] observed
that tokens with high covariance (high probability and advantage) drive entropy collapse. To address
high covariance tokens, they either clipped those tokens from the gradient calculation or applied a KL
penalty, preventing entropy collapse [6]. Wang et al. [26] also clips tokens from gradient calculation
using token-level entropy as the determiner and only training on the 20% highest entropy tokens,
observing that low entropy tokens contribute to entropy collapse. Cheng et al. [4] also observes
that high entropy tokens are important for performance gains and exploration, and they propose an
entropy aware advantage term, leading to pass@¥k gains on benchmarks.

Curriculum-based approaches have also shown promise, where the model is presented with problems
matched to its current ability, for instance, those with a solve rate of about fifty percent across
rollouts [23 25]].

Alongside these improvements, other studies have examined whether RLVR actually increases the
reasoning ability of models. Yue et al. [31]] showed that RLVR substantially improves pass@k when
k is small, but that for large £ the base model consistently surpasses its RLVR trained counterpart.
Extending this finding, Wu et al. [28] provided both theoretical and empirical evidence that standard
RLVR cannot escape the reasoning capacity of the base model.

B.2 LLMs for Mathematics

Given its inherent verifiability, mathematics has emerged as a compelling domain for the post-
training of LLMs. This has spurred a significant body of work aimed at augmenting the mathematical
capabilities of these models through RLVR [211[27,[18]]. In particular, Google DeepMind’s AlphaProof
achieved silver-medal standing at the International Mathematical Olympiad (IMO) by leveraging
self-play with a pretrained LLM [[10]. This approach utilized the formal language Lean, a strategy
comparable to the use of Python in the AZR framework [19]]. Such findings reinforce the idea
that an LLM’s coding aptitude is foundational to its downstream mathematical performance after
post-training 211 [32].

B.3 Self-play

Recent work has demonstrated that self-play can be an effective strategy for LLM post-training,
with consistent gains in reasoning ability. A common approach is to allow the model to generate
its own training data by proposing problems and then solving them, which has been shown to yield
strong improvements [32| [1} [11]. Liang et al. [13] extend this idea by evolving questions from
existing datasets and report gains not only in pass@1 performance but also in pass@k when £ is large.
Self-play has also proven useful beyond reasoning tasks, with several studies showing improvements
in instruction following and robustness [} 9].

C AZR Inherits the Invisible-Leash Support Bound

Setting. Let X’ denote prompts or tasks and ) denote token sequences (solutions). A base model
qo(y | z) initializes both AZR roles: the proposer 7} and the solver 7¥. Each role is trained
on verifiable rewards using on-policy policy-gradient updates (REINFORCE or PPO style), as in

Absolute Zero (AZR) [32]. The generic on-policy update for either role is

") mi(y | 2) wily, x)

Z.(2) + veme(y | @),

Ty | @) = (1=

where wy (-, -) >0 is the clipped or exponentiated advantage weight and Z; is the normalization factor.
AZR sets v, = 0 (no explicit exploration) and does not use off-policy data mixing [32].

Invisible-Leash principle (reused). For any on-policy reweighting of the form above with v, = 0,
support is preserved: if m(y | ) = 0 then m11(y | ) = 0, since w; is only evaluated on
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y~ (- | ) and no mass is injected off-support. By induction from 7y = qq, supp(m:(- | z)) C
supp(qo(- | z)) for all ¢ [28].

Theorem 1 (Role-wise support preservation for AZR). Initialize with 7§ = 75 = qo. Under AZR’s
on-policy updates with vy = 0 and no off-policy data,
supp(r; (- | 2)) € supp(go(- | 2)),  supp(m; (- | 2)) C supp(qo(- | ) V.

Proof sketch. Apply the Invisible-Leash support argument [28]] separately to the proposer and the
solver. Both roles update via on-policy tilting (no mixing), so each preserves its support. Endogenous
task selection in AZR [32] does not alter the conditional support property of 7% (- | x); it depends
only on the solver’s update rule. O

Corollary 1 (Reasoning boundary / zero-probability barrier). Ler A, = {y € Y
verifier accepts (z,y)}. If qo(Ay) = O, then for all AZR iterates t and k > 1,

Pr[3success in k i.i.d. samples from } (- | z)] = 0.

Thus AZR cannot produce verifiably correct sequences for tasks whose correct solutions have zero

probability under the base model [28].

Empirical-support variant (finite-precision LLMs). Define supp.(qo) :={y: qo(y | ) > €}
and S. := Y \supp,.(qo). With any trust-region step (e.g., PPO clipping or per-step KL < ¢), the
Invisible-Leash reweighting bound yields

7rts+1(SE | :(:) < C(9) - 77,58(5’E \ x),

so mass outside the base model’s e-support remains negligible absent explicit exploration (7, > 0)
or off-policy data [28]. AZR uses v; =0 and on-policy PPO, hence inherits this empirical-support
limitation [32].

When can AZR escape the bound? Only by injecting off-support mass (e.g., v; > 0 with suitably

covering i), adding off-policy data, changing the base model (capacity/tools), or otherwise breaking
on-policy tilting [28].

D Response Length

The following is the average response length (number of tokens in a response) for each iteration
across the three tasks and two roles.
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Figure 7: Response length mean per training step exponentially smoothed across model sizes and
roles
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