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Abstract—Recent advances in multimodal large language mod-
els (MLLMs) has enabled unified processing of visual and textual
inputs, with promising implications for general-purpose medical
Al. However, their ability to generalize compositionally across
unseen combinations of imaging modality, anatomy, and task type
remains underexplored. We introduce CrossMed, a benchmark
designed to evaluate compositional generalization (CG) in medi-
cal MLLMs using a structured Modality-Anatomy-Task (MAT)
schema. CrossMed reformulates four public datasets, CheXpert
(X-ray classification), SIIM-ACR (X-ray segmentation), BraTS
2020 (MRI classification and segmentation), and MosMedData
(CT classification) into a unified visual question answering (VQA)
format, resulting in 20,200 multi-choice QA instances. We evalu-
ate two open-source MLLMs, LLaVA-Vicuna-7B and Qwen2-VL-
7B, on both Related and Unrelated MAT splits, as well as a zero-
overlap setting where test triplets share no Modality, Anatomy,
or Task with training data. Models trained on Related splits
achieve 83.2% classification accuracy and (.75 segmentation
cloU, while performance drops significantly under Unrelated and
zero-overlap conditions, validating the benchmark’s difficulty.
Furthermore, we show cross-task transfer where segmentation
performance improves by +7% cloU even when trained using
classification-only data. Traditional models (ResNet-50, U-Net)
benefit modestly, confirming MAT’s broad utility, while MLLMs
uniquely excel at CG. CrossMed provides a rigorous testbed for
evaluating zero-shot, cross-task, and modality-agnostic general-
ization in medical vision-language models.

Index Terms—Multimodal large language models (MLLMs),
medical vision language understanding, compositional general-
ization, visual question answering (VQA), MAT triplet schema.

I. INTRODUCTION

Medical imaging plays an essential role in modern health-
care, facilitating diagnosis, monitoring, and treatment of var-
ious diseases. Recent advances in deep learning have sub-
stantially improved performance in medical tasks, including
classification [1], detection [2], and segmentation [3]. How-
ever, these approaches typically depend heavily on large-scale
annotated datasets and task-specific architectures, limiting
their ability to scale and generalize across diverse clinical
tasks and imaging modalities. Traditional single-task mod-
els, although effective within narrow scopes, struggle with
knowledge transfer, especially in scenarios involving rare or
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Fig. 1. Classification accuracy across compositional generalization conditions:
Related, Unrelated, with holding individual MAT factors (w/o Modality, w/o
Anatomy, w/o Task), and All Data multi-task upper bound.

emerging medical conditions [4]. While multi-task learning ap-
proaches have demonstrated promise for enhancing flexibility
and generalization, the fundamental mechanisms enabling this
cross-task performance remain inadequately understood [5].

Recently, multimodal large language models (MLLMs),
which combine visual and textual reasoning capabilities, have
emerged as powerful tools showing promising results across
a range of biomedical applications [6], [7]. Nonetheless, a
clear understanding of how these models generalize across
heterogeneous medical datasets remains elusive. We hypoth-
esize that compositional generalization (CG), the ability of
models to recombine learned elements to address novel tasks
and scenarios, plays a crucial role [8]. For example, in Fig. 2,
a model trained on “white rabbit” and “black piglet” should
be able to infer “black rabbit” even if it has never seen
this combination before. In medical imaging, each sample
can be broken down into a Modality—Anatomy—Task (MAT)
triplet, such as (X-ray, Chest, Classification) or (MRI, Brain,
Segmentation). CG suggests that a model trained on certain
combinations should be able to generalize to unobserved ones,
like (MRI, Chest, Classification).

To systematically explore this hypothesis, we introduce
CrossMed, a comprehensive benchmark explicitly designed
to evaluate CG in medical vision-language models through
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Fig. 2. Tlustration of compositional generalization under Related vs.
Unrelated training splits. Top: A model trained on White Rabbit and Black
Piglet images generalizes to an unseen Black Rabbit by recombining color
and object attributes. Bottom: Training on MRI Spine and CT Lung enables
correct interpretation of a novel CT Spine image, demonstrating generalization
through shared modality—anatomy factors.

a standardized visual question answering (VQA) paradigm.
CrossMed contains 20,200 MAT-labeled examples spanning
multiple imaging modalities (X-ray, MRI, CT), rigorously
organized into Related and Unrelated splits to precisely isolate
compositional effects. Further, we implement a strict zero-
overlap evaluation to robustly assess true zero-shot gener-
alization. Our experiments, conducted with two state-of-the-
art MLLMs (LLaVA-Vicuna-7B and Qwen2-VL-7B), reveal
significant performance improvements under compositional
training conditions, confirming the effectiveness and scalabil-
ity of the CrossMed benchmark.

Key Contributions:

¢ A unified, multi-task VQA benchmark encompassing a
diverse set of medical imaging modalities, anatomies, and
tasks.

o A rigorous zero-overlap evaluation protocol designed to
provide a reliable measure of compositional generaliza-
tion.

« Empirical evidence demonstrating robust generalization
capabilities of MLLMs to novel MAT combinations.

e CrossMed supports both task-level and modality-level
transfer, and enables consistent evaluation across archi-
tectures via a unified format.

II. RELATED WORK

Multimodal large language models (MLLMs) have cat-
alyzed major advances in visual-language reasoning, enabling
capabilities such as visual question answering (VQA), caption-
ing, and instruction-following [9]-[11]. These models typically
combine powerful pre-trained language backbones with vision
encoders, resulting in remarkable zero-shot and few-shot gen-
eralization in natural image domains. However, their extension
to the medical domain remains nascent [12], with most work
limited to narrow tasks like report generation or classification
in specific imaging modalities. Traditional medical Al systems,
largely based on convolutional or transformer architectures, are

effective but siloed often built for task-specific deployments
such as disease classification or lesion segmentation [13], [14].
While some success has been achieved through transfer learn-
ing and self-supervision, these models often fail to generalize
across tasks or modalities due to the lack of shared structural
representations [15], [16]. Recent adaptations of MLLMs to
medicine have explored integrating language modeling with
visual features for structured outputs. HuatuoGPT-Vision [7],
PMC-VQA [17], and MedFlamingo [18] represent promising
directions by aligning biomedical images with instruction-
tuned language models. However, these approaches are pri-
marily evaluated on narrow datasets and do not systematically
examine generalization under novel task configurations. The
concept of compositional generalization (CG), a model’s abil-
ity to recombine familiar components to solve unfamiliar tasks
has gained traction in both NLP and computer vision. In the
medical domain, Med-MAT [19] marks a notable contribution
by curating a suite of 106 public datasets and constructing
Modality—Anatomy—Task (MAT) triplets for classification and
detection tasks. It evaluates zero-shot recombination perfor-
mance and provides a strong baseline for CG in medical
MLLMs. However, Med-MAT does not integrate tasks into
a single inference format, nor does it address segmentation or
provide theoretical bounds on CG.

In contrast, our CrossMed benchmark unifies medical imag-
ing tasks spanning classification and segmentation into a single
VQA-based interface. Unlike Med-MAT, CrossMed provides
a principled factorization of CG using MAT triplets and intro-
duces rigorous Related, Unrelated, and zero-overlap evaluation
splits. We extend the scope of generalization to include con-
tinuous mask decoding and task transfer (e.g., classification-
only training with segmentation evaluation). CrossMed is also
empirically validated on multiple MLLMs and compared with
traditional baselines (e.g., ResNet, U-Net), underscoring its
clinical and methodological robustness. Our work bridges a
critical gap by offering both a unified evaluation protocol and
empirical analysis of CG effects across diverse architectures
and imaging modalities, moving toward the goal of generalist
medical Al systems.

ITII. DATASET CONSTRUCTION

To evaluate compositional generalization in medical
MLLMs, we construct the CrossMed benchmark, compris-
ing five MAT configurations across multiple public datasets
(Table I). Each configuration represents a clinically relevant
combination, enabling fine-grained control over compositional
overlap.

TABLE 1
MAT TRIPLETS USED IN CONSTRUCTING THE CROSSMED BENCHMARK.

Modality Anatomy  Task Source Dataset

X-ray Chest Classification ~ CheXpert

X-ray Chest Segmentation ~ SIIM-ACR (Pneumothorax)
MRI Brain Classification ~ BraTS 2020 (Glioma grade)
MRI Brain Segmentation  BraTS 2020 (Tumor masks)
CT Lung Classification =~ MosMedData (COVID-CT)




o (X-ray, Chest, Classification): From CheXpert [1], each
image is paired with a binary label (e.g., “Is pneumonia
present?”) in a VQA format.

o (X-ray, Chest, Segmentation): From SIIM-ACR [20],
pneumothorax regions are segmented, and models select
the correct binary mask among four options.

o (MRI, Brain, Classification): Based on BraTS 2020 [3],
glioma subtype grading is posed as a multi-class classi-
fication question.

o (MRI, Brain, Segmentation): Tumor masks from BraTS
2020 are used in a four-choice segmentation task.

¢ (CT, Lung, Classification): From MosMedData [21], CT
scans are labeled with COVID-19 severity and framed as
binary VQA classification.

All image-label pairs are converted into multiple-choice
VQA format with one correct answer and three structured
distractors as shown in Fig 3 & 4. CrossMed includes 20,200
QA pairs spanning diverse MAT combinations. To assess
compositionality, we define train/test splits by MAT factor
overlap. A sample is Related if it shares two MAT components
with the target and Unrelated if it shares at most one. For
example, (X-ray, Chest, Classification) and (X-ray, Chest,
Segmentation) are Related; (MRI, Brain, Segmentation) and
(CT, Lung, Classification) are Unrelated. This design enables
targeted evaluation of models’ ability to recombine known
elements to handle novel MAT triplets.

IV. THEORETICAL FOUNDATIONS OF COMPOSITIONAL
GENERALIZATION
We begin with the following mild independence assumption:

Assumption 1. The joint distribution over modality M,
anatomy A, and task T factorizes as :

P(M,A,T) = P(M)P(A) P(T) (1)

Theorem 1 (Two-Factor Generalization Bound). Let f
be a model trained on n i.id. “Related” samples sharing
two factors (e.g. (M, A)) with the test instance, denoting its
empirical risk by
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and let R(f) be the true risk over (M, A, T) ~ P. Then with
probability 1 — §,
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Chain-rule for Mutual Information. Let Z = f.,.(x) be the
joint vision—language embedding. We measure compositional-

ity by
[(Z;M,A,T) = [(Z; M) + I(Z; A | M) + I(Z;T | M, A).
&)

Mutual Information Neural Estimation [22]. In practice, we
approximate, for example,

qo(z, m)
p(z) p(m)
using the MINE estimator; analogous expressions apply to
I(Z;A) and I(Z;T).

Fano’s Inequality [23] Relating error to representation en-
tropy:

I(Z7 M) = Ep(z,m) |:10g ) (6)

H(T| Z, M, A)
I(Z;T | M, A)

h(e) + € log [Vr|, (N
H(T) — h(e) — € log|Yr|. (8)

Hence low error ¢ on Related splits implies high I(Z;T |
M, A), confirming that shared factors boost the compositional
signal in Z. Table II provides a summary of the key mathe-
matical symbols and notations used throughout the theoretical
formulation, including definitions for MAT variables, loss
functions, entropy terms, and generalization bounds.

<
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TABLE 11
NOTATION REFERENCE

Symbol Definition

M,A,T Modality, Anatomy, Task random variables.
f Predictor model mapping inputs to outputs.
Encoder mapping input x to embedding Z.
Joint vision—language embedding.
P(M,A,T) Joint distribution over (M, A, T).

n Number of Related training samples.

fenc
Z

Rara(f)  Empirical risk on samples sharing (M, A).
R(f) True expected risk over P(M, A, T).

H Hypothesis class size.

é Confidence parameter in bounds (1 — § prob.).
EMA Upper bound on Rz 4(f).

€ Classification error rate used in Fano’s inequality.
I(X;Y) Mutual information between X and Y.

H(X) Entropy of random variable X.

h(e) Binary entropy: — eloge — (1 — €) log(1 — ¢€).
Yr Output label set for task 7.

p(-),qe(-)  True and estimated densities.

£(-,+) Loss function (e.g., cross-entropy).

V. METHODOLOGY

To assess compositional generalization in multimodal med-
ical vision-language models, we frame all image-label pairs
under a unified multiple-choice visual question answering
(VQA) format. Each data instance, whether classification or
segmentation, is converted into a natural language prompt
with four answer choices. For example, a chest X-ray labeled
with pneumonia is presented as “Does this image indicate
pneumonia?” with choices such as {Yes, No, Cardiomegaly
and Pleural Effusion}. In segmentation tasks, such as tumor
localization, we present four candidate masks, one correct
and three plausible distractors sampled from non-overlapping
regions. This standardization enables direct comparison across
diverse modalities and task types. Each sample in the dataset
is tagged with a triplet representing its Modality, Anatomical
Region, and Task, collectively termed the MAT structure. To
evaluate compositional generalization, we define two training



configurations: Related, where the training examples share
two out of three MAT elements with the target task, and
Unrelated, where examples share at most one. For instance,
(X-ray, Chest, Classification) and (X-ray, Chest, Segmentation)
are considered Related, while (MRI, Brain, Classification)
and (X-ray, Chest, Segmentation) are Unrelated. This setup
allows us to isolate the effect of MAT-overlap and determine
whether the model can recombine known elements to solve
novel combinations. To eliminate any potential leakage or
overlap during evaluation, we further define a zero-overlap
configuration where none of the Modality, Anatomy, or Task
components in the test MAT triplet are present during train-
ing. This allows for rigorous assessment of compositional
generalization under fully disjoint conditions. We evaluate
two state-of-the-art MLLMs, LLaVA-Vicuna-7B and Qwen2-
VL-7B each consisting of a vision encoder connected to a
pre-trained language model with multimodal adapters. Both
models are fine-tuned end-to-end using a multi-task cross-
entropy objective over the selected answer token. We limit
training to 4,500 examples per MAT triplet to simulate clinical
data constraints and to ensure fair comparison across splits.
During training, all answer options are treated equally, and
models are trained using the same sampling and format-
ting schema for classification and segmentation tasks alike.
This approach enables us to evaluate the model’s ability to
generalize under two critical settings: (1) when it sees no
direct samples of the test MAT combination (zero-shot), and
(2) when trained on a small, partially overlapping dataset.
Together, this pipeline simulates the real-world challenge of
building generalist medical models that must reason across
diverse data modalities, anatomical domains, and clinical ob-
jectives. Additionally, to support architectural generalization,
we include non-VLM baselines: a ResNet-50 classifier and a
U-Net segmenter trained on the same MAT splits, providing
insight into how conventional architectures benefit from the
MAT framework. To verify spatial fidelity in segmentation, we
introduce a variant architecture that replaces the VQA-style
mask selector with a continuous U-shaped decoder trained
using binary cross-entropy, enabling comparison between full-
resolution mask outputs and the four-choice format. We further
extend CrossMed beyond X-ray and MRI by incorporating
computed tomography (CT) scans using a reformatted public
COVID-CT dataset, demonstrating the benchmark’s compat-
ibility with new imaging modalities without requiring mod-
ifications to model architecture or input formatting. Across
all experiments, we report averaged results from LLaVA-
Vicuna-7B and Qwen2-VL-7B, as both models demonstrate
comparable performance with only marginal variations across
tasks and settings.

VI. EXPERIMENTS RESULTS & ANALYSIS

We present a comprehensive evaluation of the CrossMed
benchmark under five key axes: in-domain multi-task learn-
ing, compositional generalization, low-data regimes, cross-task
transfer, and architectural comparisons. Our work follows a
unified VQA formulation, testing generalization across Relat-
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Fig. 3. Pipeline for transforming a raw chest X-ray labeled “CAR-

DIOMEGALY” into a CrossMed VQA sample: Raw Sample — Prompt
Template Pool — Prompt Selection — Distractor Sampling — Final QA
Format with MAT tags.

Classification

Mask 1

Mask 2 Mask 3 Mask 4
Is pneumonia present in this chest X-ray?
A. Yes B. No

C. Cardiomegaly D. Pleural Effusion

m Classification

Which mask correctly segments the lung fields?
A.Mask 1 B. Mask 2
C. Mask 3 D. Mask 4

What is the glioma grade on this MRI scan? Which overlay shows the tumor location?
A. Low-Grade B. High-Grade A. Overlay 1 B. Overlay 2
C. Metastasis D. Normal C. Overlay 3 D. Overlay 4

Fig. 4. Four-panel illustration of CrossMed’s MAT triplets: (Top-Left)
CheXpert chest X-ray classification, (Top-Right) SIIM-ACR chest X-ray seg-
mentation, (Bottom-Left) BraTS MRI glioma-grade classification, (Bottom-
Right) BraTS MRI tumor segmentation.

ed/Unrelated MAT splits and measuring top-1 classification ac-
curacy and segmentation class-wise Intersection-over-Union(
cloU).

A. In-Domain Multi-Task Performance

We begin by evaluating model performance in a fully
supervised in-domain setting, where all MAT triplets are
included during training. Both LLaVA-Vicuna-7B and Qwen2-
VL-7B are fine-tuned in a unified multi-task setup covering
classification and segmentation across chest X-ray, brain MRI,
and chest CT modalities. All tasks are reformulated into a



consistent VQA interface to support end-to-end joint learning.
Across the held-out test splits, the average classification accu-
racy reaches 84.3%, with individual task scores ranging from
79.5% on brain MRI glioma grading to 88.7% on chest X-ray
pneumonia detection. The CT-based COVID severity classi-
fication task achieves 85.2% accuracy, aligning closely with
performance on other modalities as shown in Table III. For
segmentation tasks as shown in Table IV, the average class-
wise Intersection-over-Union (cloU) reaches 0.75, indicating
precise spatial alignment using the VQA-style mask selection
format. These results demonstrate that the MAT-aligned VQA
formulation enables high-quality multi-task learning across
diverse modalities and anatomical structures, using a shared
architecture and training regime. The consistent performance
across all domains confirms the scalability and robustness of
the unified framework.

TABLE III
PERFORMANCE OF LLAVA-7B AND QWEN2-7B ON CROSSMED TASKS
UNDER RELATED VS. UNRELATED TRAINING SPLITS.

Training Split | Classification Accuracy (%) | Segmentation cloU
Related 83.2 (£1.8) 0.75 (£0.02)
Unrelated 48.7 (£2.1) 0.32 (£0.01)
TABLE IV

SEGMENTATION PERFORMANCE COMPARISON: VQA-STYLE
MULTI-CHOICE VS. U-NET DECODER.

Decoder Type
VQA-Style (4-way)
U-Net Continuous Decoder

Segmentation cloU
0.75 +0.02
0.68 +0.02

B. Compositional Generalization Evaluation

To assess generalization to novel MAT combinations, we
employ a leave-one-triplet-out evaluation. One MAT triplet is
held out, and models are trained on either: (1) a Related split
sharing two elements with the target, or (2) an Unrelated split
sharing at most one. For example, to evaluate (CT, Brain, Hem-
orrhage), training includes (CT, Spine, Cancer) or (MRI, Brain,
Segmentation), but never the full triplet. As shown in Table V,
classification accuracy drops significantly from 83.2% (Re-
lated) to 48.7% (Unrelated), while segmentation cloU declines
from 0.75 to 0.32, illustrating the difficulty of generalizing
without compositional overlap. To test generalization under
more extreme conditions, we introduce a zero-overlap split,
where no Modality, Anatomy, or Task elements in the test set
are seen during training. Even under this strict disjointness,
models achieve 58.1% = 1.6 classification accuracy and 0.49
4 0.01 cloU, demonstrating robust compositional reasoning.
We further evaluate generalization to the CT modality (COVID
severity classification), also encoded in the MAT-VQA format.
In this setting, classification accuracy improves from 50.1% =+
2.0 (Unrelated) to 72.0% =+ 1.4 (Related), showing an average
gain of ~22 percentage points, validating compositionality
across imaging domains. Comparison with non-LLM baselines
reinforces the difficulty of the task: ResNet-50 accuracy drops
from 70.3% to 48.7%, and U-Net segmentation cloU declines

from 0.68 to 0.30 when switching from Related to Unrelated
splits. All models are trained under identical conditions, in-
cluding architecture, learning rate, batch size, and number of
epochs, to ensure fair comparison. Hyperparameters are listed
in Table XI.

TABLE V
CROSSMED GENERALIZATION ACROSS MAT CONFIGURATIONS.

Model / Split Class. Acc. (%) | Seg. cloU
LLaVA/Qwen (Related, X-ray/MRI) 832 £ 1.8 0.75 £ 0.02
LLaVA/Qwen (Unrelated, X-ray/MRI) 48.7 £ 2.1 0.32 + 0.01
LLaVA/Qwen (Zero-Overlap) 58.1 + 1.6 0.49 + 0.01
LLaVA/Qwen (CT - Related / Unrelated) 72.0 / 50.1 -
ResNet-50 (Related / Unrelated) 70.3 / 48.7 -
U-Net (Related / Unrelated) - 0.68 / 0.30

Note: Dash () indicates metrics not applicable due to architectural constraints
or missing labels. ResNet lacks a segmentation decoder; U-Net does not
perform classification. CT segmentation scores are omitted due to absence of
annotated masks. LLM results represent averages across LLaVA and Qwen.

C. Low-Data Regime

To evaluate compositional generalization (CG) under limited
supervision, we analyze model performance when trained on
progressively smaller fractions of the Related training set:
10%, 30%, 50%, and 100%. Even with only 10% of the data,
both LLaVA and Qwen2-VL achieve ~62.5%—-61.5% accuracy
across X-ray, MRI, and CT tasks classification accuracy more
than double the performance of Unrelated-trained models at
the same size (approx. 30%). At 50%, accuracy rises to
~75-78.9%, approaching full-data performance as shown in
Table VI and Fig 5. This trend holds consistently across
multiple modalities ~80%. For example, classification accu-
racy on MRI and X-ray improves steadily with data volume,
confirming that CG enables efficient data reuse and reduces
dependence on exhaustive training coverage. Segmentation
performance follows a similar pattern, with Related-trained
models yielding higher cloU across all fractions.

D. Cross-Task Generalization

We evaluate whether compositional representations learned
by the model can transfer across task types within the same
Modality—Anatomy domain by training on one task (e.g.,
classification) and testing on the other (e.g., segmentation),
without task-specific supervision. In this setup as shown
in Table X, classification-trained models improve segmen-
tation cloU from 0.60 to 0.67 on chest X-rays, and from
0.58 to 0.70 on brain MRI, indicating partial transferability
and demonstrating that learned representations encode task-
agnostic anatomical features. We also examine segmentation-
to-classification transfer, where models trained to perform
segmentation are tested on classification. Here, performance
improves notably, with cloU increasing from 0.41 to 0.74 for
chest X-ray, and from 0.38 to 0.72 for brain MRI, showing
bi-directional transfer across tasks. To benchmark our unified
VQA-based segmentation format, we replace the multi-choice
head with a U-shaped decoder using binary cross-entropy and



sigmoid activation. This decoder achieves 0.68 cloU on Re-
lated splits, a modest 7 percentage point drop from the VQA-
style result (0.75), confirming that our approach preserves
clinical precision. These results highlight the effectiveness
of the VQA formulation in supporting compositional, cross-
task generalization while maintaining a shared interface for
evaluation across tasks.

TABLE VI
CLASSIFICATION ACCURACY BY TRAINING FRACTION.

Training Fraction X-ray Chest MRI Brain CT Lung
10% 62.5 60.3 61.5
30% 72.4 69.1 70.3
50% 78.9 73.2 75.0
100% 83.2 76.5 80.1

Data Efficiency via Compositional Generalization

—e— Xeray Chest
MRI Brain
80 —#— CTLung

75 4

Classification Accuracy (%)

60 -

20 a0 60 80 100
Training Data (%)

Fig. 5. Classification accuracy across X-ray, MRI, and CT tasks under
varying training data fractions. Compositional generalization enables strong
performance even with limited supervision.

E. Ablation and Control Analysis

To determine whether performance improvements are at-
tributable to compositional structure rather than increased
dataset size or memorization, we perform targeted ablation
experiments as shown in Fig. 1. In these setups, training
excludes one component of the MAT triplet, while the model is
evaluated on the complete triplet configuration. For example,
to evaluate the triplet (CT, Brain, Hemorrhage), the model
is trained on combinations like (CT, Task), (Brain, Task), or
(CT, Brain) without exposing the full triplet during training.
As summarized in Table VIII, withholding the Task dimen-
sion leads to the largest drop in classification accuracy from
83.2%(Related) to 48.0%, and segmentation performance falls
to 0.37. Similarly, removing Anatomy reduces classification
accuracy to 58.0% and segmentation cloU to 0.49. Omitting
Modality leads to classification accuracy of 62.0% and cloU
of 0.54. This consistent degradation confirms that all three
MAT dimensions contribute essential signal. Statistical tests
in Table IX further validate these differences. Comparisons
between Related and Unrelated splits yield p < 0.001 for
both classification and segmentation. Significant drops are
also observed when withholding individual factors (Modal-
ity, Anatomy, or Task), with p-values ranging from 0.002
to 0.010, confirming the necessity of full triplet alignment

for compositional generalization. We additionally examine
robustness to distractors with increasing similarity to the target
task Table VII. As distractors shift from random labels to
matched MATS, accuracy declines sharply from 83.2% to
41.0% indicating that CrossMed is sensitive to semantic and
structural misalignments, further underscoring its discrimina-
tive power. These findings suggest that all three components,
Modality, Anatomy, and Task must be jointly aligned to enable
effective compositional generalization. Partial overlap or data
scale alone cannot explain the observed performance gains,
highlighting the importance of the MAT-aligned structure in
CrossMed.

TABLE VII
ACCURACY DROP UNDER DISTRACTOR REALISM CONDITIONS

Distractor Type Accuracy (%)
Random Labels 83.2
Matched Anatomy 66.3
Matched Modality 60.1
Matched MAT 41.0
TABLE VIII
SINGLE-FACTOR ABLATION: EFFECT OF WITHHOLDING ONE MAT
COMPONENT.
Ablation Class. Acc (%) Seg. cloU
Without Modality 62.0 0.54
Without Anatomy 58.0 0.49
Without Task 48.0 0.37
TABLE IX
STATISTICAL SIGNIFICANCE (p-VALUES) FOR KEY COMPARISONS (PAIRED
t-TEST).
Comparison Classification ~ Segmentation
Related vs. Unrelated < 0.001 < 0.001
Without Modality vs. Related 0.002 0.010
Without Anatomy vs. Related 0.004 0.005
Without Task vs. Related < 0.001 0.002
TABLE X

CROSS-TASK GENERALIZATION VIA BIDIRECTIONAL TRANSFER

Related Task Target Task Baseline cloU  +Transfer cloU

X-ray (Classification)  Chest segmentation 0.60 0.67 (+0.07)
MRI (Classification) Brain segmentation 0.58 0.70 (+0.12)
Chest (Segmentation) ~ X-ray classification 0.41 0.74 (+0.33)
Brain (Segmentation) MRI classification 0.38 0.72 (+0.34)

VII. CONCLUSION

We introduce CrossMed, a benchmark for evaluat-
ing compositional generalization in multimodal medical
vision-language models. By structuring tasks into Modal-
ity—Anatomy-Task triplets and standardizing outputs into a
unified VQA format, CrossMed enables controlled testing
of generalization across unseen MAT configurations. Exper-
iments with LLaVA-7B and Qwen2-7B reveal strong CG-
driven performance gains up to 35% higher classification



accuracy and more than double segmentation cloU in Related
vs. Unrelated conditions. These benefits persist even in low-
data regimes and extend across task boundaries, validating
the CG hypothesis and underscoring its practical relevance.
CrossMed offers a principled framework for studying gen-
eralization beyond in-distribution performance and highlights
MAT-aligned training as a scalable and interpretable path
forward for generalist clinical Al systems.

TABLE XI
MODEL AND TRAINING HYPERPARAMETERS

Parameter Value

Backbones LLaVA-Vicuna (7B)
Qwen2-VL (7B)

Learning rate 5x 1075

Batch size 16

Epochs 5

Optimizer AdamW

Weight decay 0.01

Hardware NVIDIA A100 (40 GB)

VIII. LIMITATIONS AND FUTURE DIRECTIONS

While CrossMed provides strong evidence for composi-
tional generalization (CG) in medical vision-language models,
its current scope is limited to classification and segmentation
tasks. Extending this benchmark to encompass additional clin-
ically relevant tasks such as detection, registration, and report
generation would offer a more comprehensive evaluation of
CG in realistic diagnostic pipelines. We also plan to expand the
diversity of the benchmark by including additional modalities
such as ultrasound and PET, hierarchical anatomical labels,
and longitudinal or temporal imaging studies.
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