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ABSTRACT

To ensure robust and trustworthy decision-making, it is highly desirable to enforce
constraints over a neural network’s parameters and its inputs automatically by back-
propagating output specifications. This way, we can guarantee that the network
makes reliable decisions under perturbations. Here, we propose a new method for
achieving a class of specification guarantees for neural Ordinary Differentiable
Equations (ODEs) by using invariance set propagation. An invariance of a neural
ODE is defined as an output specification, such as to satisfy mathematical formulae,
physical laws, and system safety. We use control barrier functions to specify the
invariance of a neural ODE on the output layer and propagate it back to the input
layer. Through the invariance backpropagation, we map output specifications onto
constraints on the neural ODE parameters or its input. The satisfaction of the
corresponding constraints implies the satisfaction of output specifications. This
allows us to achieve output specification guarantees by changing the input or
parameters while maximally preserving the model performance. We demonstrate
the invariance propagation on a comprehensive series of representation learning
tasks, including spiral curve regression, autoregressive modeling of joint physical
dynamics, convexity portrait of a function, and safe neural control of collision
avoidance for autonomous vehicles.

1 Introduction
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Figure 1: Invariance propagation for neural ODEs.
Output specifications can be guaranteed with in-
variance, including specification satisfaction be-
tween samplings, e.g., spiral curve regression with
critical region avoidance.

We wish to equip ODE-based networks with per-
formance guarantees to enable decision-critical
applications. To this end, we explore control-
theoretic invariance. We observe that explicit
and implicit data patterns are usually inherited
from data that originates from real systems, such
as robot sensors or virtual systems. These pat-
terns can be described by specifications consist-
ing of physical laws, mathematical expressions,
safety constraints, and other prior knowledge of
the structure of the data and the task. Guaran-
teeing task specifications for complex learning
systems such as robot learning-based control is
challenging due to the fact that the learned mod-
els perform representation learning in unstruc-
tured environments and are expected to general-
ize to unseen situations. Moreover, the learned
models might be subjected to distribution shifts
and cyber-physical attacks that could degrade the quality of their output decisions. We propose to
propagate invariance through neural Ordinary Differentiable Equations (ODEs) (Chen et al., 2018) to
equip them with performance guarantees. The key idea is to do invariance propagation for neural
ODEs using High Order Control Barrier Function (HOCBF) theory (Xiao & Belta, 2022). However,
the HOCBF method has significant limitations: (a) it fails to work for system/data with unknown
dynamics; (b) the HOCBF method is conservative such that the performance could be low; (c) it
can only work efficiently for affine control systems, and it cannot be directly applied to complex
neural networks. In this work, We address these limitations and generalize safety to any other system
properties using the proposed invariance. Specifically, we use HOCBFs to represent the output speci-
fications of neural ODEs as invariance and back-propagate the invariance from the output layer all the
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way back to the input layer or the parameters of the neural ODE. This process finds input/parameter
constraints whose satisfactions imply the satisfactions of output specifications. Consider, for example,
the spiral curve regression with output specifications, as shown in Fig. 1. The output of the neural
ODE is trained to stay close to the ground truth. The output further is required to avoid the two
"obstacles" denoted as the red regions marked in the path of the ground truth spiral curve. In general,
it is hard to train a neural ODE to avoid obstacles placed at arbitrary locations, such as the two red
regions (Dupont et al., 2019). Our proposed invariance back-propagates the output specification all
the way to the input layer (or model parameters) and finds constraints on the input/parameters whose
satisfaction implies the avoidance of these two critical regions.

Contributions (i) we propose a new method we call invariance propagation (or, short, invariance)
for neural ODEs that guarantees the satisfaction of output specifications; (ii) we propose a quadratic
program approach to enforce invariance on the input or parameters of neural ODEs; (iii) we show
how we can enforce complex specifications for dynamical systems with neural ODEs using invariance;
(iv) we address the possible conservativeness of the invariance by including invariance functions in
the training loop; (v) we illustrate the effectiveness of the invariance method on a series of temporal
dynamics modeling tasks.

2 Related Works

Neural ODEs. Neural ODEs (Chen et al., 2018) (Chen et al., 2020) are powerful dynamical systems
modeling tools, widely used in applications to learning system kinetics (Kim et al., 2021) (Alvarez
et al., 2020) (Baker et al., 2022), in graphics (Asikis et al., 2022), in discovering novel materials (Chen
et al., 2022), and in robot controls (Amini et al., 2020; Lechner & Hasani, 2020; Lechner et al., 2020;
2019; Vorbach et al., 2021). Neural ODEs are continuous-time universal approximators (Kidger et al.,
2020) that perform competitive to their static and discretized neural network counterparts, once their
complexity issues (Massaroli et al., 2020) are resolved by better numerical solvers (Poli et al., 2020),
or by their closed-form variants (Hasani et al., 2021a). Recent methods provide safety guarantees for
inference in a neural ODE system, e.g. stochastic reachability analysis (Gruenbacher et al., 2020;
2021). However, there are no methods to simultaneously train the model while guaranteeing safety.
Here, we address this issue by forward-invariance of neural ODEs.

Set invariance. An invariant set has been widely used to characterize the safe behavior of dynamical
systems (Preindl, 2016) (Rakovic et al., 2005) (Ames et al., 2014) (Glotfelter et al., 2017) Xiao &
Belta (2019). In the state of the art, Control Barrier Functions (CBFs) are also widely used to prove
set invariance (Aubin, 2009), (Prajna et al., 2007), (Wisniewski & Sloth, 2013). They can be traced
back to optimization problems (Boyd & Vandenberghe, 2004), and are Lyapunov-like functions (Tee
et al., 2009), (Wieland & Allgöwer, 2007). In (Ames et al., 2014), (Ames et al., 2020), (Glotfelter
et al., 2017), it has been shown that a state constraint over a dynamical system can be mapped onto a
control constraint using CBFs, and the satisfaction of the control constraint implies the satisfaction of
the original state constraint.

Filters for neural networks. Recent advances in differentiable optimization methods show promise
for safety-guaranteed neural network controllers (Pereira et al., 2020; Amos et al., 2018; Xiao et al.,
2021). The differentiable optimizations are usually served as a layer (filter) in the neural networks. In
(Amos & Kolter, 2017), a differentiable quadratic program (QP) layer, called OptNet, was introduced.
OptNet with CBFs has been used in neural networks as a filter for safe controls (Pereira et al.,
2020), but OptNet is not trainable, thus, potentially limiting the system’s learning performance. In
(Deshmukh et al., 2019; Jin et al., 2020; Zhao et al., 2021; Ferlez et al., 2020), safety guaranteed neural
network controllers have been learned through verification-in-the-loop training. The verification
approaches cannot ensure coverage of the entire state space. They are offline methods, unable to
adapt to environment changes (e.g., varying size of the unsafe sets) (Li, 2021). Optimizations as safe
filters in neural networks could significantly limit the model performance as a filter may also discard
useful features that are from all previous layers. In contrast, we propose to propagate the invariance
(e.g. for safety) all the way to the input of the neural ODE. Thus, performance can be guaranteed by
changing the input following the invariance. The invariance can also be applied to a wide class of
performance guarantees in addition to safety.

3 Neural ODEs

A neural ordinary differential equation (ODE) is defined in the form (Chen et al., 2018):

ẋ(t) = NNθ(x(t), t), (1)
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where x ∈ Rn is the neuron state, NNθ is any neural network model parameterized by θ. The output
of NNθ is also with dimension n, and the output of the neural ODE is the integration solution of (1).

Given an initial state x(t0), we can train a neural ODE by the following optimization problem:

θ∗ = argmin
θ
ℓ(xobs(t),xpre(t)), (2)

where ℓ(·, ·) is a similarity measurement, xobs and xpre denote the observed state and predicted state
from the neural ODE (1), respectively. This optimization problem can then be solved and trained
end-to-end by reverse mode automatic differentiation (Rumelhart et al., 1986; Pontryagin, 2018).
Given a set of input observations I(t) ∈ Rna , where na ∈ N, then the model is defined as follows:

ẋ(t) = NNθ(x(t), I(t), t). (3)

Neural ODEs equipped with inputs are especially useful for modeling temporal dynamics with neural
agents deployed in control settings (Lechner et al., 2019; Hasani et al., 2020; Kidger et al., 2020;
Lechner et al., 2020; Vorbach et al., 2021).

4 Method: Invariance of Neural ODEs

In this section, we specify the invariance of neural ODEs using the HOCBF theory (Xiao & Belta,
2022) while addressing its limitations (a)− (c) as discussed in the introduction. We also generalize
safety to other specifications. We omit the explicit dependence of t in the neural ODEs (1) and
(3) for simplicity as they can be handled similarly by time-varying HOCBFs defined in the same
work. Suppose we have an output specification h(x) ≥ 0 for a neural ODE, where h : Rn → R is
continuously differentiable. Typical output specifications include system safety (such as collision
avoidance in autonomous driving), physical laws (such as energy conservation), mathematical
formulae (such as Jensen’s inequality, Cauchy Schwarz inequality), etc. We assume neural ODEs
are with differentiable activation functions. Our proposed method is to back-propagate the output
specification to a constraint on the input or parameter of the neural ODE in order to tractably guarantee
the satisfaction of output specifications. We first define the invariance of a neural ODE as follows.

Definition 1 The invariance of a neural ODE is defined with respect to its output specification
h(x) ≥ 0 such that if h(x(0)) ≥ 0, then h(x(t)) ≥ 0,∀t ≥ 0.

Since the invariance of a neural ODE is defined in terms of its output, we may also call it the
output invariance. If the neural ODE has multiple layers, we also have hidden invariances and input
invariance, as shown next.
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Figure 2: Relative degree and invariance example
of a three-layer neural ODE. Recurrence is allowed,
i.e., f1, f2 (neural networks) could be a function of
x1, x2, respectively. x3 is the input of the neural
ODE. There is an odeint after each layer.

4.1 Invariance propagation for neural ODEs
without external input I: If the NNθ in (1) is
fully connected, then the relative degree of one
neuron (suppose it is one of the outputs) with
respect to another one is only one, as defined
in nonlinear systems (Khalil, 2002). Otherwise,
we have sparse neural ODEs (Lechner et al.,
2020; Liebenwein et al., 2021) that induce high
relative degrees. The method works as follows.
The first step is to classify all the neurons of a
neural ODE according to their relative degrees.
This can be done according to the connection
relationship between neurons. In a neural ODE,
if the output of neuron i is the input of neuron
j and not vice versa, then the relative degree
of neuron i is one relative degree higher than
neuron j. The output neurons are defined to be with a relative degree of 0. Thus, we can denote
the relative degree of a neuron in a neural ODE by r ∈ N. We denote the neuron vectors as xr in
which the relative degrees of all neuron components are r − 1. Then x = (x1, . . . , xm+1), where m
denotes the highest relative degree of the neural ODE. Recurrent connections in a neural ODE will
not change their relative degrees, i.e., the output of a neuron in the neuron vector xr could also be the
input of any neuron in xr.
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For example, in Figure 2, the outputs of the neurons in x3 are the inputs of the neurons in x2. The
neurons in x3 are with one relative degree higher than the ones in x2. The same applies to the neurons
of x2 and x1. The highest relative degree of the three-layer neural ODE is two since the output
neurons x1 are defined to be with a relative degree of 0. The output specification h(x) ≥ 0 of a
neural ODE can then be rewritten as h(x1) ≥ 0, as x1 is the vector of output neurons. In order to
show the relationships between the invariances of different layers of a neural ODE, we define the
first-from-the-last hidden layer invariance ψ1 ≥ 0 (defined similarly as in Definition 1) as a function
of h(x1) and its derivative, where ψ1 is defined as:

ψ1(x1, x2, θ2,1) := ḣ(x1) + α1(h(x1)), (4)

where θ2,1 is the connection weight between layers 2 and 1, x2, θ2,1 shows up in ḣ(x1), and α1(·) is
a class K function (a class K is a strictly increasing function that passes through the origin). This way,
the hidden invariance is related to the neurons x1, x2 and their connection weight θ2,1. We can define
the invariance of any hidden (or input) layer k by functions ψk−1(x1, . . . , xk, θ2,1, . . . , θk,k−1) ≥
0, k ∈ {2, . . . ,m+ 1}, recursively:

ψk−1(x1, . . . , xk, θ2,1, . . . , θk,k−1) := ψ̇k−2(x1, . . . , xk−1, θ2,1, . . . , θk−1,k−2)

+ αk−1(ψk−2(x1, . . . , xk−1, θ2,1, . . . , θk−1,k−2)), k ∈ {1, . . . ,m+ 1},
(5)

where αk−1, k ∈ {2, . . . ,m+ 1} are class K functions, and ψ0(x1, θ1,0) = h(x1). θk,k−1 denotes
the connection weight between layers k and k − 1. For the input layer m+ 1, we have ψm(x, θ) =
ψm(x1, . . . , xm+1, θ2,1, . . . , θm+1,m), where θ = (θ2,1, . . . , θm+1,m), and the invariance of the
input layer is illustrated by the input constraint ψm(x, θ) ≥ 0. For example, the highest relative
degree of the three-layer neural ODE in Figure 2 is 2, and the input constraint (invariance) is
ψ2(x1, x2, x3, θ2,1, θ3,2) ≥ 0. We have the following theorem to show the relationships among
invariances in the neural ODE (1):

Theorem 1 Given a neural ODE defined by (1), the output specification h(x1) ≥ 0, and the functions
ψk−1 defined by (5), if there exist class K functions αk, k ∈ {1, . . . ,m} such that

ψm(x, θ) ≥ 0,

then the output layer of the neural ODE is invariant (i.e., h(x1(t)) ≥ 0,∀t ≥ 0) for all x(0) that
satisfy ψk−1(x1, . . . , xk, θ2,1, . . . , θk,k−1) ≥ 0,∀k ∈ {1, . . . ,m}.

Proof: Given a safety constraint b(x) ≥ 0, by Nagumo’s Thm. (Nagumo, 1942), the necessary and
sufficient condition for the system safety is ḃ(x) ≥ 0, when b(x) = 0.

First, we have ψm(x, θ) = ψ̇m−1(x, θ)+αm(ψm−1(x, θ)) ≥ 0 following Eqs. (5) and the constraint
in Thm. 1. Since αm is a class K function, αm(ψm−1(x, θ)) approaches 0 as ψm−1(x, θ) → 0.
In other words, we have ψ̇m−1(x, θ) ≥ 0 when ψm−1(x, θ) = 0. Then, by Nagumo’s Thm., we
have that ψm−1(x, θ) ≥ 0 is satisfied since the derivative of ψm−1(x, θ) is non-decreasing on the
hyperplane ψm−1(x, θ) = 0. Recursively, we show ψk(x, θ) ≥ 0,∀k ∈ {0, 1, . . . ,m − 1}. Since
h(x1) = ψ0(x, θ), we have that h(x1(t)) ≥ 0,∀t ≥ 0. ■

Following the proof of Theorem 1, the invariances of hidden layers are also satisfied if the conditions
in Theorem 1 are satisfied in addition to the output invariance. If h(x1(0)) > 0, we can always find
class K functions αk, k ∈ {1, . . . ,m} such that ψk(x(0), θ) ≥ 0,∀k ∈ {1, . . . ,m} (Xiao & Belta,
2022). These class K functions can be found recursively from k = 0 (i.e., h(x1)) to k = m. In order
to make sure that the remaining condition in Theorem 1 is satisfied for all t ≥ 0, we can change the
parameter θ by differentiable quadratic programs (QPs). This is shown in the invariance enforcing
section. In this way, we map the output specification to a constraint on the parameter of neural ODEs.

4.2 Invariance propagation for neural ODEs with external input I: Note that we do not need
to back-propagate the invariance from the output layer to the input layer. Instead, we can just back-
propagate it to any hidden layer. For neural ODEs with input I, like (3), we can also back-propagate
the invariance to the input I (suppose I is added to the input layer), as shown in the following theorem.

Theorem 2 Given a neural ODE with input I defined by (3), the output specification h(x1) ≥ 0,
and the functions ψk−1 defined by (5), if there exist class K functions αk, k ∈ {1, . . . ,m}, and any
Lipschitz continuous input I satisfies

ψm(x, I, θ) ≥ 0,
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then the output layer of the neural ODE is invariant (i.e., h(x1(t)) ≥ 0,∀t ≥ 0) for all x(0) that
satisfy ψk−1(x1, . . . , xk, θ2,1, . . . , θk,k−1) ≥ 0,∀k ∈ {1, . . . ,m}.

Proof: The proof is identical to that of Theorem 1. ■

Theorem 2 propagates the invariance from the output layer to the external input I of a neural ODE
through the constraint of Theorem 2. In order to make sure that I is Lipschitz continuous, we can use
differentiable QPs to filter it. This is shown in the following section.

4.3 Enforcing invariances. Enforcing the invariance of a neural ODE is equivalent to the satisfaction
of the conditions in Theorems 1 and 2. Recall that the existence of all class K functions can be
found recursively from the output layer to the input layer if h(x1(0)) > 0. If h(x1(0)) ≤ 0, then the
output of the neural ODE will be driven to satisfy h(x1) ≥ 0 when the constraint of Theorem 1 or
the constraint of Theorem 2 is satisfied due to its Lyapunov property. The enforcing of the constraint
of Theorem 1 or that of Theorem 2 could vary in different applications. We do not restrict to exact
methods. We provide a minimum-deviation QP approach. We start with the case of neural ODEs
without external input I and show how to enforce the constraint of Theorem 1 on parameters θ.

Enforcing invariance for neural ODEs without input I. We aim to enforce the invariance on
a subset of the parameters instead of all parameters as the computational complexity grows with
O(n3) in the number of parameters. Suppose we wish to enforce the invariance on parameters
θk,k−1, k ∈ {2,m + 1}. Then, we only need to back-propagate the invariance to the layer k − 1.
The constraint in Theorem 1 then becomes ψk−1(x, θ2,1, . . . , θk,k−1) ≥ 0, which is a nonlinear
constraint on θk,k−1 and is hard to solve. In order to formulate a differentiable QP that takes θk,k−1

as the decision variable to enforce the invariance, we only drop the activation functions of layer k− 1.
Then, the neural ODE between layers k and k − 1 can be written in the form:

ẋk−1 = θk,k−1xk + bk (6)

where bk is a bias. Thus, ψk−1 in (5) can be rewritten in the form:

ψk−1(x, θ2,1, . . . , θk,k−1) = ψk−2,1(x, θ2,1, . . . , θk−1,k−2)θk,k−1 + ψk−2,2(x, θ2,1, . . . , θk−1,k−2)

+pk−1αk−1(ψk−2(x, θ2,1, . . . , θk−1,k−2)),
(7)

where ψk−2,1, ψk−2,2 are the coefficient and drift terms for θk,k−1, respectively, when taking the
derivative of ψk−2 along the state space of the neural ODE (6) between layers k and k− 1. pk−1 > 0
is a trainable parameter that can make the differentiable QP not conservative (a case study for
conservativeness is shown in experiments). The formulation is similar to a HOCBF that is defined
over affine control dynamics, and we have similar affine neural ODEs in terms of θk,k−1 if layer
k − 1 does not have an activation function (and only for layer k − 1). Then, we can formulate the
following optimization:

min
θk,k−1

||θk,k−1 − θ†k,k−1||
2 (8)

s.t. ψk−2,1(x, θ2,1, . . . , θk−1,k−2)θk,k−1 + ψk−2,2(x, θ2,1, . . . , θk−1,k−2)

+pk−1αk−1(ψk−2(x, θ2,1, . . . , θk−1,k−2)) ≥ 0,
(9)

where || · || denotes the Euclidean norm, θ†k,k−1 denotes the value of θk,k−1 during training or after
training. The above optimization becomes a QP with all other variables fixed except θk,k−1 This
solving method has shown to work in (Ames et al., 2014) (Glotfelter et al., 2017) (Xiao & Belta, 2022).
At each discretization step, we solve the above QP and get θ∗k,k−1. Then we set θk,k−1 = θ∗k,k−1
during the testing of the neural ODE. This way, we can enforce the invariance, i.e., guarantee that
h(x1(t)) ≥ 0,∀t ≥ 0.

Since the trainable parameter pk−1 determines the conservativeness of the solving method, we would
also like to tune it during the training of a neural ODE. As a result, we have a differentiable QP
(Amos & Kolter, 2017). This training framework is shown in Figure 3.

Enforcing invariance for neural ODEs with input I: In this case, we try to enforce the condition
in Thm. 2 for neural ODE (3). The constraint in Theorem 2 is also a nonlinear constraint on the
input I if the input layer possesses an activation function. Thus, in order to apply a similar strategy as
the above, we only drop the activation functions of the input layer. The neural ODE (3) can then be
written as:

ẋ = fNNθ
(x) + gNNθ

(x)I, (10)
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Then, the constraint of Thm. 2 can be rewritten as the following formulation:

ψm(x, I, θ) = ψm−1,1(x, θ)I + ψm−1,2(x, θ) + pmαm(ψm−1(x, θ)), (11)

where ψm−1,1, ψm−1,2 are defined similarly as in (7). pm > 0 is also a trainable parameter.

Finally, we can formulate the following optimization problem:

min
I

||I − I†||2 (12)

s.t. ψm−1,1(x, θ)I + ψm−1,2(x, θ) + pmαm(ψm−1(x, θ)) ≥ 0, (13)

where I† denotes the original input of the neural ODE. The above optimization also becomes a
differentiable QP if we fix all the other parameters except I . At each discretization step, we solve
the QP and get I∗. Then, we set I = I∗ to replace the original input I†. This way, we enforce the
invariance of neural ODEs with external input, i.e., guarantee that h(x1(t)) ≥ 0,∀t ≥ 0 after filtering
the input I of the neural ODE by the above differentiable QP.
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Figure 3: Training neural ODEs with invariance.
The training of a neural ODE with input I is regular
when we enforce the invariance on I .

4.4 Training neural ODEs with invariance.
The invariance of neural ODEs can be enforced
even after the training of neural ODEs. How-
ever, we need to hand-tune the parameter pk−1

or pm in the differentiable QP (8) or (12), which
is non-trivial when we have many output spec-
ifications for the neural ODE. For neural ODEs
that enforce the invariance on the input I, the
training is performed via the standard stochastic
gradient descent. While training neural ODEs
for enforcing the invariance on the model param-
eter θ, it is challenging to train both the neural
ODE and differentiable QP simultaneously in
the same pipeline. Thus, we propose the fol-
lowing two-stage training method: In the first
stage, we train the neural ODE as usual and thus
optimize the weight θ† of the network. In the second stage, we train the differentiable QP (specifically,
the parameter pk−1 in QP (8)) such that θ minimally deviates from θ†. The parameter pk−1 deter-
mines how large the deviation might be. The training of the network and the QP can be performed
alternatingly. We summarize the training process in Figure 3.

5 Complex Specifications

Although the invariance of neural ODEs can be applied to a wide class of problems, one of the
important applications is in the safe control of dynamical systems, as this involves complex output
specifications. Consider the case where the output of the neural ODE controller is directly taken as
the control of the dynamical system. The dynamical system is usually required to satisfy some safety
constraints that are defined over its state instead of over its control. In other words, the specification of
the neural ODE is not directly on its output. To map a state constraint onto the control of a dynamics
system (i.e., the output of the neural ODE), we can use the CBF method.

More specifically, consider a control system whose dynamics are defined in the form:

ẏ = f(y,u), (14)

where y ∈ Rq is the state of the system, u = x1 is its control (i.e., the output of the neural ODE).
f : Rq×n1 → Rq , where n1 is the dimension of x1 (or the control).

We wish the state of the system (14) to satisfy the following (safety) constraint:

b(y) ≥ 0, (15)

where b : Rq → R is continuously differentiable, and its relative degree with respect to u is d ∈ N.

As shown in (Xiao & Belta, 2022), we can use a HOCBF to enforce the safety constraint (15) for
system (14). In other words, we map the safety constraint (15) onto the following HOCBF constraint:

dϕd−1

dy
f(y,u) + αd(ϕd−1(y)) ≥ 0, (16)
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Figure 4: After-training invariance enforcing for spiral curve regression with output specifications.
np denotes the number of parameters randomly chosen in the QP (8). (a)-(c) are with two circular
undesired sets defined by: hj(x) = (x− xoj )

2 + (y− yoj )
2 −R2, (xoj , yoj ) denotes the location of

undesired set j ∈ S,R > 0, and (d) is with two randomly-placed superellipse-type undesired sets
defined by: hj(x) = (x− xoj )

4 + (y − yoj )
4 −R4.

Table 1: Spiral curve comparisons between neural ODE, neural ODE + shielding, and neural ODE +
invariance. The focus is on the specification guarantees rather than accuracy of models.

Item In-loop training
test error (↓)

Post-training test
error(↓)

Deadlock
rate (↓)

Complex
spec.

Point-wise
guarantee

Inter-
sampling

Neural ODE (baseline)(Chen et al., 2018) 0.489 ± 0.165 0.489 ± 0.165 0% × × ×

Shielding(Ferlez et al., 2020) 0.611 ± 0.120 0.609 ± 0.103 5% ×
√

×
Invariance (Ours) 0.550 ± 0.116 0.443 ± 0.082 0%

√ √ √

where ϕk(y) = ϕ̇k−1(y)+αk(ϕk−1(y)), k = {1, . . . , d−1} and ϕ0(y) = b(y), αk, k ∈ {1, . . . , d}
are class K functions. It is worth noting that the construction of the HOCBF is similar to the
construction (5) of the invariance of a neural ODE. The satisfaction of the above HOCBF constraint
(16) implies the satisfaction of the safety constraint (15).

Since the output of the neural ODE is used to control the dynamical system, i.e., u = x1, we can find
the output constraint of the neural ODE from (16) in the form:

h(x1,y) =
dϕd−1

dy
f(y, x1) + αd(ϕd−1(y)) ≥ 0, (17)

Then, we can back-propagate the invariance of the neural ODE (i.e., h(x1(t),y(t)) ≥ 0,∀t ≥ 0)
to the input I or its parameter, as shown before. In fact, in this scenario, the neural ODE serves as
an integral controller for dynamical systems. In the original CBF method, we need to assume that
the dynamics (14) are in affine control form in order to use the CBF-based QP to efficiently find a
safe controller. With the proposed method, such restriction (assumption) is removed. This shows the
advantage of the invariance of neural ODEs in safety-critical control problems.

6 Experiments

In this section, we present four machine learning tasks to demonstrate the effectiveness of the
proposed invariance of neural ODEs. We start with modeling spiral curve dynamics from data,
where obstacles can be placed at random locations on the spiral’s trajectories. We then show the
invariance on two publicly available datasets generated by the Mujoco physics engine and show how
a mathematical specification such as the convexity portrait can be enforced on the neural ODE using
our invariance method. Finally, we demonstrate how to use our invariance method to ensure the safety
of neural ODE controllers in autonomous driving tasks.

6.1 Spiral Curve Regression with Specifications. The training data comes from solving an ODE
[ẋ, ẏ]T = A[x3, y3]T as given in (Chen et al., 2018), where A = [−0.1,−2.0; 2.0,−0.1]. We use a
neural ODE to fit the data. Suppose we additionally require the trajectory x = (x, y) to avoid some
areas defined by hj(x) ≥ 0, j ∈ S, where S denotes a set of constraints. This can be done after the
training using the proposed invariance or during the training.

In this case, since the neural ODE does not have the external input I, we minimally change the
parameters of the model to enforce the invariance using the proposed QP-based approach (8). As a
result, the outputs of the neural ODE can satisfy all the specifications (see Figures 4 (a)-(d)). In the
post-training test, we need to carefully choose the class K functions shown in (5). Otherwise, the
resulting trajectory would be overly-conservative such that there is a large deviation from the original
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Table 2: Walker2d-v2 and halfcheetah-v2 comparisons between neural ODE, neural ODE + truncation,
and neural ODE + invariance. The focus is on the safety guarantees rather than accuracy of models.

Item Walker2d-v2 test
error (↓)

Halfcheetah-v2
test error(↓)

Complex
spec.

Point-wise
guarantee

Inter-
sampling

Neural ODE (baseline)(Chen et al., 2018) 1.060 ± 0.072 2.171 ± 0.026 × × ×

Truncation Brockman et al. (2016) 1.147 ± 0.084 2.170 ± 0.026 ×
√

×
Invariance (Ours) 1.057 ± 0.071 2.131 ± 0.024

√ √ √

one even when the state is far away from the constraint boundary hj(x) = 0, j ∈ S, as shown in Fig.
4a. With slightly fined-tuned CBF parameters pi (i.e., its class K functions), the conservativeness can
be addressed, as shown in Figure 4b.

We can also minimally change a different number of parameters of the neural ODE. Comparing Fig.
4b with Figure 4c, the outputs of the neural ODE are almost the same under 2 or 10 randomly chosen
model parameters. This demonstrates the effectiveness of the proposed invariance. In order to show
the robustness of the proposed invariance, we also tested other types of specifications, such as the
two randomly-placed superellipse-type undesired sets shown in Figure 4d. The outputs of the neural
ODE can also guarantee the satisfaction of the corresponding output specifications. We also consider
invariance in the training loop, which can address the conservativeness of the invariance by learning
instead of non-trivial parameter tuning, as shown in Fig. 1 (also shown in Fig. 7 in Appendix).

The comparisons between our invariance, shielding (Ferlez et al., 2020), and the baseline neural ODE
(Chen et al., 2018) are shown in Table 1 in which each of the results is evaluated using 100 trained
models. Our invariance model can achieve better performance while avoiding deadlock (as shown in
Fig. 7 in Appendix). Most importantly, the proposed invariance can guarantee output specifications,
including addressing the inter-sampling effect, i.e., specification satisfaction between sampling time.

6.2 HalfCheetah-v2 and Walker2d-v2 kinematic modeling. In this section, we evaluate our
invariance framework on two publicly available datasets for modeling physical dynamical systems
Lechner & Hasani (2020); Hasani et al. (2021b). The two datasets consist of trajectories of the
HalfCheetah-v2 and Walker2d-v2 3D robot systems Brockman et al. (2016) generated by the Mujoco
physics engine Todorov et al. (2012). Each trajectory represents a sequence of a 17-dimensional
vector describing the system’s state, such as the robot’s joint angles and poses. For each of the two
tasks, we define 34 safety constraints that restrict the system’s evolution to the value ranges observed
in the dataset. We compare our invariance approach with a hard truncation of the system state, i.e.,
projecting points violating the constraints to the nearest points that satisfy them. Our invariance
framework can achieve competitive performance compared to other approaches, as shown in Table 2,
while guaranteeing the satisfaction of complex safety specifications. We enforced our invariance on
17, 34, and 170 model parameters, respectively, and the performance is similar.

6.3 Convexity Portrait of a Function. In this section, we demonstrate how we can make sure that
the neural ODE outputs satisfy Jensen’s inequality. Jensen’s inequality can be used to characterize
whether a function is convex or not. In other words, a function g is convex if the following Jensen’s
inequality is satisfied:

µ1g(x) + µ2g(y) ≥ g(µ1x+ µ2y), (18)
where µ1 ∈ [0, 1], µ2 ∈ [0, 1] such that µ1 + µ2 = 1. We sample three values (g(x), g(y), g(µ1x+
µ2y)) from the convex function g(z) = z2, and use a neural ODE to fit these three values.
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(b) neural ODE and invariance
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Figure 5: Convexity portrait of the neural ODE
outputs. x, y are functions of t. The non-negativity
of the functions in (c) demonstrates the satisfaction
of Jensen’s inequality (18).

The in-distribution case study is shown in Ap-
pendix. Although the outputs of a trained neu-
ral ODE model may satisfy Jensen’s inequality
(18) within the range of the training data set,
they may still violate Jensen’s inequality when
we conduct predictions for future time (out of
the training data range), as shown by the red-
dashed curve in Figure 5c. However, with the
proposed invariance, we can guarantee that the
future prediction of the model also the satisfac-
tion of Jensen’s inequality (18) (see blue dashed
line in Fig. 5c).
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Figure 6: Comparison between safe filters, neural ODE, and invariance under a noisy Lidar point
cloud. b(x,xp) ≥ 0 implies collision-free.
Table 3: Self-driving comparisons between safe filter, BarrierNet, neural ODE and invariance. The
focus is on the safety guarantees and conservativeness rather than accuracy of models.

item Traj. test error
(↓)

Conservativeness
(≥ 0 & ↓)

Safety
guarantees

(≥ 0)

Dynamics
free

Difficulty
of

training

Filtering
approach

Non-
conservative

Model
complex-

ity

Neural ODE(Chen et al., 2018) 0.46±0.04 −13.11±1.49 −17.26
√

low ×
√

low
Safe filter (Pereira et al., 2020) 0.96±0.04 27.69 ± 1.08 24.60 × high output × high
BarrierNet (Xiao et al., 2021) 0.34±0.01 8.51 ± 0.33 7.69 × high output

√
high

Invariance (Ours) 0.36±0.01 1.97 ± 0.06 1.83
√

medium input
√

low

6.4 Lidar-based End-to-End Autonomous Driving.

In this section, we consider Lidar-based end-to-end autonomous driving. The neural ODE takes a
Lidar point cloud as input I, and outputs controls for the autonomous vehicle to follow the lane. The
states of the ego and edo vehicles are obtained by other sensors (e.g. GPS or communication). We
use the proposed invariance to back-propagate the safety requirements of the ego vehicle all the way
to the input layer of the neural ODE, i.e., finding a constraint on the Lidar input I that can guarantee
the safety of the ego vehicle. The problem and training setups are given in Appendix.

Invariance v.s. safe filters v.s. pure neural ODE. The ego vehicle starts at a speed of 18m/s, while
the other vehicle moves at a constant speed of 13.5m/s. In the case of noise-free Lidar sensing, the
ego may avoid collision when it overtakes the other moving vehicle with the neural ODE controller.
However, with noisy Lidar, the neural ODE controller may cause the ego vehicle to collide with
the other moving vehicle during the overtaking process, as the red trajectory shown in Figure 6(a).
The safety constraint b(x,xp) becomes negative (as the red curve shown in Fig. 6(b)) when the ego
approaches the other moving vehicle, which implies collision.

Using the proposed invariance, We map the safety requirement of the ego vehicle onto a constraint on
the noisy Lidar input I. The dimension of the Lidar information is 1× 100, and thus, the dimension
of the decision variable of the QP (12) that enforces the invariance is also 100. Even so, the QP can
still be efficiently solved as it is just a convex optimization. With the proposed invariance, we can
slightly modify the noisy Lidar data such that the outputs (controls) can guarantee the safety of the
ego vehicle, as the green trajectory shown in Figure 6(a). The modified Lidar information (through
invariance) is illustrated by the green-dotted curve in the snapshot t = 3.7s of Figure 6(a).

We also compare the proposed invariance with popular safe filter approaches (Pereira et al., 2020)
(Xiao et al., 2021). Although with safety guarantees, the resulting trajectory from a safe filter (Pereira
et al., 2020) may make the ego vehicle conservative (as the blue trajectory shown in Figure 6(a)),
and thus stay unnecessarily far away from the optimal trajectory (ground truth). The BarrierNet
(Xiao et al., 2021) is also a filter, but it addresses conservativeness by including the CBF (filter) in
the training loop. However, the training of a BarrierNet is harder compared with the invariance as
reference controls and the relative weight among them should also be trained in addition to the CBF
parameters. We summarize this comparison in Table 3 that includes testing results of 100 case studies
under noisy lidar perception. The invariance has the least conservativeness while guaranteeing safety.

Limitations. (a) The output specification of neural ODE may be unknown or hard to obtain, such
as those from images, financial markets, etc. How to learn these output specifications is one of the
remaining challenges to be further studied. (b) The proposed invariance is hard to be applied to
non-continuous models, such as classical multi-layer perceptrons, convolutional neural networks, and
discrete RNNs.
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A APPENDIX

A.1 SPIRAL CURVE REGRESSION WITH SPECIFICATIONS

The initial condition for the ODE we sample the data from is [2, 0], and we sampled 1000 data points
within the time interval [0,25] as the training data set. In order to make sure that the sampled data
avoids the two critical regions in the case of invariance-in-training, we use CBFs to minimally modify
the ODE. In other words, the components A[0, 1], A[1, 0] of the A matrix in the considered ODE are
minimally changed by the following quadratic program:

min
a1,a2

(a1 −A[0, 1])2 + (a2 −A[1, 0])2 (19)

s.t. CBF constraints:

2(A[0, 1]−Ox,1)A[1, 0]
3a1 + 2(A[1, 0]−Oy,1)A[0, 1]

3a2 + h1(x) ≥ 0,

2(A[0, 1]−Ox,2)A[1, 0]
3a1 + 2(A[1, 0]−Oy,2)A[0, 1]

3a2 + h2(x) ≥ 0,
(20)

where hi(x) = (A[0, 1]−Ox,i)
2 + (A[1, 0]−Oy,i)

2 −R2
i , i ∈ {1, 2}, and (ox,i, oy,i) denotes the

location of the undesired set i, Ri denotes its size.
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Figure 7: Invariance in training for spiral curve regression with output specifications. h(x) =
min{hj(x), j ∈ S} ≥ 0 denotes the satisfaction of output specifications. hj(x) = (x − xoj )

2 +

(y − yoj )
2 −R2, j ∈ S. The shielding method can only guarantee point-wise satisfaction, and thus

the specification can still be violated between samplings. While the invariance can guarantee the
satisfaction of specifications for all times. Deadlock may also happen in this case with the shielding
method, in which case the trajectory repeatedly evolves around the obstacle.

After solving the above QP at each time and obtaining a∗1, a
∗
2, we replace A[0, 1], A[1, 0] by a∗1, a

∗
2,

respectively, in the ODE (please find details in the attached code).

The training implementation and the enforcing QP for the invariance of the neural ODE are also given
in the attached code. The NNθ in the neural ODE is a three-layer fully connected network with sizes
2, 50, and 2, respectively. The activation functions used in the model are tanh.

The training epoch is 500, and the training batch size is 20 with a batch sequence time of 10. We
use RMSprop optimizer with learning rate 1e−3. The training time is about 2 hours on an RTX3090
GPU.

Invariance in training. The training data comes from solving the same ODE as above but also
satisfies the two output specifications shown in Fig. 7. We use the proposed training pipeline shown
in Figure 3 (left) to include the training of CBFs in the invariance. As expected, the model outputs
from training a neural ODE cannot accurately approximate the ground truth and violate the output
specifications (see Figure 7a). However, with invariance in the training loop, the model outputs can
strictly satisfy the output specification while staying close to the ground truth (see Figure 7c). The
shielding method cannot guarantee the satisfaction of specifications between sampling times.

A.2 CONVEXITY PORTRAIT OF A FUNCTION

The convex function we consider for sampling the training data is g(x) = x2, and we set µ1 = µ2 =
0.5 for the Jensen’s inequality. x = t, y = t + 2 − 1.9

10 t, where t ∈ [0, 10]. We sampled 100 data
points as the training data set. The CBF h(x, y) for Jensen’s inequality in the neural ODE is defined
as:

h(x, y) = µ1z1 + µ2z2 − z3, (21)

where z1, z2, z3 denote the three outputs of the neural ODE. The implementation details and the
enforcing QP for the invariance are given in the attached code. The NNθ in the neural ODE is a
three-layer fully connected network with sizes 3, 50, and 3, respectively. The activation functions
used in the model are tanh.

The training epoch is 2000, and the training batch size is 20 with a batch sequence time of 10. We use
RMSprop optimizer with learning rate 1e−3. The training time is about 1 hour on an RTX3090 GPU.

In distribution. Within the range of the training data, the trained neural ODE is not guaranteed to
satisfy Jensen’s inequality (18) as illustrated by the red-dashed curve in Figure 8c. However, with the
proposed invariance, we can guarantee that the model outputs satisfy Jensen’s inequality (through
changing the parameter with the proposed QP approach (8)), as shown by the blue-dashed curve in
Figure 8c.
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(b) neural ODE and invariance
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Figure 8: In-distribution convexity portrait of the neural ODE outputs. x, y are functions of t. The
data for t ∈ [0, 10] is within the training set. The non-negativity of the functions in (c) demonstrates
the satisfaction of Jensen’s inequality (18).

A.3 HALFCHEETAH-V2 AND WALKER2D-V2 KINEMATIC MODELING

We evaluate our invariance framework on two publicly available datasets for modeling physical
dynamical systems Lechner & Hasani (2020); Hasani et al. (2021b). The two datasets consist
of trajectories of the HalfCheetah-v2 and Walker2d-v2 3D robot systems Brockman et al. (2016)
generated by the Mujoco physics engine Todorov et al. (2012). Each trajectory represents a sequence
of a 17-dimensional vector describing the system’s state, such as the robot’s joint angles and poses.
For each of the two tasks, we define 34 safety constraints that restrict the system’s evolution to the
value ranges observed in the dataset.

The NNθ in the neural ODE is a three-layer fully connected network with sizes 17, 64, and 17,
respectively. The activation functions used in the model are Tanh.

The training epoch is 200, and the training batch size is 64 with a batch sequence time of 20. We use
RMSprop optimizer with learning rate 1e−3. The training time is about 1 hour on an RTX3090 GPU.

A.4 LIDAR-BASED END-TO-END AUTONOMOUS DRIVING

Problem setup. The ego vehicle state x = (x, y, θ, v) (along-lane location, off-center distance,
heading, and speed, respectively) follows the unicycle vehicle dynamics, and the other vehicle moves
at a constant speed. The ego vehicle is initially behind the other moving vehicle, and its objective
is to overtake the other vehicle while avoiding collisions. The collision avoidance is characterized
by a safety constraint b(x,xp) = (x− xp)

2 + (y − (yp + yd))
2 −R2 ≥ 0, where xp ∈ R4 denotes

the state of the preceding vehicle, and (xp, yp) ∈ R2 denotes the location of the preceding vehicle.
yd ∈ R is the off-center distance of the covering disk with respect to the center of the other vehicle.
The satisfaction of b(x,xp) ≥ 0 implies collision-free.

Training setup. We randomly assign locations for the ego vehicle with random states around the
other vehicle. Then, we use a safety-guaranteed CBF-based QP controller to generate safe controls
for the ego vehicle to overtake the other vehicle. We sampled 200 trajectories as the training data, and
each trajectory has a time sequence of states and controls with a length of 100. In order to effectively
train the neural ODE model, we also take the states of the ego and other vehicles as input to the neural
ODE in addition to the Lidar information.

The training data comes from an integrated simulation environment (not released yet), and it is
given as a “pickle” file. There are 200 randomly sampled trajectories and the corresponding safe
controls coming from a CBF controller, and each trajectory is with 100 time-sequence of data with a
discretization time of 0.1s. The Lidar information is given as a sequence of data with size 1x100,
and each data point denotes a distance metric with respect to an obstacle from the angle 0 to 2π. The
Lidar sensing range is 20m.

During training, we normalize the Lidar information by multiplying the data with a factor of 1/200.
The ego vehicle speed is also normalized by multiplying the speed with a factor of 1/180 when it is
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taken as an external input. The normalization of the external input is to ensure that the neural ODE
can converge during training.

Invariance with feature extractors. In cases where the inputs of the neural ODE have high
dimensions, like Lidar-based control, we may use some neural networks (such as CNN) to reduce the
dimension of input features, thus reducing the complexity of the QP that enforces the invariance. For
the driving example, we used a CNN to reduce the 100-dimension Lidar information to 12-dimension
features, and the results are similar to the case of raw Lidar. In other words, a collision may occur
when with noisy Lidar input but can be guaranteed to avoid using the proposed invariance.

The NNθ in the neural ODE is a five-layer fully connected network with sizes 2, 64, 256, 512, and
206, respectively. The activation functions used in the model are GELU. When employing feature
extractors for the invariance, we use a Convolutional Neural Network (CNN) whose shape is given as
[[1, 4, 5, 2, 1], [4, 8, 3, 2, 1], [8, 12, 3, 2, 0]], where there are three layers, and the parameters of each
layer denote input channels, output channels, kernel size, stride, and padding, respectively. After the
CNN, we use a max pooling in each output channel to reduce the feature size from 100 to 12.

The training epoch is 200 (each epoch includes the sampling of each of the 200 trajectories), and the
training batch size is 20 with a batch sequence time of 10. We use RMSprop optimizer with learning
rate 1e−3. The training time is about 24 hours on an RTX3090 GPU.
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