
CauSciBench: Assessing LLM Causal Reasoning for
Scientific Research

Anonymous Author(s)
Affiliation
Address
email

Abstract

While large language models (LLMs) are increasingly integrated into scientific1

research, their capability to perform causal inference remains under-evaluated.2

Existing benchmarks either focus narrowly on method execution or provide open-3

ended tasks lacking precision in defining causal estimands, methodological choices,4

and variable selection. We introduce CauSciBench, a comprehensive benchmark5

combining expert-curated problems from published research with diverse synthetic6

scenarios and textbook examples. Our benchmark spans both potential outcomes7

and Pearl’s structural causal model frameworks, enabling systematic evaluation of8

LLM causal reasoning in scientific contexts. By leveraging temporal publication9

structure, CauSciBench also provides a foundation for detecting data contamination10

through questions based on papers published before and after LLM knowledge11

cutoff dates.12

1 Introduction13

Causal inference is fundamental to scientific discovery, enabling researchers to establish cause-14

and-effect relationships across social science [12], public health [7], and biomedicine [16]. LLM15

integration into scientific workflows creates opportunities to democratize sophisticated causal analysis.16

Recent LLM-powered agents show promise for automating causal inference procedures [10, 25],17

potentially accelerating research across disciplines [15].18

Evaluating LLM causal inference capabilities presents unique challenges. Causal inference deals with19

unobservable counterfactual outcomes [11], requiring sophisticated methodological frameworks and20

identification strategies. Current approaches typically assume users can appropriately select methods21

and specify problems [17, 3]. Whether LLMs demonstrate genuine causal reasoning or sophisticated22

pattern matching remains an open question [15].23

Existing benchmarks address different aspects but leave gaps. Text-based approaches evaluate com-24

monsense causal understanding [22, 20, 14, 4] or formal reasoning within Pearl’s SCM framework25

[13, 5]. Implementation-focused benchmarks like QRData [17] assess method execution on tab-26

ular data but not problem formulation from natural language descriptions. General data analysis27

benchmarks such as BLADE [9] and DiscoveryBench [19] provide open-ended tasks without causal28

inference specificity.29

CauSciBench bridges these gaps through systematic evaluation across the complete analysis pipeline.30

Our benchmark provides fine-grained assessment from problem formulation and variable selection31

to method choice, estimation, and interpretation. We make three key contributions: (1) 100 expert-32

curated problems from published research across economics, epidemiology, political science, and33

public health capturing authentic methodological complexity, (2) controlled synthetic evaluation34

framework with known causal structures enabling systematic assessment of identification strategies,35
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and (3) dual-purpose evaluation framework serving both capability assessment and data contamination36

detection through temporal publication structure.37

2 Problem Formulation38

Our goal is assessing LLMs’ ability to generate answers to causal queries through sound causal39

analysis involving: (i) framing the causal estimation problem by selecting appropriate treatment and40

outcome variables and the correct estimand, (ii) assessing whether the estimand can be identified41

from the provided dataset, (iii) formulating and implementing the correct statistical model, and (iv)42

extracting and interpreting the causal effect.43

Each benchmark instance consists of five core components: Data (experimental or observational44

input), Dataset Description (information about data collection, variable definitions, and background45

context), Query (causal question involving the effect of one variable on another), Causal Inference46

Method and Effect Estimate (expert-validated method and corresponding effect providing ground47

truth), and Model Variables (key variables including treatment, outcome, confounders, and method-48

specific variables).49

3 Dataset Collection: CauSciBench50

Assets

t y x1
1 5.6 97
0 7.8 87
1 3.0 56
1 2.5 68

   "description": "The
CSV file ihdp.csv
...........
     "query": "What is
the Average Treatment
Effect (ATE) of the
dataset?"
     "answer":  "4.0",
     "file": "ihdp.csv"
  

 
   "description": "The
CSV file ihdp.csv
....... 
     "query": "What is
the effect of home
visit of doctors on
cognitive scores of
infants?"
     "file": "ihdp.csv"
  

Filter the queries by method and select the corresponding csv
data files and metadata

Modify the query
+ description to

remove estimand /
 method

Create the
final input

ihdp.csv

Textbook Examples from QRData

Research
paper readme Assets

treat age re78
1 28 9679
0 37 5500
0 25 8000
1 22 6000

df <- read.csv("lalonde.csv")
model <- lm("re78 ~ treat + age", data=df)

Generate dataset summaries 
using notebook LLM + manual

editing

Replicate the code in Python

df = pd.read_csv("lalonde.csv"
model = smf.ols("re78 ~ treat + age",
data=df)

Academic papers + dataset, and if
available the readme doc 

  
   "description": "The
NSW program ............."
     "query": "Did
participating in NSW
training program boost
earnings?"
     "file": "lalonde.csv"
  

If available, obtain the code used to
generate the results

Create the final input

Real-world Studies

Synthetic Data

Reference values

ATE: 2257 (595)

Z D Y

U

Assets

Z D Y
1 1 97

0 0 87

0 1 56
1 0 68

Select the model and simulate data 

Generate column
labels + context +
query using GPT

   "description": "A study
was  conducted to
evaluate the impact of
extra math   lessons....", 
    "query": "Did the math
lessons boost exam
performance?",
    "file": "iv_synthetic.csv"
  

Create the final data and inputs

Assets

invited attended score

1 1 97

0 0 87

0 1 56

1 0 68

Synthetic Scenarios

Figure 1: Dataset creation process for QRData, Real-world Studies, and Synthetic Data

Figure 1 details our comprehensive dataset creation process across all three sources. Table 1 positions51

CauSciBench relative to existing benchmarks, highlighting our unique combination of end-to-end52

analysis, intermediate evaluation, data semantic comprehension, and synthetic scenarios. Figure 453

shows the distribution of causal inference methods across our three dataset collections, demonstrating54

methodological diversity essential for comprehensive evaluation.55

Source 1: Research Paper Curation We compile papers from economics, criminology, public56

health policy, and political science, creating comprehensive summaries capturing key dataset informa-57

tion including variable descriptions, data collection procedures, and research purpose. We formulate58

causal queries by systematically examining empirical methodology and conclusions from causal59

effects, selecting methods authors cite to justify findings and choosing the most expressive model60

1102 is used as the number of queries for QRData, as only 102 of 411 is causal.
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Benchmark End-to-End
Analysis

Intermediate
Analysis

Comprehend
Data Semantics

Synthetic
Scenarios

Answer
Format Task Sources # Queries

corr2cause
[14] ✗ ✗ ✓ ✓ Freeform QA 10 Publications 207,972

CLadder
[13] ✗ ✓ ✗ ✓ Freeform QA 9 Publications 10,112

QRData
[18] ✗ ✗ ✓ ✗ Freeform QA 195 Publications 1021

DiscoveryBench
[19] ✓ ✗ ✓ ✓ Freeform QA 27 Publications 239

BLADE
[9] ✓ ✓ ✓ ✗ Analysis Code 31 Publications 12

CauSciBench ✓ ✓ ✓ ✓ Point Estimate 52 Publications 305

Table 1: Comparison of CauSciBench against existing benchmark datasets.

Figure 2: Distribution of paper domains in Real-world publications

specifications for completeness. This curation process ensures methodological rigor reflecting real-61

world research standards while providing authentic complexity requiring navigation of confounders,62

identification validity assessment, and results interpretation within disciplinary contexts.63

Source 2: Automated Synthesis We automatically synthesize datasets by randomly selecting true64

causal effects τ in range (1, 10) with continuous covariates drawn from normal distributions and65

binary covariates from binomial distributions. For randomized trials: Y = α+Xθ⃗ + τT + ϵ, where66

ϵ ∼ N (0, 1), θ⃗ ∼ N (u, kI), and α is the intercept. We use GPT-4o to synthesize diverse contexts67

for each synthetic dataset, creating plausible scenarios explaining data collection with comprehensive68

dataset metadata including headings and descriptions. This approach improves dataset diversity69

while testing model performance consistency in high-fidelity scenarios mirroring real-world research70

contexts.71

Source 3: Refined QRData Since QRData tasks specify inference methods or estimands and72

our focus is end-to-end causal inference including automatic method and variable selection, we73

systematically modify queries by removing explicit references to estimation techniques. For example,74

"What is the Average Treatment Effect (ATE) of the dataset?" becomes "What is the effect of home75

visits by doctors on cognitive scores of infants?" We retain original dataset descriptions and numerical76

causal effect estimates, restricting evaluation to queries with numerical answers to enable precise77

quantitative assessment.78

4 Experimental Setup79

We investigate two prompting strategies: Direct prompting provides comprehensive dataset informa-80

tion with causal questions, testing implicit expertise for methodological choices without intermediate81

reasoning steps. Chain of Thought (CoT) maintains the same input but breaks down the workflow:82
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variable selection → identification → statistical estimation model → implementation. Models first83

identify treatment, outcome, and confounding variables with justifications, then pick estimands and84

corresponding methods while explaining identification assumption satisfaction.85

For causal effect estimation, we use DoWhy [24, 1] and statsmodels [23] libraries with GPT-4o-86

mini, GPT-4.1, and OpenAI-o3 as backbone LLMs [2, 21]. We evaluate using Method Selection87

Accuracy (MSA): MSA = 1
N

∑N
i=1 1[m̂i = mi]× 100 and Mean Relative Error (MRE): MRE =88

1
N

∑N
i=1 min

(
|τ̂i−τi|
|τi| , 1

)
× 100%.89

5 Results and Discussion90

Performance results are shown in Table 2. Real-world causal estimation proves challenging with91

relative errors consistently exceeding 50% for real-world data, reflecting inherent messiness of real92

datasets lacking preprocessing. Larger models show superior performance as scaling effects apply93

with models (4.1 and o3) consistently outperforming smaller 4o-mini across both metrics. CoT94

prompting shows conditional effectiveness but does not universally improve performance over direct95

prompting, aligning with previous findings that CoT can degrade performance on implementation-96

oriented quantitative reasoning tasks.97

Table 3 demonstrates that methodological misselection directly amplifies estimation errors as wrong98

method choices consistently produce substantially higher mean relative errors across nearly all99

evaluation contexts. This performance degradation is particularly acute in real-world datasets,100

underscoring how methodological sophistication becomes increasingly critical as data complexity101

approaches realistic conditions.102

Detailed analysis in the appendix (see Table 3 and Figures 3a-3b) reveals systematic failure modes.103

Models systematically default to OLS estimation with pronounced bias toward Ordinary Least104

Squares selection across all model variants, creating algorithmic anchoring that overwhelms nuanced105

methodological considerations. Methodological misselection directly amplifies estimation errors as106

wrong method choices consistently produce substantially higher mean relative errors. Implementation107

failures persist even with correct methodological reasoning due to inappropriate variable selection,108

model misspecification, or algorithmic implementation mistakes.109

Method Accuracy (↑) Mean Rel. Error (↓)

Dataset Prompt 4o-mini 4.1 o3 4o-mini 4.1 o3

Real Basic 34.57 47.78 71.76 71.45 58.43 53.82
CoT 40.23 55.56 67.74 62.62 53.59 53.02

Synthetic Basic 15.38 59.43 72.41 22.58 6.16 6.30
CoT 24.56 77.14 69.23 17.25 10.99 17.24

Textbook Basic 60.00 64.10 69.23 42.03 40.05 46.41
CoT 53.85 71.79 66.67 41.29 33.68 30.59

Table 2: Performance comparison across datasets and prompting methods.

6 Conclusion110

CauSciBench establishes a comprehensive framework for evaluating causal inference capabilities111

in large language models, revealing critical limitations requiring attention before these systems112

can reliably support scientific research. Current LLMs exhibit systematic biases toward method-113

ological oversimplification with concerning defaults to OLS estimation regardless of identification114

requirements, while struggling with implementation precision even when methodological reasoning115

proves sound. The substantial performance gap between synthetic and real-world scenarios suggests116

that advancing LLM causal reasoning requires developing more robust frameworks for handling117

observational complexity, improving methodological selection algorithms beyond pattern matching,118

and bridging the execution gap between theoretical understanding and practical implementation to119

democratize sophisticated causal analysis across scientific disciplines.120
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A Limitations241

Our work has several limitations. The expert-curated subset requires extensive manual curation242

creating scalability constraints and potential annotation inconsistencies. Results are based on pass@1243

evaluation to balance budgetary constraints with broad model coverage, though pass@k would244

strengthen findings generalizability. Our benchmark focuses primarily on potential outcomes frame-245

work with limited Pearl’s structural causal model coverage. Synthetic data generation may not246

fully capture real-world dataset complexity including missing data patterns, measurement error,247

and domain-specific confounding structures. The binary treatment focus excludes multi-valued and248

continuous treatment scenarios while emphasis on tabular data overlooks emerging applications to249

text, images, and high-dimensional data.250
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B Detailed Results and Failure Analysis251

Model Real (C / W) Synth (C / W) Textbook (C / W)

4o-mini 51.56 / 70.48 13.83 / 19.48 40.09 / 43.33
GPT-4.1 43.31 / 67.40 10.66 / 13.92 42.27 / 11.81
o3 44.51 / 71.27 14.67 / 33.75 35.35 / 15.34

Table 3: Relative error of causal effect estimation: Correct (C) vs. Wrong (W) method selection
across LLMs and datasets for CoT prompting

did glm iv ols ps rdd
Predicted Method

did

glm

iv

ols

ps

rdd

12 0 0 1 0 0

0 0 0 3 0 0

0 2 5 16 2 4

0 11 0 17 0 0

0 0 0 1 10 0

0 0 0 0 0 6

Real-world Studies

did iv ols ps rdd
Predicted Method

did

iv

ols

ps

rdd

50 0 0 0 0

0 38 11 1 0

0 0 22 3 0

0 0 1 24 0

0 0 1 1 23

Synthetic Scenarios

did iv ols ps rdd
Predicted Method

did

iv

ols

ps

rdd

2 0 0 0 0

0 2 0 0 0

0 0 9 11 0

0 0 0 13 0

0 0 0 0 2

Textbook Examples

did: Difference-in-Differences
iv: Instrumental Variables

glm: Generalized Linear Models
ols: Ordinary Least Squares

rdd: Regression Discontinuity Design
ps: Propensity Score Methods

(a) GPT-4.1: Confusion matrix for method selection across the three datasets

NA did glm iv ols ps rdd
Predicted Method

NA

did

glm

iv

ols

ps

rdd

0 0 0 0 0 0 0

0 9 0 0 4 0 0

0 0 0 0 3 0 0

0 0 1 3 25 0 0

3 0 4 0 21 0 0

0 0 2 0 7 2 0

0 0 1 0 5 0 0

Real-world Studies

NA did glm iv ols ps rdd
Predicted Method

NA

did

glm

iv

ols

ps

rdd

0 0 0 0 0 0 0

1 29 0 0 18 2 0

0 0 0 0 0 0 0

2 0 0 7 40 1 0

0 0 0 0 25 0 0

0 0 1 0 23 1 0

1 0 0 0 18 1 5

Synthetic Scenarios

did iv ols ps rdd
Predicted Method

did

iv

ols

ps

rdd

2 0 0 0 0

0 1 0 1 0

0 0 12 8 0

0 0 8 5 0

0 0 1 0 1

Textbook Examples

did: Difference-in-Differences
iv: Instrumental Variables
glm: Generalized Linear Models

ols: Ordinary Least Squares
rdd: Regression Discontinuity Design

ps: Propensity Score Methods
NA: Implementation Failure

(b) GPT-4o-mini: Confusion matrix for method selection across the three datasets

Figure 3: Confusion matrix for method selection under CoT-based baseline with (a) GPT-4.1; (b)
GPT-4o-mini.
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C Dataset Curation Process252

The dataset curation process of our work follows a three-stage methodology, designed to ensure high253

quality benchmarks through rigorous, expert-curated papers.254

• Paper Selection focuses on finding articles from diverse fields such as healthcare and255

economics that utilize established estimation methods including OLS, DiD, RDD, IV, and256

propensity score methods. The selection criteria emphasized reproducibility and dataset257

complexity, where we prioritize papers with simpler and explicit approach to causal es-258

timation to work with current LLM’s preprocessing limitations. Furthermore, as we go259

through replication process in future steps, we exclude papers that do not include a publicly260

accessible dataset with adequate data sharing licensing.261

• Core Information Extraction follows paper selection, focusing on extracting the core262

information that causal scientists require for a causal analysis, including treatment variables,263

outcomes, and non-causal natural language queries to avoid any methodological hints. Mul-264

tiple questions per paper are permitted when the controls or outcomes differ meaningfully,265

maximizing the scientific value, while preventing analytical redundancy.266

• Quality Filtering implements multi-layered expert inspection throughout the entire curation267

process. All curated datasets undergo replication verification, where experts replicate the268

estimation process in Python, and exclude all papers that fail to reproduce the original269

estimates within 10% error in around 50 lines of code. This process validates that the270

estimates in the paper are truly replicable with the given dataset and methods, so that should271

LLM fails to replicate the results, the cause lies in the LLM’s approach, and not the dataset272

or the paper’s approach.273

Figure 4: Distribution of estimation methods across the three dataset collections

D Inference Method Selection274

For each article, we select the appropriate causal inference method for each query through a systematic275

approach:276

• Method Identification: The LLMs are provided with the natural language causal query that277

does not provide any clues regarding the inference method used, alongside the dataset and278

a brief summary of the dataset. Reflecting on the provided context, the LLM suggests an279

inference method that it finds to be the most appropriate for this causal query. In doing so,280

some models tend to show a bias towards OLS as shown in Table 2, but we discard those281

suggestions to emphasize on more sophisticated inference methods.282

• Covariate Completeness Check: Similarly, we prioritize answers associated with the283

model that uses all, if not, as many of the valid covariates to promote the highest degree284

of replication. If the specification omits certain variables, we verify that the found effect285

remains consistent within a small relative margin with the full covariate model to maintain286

the accuracy of the answer.287
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E Sample Questions From Each Pillar288

Real-World Publications
Source: Cities as Lobbyists [8]

Domain: Economics
Causal Question: How much does the money spent on lobbying increase the number of earmarks received?

Method: Instrumental Variables

Treatment: ln_citylobby (log of city lobbying spending)

Instrument: direct_flight_dc (1=direct flight to DC in 2007, 0=otherwise)

Outcome: ln_earmark (log of total earmarks 2008-2009)

Controls: state, pop_e, land_e, water_e, senior_e, student_e, ethnic_e, mincome_e, unemp_e,
poverty_e, gini_e, city_propertytaxshare_e, city_intgovrevenueshare_e, city_airexp_e,
houdem_e, ln_countylobby

Data: Cities with population over 25,000, 2007-2009 panel

Synthetic Dataset
Source: Cardiovascular Rehabilitation Program Effectiveness Study

Domain: Healthcare
Causal Question: Does the new rehabilitation program help patients with cardiovascular diseases recover
faster?

Method: Regression Discontinuity Design

Treatment: treatment_received (1=new program, 0=standard care)

Running Variable: income_level (threshold at 12 for eligibility)

Outcome: recovery_time (days to recovery)

Controls: patient_age, health_index, smoking_status, obesity_status

Data: Regional health department evaluation study

Textbook Examples
Source: Effect of Cigarette Taxation on Consumption [17]

Domain: Healthcare, Political Science
Causal Question: Did Proposition 99 help reduce cigarette sales?

Method: Difference-in-Differences

Treatment: california (1=CA with Prop 99, 0=other states)

Time: after_treatment (1=post-1988, 0=pre-1988)

Outcome: cigsale (total cigarette sales)

Controls: state, year, lnincome, beer, age15to24, retprice

Data: 39 US states, 1970-2000 panel
Table 4: Sample questions from each source pillar with the information regarding the paper that the
LLM uses as context.

11



F Prompt Templates289

In this section, we present the templates for two of the baseline prompting strategies: Direct Prompt290

and Chain of Thoughts (CoT) prompt291

Direct Prompt

You are an expert in statistics and causal reasoning. You will answer a causal question on a tabular
dataset.
The dataset is located at {self.dataset_path}.
The dataset has the following description:

{self.dataset_description}

To help you understand it, here is the result of df.describe():

{df_info}

Here are the columns and their types:

{columns_and_types}

Here are the first 5 rows of the dataset:

{df.head()}

If there are fewer than 10 columns, here is the result of df.cov():

{(df.cov(numeric_only=True) if len(df.columns) < 10
else "Too many columns to compute covariance")}

Finally, here is the output of df.isnull().sum(axis=0):

{nan_per_column}

The causal question I would like you to answer is:

{self.query}

Here are some example methods; you can choose one from them:

• IPW (Inverse Probability Weighting); choose the right estimand (ATE/ATT/ATC)

• matching_treatment_to_control; choose the ATT

• linear_regression with control variables; output the coefficient of the variable of interest

• instrumental_variable; output the coefficient of the variable of interest

• matching; choose the right estimand (ATE/ATT/ATC)

• difference_in_differences ; output the coefficient of the variable of interest

• regression_discontinuity_design; output the coefficient

• linear_regression / difference_in_means; output the coefficient / the difference in means

• generalized_linear_models (GLM); output the coefficient of the variable of interest

{method_explanation}
Using the descriptions and information from the dataset, implement Python code to answer the causal
question. Remember, the dataset is located at {self.dataset_path}. If you need to preprocess the
data, please do so in the code. The following libraries are available to you: dowhy, pandas, numpy,
scipy, scikit-learn, and statsmodels. Use the methods from the libraries as best as you can.
Do not code yourself what is already implemented in the libraries. Do not create random data. Make
sure it outputs the quantitative value in the comments of the example method. The code you output will
be executed, and you will receive the output. Please make sure to output only one block of code, and
make sure the code prints the result you are looking for at the end.
Everything between your first code block: ‘‘‘python and ‘‘‘ will be executed. If there is an error,
you will have several attempts to correct the code.

292
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Chain of Thoughts Prompt

You are an expert in causal inference. You will use a chain-of-thought approach to answer a causal
question on a tabular dataset.
The dataset is located at {self.dataset_path}.
The dataset has the following description:

{self.dataset_description}

To help you understand it, here are the columns and their types:

{columns_and_types}

Here are the first 5 rows of the dataset:

{df.head()}

If there are fewer than 10 columns, here is the result of df.cov():

{(df.cov(numeric_only=True) if len(df.columns)
< 10 else "Too many columns to compute covariance")}

Here is the output of df.isnull().sum(axis=0):

{nan_per_column}

The causal question I would like you to answer is:

{self.query}

Let us approach this problem step by step.
Step 1. First, go through the dataset description and the columns and their types. Then, identify the
treatment variable, the outcome variable, and the potential confounders. Explain your reasoning for
choosing these variables.
Step 2. What would be the right estimand to consider for this problem? Then, choose the most
appropriate method that can be used to estimate the causal effect. Here are some methods. You can
choose one from them:

• IPW (Inverse Probability Weighting); choose the right estimand (ATE/ATT/ATC)

• matching_treatment_to_control; choose the ATT

• linear_regression with control variables; output the coefficient of the variable of interest

• instrumental_variable; output the coefficient of the variable of interest

• matching; choose the right estimand (ATE/ATT/ATC)

• difference_in_differences ; output the coefficient of the variable of interest

• regression_discontinuity_design; output the coefficient

• linear_regression / difference_in_means; output the coefficient / the difference in means

• generalized_linear_models (GLM); output the coefficient of the variable of interest

Explain why you chose this method, and how the data and its description support your choice. This
means you should explain why the identification assumptions of the method are satisfied.

{method_explanation}

Step 3. Next, we will plan the implementation. Before writing the code, describe your implementation
process. This includes:

1. Describing the necessary preprocessing steps.

2. How we will select the variables to use in the model.

Step 4. Finally, reflecting on the previous steps, write Python code to answer the causal question:
{self.query}. Feel free to preprocess the data. The following libraries are available to you: dowhy,
pandas, numpy, scipy, scikit-learn, statsmodels. Use the methods from the libraries to im-
plement the method you chose. Be careful about implementation. Recall that the dataset is located
at {self.dataset_path}. Make sure your code describes key steps and outputs the final results,
including:

1. The causal effect

2. The standard deviation

3. Whether the effect is significant or not

The code you write will be executed, and you will next analyze the output. To ease the process, please
output one block of code, and make sure the code prints the key results and values.
Everything between your first code block: ‘‘‘python and ‘‘‘ will be executed. If there is an error,
you will have several attempts to correct the code. Hence, if there is an error, please fix it and re-run.
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G Annotation Details294

For each article we curate the following information:295

• Paper Name: Name of the study296

• Description: The description about the dataset that includes the collection process, purpose,297

and brief explanation about the variable names298

• Query: Causal question associated with the dataset299

• Answer: Causal effect derived in the paper300

• Standard Error: Standard error associated with the causal effect estimate301

• Significant: Binary variable indicating if the effect is statistically significant302

• Method: The causal inference method303

• Treatment: The name of the treatment variable in the dataset304

• Outcome: The name of the outcome variable in the dataset305

• Control Covariates: The control variables / confounders used in the estimation model306

• Interaction Variable: The name of the variable that interacts with the treatment. This is307

used for measuring heterogeneous treatment effects308

• Instrument: The variable used as an instrument. If instrumental variable is not used, this is309

set to null310

• Running Variable: The running variable for Regression Discontinuity Design (RDD). If311

RDD is not used, we set this to null312

• Temporal Variable: The variable denoting the timing of treatments. This is used for313

difference-in-differences314

• State Variable: The variable denoting the different participating entities. This is used for315

two way fixed effects versions of difference in difference316

• Multi-RCT Treatment Variable: The treatment type of interest. This is used in RCTs with317

multiple treatments318

• Data File: The name of the csv file containing the data319

• Reference: Reference to the original paper, where the result is found320

• Publication Year: The year the original study was published321

G.1 Annotation Example322

Below we provide a sample annotation for a query based on (author?) [6]323

14



Annotation Example

• Paper Name: Social Pressure and Voter Turnout: Evidence from a Large-Scale Field
Experiment

• Description: The randomized experiment aims to analyze the effect of different types of
social pressures on voter behavior. A field experiment was conducted in Michigan ahead of
the August 2006 primary election. Households were randomly assigned to a control group or
one of four treatment groups: Civic Duty, Hawthorne, Self, Neighbors. Eleven days before
the election, each treatment group received a different mailing:

– Civic Duty: Emphasized the recipient’s responsibility as a citizen to vote.
– Hawthorne: Notified recipients that their voting behavior would be studied using public

records, introducing mild social pressure.
– Self: Listed the voting history of all registered voters in the household and noted that an

updated chart would be mailed after the election.
– Neighbors: Included both the household’s and neighbors’ voting records, implying

public exposure of voting behavior.
– Control Group: Received no mailing.

Variables in the dataset:

– sex: Participant’s sex (male or female)

– g2000, g2002, g2004: Voted in the 2000, 2002, and 2004 gubernatorial elections

– p2000, p2002, p2004: Voted in the 2000, 2002, and 2004 primary elections

– treatment: Assigned group (Civic Duty, Hawthorne, Neighbors, Self, or Control)

– cluster: Cluster identifier for the unit

– voted: Indicator for voting in the 2006 primary election

– hh_id: Household ID

– hh_size: Number of individuals in the household

– yob: Year of birth of the participant

• Query: Does the Hawthorne scheme lead to an increase in voter turnout?

• Answer: 0.026

• Standard Error: 0.003

• Significant: Yes

• Method: OLS

• Treatment: treatment

• Outcome: voted

• Control Covariates: g2000, g2002, p2000, p2002, p2004

• Interaction Variable: null

• Instrument: null

• Running Variable: null

• Temporal Variable: null

• State Variable: null

• Multi-RCT Treatment Variable: Hawthorne

• Data File: voter_turnout_data.csv

• Reference: Table 3a

• Publication Year: 2008
324
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