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Abstract

While large language models (LLMs) are increasingly integrated into scientific
research, their capability to perform causal inference remains under-evaluated.
Existing benchmarks either focus narrowly on method execution or provide open-
ended tasks lacking precision in defining causal estimands, methodological choices,
and variable selection. We introduce CauSciBench, a comprehensive benchmark
combining expert-curated problems from published research with diverse synthetic
scenarios and textbook examples. Our benchmark spans both potential outcomes
and Pear!’s structural causal model frameworks, enabling systematic evaluation of
LLM causal reasoning in scientific contexts. By leveraging temporal publication
structure, CauSciBench also provides a foundation for detecting data contamination
through questions based on papers published before and after LLM knowledge
cutoff dates.

1 Introduction

Causal inference is fundamental to scientific discovery, enabling researchers to establish cause-
and-effect relationships across social science [[12]], public health [7]], and biomedicine [16]. LLM
integration into scientific workflows creates opportunities to democratize sophisticated causal analysis.
Recent LLM-powered agents show promise for automating causal inference procedures [10, 23],
potentially accelerating research across disciplines [15]].

Evaluating LLM causal inference capabilities presents unique challenges. Causal inference deals with
unobservable counterfactual outcomes [[11]], requiring sophisticated methodological frameworks and
identification strategies. Current approaches typically assume users can appropriately select methods
and specify problems [17} 3]]. Whether LLMs demonstrate genuine causal reasoning or sophisticated
pattern matching remains an open question [[15].

Existing benchmarks address different aspects but leave gaps. Text-based approaches evaluate com-
monsense causal understanding [22} 20} |14, 4] or formal reasoning within Pearl’s SCM framework
[L3L15]. Implementation-focused benchmarks like QRData [[17] assess method execution on tab-
ular data but not problem formulation from natural language descriptions. General data analysis
benchmarks such as BLADE [9] and DiscoveryBench [[19] provide open-ended tasks without causal
inference specificity.

CauSciBench bridges these gaps through systematic evaluation across the complete analysis pipeline.
Our benchmark provides fine-grained assessment from problem formulation and variable selection
to method choice, estimation, and interpretation. We make three key contributions: (1) 100 expert-
curated problems from published research across economics, epidemiology, political science, and
public health capturing authentic methodological complexity, (2) controlled synthetic evaluation
framework with known causal structures enabling systematic assessment of identification strategies,
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and (3) dual-purpose evaluation framework serving both capability assessment and data contamination
detection through temporal publication structure.

2 Problem Formulation

Our goal is assessing LLMs’ ability to generate answers to causal queries through sound causal
analysis involving: (i) framing the causal estimation problem by selecting appropriate treatment and
outcome variables and the correct estimand, (ii) assessing whether the estimand can be identified
from the provided dataset, (iii) formulating and implementing the correct statistical model, and (iv)
extracting and interpreting the causal effect.

Each benchmark instance consists of five core components: Data (experimental or observational
input), Dataset Description (information about data collection, variable definitions, and background
context), Query (causal question involving the effect of one variable on another), Causal Inference
Method and Effect Estimate (expert-validated method and corresponding effect providing ground
truth), and Model Variables (key variables including treatment, outcome, confounders, and method-
specific variables).

3 Dataset Collection: CauSciBench
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Figure 1: Dataset creation process for QRData, Real-world Studies, and Synthetic Data
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Figure[I]details our comprehensive dataset creation process across all three sources. Table[I]positions
CauSciBench relative to existing benchmarks, highlighting our unique combination of end-to-end
analysis, intermediate evaluation, data semantic comprehension, and synthetic scenarios. Figure[d]
shows the distribution of causal inference methods across our three dataset collections, demonstrating
methodological diversity essential for comprehensive evaluation.

Source 1: Research Paper Curation We compile papers from economics, criminology, public
health policy, and political science, creating comprehensive summaries capturing key dataset informa-
tion including variable descriptions, data collection procedures, and research purpose. We formulate
causal queries by systematically examining empirical methodology and conclusions from causal
effects, selecting methods authors cite to justify findings and choosing the most expressive model

1102 is used as the number of queries for QRData, as only 102 of 411 is causal.



End-to-End Intermediate Comprehend Synthetic  Answer

Benchmark Task Sources # Queries

Analysis Analysis Data Semantics Scenarios  Format
Corﬁf]‘use X X v /  Freeform QA 10 Publications 207,972
CL[?g?er v X /  Freeform QA 9 Publications 10,112
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Discov[‘l:rgy]Be“Ch v X v /  Freeform QA 27 Publications 239
BLS]DE v v v X Analysis Code 31 Publications 12
CauSciBench v v v v Point Estimate 52 Publications 305
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Table 1: Comparison of CauSciBench against existing benchmark datasets.
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Figure 2: Distribution of paper domains in Real-world publications

specifications for completeness. This curation process ensures methodological rigor reflecting real-
world research standards while providing authentic complexity requiring navigation of confounders,
identification validity assessment, and results interpretation within disciplinary contexts.

Source 2: Automated Synthesis We automatically synthesize datasets by randomly selecting true
causal effects 7 in range (1, 10) with continuous covariates drawn from normal distributions and
binary covariates from binomial distributions. For randomized trials: ¥ = a4+ X 0+ 7T + ¢, where
e ~N(0,1), 6 ~ N(u, kI), and « is the intercept. We use GPT-40 to synthesize diverse contexts
for each synthetic dataset, creating plausible scenarios explaining data collection with comprehensive
dataset metadata including headings and descriptions. This approach improves dataset diversity
while testing model performance consistency in high-fidelity scenarios mirroring real-world research
contexts.

Source 3: Refined QRData Since QRData tasks specify inference methods or estimands and
our focus is end-to-end causal inference including automatic method and variable selection, we
systematically modify queries by removing explicit references to estimation techniques. For example,
"What is the Average Treatment Effect (ATE) of the dataset?" becomes "What is the effect of home
visits by doctors on cognitive scores of infants?" We retain original dataset descriptions and numerical
causal effect estimates, restricting evaluation to queries with numerical answers to enable precise
quantitative assessment.

4 Experimental Setup

We investigate two prompting strategies: Direct prompting provides comprehensive dataset informa-
tion with causal questions, testing implicit expertise for methodological choices without intermediate
reasoning steps. Chain of Thought (CoT) maintains the same input but breaks down the workflow:
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variable selection — identification — statistical estimation model — implementation. Models first
identify treatment, outcome, and confounding variables with justifications, then pick estimands and
corresponding methods while explaining identification assumption satisfaction.

For causal effect estimation, we use DoWhy [24}[1] and statsmodels [23] libraries with GPT-4o-
mini, GPT-4.1, and OpenAI-03 as backbone LLMs [2| 21]]. We evaluate using Method Selection
Accuracy (MSA): MSA = % vazl 1[m; = m;] x 100 and Mean Relative Error (MRE): MRE =

%2, min (5270 1) x 100,

5 Results and Discussion

Performance results are shown in Table 2] Real-world causal estimation proves challenging with
relative errors consistently exceeding 50% for real-world data, reflecting inherent messiness of real
datasets lacking preprocessing. Larger models show superior performance as scaling effects apply
with models (4.1 and 03) consistently outperforming smaller 40-mini across both metrics. CoT
prompting shows conditional effectiveness but does not universally improve performance over direct
prompting, aligning with previous findings that CoT can degrade performance on implementation-
oriented quantitative reasoning tasks.

Table [3]demonstrates that methodological misselection directly amplifies estimation errors as wrong
method choices consistently produce substantially higher mean relative errors across nearly all
evaluation contexts. This performance degradation is particularly acute in real-world datasets,
underscoring how methodological sophistication becomes increasingly critical as data complexity
approaches realistic conditions.

Detailed analysis in the appendix (see Table [3|and Figures 3al{3b) reveals systematic failure modes.
Models systematically default to OLS estimation with pronounced bias toward Ordinary Least
Squares selection across all model variants, creating algorithmic anchoring that overwhelms nuanced
methodological considerations. Methodological misselection directly amplifies estimation errors as
wrong method choices consistently produce substantially higher mean relative errors. Implementation
failures persist even with correct methodological reasoning due to inappropriate variable selection,
model misspecification, or algorithmic implementation mistakes.

Method Accuracy (1) Mean Rel. Error (})

Dataset Prompt 4o-mini 4.1 o3 40-mini 4.1 o3
Real Basic 34.57 4778 71.76 71.45 58.43 53.82
CoT 40.23 55.56 67.74 62.62 53.59 53.02
Svyntheti Basic 15.38 5943 7241 22.58 6.16 6.30
YRREUe ot 2456 7714 6923 1725 1099 17.24
Textbook Basic 60.00 64.10 69.23 42.03 40.05 46.41
X CoT 53.85 71.79 66.67 41.29 33.68 30.59

Table 2: Performance comparison across datasets and prompting methods.

6 Conclusion

CauSciBench establishes a comprehensive framework for evaluating causal inference capabilities
in large language models, revealing critical limitations requiring attention before these systems
can reliably support scientific research. Current LLMs exhibit systematic biases toward method-
ological oversimplification with concerning defaults to OLS estimation regardless of identification
requirements, while struggling with implementation precision even when methodological reasoning
proves sound. The substantial performance gap between synthetic and real-world scenarios suggests
that advancing LLM causal reasoning requires developing more robust frameworks for handling
observational complexity, improving methodological selection algorithms beyond pattern matching,
and bridging the execution gap between theoretical understanding and practical implementation to
democratize sophisticated causal analysis across scientific disciplines.
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A Limitations

Our work has several limitations. The expert-curated subset requires extensive manual curation
creating scalability constraints and potential annotation inconsistencies. Results are based on pass@1
evaluation to balance budgetary constraints with broad model coverage, though pass@k would
strengthen findings generalizability. Our benchmark focuses primarily on potential outcomes frame-
work with limited Pearl’s structural causal model coverage. Synthetic data generation may not
fully capture real-world dataset complexity including missing data patterns, measurement error,
and domain-specific confounding structures. The binary treatment focus excludes multi-valued and
continuous treatment scenarios while emphasis on tabular data overlooks emerging applications to
text, images, and high-dimensional data.



251 B Detailed Results and Failure Analysis

Model Real (C/W)

Synth (C/ W) Textbook (C/ W)

40-mini  51.56/70.48 13.83/19.48
GPT-4.1 43.31/67.40 10.66/13.92
03 44.51/71.27 14.67/33.75

40.09/43.33
42.27/11.81
35.35/15.34

Table 3: Relative error of causal effect estimation: Correct (C) vs. Wrong (W) method selection
across LLMs and datasets for CoT prompting
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(a) GPT-4.1: Confusion matrix for method selection across the three datasets
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(b) GPT-40-mini: Confusion matrix for method selection across the three datasets

Figure 3: Confusion matrix for method selection under CoT-based baseline with (a) GPT-4.1; (b)

GPT-40-mini.
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C Dataset Curation Process

The dataset curation process of our work follows a three-stage methodology, designed to ensure high
quality benchmarks through rigorous, expert-curated papers.

» Paper Selection focuses on finding articles from diverse fields such as healthcare and
economics that utilize established estimation methods including OLS, DiD, RDD, IV, and
propensity score methods. The selection criteria emphasized reproducibility and dataset
complexity, where we prioritize papers with simpler and explicit approach to causal es-
timation to work with current LLM’s preprocessing limitations. Furthermore, as we go
through replication process in future steps, we exclude papers that do not include a publicly
accessible dataset with adequate data sharing licensing.

* Core Information Extraction follows paper selection, focusing on extracting the core
information that causal scientists require for a causal analysis, including treatment variables,
outcomes, and non-causal natural language queries to avoid any methodological hints. Mul-
tiple questions per paper are permitted when the controls or outcomes differ meaningfully,
maximizing the scientific value, while preventing analytical redundancy.

* Quality Filtering implements multi-layered expert inspection throughout the entire curation
process. All curated datasets undergo replication verification, where experts replicate the
estimation process in Python, and exclude all papers that fail to reproduce the original
estimates within 10% error in around 50 lines of code. This process validates that the
estimates in the paper are truly replicable with the given dataset and methods, so that should
LLM fails to replicate the results, the cause lies in the LLM’s approach, and not the dataset
or the paper’s approach.

Real-World Publications Synthetic Scenarios Textbook Examples

5.1% 33%

14.4% 14.3%

28.6%

I Difference-in-Differences 3 Instrumental Variables [ Propensity Score Methods
[ Regression Discontinuity Design [ Ordinary Least Squares [ Generalized Linear Models

Figure 4: Distribution of estimation methods across the three dataset collections

D Inference Method Selection

For each article, we select the appropriate causal inference method for each query through a systematic
approach:

* Method Identification: The LLMs are provided with the natural language causal query that
does not provide any clues regarding the inference method used, alongside the dataset and
a brief summary of the dataset. Reflecting on the provided context, the LLM suggests an
inference method that it finds to be the most appropriate for this causal query. In doing so,
some models tend to show a bias towards OLS as shown in Table[2] but we discard those
suggestions to emphasize on more sophisticated inference methods.

* Covariate Completeness Check: Similarly, we prioritize answers associated with the
model that uses all, if not, as many of the valid covariates to promote the highest degree
of replication. If the specification omits certain variables, we verify that the found effect
remains consistent within a small relative margin with the full covariate model to maintain
the accuracy of the answer.
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2ss E Sample Questions From Each Pillar

Real-World Publications
Source: Cities as Lobbyists [8]

Domain: Economics

Causal Question: How much does the money spent on lobbying increase the number of earmarks received?

Method: Instrumental Variables

Treatment: 1n_citylobby (log of city lobbying spending)

Instrument: direct_flight_dc (1=direct flight to DC in 2007, O=otherwise)
Outcome: 1n_earmark (log of total earmarks 2008-2009)

Controls: state, pop_e, land_e, water_e, senior_e, student_e, ethnic_e, mincome_e, unemp_e,
poverty_e, gini_e, city_propertytaxshare_e, city_intgovrevenueshare_e, city_airexp_e,
houdem_e, 1n_countylobby

Data: Cities with population over 25,000, 2007-2009 panel

Synthetic Dataset
Source: Cardiovascular Rehabilitation Program Effectiveness Study

Domain: Healthcare

Causal Question: Does the new rehabilitation program help patients with cardiovascular diseases recover
faster?

Method: Regression Discontinuity Design

Treatment: treatment_received (1=new program, O=standard care)
Running Variable: income_level (threshold at 12 for eligibility)

Outcome: recovery_time (days to recovery)

Controls: patient_age, health_index, smoking_status, obesity_status

Data: Regional health department evaluation study

Textbook Examples
Source: Effect of Cigarette Taxation on Consumption [17]

Domain: Healthcare, Political Science

Causal Question: Did Proposition 99 help reduce cigarette sales?

Method: Difference-in-Differences

Treatment: california (1=CA with Prop 99, O=other states)
Time: after_treatment (1=post-1988, O=pre-1988)

Outcome: cigsale (total cigarette sales)

Controls: state, year, 1lnincome, beer, age15t024, retprice
Data: 39 US states, 1970-2000 panel

Table 4: Sample questions from each source pillar with the information regarding the paper that the
LLM uses as context.
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239 F  Prompt Templates

290 In this section, we present the templates for two of the baseline prompting strategies: Direct Prompt
291 and Chain of Thoughts (CoT) prompt

Direct Prompt

You are an expert in statistics and causal reasoning. You will answer a causal question on a tabular
dataset.

The dataset is located at {self.dataset_path}.

The dataset has the following description:

{self.dataset_description}

To help you understand it, here is the result of df .describe ():
{df_info}

Here are the columns and their types:

{columns_and_types}

Here are the first 5 rows of the dataset:

{df .head O}

If there are fewer than 10 columns, here is the result of df .cov():

{(df.cov(numeric_only=True) if len(df.columns) < 10
else "Too many columns to compute covariance")}

Finally, here is the output of df . isnull () . sum(axis=0):
{nan_per_column}
The causal question I would like you to answer is:
{self.query}
Here are some example methods; you can choose one from them:
» IPW (Inverse Probability Weighting); choose the right estimand (ATE/ATT/ATC)
* matching_treatment_to_control; choose the ATT
* linear_regression with control variables; output the coefficient of the variable of interest
* instrumental_variable; output the coefficient of the variable of interest
¢ matching; choose the right estimand (ATE/ATT/ATC)
« difference_in_differences ; output the coefficient of the variable of interest
* regression_discontinuity_design; output the coefficient
* linear_regression / difference_in_means; output the coefficient / the difference in means
* generalized_linear_models (GLM); output the coefficient of the variable of interest

{method_explanation}

Using the descriptions and information from the dataset, implement Python code to answer the causal
question. Remember, the dataset is located at {self.dataset_path}. If you need to preprocess the
data, please do so in the code. The following libraries are available to you: dowhy, pandas, numpy,
scipy, scikit-learn, and statsmodels. Use the methods from the libraries as best as you can.
Do not code yourself what is already implemented in the libraries. Do not create random data. Make
sure it outputs the quantitative value in the comments of the example method. The code you output will
be executed, and you will receive the output. Please make sure to output only one block of code, and
make sure the code prints the result you are looking for at the end.

Everything between your first code block: ¢ ¢ ‘python and ¢ ¢ ¢ will be executed. If there is an error,
you will have several attempts to correct the code.

292
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293

Chain of Thoughts Prompt

You are an expert in causal inference. You will use a chain-of-thought approach to answer a causal
question on a tabular dataset.

The dataset is located at {self.dataset_path}.

The dataset has the following description:

{self.dataset_description}

To help you understand it, here are the columns and their types:
{columns_and_types}

Here are the first 5 rows of the dataset:

{df.head O}

If there are fewer than 10 columns, here is the result of df.cov():

{(df.cov(numeric_only=True) if len(df.columns)
< 10 else "Too many columns to compute covariance")}

Here is the output of df.isnull().sum(axis=0):
{nan_per_column}

The causal question I would like you to answer is:
{self.query}

Let us approach this problem step by step.

Step 1. First, go through the dataset description and the columns and their types. Then, identify the
treatment variable, the outcome variable, and the potential confounders. Explain your reasoning for
choosing these variables.

Step 2. What would be the right estimand to consider for this problem? Then, choose the most
appropriate method that can be used to estimate the causal effect. Here are some methods. You can
choose one from them:

« IPW (Inverse Probability Weighting); choose the right estimand (ATE/ATT/ATC)

* matching_treatment_to_control; choose the ATT

* linear_regression with control variables; output the coefficient of the variable of interest
* instrumental_variable; output the coefficient of the variable of interest

* matching; choose the right estimand (ATE/ATT/ATC)

« difference_in_differences ; output the coefficient of the variable of interest

* regression_discontinuity_design; output the coefficient

* linear_regression / difference_in_means; output the coefficient / the difference in means
 generalized_linear_models (GLM); output the coefficient of the variable of interest

Explain why you chose this method, and how the data and its description support your choice. This
means you should explain why the identification assumptions of the method are satisfied.

{method_explanation}

Step 3. Next, we will plan the implementation. Before writing the code, describe your implementation
process. This includes:

1. Describing the necessary preprocessing steps.
2. How we will select the variables to use in the model.

Step 4. Finally, reflecting on the previous steps, write Python code to answer the causal question:
{self.query}. Feel free to preprocess the data. The following libraries are available to you: dowhy,
pandas, numpy, scipy, scikit-learn, statsmodels. Use the methods from the libraries to im-
plement the method you chose. Be careful about implementation. Recall that the dataset is located
at {self.dataset_path}. Make sure your code describes key steps and outputs the final results,
including:

1. The causal effect

2. The standard deviation

3. Whether the effect is significant or not

The code you write will be executed, and you will next analyze the output. To ease the process, please

output one block of code, and make sure the code prints the key results and values.

Everything between your first code block: ¢ ¢ ‘python and ¢ ¢ ¢ will be executed. If there is an error,

you will have several attempts to correct the code. Hence, if there is an error, please fix it and re-run.
12
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G Annotation Details

For each article we curate the following information:

Paper Name: Name of the study

Description: The description about the dataset that includes the collection process, purpose,
and brief explanation about the variable names

Query: Causal question associated with the dataset

Answer: Causal effect derived in the paper

Standard Error: Standard error associated with the causal effect estimate
Significant: Binary variable indicating if the effect is statistically significant

Method: The causal inference method

Treatment: The name of the treatment variable in the dataset

Outcome: The name of the outcome variable in the dataset

Control Covariates: The control variables / confounders used in the estimation model

Interaction Variable: The name of the variable that interacts with the treatment. This is
used for measuring heterogeneous treatment effects

Instrument: The variable used as an instrument. If instrumental variable is not used, this is
set to null

Running Variable: The running variable for Regression Discontinuity Design (RDD). If
RDD is not used, we set this to null

Temporal Variable: The variable denoting the timing of treatments. This is used for
difference-in-differences

State Variable: The variable denoting the different participating entities. This is used for
two way fixed effects versions of difference in difference

Multi-RCT Treatment Variable: The treatment type of interest. This is used in RCTs with
multiple treatments

Data File: The name of the csv file containing the data
Reference: Reference to the original paper, where the result is found

Publication Year: The year the original study was published

G.1 Annotation Example

Below we provide a sample annotation for a query based on (author?) [6]
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Annotation Example

e Paper Name: Social Pressure and Voter Turnout: Evidence from a Large-Scale Field
Experiment

* Description: The randomized experiment aims to analyze the effect of different types of
social pressures on voter behavior. A field experiment was conducted in Michigan ahead of
the August 2006 primary election. Households were randomly assigned to a control group or
one of four treatment groups: Civic Duty, Hawthorne, Self, Neighbors. Eleven days before
the election, each treatment group received a different mailing:

— Civic Duty: Emphasized the recipient’s responsibility as a citizen to vote.

— Hawthorne: Notified recipients that their voting behavior would be studied using public
records, introducing mild social pressure.

— Self: Listed the voting history of all registered voters in the household and noted that an
updated chart would be mailed after the election.

— Neighbors: Included both the household’s and neighbors’ voting records, implying
public exposure of voting behavior.

— Control Group: Received no mailing.
Variables in the dataset:

— sex: Participant’s sex (male or female)

— 22000, g2002, g2004: Voted in the 2000, 2002, and 2004 gubernatorial elections
— p2000, p2002, p2004: Voted in the 2000, 2002, and 2004 primary elections

— treatment: Assigned group (Civic Duty, Hawthorne, Neighbors, Self, or Control)
— cluster: Cluster identifier for the unit

— voted: Indicator for voting in the 2006 primary election

— hh_id: Household ID

— hh_size: Number of individuals in the household

— yob: Year of birth of the participant
* Query: Does the Hawthorne scheme lead to an increase in voter turnout?
e Answer: 0.026
¢ Standard Error: 0.003
« Significant: Yes
* Method: OLS
* Treatment: treatment
¢ Outcome: voted
¢ Control Covariates: g2000, g2002, p2000, p2002, p2004
* Interaction Variable: null
 Instrument: null
¢ Running Variable: null
* Temporal Variable: null
 State Variable: null
¢ Multi-RCT Treatment Variable: Hawthorne
* Data File: voter_turnout_data.csv
* Reference: Table 3a
* Publication Year: 2008

324
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