
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING TO PERMUTE WITH DISCRETE DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

The group of permutations Sn, also known as the finite symmetric groups, are
essential in fields such as combinatorics, physics, and chemistry. However, learning
a probability distribution over Sn poses significant challenges due to its intractable
size and discrete nature. In this paper, we introduce SymmetricDiffusers, a novel
discrete diffusion model that simplifies the task of learning a complicated distri-
bution over Sn by decomposing it into learning simpler transitions of the reverse
diffusion using deep neural networks. We identify the riffle shuffle as an effective
forward transition and provide empirical guidelines for selecting the diffusion
length based on the theory of random walks on finite groups. Additionally, we
propose a generalized Plackett-Luce (PL) distribution for the reverse transition,
which is provably more expressive than the PL distribution. We further introduce
a theoretically grounded "denoising schedule" to improve sampling and learning
efficiency. Extensive experiments show that our model achieves state-of-the-art
or comparable performances on solving tasks including sorting 4-digit MNIST
images, jigsaw puzzles, and traveling salesman problems.

1 INTRODUCTION

As a vital area of abstract algebra, finite groups provide a structured framework for analyzing symme-
tries and transformations which are fundamental to a wide range of fields, including combinatorics,
physics, chemistry, and computer science. One of the most important finite groups is the finite
symmetric group Sn, defined as the group whose elements are all the bijections (or permutations)
from a set of n elements to itself, with the group operation being function composition.

Classic probabilistic models for finite symmetric groups Sn, such as the Plackett-Luce (PL) model
(Plackett, 1975; Luce, 1959), the Mallows model (Mallows, 1957), and card shuffling methods
(Diaconis, 1988), are crucial in analyzing preference data and understanding the convergence of
random walks. Therefore, studying probabilistic models over Sn through the lens of modern machine
learning is both natural and beneficial. This problem is theoretically intriguing as it bridges abstract
algebra and machine learning. For instance, Cayley’s Theorem, a fundamental result in abstract
algebra, states that every group is isomorphic to a subgroup of a symmetric group. This implies that
learning a probability distribution over finite symmetric groups could, in principle, yield a distribution
over any finite group. Moreover, exploring this problem could lead to the development of advanced
models capable of addressing tasks such as permutations in ranking problems, sequence alignment in
bioinformatics, and sorting.

However, learning a probability distribution over finite symmetric groups Sn poses significant
challenges. First, the number of permutations of n objects grows factorially with n, making the
inference and learning computationally expensive for large n. Second, the discrete nature of the data
brings difficulties in designing expressive parameterizations and impedes the gradient-based learning.

In this work, we propose a novel discrete-time discrete (state space) diffusion model over finite
symmetric groups, dubbed as SymmetricDiffusers. It overcomes the above challenges by decomposing
the difficult problem of learning a complicated distribution over Sn into a sequence of simpler
problems, i.e., learning individual transitions of a reverse diffusion process using deep neural networks.
Based on the theory of random walks on finite groups, we investigate various shuffling methods as
the forward process and identify the riffle shuffle as the most effective. We also provide empirical
guidelines on choosing the diffusion length based on the mixing time of the riffle shuffle. Furthermore,
we examine potential transitions for the reverse diffusion, such as inverse shuffling methods and the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

PL distribution, and introduce a novel generalized PL distribution. We prove that our generalized
PL is more expressive than the PL distribution. Additionally, we propose a theoretically grounded
"denoising schedule" that merges reverse steps to improve the efficiency of sampling and learning.
To validate the effectiveness of our SymmetricDiffusers, we conduct extensive experiments on three
tasks: sorting 4-Digit MNIST images, solving Jigsaw Puzzles on the Noisy MNIST and CIFAR-10
datasets, and addressing traveling salesman problems (TSPs). Our model achieves the state-of-the-art
or comparable performance across all tasks.

2 RELATED WORKS

Random Walks on Finite Groups. The field of random walks on finite groups, especially finite
symmetric groups, have been extensively studied by previous mathematicians (Reeds, 1981; Gilbert,
1955; Bayer & Diaconis, 1992; Saloff-Coste, 2004). Techniques from a variety of different fields,
including probability, combinatorics, and representation theory, have been used to study random
walks on finite groups (Saloff-Coste, 2004). In particular, random walks on finite symmetric groups
are first studied in the application of card shuffling, with many profound theoretical results of shuffling
established. A famous result in the field shows that 7 riffle shuffles are enough to mix up a deck of
52 cards (Bayer & Diaconis, 1992), where a riffle shuffle is a mathematically precise model that
simulates how people shuffle cards in real life. The idea of shuffling to mix up a deck of cards aligns
naturally with the idea of diffusion, and we seek to fuse the modern techniques of diffusion models
with the classical theories of random walks on finite groups.

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2020; Ho et al.,
2020; Song et al., 2021) are a powerful class of generative models that typically deals with continuous
data. They consist of forward and reverse processes. The forward process is typically a discrete-time
continuous-state Markov chain or a continuous-time continuous-state Markov process that gradually
adds noise to data, and the reverse process learn neural networks to denoise. Discrete (state space)
diffusion models have also been proposed to handle discrete data like image, text (Austin et al., 2023),
and graphs (Vignac et al., 2023). However, existing discrete diffusion models focused on cases where
the state space is small or has a special (e.g., decomposable) structure and are unable to deal with
intractable-sized state spaces like the symmetric group. In particular, (Austin et al., 2023) requires
an explicit transition matrix, which has size n!× n! in the case of finite symmetric groups and has
no simple representations or sparsifications. Finally, other recent advancement includes efficient
discrete transitions for sequences (Varma et al., 2024), continuous-time discrete-state diffusion models
(Campbell et al., 2022; Sun et al., 2023; Shi et al., 2024) and discrete score matching models (Meng
et al., 2023; Lou et al., 2024), but the nature of symmetric groups again makes it non-trivial to adapt
to these existing frameworks.

Differentiable Sorting and Learning Permutations. A popular paradigm to learn permutations is
through differentiable sorting or matching algorithms. Various differentiable sorting algorithms have
been proposed that uses continuous relaxations of permutation matrices (Grover et al., 2018; Cuturi
et al., 2019; Blondel et al., 2020), or uses differentiable swap functions (Petersen et al., 2021; 2022;
Kim et al., 2024). The Gumbel-Sinkhorn method (Mena et al., 2018) has also been proposed to learn
latent permutations using the continuous Sinkhorn operator. Such methods often focus on finding the
optimal permutation instead of learning a distribution over the finite symmetric group. Moreover,
they tend to be less effective as n grows larger due to their high complexities.

3 LEARNING DIFFUSION MODELS ON FINITE SYMMETRIC GROUPS

We first introduce some notations. Fix n ∈ N. Let [n] denote the set {1, 2, . . . , n}. A permutation

σ on [n] is a function from [n] to [n], and we usually write σ as
(

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)
. The

identity permutation, denoted by Id, is the permutation given by Id(i) = i for all i ∈ [n]. Let
Sn be the set of all permutations (or bijections) from a set of n elements to itself, called the finite
symmetric group, whose group operation is the function composition. For a permutation σ ∈ Sn,
the permutation matrix Qσ ∈ Rn×n associated with σ satisfies e⊤i Qσ = e⊤σ(i) for all i ∈ [n]. In
this paper, we consider a set of n distinctive objects X = {x1, . . . ,xn}, where the i-th object is
represented by a d-dimensional vector xi. Therefore, a ranked list of objects can be represented as

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

⋯⋯⋯

Ascending

<latexit sha1_base64="t1Dk6TBpXh1v1bkdf9N4FeYA2Ro=">AAACJ3icbVDNSgMxGEyq1Vr/Wj16WSyCBym7ItVj0YvHCvYHukvJptk2NNksSVZaln0Nr3r1abyJHn0Ts+0itnUgMMx8H99k/IhRpW37CxY2Notb26Wd8u7e/sFhpXrUUSKWmLSxYEL2fKQIoyFpa6oZ6UWSIO4z0vUnd5nffSJSURE+6llEPI5GIQ0oRtpIrsuRHvtBMk0HzqBSs+v2HNY6cXJSAzlagyosukOBY05CjRlSqu/YkfYSJDXFjKRlN1YkQniCRqRvaIg4UV4yD51aZ0YZWoGQ5oXamqt/NxLElZpx30xmIdWql4n/ef1YBzdeQsMo1iTEi0NBzCwtrKwBa0glwZrNDEFYUpPVwmMkEdamp+UrbCTMwJhf/DKKp0v/SnyemuKc1ZrWSeey7jTqjYerWvM2r7AETsApOAcOuAZNcA9aoA0wiMAzeAGv8A2+ww/4uRgtwHznGCwBfv8AJuqmtQ==</latexit>x1

<latexit sha1_base64="xqk6TyImgA6rWLHTpho4ODyRjyE=">AAACJ3icbVDNSgMxGEzUaq1/rR69LBbBg5TdItVj0YvHCvYHukvJptk2NNksSVZaln0Nr3r1abyJHn0Ts+0itnUgMMx8H99k/IhRpW37C25sbhW2d4q7pb39g8OjcuW4o0QsMWljwYTs+UgRRkPS1lQz0oskQdxnpOtP7jK/+0SkoiJ81LOIeByNQhpQjLSRXJcjPfaDZJoO6oNy1a7Zc1jrxMlJFeRoDSqw4A4FjjkJNWZIqb5jR9pLkNQUM5KW3FiRCOEJGpG+oSHiRHnJPHRqnRtlaAVCmhdqa67+3UgQV2rGfTOZhVSrXib+5/VjHdx4CQ2jWJMQLw4FMbO0sLIGrCGVBGs2MwRhSU1WC4+RRFibnpavsJEwA2N++csoni79K/F5aopzVmtaJ516zWnUGg9X1eZtXmERnIIzcAEccA2a4B60QBtgEIFn8AJe4Rt8hx/wczG6AfOdE7AE+P0DKKKmtg==</latexit>x2

<latexit sha1_base64="4IL4ihmhxh7gFOqP+FYSpMU3JsQ=">AAACJ3icbVBPS8MwHE2n0zn/bXr0EhyCBxmtyvQ49OJxgpuDtYw0S7ewpClJKhulX8OrXv003kSPfhPTrYjbfBB4vPf78Xt5fsSo0rb9ZRXW1osbm6Wt8vbO7t5+pXrQUSKWmLSxYEJ2faQIoyFpa6oZ6UaSIO4z8uiPbzP/8YlIRUX4oKcR8TgahjSgGGkjuS5HeuQHySTtX/QrNbtuzwBXiZOTGsjR6letojsQOOYk1JghpXqOHWkvQVJTzEhadmNFIoTHaEh6hoaIE+Uls9ApPDHKAAZCmhdqOFP/biSIKzXlvpnMQqplLxP/83qxDq69hIZRrEmI54eCmEEtYNYAHFBJsGZTQxCW1GSFeIQkwtr0tHiFDYUZGPGzX0bxZOFfic9TU5yzXNMq6ZzXnUa9cX9Za97kFZbAETgGp8ABV6AJ7kALtAEGEXgGL+DVerPerQ/rcz5asPKdQ7AA6/sHKlqmtw==</latexit>x3
<latexit sha1_base64="t1Dk6TBpXh1v1bkdf9N4FeYA2Ro=">AAACJ3icbVDNSgMxGEyq1Vr/Wj16WSyCBym7ItVj0YvHCvYHukvJptk2NNksSVZaln0Nr3r1abyJHn0Ts+0itnUgMMx8H99k/IhRpW37CxY2Notb26Wd8u7e/sFhpXrUUSKWmLSxYEL2fKQIoyFpa6oZ6UWSIO4z0vUnd5nffSJSURE+6llEPI5GIQ0oRtpIrsuRHvtBMk0HzqBSs+v2HNY6cXJSAzlagyosukOBY05CjRlSqu/YkfYSJDXFjKRlN1YkQniCRqRvaIg4UV4yD51aZ0YZWoGQ5oXamqt/NxLElZpx30xmIdWql4n/ef1YBzdeQsMo1iTEi0NBzCwtrKwBa0glwZrNDEFYUpPVwmMkEdamp+UrbCTMwJhf/DKKp0v/SnyemuKc1ZrWSeey7jTqjYerWvM2r7AETsApOAcOuAZNcA9aoA0wiMAzeAGv8A2+ww/4uRgtwHznGCwBfv8AJuqmtQ==</latexit>x1

<latexit sha1_base64="xqk6TyImgA6rWLHTpho4ODyRjyE=">AAACJ3icbVDNSgMxGEzUaq1/rR69LBbBg5TdItVj0YvHCvYHukvJptk2NNksSVZaln0Nr3r1abyJHn0Ts+0itnUgMMx8H99k/IhRpW37C25sbhW2d4q7pb39g8OjcuW4o0QsMWljwYTs+UgRRkPS1lQz0oskQdxnpOtP7jK/+0SkoiJ81LOIeByNQhpQjLSRXJcjPfaDZJoO6oNy1a7Zc1jrxMlJFeRoDSqw4A4FjjkJNWZIqb5jR9pLkNQUM5KW3FiRCOEJGpG+oSHiRHnJPHRqnRtlaAVCmhdqa67+3UgQV2rGfTOZhVSrXib+5/VjHdx4CQ2jWJMQLw4FMbO0sLIGrCGVBGs2MwRhSU1WC4+RRFibnpavsJEwA2N++csoni79K/F5aopzVmtaJ516zWnUGg9X1eZtXmERnIIzcAEccA2a4B60QBtgEIFn8AJe4Rt8hx/wczG6AfOdE7AE+P0DKKKmtg==</latexit>x2

<latexit sha1_base64="4IL4ihmhxh7gFOqP+FYSpMU3JsQ=">AAACJ3icbVBPS8MwHE2n0zn/bXr0EhyCBxmtyvQ49OJxgpuDtYw0S7ewpClJKhulX8OrXv003kSPfhPTrYjbfBB4vPf78Xt5fsSo0rb9ZRXW1osbm6Wt8vbO7t5+pXrQUSKWmLSxYEJ2faQIoyFpa6oZ6UaSIO4z8uiPbzP/8YlIRUX4oKcR8TgahjSgGGkjuS5HeuQHySTtX/QrNbtuzwBXiZOTGsjR6letojsQOOYk1JghpXqOHWkvQVJTzEhadmNFIoTHaEh6hoaIE+Uls9ApPDHKAAZCmhdqOFP/biSIKzXlvpnMQqplLxP/83qxDq69hIZRrEmI54eCmEEtYNYAHFBJsGZTQxCW1GSFeIQkwtr0tHiFDYUZGPGzX0bxZOFfic9TU5yzXNMq6ZzXnUa9cX9Za97kFZbAETgGp8ABV6AJ7kALtAEGEXgGL+DVerPerQ/rcz5asPKdQ7AA6/sHKlqmtw==</latexit>x3

<latexit sha1_base64="t1Dk6TBpXh1v1bkdf9N4FeYA2Ro=">AAACJ3icbVDNSgMxGEyq1Vr/Wj16WSyCBym7ItVj0YvHCvYHukvJptk2NNksSVZaln0Nr3r1abyJHn0Ts+0itnUgMMx8H99k/IhRpW37CxY2Notb26Wd8u7e/sFhpXrUUSKWmLSxYEL2fKQIoyFpa6oZ6UWSIO4z0vUnd5nffSJSURE+6llEPI5GIQ0oRtpIrsuRHvtBMk0HzqBSs+v2HNY6cXJSAzlagyosukOBY05CjRlSqu/YkfYSJDXFjKRlN1YkQniCRqRvaIg4UV4yD51aZ0YZWoGQ5oXamqt/NxLElZpx30xmIdWql4n/ef1YBzdeQsMo1iTEi0NBzCwtrKwBa0glwZrNDEFYUpPVwmMkEdamp+UrbCTMwJhf/DKKp0v/SnyemuKc1ZrWSeey7jTqjYerWvM2r7AETsApOAcOuAZNcA9aoA0wiMAzeAGv8A2+ww/4uRgtwHznGCwBfv8AJuqmtQ==</latexit>x1

<latexit sha1_base64="xqk6TyImgA6rWLHTpho4ODyRjyE=">AAACJ3icbVDNSgMxGEzUaq1/rR69LBbBg5TdItVj0YvHCvYHukvJptk2NNksSVZaln0Nr3r1abyJHn0Ts+0itnUgMMx8H99k/IhRpW37C25sbhW2d4q7pb39g8OjcuW4o0QsMWljwYTs+UgRRkPS1lQz0oskQdxnpOtP7jK/+0SkoiJ81LOIeByNQhpQjLSRXJcjPfaDZJoO6oNy1a7Zc1jrxMlJFeRoDSqw4A4FjjkJNWZIqb5jR9pLkNQUM5KW3FiRCOEJGpG+oSHiRHnJPHRqnRtlaAVCmhdqa67+3UgQV2rGfTOZhVSrXib+5/VjHdx4CQ2jWJMQLw4FMbO0sLIGrCGVBGs2MwRhSU1WC4+RRFibnpavsJEwA2N++csoni79K/F5aopzVmtaJ516zWnUGg9X1eZtXmERnIIzcAEccA2a4B60QBtgEIFn8AJe4Rt8hx/wczG6AfOdE7AE+P0DKKKmtg==</latexit>x2

<latexit sha1_base64="4IL4ihmhxh7gFOqP+FYSpMU3JsQ=">AAACJ3icbVBPS8MwHE2n0zn/bXr0EhyCBxmtyvQ49OJxgpuDtYw0S7ewpClJKhulX8OrXv003kSPfhPTrYjbfBB4vPf78Xt5fsSo0rb9ZRXW1osbm6Wt8vbO7t5+pXrQUSKWmLSxYEJ2faQIoyFpa6oZ6UaSIO4z8uiPbzP/8YlIRUX4oKcR8TgahjSgGGkjuS5HeuQHySTtX/QrNbtuzwBXiZOTGsjR6letojsQOOYk1JghpXqOHWkvQVJTzEhadmNFIoTHaEh6hoaIE+Uls9ApPDHKAAZCmhdqOFP/biSIKzXlvpnMQqplLxP/83qxDq69hIZRrEmI54eCmEEtYNYAHFBJsGZTQxCW1GSFeIQkwtr0tHiFDYUZGPGzX0bxZOFfic9TU5yzXNMq6ZzXnUa9cX9Za97kFZbAETgGp8ABV6AJ7kALtAEGEXgGL+DVerPerQ/rcz5asPKdQ7AA6/sHKlqmtw==</latexit>x3

Probability Forward Step

Reverse Step

Merged Reverse Step

123
<latexit sha1_base64="oXFT89DAY4Rrl1C6jls0dTrDwyc=">AAACWXicbVBNS8NAEN3Er1q/Wnv0slgED1ISlerBQ9GLRwWrhSaWzXbTLu5mw+5EWkL/jL/Gq97EP+OmFrHVBwNv3swwMy9KBTfgeR+Ou7S8srpWWi9vbG5t71Squ/dGZZqyNlVC6U5EDBM8YW3gIFgn1YzISLCH6OmqqD88M224Su5gnLJQkkHCY04JWKlXuQgEi6EbSALDKM5Hk55/hH9lx3PZSaD5YAjhYx6ASie9St1reFPgv8SfkTqa4aZXdVaCvqKZZAlQQYzp+l4KYU40cCrYpBxkhqWEPpEB61qaEMlMmE/fnOADq/RxrLSNBPBU/T2RE2nMWEa2szjZLNYK8b9aN4P4PMx5kmbAEvq9KM4EBoULz3Cfa0ZBjC0hVHN7K6ZDogkF6+z8FjFQtmEoj34Yp6O5v/JIFsb5izb9JffHDb/ZaN6e1luXMwtLaA/to0PkozPUQtfoBrURRS/oFb2hd+fTddySW/5udZ3ZTA3Nwa19AYdDtz8=</latexit>

[x1,x2,x3]
>

<latexit sha1_base64="9XkRTfgnQK0jiCJ9n58j8EXui+4=">AAACSXicbVBNS8NAEN20Vmv9avXoZbEIHkpJVKrHohePFewHNKFstpt26W4SdjfSEvIn/DVe9eov8Gd4E09u2iD98MHAmzczzMxzQ0alMs1PI5ffKmzvFHdLe/sHh0flynFHBpHApI0DFoieiyRh1CdtRRUjvVAQxF1Guu7kPq13n4mQNPCf1CwkDkcjn3oUI6WlQblmxzZHaux68TQZWDW4lF2uZFd2MihXzbo5B9wkVkaqIENrUDEK9jDAESe+wgxJ2bfMUDkxEopiRpKSHUkSIjxBI9LX1EecSCeev5XAc60MoRcIHb6Cc3V5IkZcyhl3dWd6plyvpeJ/tX6kvFsnpn4YKeLjxSIvYlAFMPUIDqkgWLGZJggLqm+FeIwEwko7ubqFjQLdMOa1P0bxdOWv2OWpcda6TZukc1m3GvXG43W1eZdZWASn4AxcAAvcgCZ4AC3QBhi8gFfwBt6ND+PL+DZ+Fq05I5s5ASvI5X8BFUuzDg==</latexit>{x1,x2,x3}
<latexit sha1_base64="HM10/XvgJOzzp/cDI8WzZP6kQF0=">AAACJnicbVDNSgMxGEzUaq1/rR69BIvgQcquSPVY9OKxgv2B7VKyabYNTTZLkhXL0sfwqlefxpuINx/FbLuIbR0IDDPfxzeZIOZMG8f5gmvrG4XNreJ2aWd3b/+gXDlsa5koQltEcqm6AdaUs4i2DDOcdmNFsQg47QTj28zvPFKlmYwezCSmvsDDiIWMYGMlryewGRHM0+60X646NWcGtErcnFRBjma/Agu9gSSJoJEhHGvtuU5s/BQrwwin01Iv0TTGZIyH1LM0woJqP51lnqJTqwxQKJV9kUEz9e9GioXWExHYySyjXvYy8T/PS0x47acsihNDIzI/FCYcGYmyAtCAKUoMn1iCiWI2KyIjrDAxtqbFK3wo7cBInP8yRp4W/pUGIivOXa5plbQvam69Vr+/rDZu8gqL4BicgDPggivQAHegCVqAAAmewQt4hW/wHX7Az/noGsx3jsAC4PcPgPemYw==</latexit>X

132

312

321 123

213

231

<latexit sha1_base64="oPdGqaSj5SLd6dDvkOsv+VWKj7E=">AAACIXicbVBNS0JBFJ2xLLMvrWWbRxIYhLwXYS2lNi0N/AJ9yLxx1Mn5eM3Mi+Thf2hb235Nu2gX/ZlGfURqBy4czrmXe+8JQka1cd0vmFpbT29sZray2zu7e/u5/EFDy0hhUseSSdUKkCaMClI31DDSChVBPGCkGYxupn7zkShNpaiZcUh8jgaC9ilGxkqNh2KrWzvt5gpuyZ3BWSVeQgogQbWbh+lOT+KIE2EwQ1q3PTc0foyUoZiRSbYTaRIiPEID0rZUIE60H8/OnTgnVuk5falsCePM1L8TMeJaj3lgOzkyQ73sTcX/vHZk+ld+TEUYGSLwfFE/Yo6RzvR3p0cVwYaNLUFYUXurg4dIIWxsQotb2EDahiE/+2UUPy38FQd8YoPzlmNaJY3zklcule8uCpXrJMIMOALHoAg8cAkq4BZUQR1gcA+ewQt4hW/wHX7Az3lrCiYzh2AB8PsHB8+jeA==</latexit>

q(XT)

132

312

321 123

213

231

<latexit sha1_base64="qZuYlo2qEYCi/55iwwb1iFgj7Wo=">AAACIXicbVBdSwJBFJ2xLLMvrcdeliQwCNmNsB6lXno0yA/QRWbHWZ2aj21mNpLF/9BrvfZreoveoj/TqEukduDC4Zx7ufeeIGJUG9f9gpmV1ezaem4jv7m1vbNbKO41tYwVJg0smVTtAGnCqCANQw0j7UgRxANGWsH91cRvPRKlqRS3ZhQRn6OBoCHFyFip+VBu97zjXqHkVtwpnGXipaQEUtR7RZjt9iWOOREGM6R1x3Mj4ydIGYoZGee7sSYRwvdoQDqWCsSJ9pPpuWPnyCp9J5TKljDOVP07kSCu9YgHtpMjM9SL3kT8z+vEJrzwEyqi2BCBZ4vCmDlGOpPfnT5VBBs2sgRhRe2tDh4ihbCxCc1vYQNpG4b85JdR/DT3VxLwsQ3OW4xpmTRPK161Ur05K9Uu0whz4AAcgjLwwDmogWtQBw2AwR14Bi/gFb7Bd/gBP2etGZjO7IM5wO8fy3WjVQ==</latexit>

q(X1)

132

312

321 123

213

231

<latexit sha1_base64="unwo/1nSC6zquuM5QTMeYpHfKa0=">AAACMXicbVBNS8NAFNxUq7V+terNS7AIFaQkItVj0YvHCvYD2hI22027dDcJuy/SGvJfvOrVX9ObePVPuG2D2NaBhWFmHu/tuCFnCixramQ2NrNb27md/O7e/sFhoXjUVEEkCW2QgAey7WJFOfNpAxhw2g4lxcLltOWO7md+65lKxQL/CSYh7Qk88JnHCAYtOYWT0Im7QMcQ9zHgJCm3HevCKZSsijWHuU7slJRQirpTNLLdfkAiQX0gHCvVsa0QejGWwAinSb4bKRpiMsID2tHUx4KqXjw/PzHPtdI3vUDq54M5V/9OxFgoNRGuTgoMQ7XqzcT/vE4E3m0vZn4YAfXJYpEXcRMCc9aF2WeSEuATTTCRTN9qkiGWmIBubHkLHwQ6MBSXv4yR8dK/Ylckujh7taZ10ryq2NVK9fG6VLtLK8yhU3SGyshGN6iGHlAdNRBBL+gVvaF348OYGp/G1yKaMdKZY7QE4/sH+/OqGg==</latexit>

pdata(X0)

<latexit sha1_base64="+ETxEeUTIgDy2UK4EdM0CtdjO+U=">AAACI3icbVDLSgMxFE3Uaq2vVpdugkVwIWVGpLosunFZwT6gHUomzbSheQxJRixDf8Ktbv0ad+LGhf9i2g5iWw9cOJxzL/feE8acGet5X3BtfSO3uZXfLuzs7u0fFEuHTaMSTWiDKK50O8SGciZpwzLLaTvWFIuQ01Y4up36rUeqDVPywY5jGgg8kCxiBFsntbuGDQTu+b1i2at4M6BV4mekDDLUeyWY6/YVSQSVlnBsTMf3YhukWFtGOJ0UuomhMSYjPKAdRyUW1ATp7OAJOnVKH0VKu5IWzdS/EykWxoxF6DoFtkOz7E3F/7xOYqPrIGUyTiyVZL4oSjiyCk2/R32mKbF87AgmmrlbERlijYl1GS1u4QPlGobi/Jcx8rTwVxqKiQvOX45plTQvKn61Ur2/LNdusgjz4BicgDPggytQA3egDhqAAA6ewQt4hW/wHX7Az3nrGsxmjsAC4PcPYwukvA==</latexit>�1
<latexit sha1_base64="odhJm+4JzmU7a5M9KTo3OX3CiGw=">AAACI3icbVDLSgMxFE3Uaq2vVpdugkVwIWVGpLosunFZwT6gHUomzbSheQxJRixDf8Ktbv0ad+LGhf9i2g5iWw9cOJxzL/feE8acGet5X3BtfSO3uZXfLuzs7u0fFEuHTaMSTWiDKK50O8SGciZpwzLLaTvWFIuQ01Y4up36rUeqDVPywY5jGgg8kCxiBFsntbuGDQTu2V6x7FW8GdAq8TNSBhnqvRLMdfuKJIJKSzg2puN7sQ1SrC0jnE4K3cTQGJMRHtCOoxILaoJ0dvAEnTqljyKlXUmLZurfiRQLY8YidJ0C26FZ9qbif14nsdF1kDIZJ5ZKMl8UJRxZhabfoz7TlFg+dgQTzdytiAyxxsS6jBa38IFyDUNx/ssYeVr4Kw3FxAXnL8e0SpoXFb9aqd5flms3WYR5cAxOwBnwwRWogTtQBw1AAAfP4AW8wjf4Dj/g57x1DWYzR2AB8PsH1jOk/w==</latexit>�t

<latexit sha1_base64="FImKq8JBigziI9N01o+CkbnrPCs=">AAACI3icbVBNSwMxEE2q1Vq/Wj16CRbBg5Rdkeqx6MVjhX5Bu5Rsmt2GJpslyYpl6Z/wqld/jTfx4sH/YtouYlsfDDzem2Fmnh9zpo3jfMHcxmZ+a7uwU9zd2z84LJWP2lomitAWkVyqro815SyiLcMMp91YUSx8Tjv++G7mdx6p0kxGTTOJqSdwGLGAEWys1O1rFgo8aA5KFafqzIHWiZuRCsjQGJRhvj+UJBE0MoRjrXuuExsvxcowwum02E80jTEZ45D2LI2woNpL5wdP0ZlVhiiQylZk0Fz9O5FiofVE+LZTYDPSq95M/M/rJSa48VIWxYmhEVksChKOjESz79GQKUoMn1iCiWL2VkRGWGFibEbLW3gobcNIXPwyRp6W/kp9MbXBuasxrZP2ZdWtVWsPV5X6bRZhAZyAU3AOXHAN6uAeNEALEMDBM3gBr/ANvsMP+LlozcFs5hgsAX7/AJ8zpN8=</latexit>�T

<latexit sha1_base64="9pb0wJ59ZBf5t1HHG0RX60bsPYw=">AAACLnicbVDNSsNAGNxUq7X+tXr0EiyCBymJSPVY9OKxQv+giWGz3aRLd7Nhd6OW0EfxqlefRvAgXn0MN20Q2zqwMMzMx/ft+DElUlnWh1FYWy9ubJa2yts7u3v7lepBV/JEINxBnHLR96HElES4o4iiuB8LDJlPcc8f32R+7wELSXjUVpMYuwyGEQkIgkpLXqXqSBIy6LXvUycWhOGpV6lZdWsGc5XYOamBHC2vahSdIUcJw5FCFEo5sK1YuSkUiiCKp2UnkTiGaAxDPNA0ggxLN53dPjVPtDI0Ay70i5Q5U/9OpJBJOWG+TjKoRnLZy8T/vEGigis3JVGcKByh+aIgoabiZlaEOSQCI0UnmkAkiL7VRCMoIFK6rsUtNOQ6MGJnv4ygp4V/pT7LirOXa1ol3fO63ag37i5qzeu8whI4AsfgFNjgEjTBLWiBDkDgETyDF/BqvBnvxqfxNY8WjHzmECzA+P4BI2apOQ==</latexit>

�0
T

<latexit sha1_base64="A8OaJGMrqOLIsvQ0TY2DJ3AQQ0Y=">AAACLnicbVDLSsNAFJ2o1VpfrS7dBIvgQkoiUl0W3bisYB/QxjCZTtKh8wgzE7WEfopb3fo1ggtx62c4aYPY1gMDh3PO5d45QUyJ0o7zYa2srhXWN4qbpa3tnd29cmW/rUQiEW4hQYXsBlBhSjhuaaIp7sYSQxZQ3AlG15nfecBSEcHv9DjGHoMRJyFBUBvJL1f6ikQM+vo+7ceSMDzxy1Wn5kxhLxM3J1WQo+lXrEJ/IFDCMNeIQqV6rhNrL4VSE0TxpNRPFI4hGsEI9wzlkGHlpdPbJ/axUQZ2KKR5XNtT9e9ECplSYxaYJIN6qBa9TPzP6yU6vPRSwuNEY45mi8KE2lrYWRH2gEiMNB0bApEk5lYbDaGESJu65rfQSJjAkJ3+MoKe5v6VBiwrzl2saZm0z2puvVa/Pa82rvIKi+AQHIET4IIL0AA3oAlaAIFH8AxewKv1Zr1bn9bXLLpi5TMHYA7W9w9bhqlZ</latexit>

�0
t

<latexit sha1_base64="4T58556t6hTueHLDK0+tgTQA6oQ=">AAACLnicbVDNSgMxGMyq1Vr/Wj16CRbBg5Rdkeqx6MVjBfsD7bpk0+w2NNksSVYtSx/Fq159GsGDePUxzLaL2NaBwDAzH9+X8WNGlbbtD2tlda2wvlHcLG1t7+zulSv7bSUSiUkLCyZk10eKMBqRlqaakW4sCeI+Ix1/dJ35nQciFRXRnR7HxOUojGhAMdJG8sqVvqIhR55zn/ZjSTmZeOWqXbOngMvEyUkV5Gh6FavQHwiccBJpzJBSPceOtZsiqSlmZFLqJ4rECI9QSHqGRogT5abT2yfw2CgDGAhpXqThVP07kSKu1Jj7JsmRHqpFLxP/83qJDi7dlEZxokmEZ4uChEEtYFYEHFBJsGZjQxCW1NwK8RBJhLWpa34LC4UJDPnpL6P4ae5fqc+z4pzFmpZJ+6zm1Gv12/Nq4yqvsAgOwRE4AQ64AA1wA5qgBTB4BM/gBbxab9a79Wl9zaIrVj5zAOZgff8A5fSpFg==</latexit>

�0
1

<latexit sha1_base64="7DARMEOgBITw5fyGyUjlUcJBGUQ=">AAACHnicbVDLSgNBEJyJRmN8JXr0shgEDxJ2RaLHoBePEc0DkiXMTmY3Q+axzMyKYckneNWrX+NNvOrfOEkWMYkFDUVVN91dQcyoNq77DXNr6/mNzcJWcXtnd2+/VD5oaZkoTJpYMqk6AdKEUUGahhpGOrEiiAeMtIPRzdRvPxKlqRQPZhwTn6NI0JBiZKx03+m7/VLFrbozOKvEy0gFZGj0yzDfG0iccCIMZkjrrufGxk+RMhQzMin2Ek1ihEcoIl1LBeJE++ns1olzYpWBE0plSxhnpv6dSBHXeswD28mRGeplbyr+53UTE175KRVxYojA80VhwhwjnenjzoAqgg0bW4KwovZWBw+RQtjYeBa3sEjahiE/+2UUPy38lQZ8YoPzlmNaJa3zqler1u4uKvXrLMICOALH4BR44BLUwS1ogCbAIALP4AW8wjf4Dj/g57w1B7OZQ7AA+PUDCSeidA==</latexit>

X0
<latexit sha1_base64="XrT0MP4SxNbA4jqsPOzvWme1YEs=">AAACHnicbVDLSgNBEJyJRmN8JXr0shgEDxJ2RaLHoBePEc0DkiXMTmY3Q+axzMyKYckneNWrX+NNvOrfOEkWMYkFDUVVN91dQcyoNq77DXNr6/mNzcJWcXtnd2+/VD5oaZkoTJpYMqk6AdKEUUGahhpGOrEiiAeMtIPRzdRvPxKlqRQPZhwTn6NI0JBiZKx03+l7/VLFrbozOKvEy0gFZGj0yzDfG0iccCIMZkjrrufGxk+RMhQzMin2Ek1ihEcoIl1LBeJE++ns1olzYpWBE0plSxhnpv6dSBHXeswD28mRGeplbyr+53UTE175KRVxYojA80VhwhwjnenjzoAqgg0bW4KwovZWBw+RQtjYeBa3sEjahiE/+2UUPy38lQZ8YoPzlmNaJa3zqler1u4uKvXrLMICOALH4BR44BLUwS1ogCbAIALP4AW8wjf4Dj/g57w1B7OZQ7AA+PUDCt+idQ==</latexit>

X1

<latexit sha1_base64="yjk+wQo3g4hol0+J+iD6l1h3ydM=">AAACHnicbVDLSgNBEJyJRmN8JXr0shgEDxJ2RaLHoBePEc0DkiXMTmY3Q+axzMyKYckneNWrX+NNvOrfOEkWMYkFDUVVN91dQcyoNq77DXNr6/mNzcJWcXtnd2+/VD5oaZkoTJpYMqk6AdKEUUGahhpGOrEiiAeMtIPRzdRvPxKlqRQPZhwTn6NI0JBiZKx03+mbfqniVt0ZnFXiZaQCMjT6ZZjvDSROOBEGM6R113Nj46dIGYoZmRR7iSYxwiMUka6lAnGi/XR268Q5scrACaWyJYwzU/9OpIhrPeaB7eTIDPWyNxX/87qJCa/8lIo4MUTg+aIwYY6RzvRxZ0AVwYaNLUFYUXurg4dIIWxsPItbWCRtw5Cf/TKKnxb+SgM+scF5yzGtktZ51atVa3cXlfp1FmEBHIFjcAo8cAnq4BY0QBNgEIFn8AJe4Rt8hx/wc96ag9nMIVgA/PoBfgeiuA==</latexit>

Xt
<latexit sha1_base64="RZ9H3Vpqr7QOv5Zk5EI9PzFhYfg=">AAACHnicbVBdSwJBFJ21LLMvrcdehiToIWQ3wnqUeunRSE3QRWbH2XVwPpaZ2UgWf0Kv9dqv6S16rX/TqEukduDC4Zx7ufeeIGZUG9f9dnJr6/mNzcJWcXtnd2+/VD5oa5koTFpYMqk6AdKEUUFahhpGOrEiiAeMPASjm6n/8EiUplI0zTgmPkeRoCHFyFjpvtNv9ksVt+rOAFeJl5EKyNDol518byBxwokwmCGtu54bGz9FylDMyKTYSzSJER6hiHQtFYgT7aezWyfwxCoDGEplSxg4U/9OpIhrPeaB7eTIDPWyNxX/87qJCa/8lIo4MUTg+aIwYdBIOH0cDqgi2LCxJQgram+FeIgUwsbGs7iFRdI2DPnZL6P4aeGvNOATG5y3HNMqaZ9XvVq1dndRqV9nERbAETgGp8ADl6AObkEDtAAGEXgGL+DVeXPenQ/nc96ac7KZQ7AA5+sHRweimA==</latexit>

XT

<latexit sha1_base64="A1T6BOi/atCsvKIvOYGO4lDHxoM=">AAACQHicbVDLSsNAFJ34rPWtSzfBIihISUSqy6IblxX6gqaGyfS2HZxJwsyNWGI+wK9xq1v/wj9wJ25dOX0gtnpg4HDOudy5J4gF1+g4b9bc/MLi0nJuJb+6tr6xubW9U9dRohjUWCQi1QyoBsFDqCFHAc1YAZWBgEZwezn0G3egNI/CKg5iaEvaC3mXM4pG8rcKsZ962Aek2aGneU9SP61mN6kXKy4he2j61SOTcorOCPZf4k5IgUxQ8betRa8TsURCiExQrVuuE2M7pQo5E5DlvURDTNkt7UHL0JBK0O10dE1mHxilY3cjZV6I9kj9PZFSqfVABiYpKfb1rDcU//NaCXbP2ykP4wQhZONF3UTYGNnDauwOV8BQDAyhTHHzV5v1qaIMTYHTW0QvMoG+PP5hnN1P3ZUGMjPFubM1/SX1k6JbKpauTwvli0mFObJH9skhcckZKZMrUiE1wsgjeSLP5MV6td6tD+tzHJ2zJjO7ZArW1zeYULD2</latexit>

p✓(�
0
T |XT)

<latexit sha1_base64="cvDyAjHJurjuS49TmalSewpQyBM=">AAACQHicbVDLSsNAFJ1Uq/VtdekmWIQKUhIRdVl047KCrYWmhsn0th06k4SZG7HEfIBf41a3/oV/4E7cunL6QKx6YOBwzrncuSeIBdfoOK9Wbm4+v7BYWFpeWV1b39gsbjV0lCgGdRaJSDUDqkHwEOrIUUAzVkBlIOA6GJyP/OtbUJpH4RUOY2hL2gt5lzOKRvI3S7GfetgHpFnZ07wnqZ9idpN6seISsvumj/sm5VScMey/xJ2SEpmi5hetvNeJWCIhRCao1i3XibGdUoWcCciWvURDTNmA9qBlaEgl6HY6viaz94zSsbuRMi9Ee6z+nEip1HooA5OUFPv6tzcS//NaCXZP2ykP4wQhZJNF3UTYGNmjauwOV8BQDA2hTHHzV5v1qaIMTYGzW0QvMoG+PPhmnN3N3JUGMjPFub9r+ksahxX3uHJ8eVSqnk0rLJAdskvKxCUnpEouSI3UCSMP5JE8kWfrxXqz3q2PSTRnTWe2yQyszy8IX7E2</latexit>

p✓(�
0
t|Xt)

<latexit sha1_base64="mjBcBISz+59+fdNTw0vRqnSy+O4=">AAACQHicbVBNS8NAFNxUq/W76tFLsAgVpCQi1aPoxWMFq4Wmhs32tV26m4TdF7HE/AB/jVe9+i/8B97Eqye3NYhVBxaGmXm8fRPEgmt0nBerMDNbnJsvLSwuLa+srpXXNy51lCgGTRaJSLUCqkHwEJrIUUArVkBlIOAqGJ6O/asbUJpH4QWOYuhI2g95jzOKRvLLldhPPRwA0qzqad6X1E/d7Dr1YsUlZHct3901KafmTGD/JW5OKiRHw1+3il43YomEEJmgWrddJ8ZOShVyJiBb9BINMWVD2oe2oSGVoDvp5JrM3jFK1+5FyrwQ7Yn6cyKlUuuRDExSUhzo395Y/M9rJ9g76qQ8jBOEkH0t6iXCxsgeV2N3uQKGYmQIZYqbv9psQBVlaAqc3iL6kQkM5N434+x26q40kJkpzv1d019yuV9z67X6+UHl+CSvsES2yDapEpcckmNyRhqkSRi5Jw/kkTxZz9ar9Wa9f0ULVj6zSaZgfXwCHdCwsA==</latexit>

p✓(�
0
1|X1)

<latexit sha1_base64="mNy1SaNnkzn3LTM3uDcs9TopPO8=">AAACNXicbVDNSgMxGMxWq7X+tXoRvASLUKGUXZHqsejFYwXbLrRlyaZpG5ps1iQrlnV9Gq969Vk8eBOvvoLpD2JbBwLDzHx8+cYPGVXatt+t1Mpqem09s5Hd3Nre2c3l9xpKRBKTOhZMSNdHijAakLqmmhE3lARxn5GmP7wa+817IhUVwa0ehaTDUT+gPYqRNpKXO7grup4DH6Hr2SXYVrTPkRc7yYmXK9hlewK4TJwZKYAZal7eSre7AkecBBozpFTLsUPdiZHUFDOSZNuRIiHCQ9QnLUMDxInqxJMTEnhslC7sCWleoOFE/TsRI67UiPsmyZEeqEVvLP7ntSLdu+jENAgjTQI8XdSLGNQCjvuAXSoJ1mxkCMKSmr9CPEASYW1am9/C+sIEBrz0yyh+mLsr9nliinMWa1omjdOyUylXbs4K1ctZhRlwCI5AETjgHFTBNaiBOsDgCTyDF/BqvVkf1qf1NY2mrNnMPpiD9f0DVpiqHg==</latexit>

q(X1|X0,�1)
<latexit sha1_base64="/LWOr1LJ65N5hSs1+b8vnhXP4T8=">AAACOXicbVDLSgMxFM1Uq7W+Wl3qIliECrXMiFSXRTcuK9gHtGXIpGkbTGbG5I5Yxtn4NW5165e4dCdu/QHTB2LVA4Fzz7mXm3u8UHANtv1qpRYW00vLmZXs6tr6xmYuv9XQQaQoq9NABKrlEc0E91kdOAjWChUj0hOs6V2fj/3mLVOaB/4VjELWlWTg8z6nBIzk5nZvii0X8D1uuTEcOkkJdzQfSGKq5MDNFeyyPQH+S5wZKaAZam7eSnd6AY0k84EKonXbsUPoxkQBp4Il2U6kWUjoNRmwtqE+kUx348kZCd43Sg/3A2WeD3ii/pyIidR6JD3TKQkM9W9vLP7ntSPon3Zj7ocRMJ9OF/UjgSHA40xwjytGQYwMIVRx81dMh0QRCia5+S1iEJiGoSx9M07v5u6KPZmY4JzfMf0ljaOyUylXLo8L1bNZhBm0g/ZQETnoBFXRBaqhOqLoAT2iJ/RsvVhv1rv1MW1NWbOZbTQH6/MLvnSsZg==</latexit>

q(Xt|Xt�1,�t)
<latexit sha1_base64="IgiTOugJS5vStsnZTU+qedemx4M=">AAACOXicbVDLTgIxFO2gKOILdKmLRmKCCZIZY9Al0Y1LTHhMAmTSKQUa2pmx7RjJOBu/xq1u/RKX7oxbf8ACEyPgSZqce869ub3HDRiVyjTfjdTKanptPbOR3dza3tnN5fea0g8FJg3sM1/YLpKEUY80FFWM2IEgiLuMtNzR9cRv3RMhqe/V1TggXY4GHu1TjJSWnNzhXdF26vAR2k5UP7XiEuxIOuBIV/GJkyuYZXMKuEyshBRAgpqTN9Kdno9DTjyFGZKybZmB6kZIKIoZibOdUJIA4REakLamHuJEdqPpGTE81koP9n2hn6fgVP07ESEu5Zi7upMjNZSL3kT8z2uHqn/ZjagXhIp4eLaoHzKofDjJBPaoIFixsSYIC6r/CvEQCYSVTm5+Cxv4umHIS7+M4oe5uyKXxzo4azGmZdI8K1uVcuX2vFC9SiLMgANwBIrAAhegCm5ADTQABk/gGbyAV+PN+DA+ja9Za8pIZvbBHIzvHxRUrAY=</latexit>

q(XT |XT�1,�T)

<latexit sha1_base64="e44e+KARTmwlYxN5ise3nbJjreo=">AAACPHicbVDPS8MwGE2n0zl/bXr0YHEIE8ZoRabHoRePE9xWWGtJs3QLS9qSpOKoPfrXeNWr/4d3b+LVs9lWxG0+CDzeex9fvudFlAhpGO9abmU1v7Ze2Chubm3v7JbKex0RxhzhNgppyC0PCkxJgNuSSIqtiGPIPIq73uhq4nfvMRckDG7lOMIOg4OA+ARBqSS3dBhVLdd4tFyzZgsyYNBNzPQusSNOGE5Pim6pYtSNKfRlYmakAjK03LKWt/shihkOJKJQiJ5pRNJJIJcEUZwW7VjgCKIRHOCeogFkWDjJ9JJUP1ZKX/dDrl4g9an6dyKBTIgx81SSQTkUi95E/M/rxdK/cBISRLHEAZot8mOqy1Cf1KL3CcdI0rEiEHGi/qqjIeQQSVXe/BY6CFVgyGq/jKCHubsSj6WqOHOxpmXSOa2bjXrj5qzSvMwqLIADcASqwATnoAmuQQu0AQJP4Bm8gFftTfvQPrWvWTSnZTP7YA7a9w+jvq3c</latexit>

p(X0|X1,�
0
1)

<latexit sha1_base64="qBBYvAfbZZbA0HT5YwtiIAtt0s4=">AAACQHicbVDLSsNAFJ1Uq7W+Wl26CRahQi2JSHVZdOOygn1AU8tkOmmHziRh5kYsMR/g17jVrX/hH7gTt66cPhDbemDgcM653LnHDTlTYFnvRmplNb22ntnIbm5t7+zm8nsNFUSS0DoJeCBbLlaUM5/WgQGnrVBSLFxOm+7wauw376lULPBvYRTSjsB9n3mMYNBSN1cIi61uDCd28tjqQslRrC+wFpK72AklEzQ5zuqUVbYmMJeJPSMFNEOtmzfSTi8gkaA+EI6VattWCJ0YS2CE0yTrRIqGmAxxn7Y19bGgqhNPrknMI630TC+Q+vlgTtS/EzEWSo2Eq5MCw0AtemPxP68dgXfRiZkfRkB9Ml3kRdyEwBxXY/aYpAT4SBNMJNN/NckAS0xAFzi/hfcDHRiI0i9j5GHurtgViS7OXqxpmTROy3alXLk5K1QvZxVm0AE6REVko3NURdeohuqIoCf0jF7Qq/FmfBifxtc0mjJmM/toDsb3Dxx6sCQ=</latexit>

p(Xt�1|Xt,�
0
t)

<latexit sha1_base64="O+mYu2b0Boh4aTxgrVdzToloZf8=">AAACPnicbVDNSsNAGNyo1Vr/Wj16iRahQimJSPVY9OKxQn8CTQyb7aZdupuE3Y1YYs4+jVe9+hq+gDfx6tFtG8S2DiwMM/Px7TdeRImQhvGurayu5dY38puFre2d3b1iab8jwpgj3EYhDbnlQYEpCXBbEkmxFXEMmUdx1xtdT/zuPeaChEFLjiPsMDgIiE8QlEpyi0dRxXITmT5abqtqCzJg0E1a6V1iR5wwnJ4W3GLZqBlT6MvEzEgZZGi6JS1n90MUMxxIRKEQPdOIpJNALgmiOC3YscARRCM4wD1FA8iwcJLpLal+opS+7odcvUDqU/XvRAKZEGPmqSSDcigWvYn4n9eLpX/pJCSIYokDNFvkx1SXoT4pRu8TjpGkY0Ug4kT9VUdDyCGSqr75LXQQqsCQVX8ZQQ9zdyUeS1Vx5mJNy6RzVjPrtfrteblxlVWYB4fgGFSACS5AA9yAJmgDBJ7AM3gBr9qb9qF9al+z6IqWzRyAOWjfP68Jr3I=</latexit>

p(Xt|XT ,�0
T)

Figure 1: This figure illustrates our discrete diffusion model on finite symmetric groups. The middle
graphical model displays the forward and reverse diffusion processes. We demonstrate learning
distributions over the symmetric group S3 via the task of sorting three MNIST 4-digit images. The
top part of the figure shows the marginal distribution of a ranked list of images Xt at time t, while
the bottom shows a randomly drawn list of images.

a matrix X = [x1, . . . ,xn]
⊤ ∈ Rn×d, where the ordering of rows corresponds to the ordering of

objects. We can permute X via permutation σ to obtain QσX .

Our goal is to learn a distribution over Sn. We propose learning discrete (state space) diffusion
models, which consist of a forward process and a reverse process. In the forward process, starting
from the unknown data distribution, we simulate a random walk until it reaches a known stationary
“noise” distribution. In the reverse process, starting from the known noise distribution, we simulate
another random walk, where the transition probability is computed using a neural network, until it
recovers the data distribution. Learning a transition distribution over Sn is often more manageable
than learning the original distribution because: (1) the support size (the number of states that can be
reached in one transition) could be much smaller than n!, and (2) the distance between the initial and
target distributions is smaller. By doing so, we break down the hard problem (learning the original
distribution) into a sequence of simpler subproblems (learning the transition distribution). The overall
framework is illustrated in Fig. 1. In the following, we will introduce the forward card shuffling
process in Section 3.1, the reverse process in Section 3.2, the network architecture and training in
Section 3.3, denoising schedule in Section 3.4, and reverse decoding methods in Section 3.5.

3.1 FORWARD DIFFUSION PROCESS: CARD SHUFFLING

Suppose we observe a set of objects X and their ranked list X0. They are assumed to be generated
from an unknown data distribution in an IID manner, i.e., X0,X iid∼ pdata(X,X). One can construct a
bijection between a ranked list of n objects and an ordered deck of n cards. Therefore, permuting
objects is equivalent to shuffling cards. In the forward diffusion process, we would like to add
“random noise” to the rank list so that it reaches to some known stationary distribution like the
uniform. Formally, we let S ⊆ Sn be a set of permutations that are realizable by a given shuffling
method in one step. S does not change across steps in common shuffling methods. We will provide
concrete examples later. We then define the forward process as a Markov chain,

q(X1:T |X0,X) = q(X1:T |X0) =
∏T

t=1
q(Xt|Xt−1), (1)

where q(Xt|Xt−1) =
∑

σt∈S q(Xt|Xt−1, σt)q(σt) and the first equality in Eq. (1) holds since X0

implies X . In the forward process, although the set X does not change, the rank list of objects Xt

changes. Here q(σt) has the support S and describes the permutation generated by the underlying
shuffling method. Note that common shuffling methods are time-homogeneous Markov chains, i.e.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

q(σt) stays the same across time. q(Xt|Xt−1, σt) is a delta distribution δ (Xt = Qσt
Xt−1) since the

permuted objects Xt are uniquely determined given the permutation σt and Xt−1. We denote the
neighbouring states of X via one-step shuffling as NS(X) := {QσX|σ ∈ S}. Therefore, we have,

q(Xt|Xt−1) =

{
q(σt) if Xt ∈ NS(Xt−1)

0 otherwise.
(2)

Note that Xt ∈ NS(Xt−1) is equivalent to σt ∈ S and Xt = QσtXt−1.

3.1.1 CARD SHUFFLING METHODS

We now consider several popular shuffling methods as the forward transition, i.e., random transpo-
sitions, random insertions, and riffle shuffles. Different shuffling methods provide different design
choices of q(σt), thus corresponding to different forward diffusion processes. Although all these
forward diffusion processes share the same stationary distribution, i.e., the uniform, they differ in
their mixing time. We will introduce stronger quantitative results on their mixing time later.

Random Transpositions. One natural way of shuffling is to swap pairs of objects. Formally, a
transposition or a swap is a permutation σ ∈ Sn such that there exist i ̸= j ∈ [n] with σ(i) = j,
σ(j) = i, and σ(k) = k for all k /∈ {i, j}, in which case we denote σ = (i j). We let S =
{(i j) : i ̸= j ∈ [n]} ∪ {Id}. For any time t, we define q(σt) by choosing two indices from [n]
uniformly and independently and swap the two indices. If the two chosen indices are the same, then
this means that we have sampled the identity permutation. Specifically, q(σt = (i j)) = 2/n2

when i ̸= j and q(σt = Id) = 1/n.

Random Insertions. Another shuffling method is to insert the last piece to somewhere in the middle.
Let inserti denote the permutation that inserts the last piece right before the ith piece, and let
S := {inserti : i ∈ [n]}. Note that insertn = Id. Specifically, we have q(σt = inserti) =
1/n when i ̸= n and q(σt = Id) = 1/n.

Riffle Shuffles. Finally, we introduce the riffle shuffle, a method similar to how serious card players
shuffle cards. The process begins by roughly cutting the deck into two halves and then interleaving
the two halves together. A formal mathematical model of the riffle shuffle, known as the GSR model,
was introduced by Gilbert and Shannon (Gilbert, 1955), and independently by Reeds (Reeds, 1981).
The model is described as follows. A deck of n cards is cut into two piles according to binomial
distribution, where the probability of having k cards in the top pile is

(
n
k

)
/2n for 0 ≤ k ≤ n. The top

pile is held in the left hand and the bottom pile in the right hand. The two piles are then riffled together
such that, if there are A cards left in the left hand and B cards in the right hand, the probability
that the next card drops from the left is A/(A+B), and from right is B/(A+B). We implement
the riffle shuffles according to the GSR model. For simplicity, we will omit the term “GSR” when
referring to riffle shuffles hereafter.

There exists an exact formula for the probability over Sn obtained through one-step riffle shuffle.
Let σ ∈ Sn. A rising sequence of σ is a subsequence of σ constructed by finding a maximal
subset of indices i1 < i2 < · · · < ij such that permuted values are contiguously increasing, i.e.,
σ(i2) − σ(i1) = σ(i3) − σ(i2) = · · · = σ(ij) − σ(ij−1) = 1. For example, the permutation(

1 2 3 4 5
1 4 2 5 3

)
has 2 rising sequences, i.e., 123 (red) and 45 (blue). Note that a permutation

has 1 rising sequence if and only if it is the identity permutation. Denoting by qRS(σ) the probability
of obtaining σ through one-step riffle shuffle, it was shown by Bayer & Diaconis (1992) that

qRS(σ) =
1

2n

(
n+ 2− r

n

)
=

(n+ 1)/2n if σ = Id

1/2n if σ has two rising sequences
0 otherwise,

(3)

where r is the number of rising sequences of σ. The support S is thus the set of all permutations with
at most two rising sequences. We let the forward process be q(σt) = qRS(σt) for all t.

3.1.2 MIXING TIMES AND CUT-OFF PHENOMENON

All of the above shuffling methods have the uniform distribution as the stationary distribution.
However, they have different mixing times (i.e., the time until the Markov chain is close to its

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

stationary distribution measured by some distance), and there exist quantitative results on their mixing
times. Let q ∈ {qRT, qRI, qRS}, and for t ∈ N, let q(t) be the marginal distribution of the Markov
chain after t shuffles. We describe the mixing time in terms of the total variation (TV) distance
between two probability distributions, i.e., DTV(q

(t), u), where u is the uniform distribution.

For all three shuffling methods, there exists a cut-off phenomenon, where DTV(q
(t), u) stays around 1

for initial steps and then abruptly drops to values that are close to 0. The cut-off time is the time when
the abrupt change happens. For the formal definition, we refer the readers to Definition 3.3 of (Saloff-
Coste, 2004). In (Saloff-Coste, 2004), they also provided the cut-off time for random transposition,
random insertion, and riffle shuffle, which are n

2 log n, n log n, and 3
2 log2 n respectively. Observe

that the riffle shuffle reaches the cut-off much faster than the other two methods, which means it has a
much faster mixing time. Therefore, we use the riffle shuffle in the forward process.

3.2 THE REVERSE DIFFUSION PROCESS

We now model the reverse process as another Markov chain conditioned on the set of objects X . We
denote the set of realizable reverse permutations as T , and the neighbours of X with respect to T as
NT (X) := {QσX : σ ∈ T }. The conditional joint distribution is given by

pθ(X0:T |X) = p(XT |X)
∏T

t=1
pθ(Xt−1|Xt), (4)

where pθ(Xt−1|Xt) =
∑

σ′
t∈T p(Xt−1|Xt, σ

′
t)pθ(σ

′
t|Xt). To sample from p(XT |X), one simply

samples a random permutation from the uniform distribution and then shuffle the objects accordingly
to obtain XT . p(Xt−1|Xt, σ

′
t) is again a delta distribution δ(Xt−1 = Qσ′

t
Xt). We have

pθ(Xt−1|Xt) =

{
pθ (σ

′
t|Xt) if Xt−1 ∈ NT (Xt)

0 otherwise,
(5)

where Xt−1 ∈ NT (Xt) is equivalent to σ′
t ∈ T and Xt−1 = Qσ′

t
Xt. In the following, we will

introduce the specific design choices of the distribution pθ(σ
′
t|Xt).

3.2.1 INVERSE CARD SHUFFLING

A natural choice is to use the inverse operations of the aforementioned card shuffling operations in
the forward process. Specifically, for the forward shuffling S, we introduce their inverse operations
T := {σ−1 : σ ∈ S}, from which we can parameterize pθ(σ

′
t|Xt).

Inverse Transposition. Since the inverse of a transposition is also a transposition, we can let
T := S = {(i j) : i ̸= j ∈ [n]} ∪ {Id}. We define a distribution of inverse transposition (IT) over
T using n+ 1 real-valued parameters s = (s1, . . . , sn) and τ such that

pIT(σ) =

1− ϕ(τ) if σ = Id,

ϕ(τ)

(
exp(si)∑n

k=1 exp(sk)
· exp (sj)∑

k ̸=i exp(sk)

+
exp(sj)∑n
k=1 exp(sk)

· exp (si)∑
k ̸=j exp(sk)

)
if σ =

(
i j

)
, i ̸= j,

(6)

where ϕ(·) is the sigmoid function. The intuition behind this parameterization is to first handle the
identity permutation Id separately, where we use ϕ(τ) to denote the probability of not selecting
Id. Afterwards, probabilities are assigned to the transpositions. A transposition is essentially an
unordered pair of distinct indices, so we use n parameters s = (s1, . . . , sn) to represent the logits
of each index getting picked. The term in parentheses represents the probability of selecting the
unordered pair i and j, which is equal to the probability of first picking i and then j, plus the
probability of first picking j and then i.

Inverse Insertion. For the random insertion, the inverse operation is to insert some piece to the end.
Let inverse_inserti denote the permutation that moves the ith component to the end, and let
T := {inverse_inserti : i ∈ [n]}. We define a categorial distribution of inverse insertion (II)
over T using parameters s = (s1, . . . , sn) such that,

pII(σ = inverse_inserti) = exp(si)/
(∑n

j=1 exp(sj)
)
. (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Inverse Riffle Shuffle. In the riffle shuffle, the deck of card is first cut into two piles, and the two piles
are riffled together. So to undo a riffle shuffle, we need to figure out which pile each card belongs to,
i.e., making a sequence of n binary decisions. We define the Inverse Riffle Shuffle (IRS) distribution
using parameters s = (s1, . . . , sn) as follows. Starting from the last (the nth) object, each object i
has probability ϕ(si) of being put on the top of the left pile. Otherwise, it falls on the top of the right
pile. Finally, put the left pile on top of the right pile, which gives the shuffled result.

3.2.2 THE PLACKETT-LUCE DISTRIBUTION AND ITS GENERALIZATION

Other than specific inverse shuffling methods to parameterize the reverse process, we also consider
general distributions pθ(σ′

t|Xt) whose support are the whole Sn, i.e., T = Sn.

The PL Distribution. A popular distribution over Sn is the Plackett-Luce (PL) distribution (Plackett,
1975; Luce, 1959), which is constructed from n scores s = (s1, . . . , sn) as follows,

pPL(σ) =
∏n

i=1
exp

(
sσ(i)

)
/
(∑n

j=i exp
(
sσ(j)

))
, (8)

for all σ ∈ Sn. Intuitively, (s1, . . . , sn) represents the preference given to each index in [n]. To
sample from PLs, we first sample σ(1) from Cat(n, softmax(s)). Then we remove σ(1) from the
list and sample σ(2) from the categorical distribution corresponding to the rest of the scores (logits).
We continue in this manner until we have sampled σ(1), . . . , σ(n). By (Cao et al., 2007), the mode of
the PL distribution is the permutation that sorts s in descending order. However, the PL distribution is
not very expressive. In particular, we have the following result, and the proof is given in Appendix E.
Proposition 1. The PL distribution cannot represent a delta distribution over Sn.

The Generalized PL (GPL) Distribution. We then propose a generalization of the PL distribution,
referred to as Generalized Plackett-Luce (GPL) Distribution. Unlike the PL distribution, which uses
a set of n scores, the GPL distribution uses n2 scores {s1, · · · , sn}, where each si = {si,1, . . . , si,n}
consists of n scores. The GPL distribution is constructed as follows,

pGPL(σ) :=
∏n

i=1
exp

(
si,σ(i)

)
/
(∑n

j=i exp
(
si,σ(j)

))
. (9)

Sampling of the GPL distribution begins with sampling σ(1) using n scores s1. For 2 ≤ i ≤ n, we
remove i− 1 scores from si that correspond to σ(1), . . . , σ(i− 1) and sample σ(i) from a categorical
distribution constructed from the remaining n − i + 1 scores in si. It is important to note that the
family of PL distributions is a strict subset of the GPL family. Since the GPL distribution has more
parameters than the PL distribution, it is expected to be more expressive. In fact, we prove the
following significant result, and the proof is given in Appendix E.
Theorem 2. The reverse process parameterized using the GPL distribution (allowing −∞ scores)
can model any data distribution over Sn.

3.3 NETWORK ARCHITECTURE AND TRAINING

We now briefly introduce how to use neural networks to parameterize the above distributions used
in the reverse process. At any time t, given Xt ∈ Rn×d, we use a neural network with parameters
θ to construct pθ(σ′

t|Xt). In particular, we treat n rows of Xt as n tokens and use a Transformer
architecture along with the time embedding of t and the positional encoding to predict the previously
mentioned scores. For example, for the GPL distribution, to predict n2 scores, we introduce n dummy
tokens that correspond to the n permuted output positions. We then perform a few layers of masked
self-attention (2n × 2n) to obtain the token embedding Z1 ∈ Rn×dmodel corresponding to n input
tokens and Z2 ∈ Rn×dmodel corresponding to n dummy tokens. Finally, the GPL score matrix is
obtained as Sθ = Z1Z

⊤
2 ∈ Rn×n. Since the aforementioned distributions have different numbers of

scores, the specific architectures of the Transformer differ. We provide more details in Appendix B.

To learn the diffusion model, we maximize the following variational lower bound:

Epdata(X0,X)

[
log pθ(X0|X)

]
≥ Epdata(X0,X)q(X1:T |X0,X)

[
log p(XT |X) +

T∑
t=1

log
pθ(Xt−1|Xt)

q(Xt|Xt−1)

]
. (10)

In practice, one can draw samples to obtain the Monte Carlo estimation of the lower bound. Due to
the complexity of shuffling transition in the forward process, we can not obtain q(Xt|X0) analytically,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

as is done in common diffusion models. Therefore, we have to run the forward process to collect
samples. Fortunately, it is efficient as the forward process only involves shuffling integers. We include
more training details in Appendix G.

Note that most existing diffusion models, such as those proposed by Ho et al. (2020) and Austin
et al. (2023), use an equivalent form of the above variational bound, which involves the analytical
KL divergence between the posterior q(Xt−1|Xt, X0) and pθ(Xt−1|Xt) for variance control. How-
ever, this variational bound cannot be applied to Sn because the transitions are not Gaussian, and
q(Xt−1|Xt, X0) is generally unavailable for most shuffling methods. Most existing diffusion models
also sample a random timestep of the loss. While this technique is also available in our framework, it
introduces more variance and does not improve efficiency all the time. And for riffle shuffles, the
trajectory is usually short enough that we can compute the loss on the whole trajectory. A detailed
discussion can be found in Appendix C.

3.4 DENOISING SCHEDULE VIA MERGING REVERSE STEPS

If one merges some steps in the reverse process, sampling and learning would be faster and more
memory efficient. The variance of the training loss could also be reduced. Specifically, at time t of the
reverse process, instead of predicting pθ(Xt−1|Xt), we can predict pθ(Xt′ |Xt) for any 0 ≤ t′ < t.
Given a sequence of timesteps 0 = t0 < · · · < tk = T , we can now model the reverse process as

pθ(Xt0 , . . . , Xtk |X) = p(XT |X)
∏k

i=1
pθ(Xti−1

|Xti). (11)

To align with the literature of diffusion models, we call the list [t0, . . . , tk] the denoising schedule.
After incorporating the denoising schedule in Eq. (10), we obtain the loss function:

L(θ) = Epdata(X0,X)Eq(X1:T |X0,X)

[
− log p(XT |X)−

k∑
i=1

log
pθ(Xti−1 |Xti)

q(Xti |Xti−1)

]
. (12)

Note that although we may not have the analytical form of q(Xti |Xti−1
), we can draw samples

from it. Merging is feasible if the support of pθ(Xti−1
|Xti) is equal or larger than the support

of q(Xti |Xti−1); otherwise, the inverse of some forward permutations would be almost surely
unrecoverable. Therefore, we can implement a non-trivial denoising schedule (i.e., k < T), when
pθ(σ

′
t|Xt) follows the PL or GPL distribution, as they have whole Sn as their support. However,

merging is not possible for inverse shuffling methods, as their support is smaller than that of the
corresponding multi-step forward shuffling. To design a successful denoising schedule, we first
describe the intuitive principles and then provide some theoretical insights. 1) The length of forward
diffusion T should be minimal so long as the forward process approaches the uniform distribution. 2)
If distributions of Xt and Xt+1 are similar, we should merge these two steps. Otherwise, we should
not merge them, as it would make the learning problem harder.

To quantify the similarity between distributions shown in 1) and 2), the TV distance is commonly
used in the literature. In particular, we can measure DTV(q

(t), q(t
′)) for t ̸= t′ and DTV(q

(t), u),
where q(t) is the distribution at time t in the forward process and u is the uniform distribution. For
riffle shuffles, the total variation distance can be computed exactly. Specifically, we first introduce
the Eulerian Numbers An,r (OEIS Foundation Inc., 2024), i.e., the number of permutations in Sn

that have exactly r rising sequences where 1 ≤ r ≤ n. An,r can be computed using the following
recursive formula An,r = rAn−1,r + (n − r + 1)An−1,r−1 where A1,1 = 1. We then have the
following result. The proof is given in Appendix F.
Proposition 3. Let t ̸= t′ be positive integers. Then

DTV

(
q
(t)
RS, q

(t′)
RS

)
=

1

2

n∑
r=1

An,r

∣∣∣∣∣ 1

2tn

(
n+ 2t − r

n

)
− 1

2t′n

(
n+ 2t

′ − r

n

)∣∣∣∣∣ , (13)

and

DTV

(
q
(t)
RS, u

)
=

1

2

n∑
r=1

An,r

∣∣∣∣ 1

2tn

(
n+ 2t − r

n

)
− 1

n!

∣∣∣∣ . (14)

Note that Eq. (14) was originally given by Kanungo (2020). We restate it here for completeness.
Once the Eulerian numbers are precomputed, the TV distances can be computed in O(n) time instead

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t

0.0

0.2

0.4

0.6

0.8

1.0

TV
 D

ist
an

ce
 to

 U
ni

fro
m

, n
=1

00

(a)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0.2

0.4

0.6

0.8

1.0

(b)
Figure 2: (a) DTV(q

(t)
RS, u) computed using Eq. (14). We choose T = 15 (red dot) based on the

threshold 0.005. (b) A heatmap for DTV(q
(t)
RS, q

(t′)
RS) for n = 100 and 1 ≤ t < t′ ≤ 15, computed

using Eq. (13). Rows are t and columns are t′. We choose the denoising schedule [0, 8, 10, 15].

of O(n!). Through extensive experiments, we have the following empirical observation. For the
principle 1), choosing T so that DTV

(
q
(T)
RS , u

)
≈ 0.005 yields good results. For the principle 2), a

denoising schedule [t0, . . . , tk] with DTV

(
q
(ti)
RS , q

(ti+1)
RS

)
≈ 0.3 for most i works well. We show an

example on sorting n = 100 four-digit MNIST images in Fig. 2.

3.5 REVERSE PROCESS DECODING

We now discuss how to decode predictions from the reverse process at test time. In practice, one is
often interested in the most probable state or a few states with high probabilities under pθ(X0|X).
However, since we can only draw samples from pθ(X0|X) via running the reverse process, exact
decoding is intractable. The simplest approximated method is greedy search, i.e., successively finding
the mode or an approximated mode of pθ(Xti−1 |Xti). Another approach is beam search, which
maintains a dynamic buffer of k candidates with highest probabilities. Nevertheless, for one-step
reverse transitions like the GPL distribution, even finding the mode is intractable. To address this, we
employ a hierarchical beam search that performs an inner beam search within n2 scores at each step
of the outer beam search. Further details are provided in Appendix D.

4 EXPERIMENTS

We now demonstrate the general applicability and effectiveness of our model through a variety of
experiments, including sorting 4-digit MNIST numbers, solving jigsaw puzzles, and addressing
traveling salesman problems. Additional details are provided in the appendix due to space constraints.

4.1 SORTING 4-DIGIT MNIST IMAGES

We first evaluate our SymmetricDiffusers on the four-digit MNIST sorting benchmark, a well-
established testbed for differentiable sorting (Blondel et al., 2020; Cuturi et al., 2019; Grover et al.,
2018; Kim et al., 2024; Petersen et al., 2021; 2022). Each four-digit image in this benchmark is
obtained by concatenating 4 individual images from MNIST, and our task is to sort n four-digit MNIST
numbers. For evaluation, we employ several metrics to compare methods, including Kendall-Tau
coefficient (measuring the correlation between rankings), accuracy (percentage of images perfectly
reassembled), and correctness (percentage of pieces that are correctly placed).

Ablation Study. We conduct an ablation study to verify our design choices for reverse transition and
decoding strategies. As shown in Table 3, when using riffle shuffles as the forward process, combining
PL with either beam search (BS) or greedy search yields good results in terms of Kendall-Tau and
correctness metrics. In contrast, the IRS (inverse riffle shuffle) method, along with greedy search,
performs poorly across all metrics, showing the limitations of IRS in handling complicated sorting
tasks. At the same time, combining GPL and BS achieves the best accuracy in correctly sorting the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Results (averaged over 5 runs) on solving the jigsaw puzzle on Noisy MNIST and CIFAR10.

Method Metrics Noisy MNIST CIFAR-10
2× 2 3× 3 4× 4 5× 5 6× 6 2× 2 3× 3 4× 4

Gumbel-
Sinkhorn
Network
(Mena et al.,
2018)

Kendall-Tau ↑ 0.9984 0.6908 0.3578 0.2430 0.1755 0.8378 0.5044 0.4016
Accuracy (%) 99.81 44.65 00.86 0.00 0.00 76.54 6.07 0.21
Correct (%) 99.91 80.20 49.51 26.94 14.91 86.10 43.59 25.31
RMSE ↓ 0.0022 0.1704 0.4572 0.8915 1.0570 0.3749 0.9590 1.0960
MAE ↓ 0.0003 0.0233 0.1005 0.3239 0.4515 0.1368 0.5320 0.6873

DiffSort
(Petersen
et al., 2022)

Kendall-Tau ↑ 0.9931 0.3054 0.0374 0.0176 0.0095 0.6463 0.1460 0.0490
Accuracy (%) 99.02 5.56 0.00 0.00 0.00 59.18 0.96 0.00
Correct (%) 99.50 42.25 10.77 6.39 3.77 75.48 27.87 12.27
RMSE ↓ 0.0689 1.0746 1.3290 1.4883 1.5478 0.7389 1.2691 1.3876
MAE ↓ 0.0030 0.4283 0.6531 0.8204 0.8899 0.2800 0.8123 0.9737

Error-free
DiffSort (Kim
et al., 2024)

Kendall-Tau ↑ 0.9899 0.2014 0.0100 0.0034 -0.0021 0.6604 0.1362 0.0318
Accuracy (%) 98.62 0.82 0.00 0.00 0.00 60.96 0.68 0.00
Correct (%) 99.28 32.65 7.40 4.39 2.50 75.99 26.75 10.33
RMSE ↓ 0.0814 1.1764 1.3579 1.5084 1.5606 0.7295 1.2820 1.4095
MAE ↓ 0.0041 0.5124 0.6818 0.8424 0.9041 0.2731 0.8260 0.9990

Symmetric
Diffusers
(Ours)

Kendall-Tau ↑ 0.9992 0.8126 0.4859 0.2853 0.1208 0.9023 0.8363 0.2518
Accuracy (%) 99.88 57.38 1.38 0.00 0.00 90.15 70.94 0.64
Correct (%) 99.94 86.16 58.51 37.91 18.54 92.99 86.84 34.69
RMSE ↓ 0.0026 0.0241 0.1002 0.2926 0.4350 0.3248 0.3892 0.8953
MAE ↓ 0.0001 0.0022 0.0130 0.0749 0.1587 0.0651 0.0977 0.5044

Table 2: Results (averaged over 5 runs) on the four-digit MNIST sorting benchmark. For n = 200,
due to efficiency reasons, we use PL for the reverse process, and we randomly sample a timestep
when computing the loss (see Appendix C.2).

Method Metrics Sequence Length
3 5 7 9 15 32 52 100 200

DiffSort
(Petersen
et al., 2022)

Kendall-Tau ↑ 0.930 0.898 0.864 0.801 0.638 0.535 0.341 0.166 0.107
Accuracy (%) 93.8 83.9 71.5 52.2 10.3 0.2 0.0 0.0 0.0
Correct (%) 95.8 92.9 90.1 85.2 82.3 61.8 42.8 23.2 15.3

Error-free
DiffSort (Kim
et al., 2024)

Kendall-Tau ↑ 0.974 0.967 0.962 0.952 0.938 0.879 0.170 0.140 0.002
Accuracy (%) 97.7 95.3 92.9 89.6 83.1 57.1 0.0 0.0 0.0
Correct (%) 98.4 97.7 97.2 96.3 95.1 90.1 24.2 20.1 0.8

Symmetric
Diffusers
(Ours)

Kendall-Tau ↑ 0.976 0.967 0.959 0.950 0.932 0.858 0.786 0.641 0.453
Accuracy (%) 98.0 95.5 92.9 90.0 82.6 55.1 27.4 4.5 0.1
Correct (%) 98.5 97.6 96.8 96.1 94.5 88.3 82.1 69.3 52.2

entire sequence of images. Finally, we see that random transpositions (RT) and random insertions
(RI) are both out of memory for large instances due to their long mixing time. Given that accuracy
is the most challenging metric to improve, we select riffle shuffles, GPL and BS for all remaining
experiments, unless otherwise specified. More ablation study (e.g., denoising schedule) is provided
in Appendix G.2.

Full Results. From Table 2, we can see that Error-free DiffSort achieves the best performance in
sorting sequences with lengths up to 32. However, its performance declines considerably with longer
sequences (e.g., those exceeding 52 in length). Meanwhile, DiffSort performs the worst due to the
error accumulation of its soft differentiable swap function (Kim et al., 2024; Petersen et al., 2021). In
contrast, our method is on par with Error-free DiffSort in sorting short sequences and significantly
outperforms others on long sequences.

4.2 JIGSAW PUZZLE

We then explore image reassembly from segmented "jigsaw" puzzles (Mena et al., 2018; Noroozi
& Favaro, 2016; Santa Cruz et al., 2017). We evaluate the performance using the MNIST and the
CIFAR10 datasets, which comprises puzzles of up to 6× 6 and 4× 4 pieces respectively. We add
slight noise to pieces from the MNIST dataset to ensure background pieces are distinctive. To evaluate
our models, we use Kendall-Tau coefficient, accuracy, correctness, RMSE (root mean square error of
reassembled images), and MAE (mean absolute error) as metrics.

Table 1 presents results comparing our method with the Gumbel-Sinkhorn Network(Mena et al.,
2018), Diffsort (Petersen et al., 2022), and Error-free Diffsort (Kim et al., 2024). DiffSort and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Ablation study on transitions of reverse diffusion and decoding strategies. Results are
averaged over three runs on sorting 52 four-digit MNIST images. GPL: generalized Plackett-Luce;
IRS: inverse riffle shuffle; RT: random transposition; IT: inverse transposition; RI: random insertion;
II: inverse insertion.

Forward Riffle Shuffles RT RI

Reverse GPL + BS GPL + Greedy PL + Greedy PL + BS IRS + Greedy IT + Greedy II + Greedy

Kendall-Tau ↑ 0.786 0.799 0.799 0.797 0.390
Out of MemoryAccuracy (%) 27.4 24.4 26.4 26.4 0.6

Correct (%) 82.1 81.6 83.3 83.1 44.6

Table 4: Results on TSP-20. We compare our method with operations research solvers such as Gurobi
(Gurobi Optimization, LLC, 2023), Concorde (Applegate et al., 2006), LKH-3 (Helsgaun, 2017), and
2-Opt (Lin & Kernighan, 1973), as well as learning-based approaches including GCN (Joshi et al.,
2019) and DIFUSCO (Sun & Yang, 2023) on 20-node TSP instances. An asterisk (*) indicates that
post-processing heuristics were removed to ensure a fair comparison.

Method OR Solvers Learning-Based Models
Gurobi Concorde LKH-3 2-Opt GCN* DIFUSCO* Ours

Tour Length ↓ 3.842 3.843 3.842 4.020 3.850 3.883 3.849
Optimality Gap (%) ↓ 0.00 0.00 0.00 4.64 0.21 1.07 0.18

Error-free DiffSort are primarily designed for sorting high-dimensional ordinal data which have
clearly different patterns. Since jigsaw puzzles on MNIST and CIFAR10 contain pieces that are
visually similar, these methods do not perform well. The Gumbel-Sinkhorn performs better for tasks
involving fewer than 4× 4 pieces. In more challenging scenarios (e.g., 5× 5 and 6× 6), our method
significantly outperforms all competitors.

4.3 THE TRAVELLING SALESMAN PROBLEM

At last, we explore the travelling salesman problem (TSP) to demonstrate the general applicability of
our model. TSPs are classical NP-complete combinatorial optimization problems which are solved
using integer programming or heuristic solvers (Arora, 1998; Gonzalez, 2007). There exists a vast
literature on learning-based models to solve TSPs (Kipf & Welling, 2017; Kool et al., 2019; Joshi
et al., 2019; 2021; Bresson & Laurent, 2021; Kwon et al., 2021; Fu et al., 2021; Qiu et al., 2022; Kim
et al., 2023; Sun & Yang, 2023; Min et al., 2024; Sanokowski et al., 2024). They often focus on the
Euclidean TSPs, which are formulated as follows. Let V = {v1, . . . , vn} be points in R2. We need to
find some σ ∈ Sn such that

∑n
i=1 ∥vσ(i) − vσ(i+1)∥2 is minimized, where we let σ(n+ 1) := σ(1).

Further experimental details are provided in Appendix B.

We compare with operations research (OR) solvers and other learning based approaches on TSP
instances with 20 nodes. The metrics are the total tour length and the optimality gap. Given the ground
truth (GT) length produced by the best OR solver, the optimality gap is given by

(
predicted length−

(GT length)
)
/(GT length). As shown in Table 4, SymmetricDiffusers achieves comparable results

with both OR solvers and the state-of-the-art learning-based methods.

5 CONCLUSION

In this paper, we introduce a novel discrete diffusion model over finite symmetric groups. We identify
the riffle shuffle as an effective forward transition and provide empirical rules for selecting the
diffusion length. Additionally, we propose a generalized PL distribution for the reverse transition,
which is provably more expressive than the PL distribution. We further introduce a theoretically
grounded "denoising schedule" to improve sampling and learning efficiency. Extensive experiments
verify the effectiveness of our proposed model. Despite significantly surpassing the performance of
existing methods on large instances, our method still has limitations in larger scales. In the future, we
would like to explore methods to improve scalability even more. We would also like to explore how
we can fit other modern techniques in diffusion models like concrete scores (Meng et al., 2023) and
score entropy (Lou et al., 2024) into our shuffling dynamics. Finally, we are interested in generalizing
our model to general finite groups and exploring diffusion models on Lie groups.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

David Applegate, Robert Bixby, Vasek Chvatal, and William Cook. Concorde tsp solver, 2006. URL
https://www.math.uwaterloo.ca/tsp/concorde/index.html.

Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling salesman and other
geometric problems. J. ACM, 45(5):753–782, Sep 1998. ISSN 0004-5411. doi: 10.1145/290179.
290180. URL https://doi.org/10.1145/290179.290180.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces, 2023.

Dave Bayer and Persi Diaconis. Trailing the dovetail shuffle to its lair. The Annals of Applied
Probability, 2(2):294 – 313, 1992. doi: 10.1214/aoap/1177005705. URL https://doi.org/
10.1214/aoap/1177005705.

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable sorting
and ranking. In International Conference on Machine Learning, pp. 950–959. PMLR, 2020.

Xavier Bresson and Thomas Laurent. The transformer network for the traveling salesman problem,
2021.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models, 2022. URL
https://arxiv.org/abs/2205.14987.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th International Conference on Machine
Learning, ICML ’07, pp. 129–136, New York, NY, USA, 2007. Association for Computing
Machinery. ISBN 9781595937933. doi: 10.1145/1273496.1273513. URL https://doi.org/
10.1145/1273496.1273513.

Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Differentiable ranking and sorting using
optimal transport. Advances in neural information processing systems, 32, 2019.

Persi Diaconis. Group representations in probability and statistics. Lecture notes-monograph series,
11:i–192, 1988.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances, 2021.

E. N. Gilbert. Theory of shuffling. Bell Telephone Laboratories Memorandum, 1955.

Teofilo F. Gonzalez. Handbook of Approximation Algorithms and Metaheuristics (Chapman
& Hall/Crc Computer & Information Science Series). Chapman & Hall/CRC, 2007. ISBN
1584885505.

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
networks via continuous relaxations. In International Conference on Learning Representations,
2018.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems, Dec 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.

Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem, 2019.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning tsp
requires rethinking generalization. In International Conference on Principles and Practice of
Constraint Programming, 2021.

11

https://www.math.uwaterloo.ca/tsp/concorde/index.html
https://doi.org/10.1145/290179.290180
https://doi.org/10.1214/aoap/1177005705
https://doi.org/10.1214/aoap/1177005705
https://arxiv.org/abs/2205.14987
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
https://www.gurobi.com
https://www.gurobi.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shihan Kanungo. Mixing time estimates for the riffle shuffle. Euler Circle, 2020.

Jungtaek Kim, Jeongbeen Yoon, and Minsu Cho. Generalized neural sorting networks with error-free
differentiable swap functions. In International Conference on Learning Representations (ICLR),
2024.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural
combinatorial optimization, 2023.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks,
2017.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems!, 2019.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning, 2021.

Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the travelling-salesman
problem. Operations research, 21(2):498–516, 1973.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution, 2024. URL https://arxiv.org/abs/2310.16834.

R. D. Luce. Individual Choice Behavior. John Wiley, 1959.

Colin L Mallows. Non-null ranking models. i. Biometrika, 44(1/2):114–130, 1957.

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
with gumbel-sinkhorn networks. In International Conference on Learning Representations, 2018.

Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching: Generalized
score matching for discrete data, 2023. URL https://arxiv.org/abs/2211.00802.

Yimeng Min, Yiwei Bai, and Carla P. Gomes. Unsupervised learning for solving the travelling
salesman problem, 2024.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European conference on computer vision, pp. 69–84. Springer, 2016.

OEIS Foundation Inc. The eulerian numbers, entry a008292 in the On-Line Encyclopedia of Integer
Sequences, 2024. Published electronically at http://oeis.org/A008292.

Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Differentiable sorting networks
for scalable sorting and ranking supervision. In International conference on machine learning, pp.
8546–8555. PMLR, 2021.

Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Monotonic differentiable
sorting networks. In International Conference on Learning Representations (ICLR), 2022.

R. L. Plackett. The analysis of permutations. Applied Statistics, 24(2):193 – 202, 1975.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
optimization problems, 2022.

J. Reeds. Theory of shuffling. Unpublished Manuscript, 1981.

Laurent Saloff-Coste. Random Walks on Finite Groups, pp. 263–346. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004. ISBN 978-3-662-09444-0. doi: 10.1007/978-3-662-09444-0_5. URL
https://doi.org/10.1007/978-3-662-09444-0_5.

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework for
unsupervised neural combinatorial optimization, 2024. URL https://arxiv.org/abs/
2406.01661.

12

https://arxiv.org/abs/2310.16834
https://arxiv.org/abs/2211.00802
http://oeis.org/A008292
https://doi.org/10.1007/978-3-662-09444-0_5
https://arxiv.org/abs/2406.01661
https://arxiv.org/abs/2406.01661

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, and Stephen Gould. Deeppermnet: Visual
permutation learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3949–3957, 2017.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and
generalized masked diffusion for discrete data, 2024. URL https://arxiv.org/abs/
2406.04329.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL https://
proceedings.mlr.press/v37/sohl-dickstein15.html.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution,
2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations, 2021.

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
discrete diffusion models, 2023. URL https://arxiv.org/abs/2211.16750.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion, 2023.

Harshit Varma, Dheeraj Nagaraj, and Karthikeyan Shanmugam. Glauber generative model: Discrete
diffusion models via binary classification, 2024. URL https://arxiv.org/abs/2405.
17035.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation, 2023.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256, 1992.

13

https://arxiv.org/abs/2406.04329
https://arxiv.org/abs/2406.04329
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://arxiv.org/abs/2211.16750
https://arxiv.org/abs/2405.17035
https://arxiv.org/abs/2405.17035

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL DETAILS OF THE GSR RIFFLE SHUFFLE MODEL

There are many equivalent definitions of the GSR riffle shuffle. Here we also introduce the Geometric
Description (Bayer & Diaconis, 1992), which is easy to implement (and is how we implement
riffle shuffles in our experiments). We first sample n points in the unit interval [0, 1] uniformly and
independently, and suppose the points are labeled in order as x1 < x2 < · · · < xn. Then, the
permutation that sorts the points {2x1}, . . . , {2xn} follows the GSR distribution, where {x} :=
x− ⌊x⌋ is the fractional part of x.

B DETAILS OF OUR NETWORK ARCHITECTURE

We now discuss how to use neural networks to produce the parameters of the distributions discussed
in Section 3.2.1 and 3.2.2. Fix time t, and suppose Xt =

(
x
(t)
1 , . . . ,x

(t)
n

)⊤ ∈ Rn×d. Let encoderθ

be an object-specific encoder such that encoderθ(Xt) ∈ Rn×dmodel . For example, encoderθ can
be a CNN if Xt is an image. Let

Yt := encoderθ(Xt) + time_embd(t) =
(
y
(t)
1 , . . . ,y(t)

n

)⊤ ∈ Rn×dmodel , (15)

where time_embd is the sinusoidal time embedding. Then, we would like to feed the embeddings
into a Transformer encoder (Vaswani et al., 2023). Let transformer_encoderθ be the encoder
part of the Transformer architecture. However, each of the distributions we discussed previously has
different number of parameters, so we will have to discuss them separately.

Inverse Transposition. For Inverse Transposition, we have n + 1 parameters. To obtain n + 1
tokens from transformer_encoderθ, we append a dummy token of 0’s to Yt. Then we input(
y
(t)
1 , . . . ,y

(t)
n , 0

)⊤
into transformer_encoderθ to obtain Z ∈ R(n+1)×dmodel . Finally, we

apply an MLP to obtain (s1, . . . , sn, k) ∈ Rn+1.

Inverse Insertion, Inverse Riffle Shuffle, PL Distribution. These three distributions all require
exactly n parameters, so we can directly feed Yt into transformer_encoderθ. Let the output
of transformer_encoderθ be Z ∈ Rn×dmodel , where we then apply an MLP to obtain the scores
sθ ∈ Rn.

The GPL Distribution. The GPL distribution requires n2 parameters. We first append n dummy
tokens of 0’s to Yt, with the intent that the jth dummy token would learn information about the jth

column of the GPL parameter matrix, which represents where the jth component should be placed.
We then pass

(
y
(t)
1 , . . . ,y

(t)
n , 0, . . . , 0

)⊤ ∈ R2n×dmodel to transformer_encoderθ. When com-
puting attention, we further apply a 2n× 2n attention mask

M :=

[
0 A
0 B

]
, where A is an n× n matrix of−∞, B =

−∞ −∞ · · · −∞
0 −∞ · · · −∞
...

...
. . .

...
0 0 · · · −∞

 is n× n.

The reason for having B as an upper triangular matrix of −∞ is that information about the jth

component should only require information from the previous components. Let

transformer_encoderθ(Yt,M) =

[
Z1

Z2

]
,

where Z1, Z2 ∈ Rn×dmodel . Finally, we obtain the GPL parameter matrix as Sθ = Z1Z
⊤
2 ∈ Rn×n.

For hyperparameters, we refer the readers to Appendix G.4.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C DISCUSSIONS ON OTHER FORMS OF THE LOSS

C.1 USING KL DIVERGENCE

Many diffusion models will rewrite the variational bound Eq.(10) in the following equivalent form of
KL divergences to reduce the variance (Austin et al., 2023; Ho et al., 2020):

Epdata(X0,X)q(X1:T |X0)

[
DKL(q(Xt|X0) ∥ p(XT |X))

+
∑
t>1

DKL(q(Xt−1|Xt, X0) ∥ pθ(Xt−1|Xt))− log pθ(X0|X1)

]
(16)

However, we cannot use this objective for Sn in most cases. In particular, since

q(Xt−1|Xt, X0) =
q(Xt|Xt−1)q(Xt−1|X0)

q(Xt|X0)
, (17)

we can only derive the analytical form of q(Xt−1|Xt, X0) if we know the form of q(Xt|X0).
However, q(Xt|X0) is unavailable for most shuffling methods used in the forward process except for
the riffle shuffles. For riffle shuffle, q(Xt|X0) is actually available and permits efficient sampling
(Bayer & Diaconis, 1992). However, DKL(q(Xt−1|Xt, X0) ∥ pθ(Xt−1|Xt)) still does not have
an analytical form, unlike in common diffusion models. As a result, we cannot use mean/score
parameterization (Ho et al., 2020; Song et al., 2021) commonly employed in the continuous setting.
Therefore, we need to rewrite the KL term as follows and resort to Monte Carlo (MC) estimation,

Eq(Xt|X0)

[
DKL(q(Xt−1|Xt, X0) ∥ pθ(Xt−1|Xt))

]
= Eq(Xt|X0)

∑
Xt−1

q(Xt|Xt−1)q(Xt−1|X0)

q(Xt|X0)
· log q(Xt−1|Xt, X0)

pθ(Xt−1|Xt)

= Eq(Xt|X0)

∑
Xt−1

q(Xt−1|X0) ·
q(Xt|Xt−1)

q(Xt|X0)
· log q(Xt−1|Xt, X0)

pθ(Xt−1|Xt)

= Eq(Xt|X0)Eq(Xt−1|X0)

[
q(Xt|Xt−1)

q(Xt|X0)
· log q(Xt−1|Xt, X0)

pθ(Xt−1|Xt)

]
. (18)

Note that Xt ∼ q(Xt|X0) and Xt−1 ∼ q(Xt−1|X0) are drawn independently. However, there is
a high chance that q(Xt|Xt−1) = 0 for the Xt and Xt−1 that are sampled. Consequently, if we
only draw a few MC samples, the resulting estimator will likely be zero with zero-valued gradients,
impeding the optimization of the training objective. Therefore, writing the loss in the form of KL
divergences does not help in the case of discrete diffusion on Sn.

C.2 SAMPLING A RANDOM TIMESTEP

Another technique that many diffusion models use is to randomly sample a timestep t and just
compute the loss at time t. Our framework also allows for randomly sampling one timestep and
compute the loss as

Epdata(X0,X)EtEq(Xt−1|X0)Eq(Xt|Xt−1)

[
− log pθ(Xt−1|Xt)

]
, (19)

omitting constant terms with respect to θ. With a denoising schedule of [t0, . . . , tk], the loss is

Epdata(X0,X)EiEq(Xti−1
|X0)Eq(Xti

|Xti−1
)

[
− log pθ(Xti−1

|Xti)
]
, (20)

again omitting constant terms with respect to θ. It is also worth noting that computing the loss on a
subset of the trajectory could potentially introduce more variance during training, which leads to a
tradeoff. For riffle shuffles, although we can sample Xt−1 directly for arbitrary timestep t− 1 from

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

X0 as previously mentioned in this section, the whole trajectory would be really short. For other
shuffling methods, we would still have to run the entire forward process to sample from q(Xt−1|X0),
which does not solve the inefficiency problem of other shuffling methods. Therefore, we opt to use
the loss in Eq.(10) in most cases, and we would resort to Eq.(20) for riffle shuffling really large
instances.

D ADDITIONAL DETAILS OF DECODING

Greedy Search. At each timestep ti in the denoising schedule, we can greedily obtain or approx-
imate the mode of pθ(Xti−1

|Xti). We can then use the (approximated) mode Xti−1
for the next

timestep pθ(Xti−2
|Xti−1

). Note that the final X0 obtained using such a greedy heuristic may not
necessarily be the mode of pθ(X0|X).

Beam Search. We can use beam search to improve the greedy approach. The basic idea is that,
at each timestep ti in the denoising schedule, we compute or approximate the top-k-most-probable
results from pθ(Xti−1

|Xti). For each of the top-k results, we sample top-k from pθ(Xti−2
|Xti−1

).
Now we have k2 candidates for Xti−2 , and we only keep the top k of the k2 candidates.

However, it is not easy to obtain the top-k-most-probable results for some of the distributions. Here
we provide an algorithm to approximate top-k of the PL and the GPL distribution. Since the PL
distribution is a strict subset of the GPL distribution, it suffices to only consider the GPL distribution
with parameter matrix S. The algorithm for approximating top-k of the GPL distribution is another
beam search. We first pick the k largest elements from the first row of S. For each of the k largest
elements, we pick k largest elements from the second row of S, excluding the corresponding element
picked in the first row. We now have k2 candidates for the first two elements of a permutation, and
we only keep the top-k-most-probable candidates. We then continue in this manner.

E THE EXPRESSIVENESS OF PL AND GPL

In this section, we prove the expressiveness results of the PL and GPL distribution. We first show
that the PL distribution has limited expressiveness.

Proposition 1. The PL distribution cannot represent a delta distribution over Sn.

Proof. Assume for a contradiction that there exists some σ ∈ Sn and s such that PLs = δσ. Then
we have

n∏
i=1

exp
(
sσ(i)

)∑n
j=i exp

(
sσ(j)

) = 1.

Since each of the term in the product is less than or equal to 1, we must have

exp
(
sσ(i)

)∑n
j=i exp

(
sσ(j)

) = 1 (21)

for all i ∈ [n]. In particular, we have

exp
(
sσ(1)

)∑n
j=1 exp

(
sσ(j)

) = 1,

which happens if and only if sσ(j) = −∞ for all j ≥ 2. But this contradicts (21).

We then prove that the reverse process using the GPL distribution can model any target distribution.
We first introduce two lemmas.

Lemma 4. The GPL distribution can represent any delta distribution on Sn if allowing −∞ scores.

Proof. Fix σ ∈ Sn. For all i ∈ [n], we let si,σ(i) = 0 and si,j = −∞ for all j ̸= σ(i). Then it is
clear that GPL(sij) = δσ .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Target 1/4 1/2 0 1/4 0 0

S3 σ1 =

(
1 2 3
1 2 3

)
π1 =

(
1 2 3
1 3 2

)
σ2 =

(
1 2 3
2 1 3

)
π2 =

(
1 2 3
2 3 1

)
σ3 =

(
1 2 3
3 1 2

)
π3 =

(
1 2 3
3 2 1

)

Start 1/6 1/6 1/6 1/6 1/6 1/6

0 1 0 0 0 0

1/4 3/4 0 0 0 0

0 3/4 0 1/4 0 0

Target 1/4 1/2 0 1/4 0 0

Figure 3: A simple example for the GPL expressiveness theorem on S3.

Lemma 5. Let σ ∈ Sn and let π := (n− 1 n) ◦σ, where (n− 1 n) is a transposition that swaps
the last two indices and ◦ is function composition. That is, π is obtained from σ by swapping the last
two components. Let p be any probability distribution on Sn whose support is a subset of {σ, π}.
Then there exists scores (sij)i,j∈[n] (possibly −∞) such that GPL(sij) = p.

Proof. Note that we have

π =

(
1 2 · · · n− 1 n

σ(1) σ(2) · · · σ(n) σ(n− 1)

)
.

For all 1 ≤ i ≤ n− 2, we let si,σ(i) = 0 and si,j = −∞ for all j ̸= σ(i). Let sn−1,σ(n−1) = ln p(σ)
and let sn−1,σ(n) = ln p(π). Finally, let sn,j = 0 for all j ∈ [n]. It is then easy to verify that
GPL(sij) = p.

We then state the main expressiveness theorem.
Theorem 6. Let Y0 ∈ Sn be a random variable with arbitrary distribution q(Y0). Let p be any
distribution over Sn. Then there exists some k ∈ N and random variables Y1, . . . , Yk with GPL
(allowing −∞ scores) transition distributions q(Yi | Yi−1) for each i ∈ [k] such that q(Yk) = p.

Before proceeding to the proof, we first provide a small example illustrating the construction we are
going to use. Consider Fig. 3 on S3. Suppose we start with q(Y0) being the uniform distribution, and
the target distribution p is listed at the top row of the diagram. We partition S3 into 3 pairs (σi, πi)
indicated by their color in the diagram. The permutations within each pair differ by one swap of the
last two indices, so each pair is the pair considered in Lemma 5. The first step is to concentrate all
probability mass on π1 using GPL and Lemma 4. Now note that we only need 1/4 + 1/2 = 3/4
probability for the first pair (σ1, π1), so there is a 1/4 excess. We then use Lemma 5 to move the
excess amount to σ1. Then we use Lemma 4 to move the excess amount out of pair 1 to π2 in pair 2.
Finally, we use Lemma 5 to distribute the correct mass to σ1 and π1 from the 3/4 that π1 currently
holds. We now present the formal construction.

Proof. For σ, π ∈ Sn, we say that σ and π are a pair if π = (n− 1 n) ◦ σ. Note that we can
partition Sn into n!/2 disjoint pairs. We write the pairs as (σ1, π1), . . . , (σn!/2, πn!/2).

We now give an algorithm that explicitly constructs the transitions from Y0 to the target distribution p.
The intuition of the algorithm is that we distribute the probability mass for one pair of permutations
at a time. The variable pleftover records how much mass we have yet to distribute.

1. Let pleftover := 1. Let q(Y1 | Y0) = δπ1
.

2. Iterate through all pairs (σi, πi) for i from 1 to n!/2:

(a) Let pexcess := pleftover − p(σi)− p(πi).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(b) Define q(Y3i−1 | Y3i−2) such that

q(Y3i−1 = σi | Y3i−2 = πi) =
pexcess

pleftover
,

q(Y3i−1 = πi | Y3i−2 = πi) = 1− pexcess

pleftover
,

and q(Y3i−1 = τ | Y3i−2 = πi) = 0 for all other τ /∈ {σi, πi}. Let q(Y3i−1 |
Y3i−2 = τ) = δτ for τ /∈ {πi}.

(c) Define q(Y3i | Y3i−1) such that q(Y3i | Y3i−1 = σi) = δπi+1 and q(Y3i | Y3i−1 =
τ) = δτ for all τ ̸= σi.

(d) Finally, define q(Y3i+1 | Y3i) such that

q(Y3i+1 = σi | Y3i = πi) =
p(σi)

1− pexcess
,

q(Y3i+1 = πi | Y3i = πi) =
p(πi)

1− pexcess
,

and q(Y3i+1 = τ | Y3i = πi) = 0 for all other τ /∈ {σi, πi}. Let q(Y3i+1 | Y3i =
τ) = δτ for τ /∈ {πi}.

(e) Update pleftover := pexcess.

3. Return q(Y1 | Y0), . . . , q(Y(3n!/2)+1 | Y3n!/2).

Note that q(Y1 = π1) = 1. Also note that by Lemma 4 and 5, all transition distributions can be
modeled by the GPL distribution. We claim that at the end of iteration i, we must have

(1) pleftover =
∑n!/2

j=i+1 p(σj) + p(πj);

(2) q(Y3i+1 = σi) = p(σi) and q(Y3i+1 = πi) = p(πi);

(3) q(Y3i+1 = πi+1) = pleftover.

We proceed by induction on i. For i = 1, it is clear that pleftover =
∑n!/2

j=2 p(σj) + p(πj) at the end of
the first iteration. We also note that q(Y2 = σ1) = pexcess and q(Y2 = π1) = 1− pexcess = p(σ1) +
p(π1). After step 2(c) of the algorithm, we have q(Y3 = σ1) = 0, q(Y3 = π1) = p(σ1) + p(π1), and
q(Y3 = π2) = pexcess. Finally, after step 2(d) and 2(e), we get q(Y4 = σ1) = p(σ1), q(Y4 = π1) =
p(π1), and q(Y4 = π2) = pleftover.

For the inductive step, let i ≥ 2. We know by the inductive hypothesis that at the start of iteration
i, we have pleftover =

∑n!/2
j=i p(σj) + p(πj). So 0 ≤ pexcess ≤ 1, and all transition distributions in

iteration i are well-defined. It is easy to verify that:

• After step 2(b), q(Y3i−1 = σi) = pexcess and q(Y3i−1 = πi) = p(σi) + p(πi).

• After step 2(c), q(Y3i = σi) = 0, q(Y3i = πi) = p(σi) + p(πi), and q(Y3i = πi+1) =
pexcess.

• After step 2(d)(e), q(Y3i+1 = σi) = p(σi), q(Y3i+1 = πi) = p(πi), and q(Y3i+1 =

πi+1) = pleftover =
∑n!/2

j=i+1 p(σj) + p(πj).

The pleftover at the end of iteration n!/2 is pexcess−p(σn!/2)−p(πn!/2) = 0. This finishes the induction.
Finally, we observe that after iteration i, q(Yj = σi) and q(Yj = πi) will never be changed for j ≥ i.
This finishes the proof.

Finally, Theorem 2, which is stated in the main paper, follows immediately from Theorem 6 by
setting q(Y0) to be the uniform distribution and p to be the target distribution over Sn.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Theorem 2. The reverse process parameterized using the GPL distribution (allowing −∞ scores)
can model any data distribution over Sn.

F RESULTS ON TV DISTANCES BETWEEN RIFFLE SHUFFLES

Proposition 3. Let t ̸= t′ be positive integers. Then

DTV

(
q
(t)
RS, q

(t′)
RS

)
=

1

2

n∑
r=1

An,r

∣∣∣∣∣ 1

2tn

(
n+ 2t − r

n

)
− 1

2t′n

(
n+ 2t

′ − r

n

)∣∣∣∣∣ , (13)

and

DTV

(
q
(t)
RS, u

)
=

1

2

n∑
r=1

An,r

∣∣∣∣ 1

2tn

(
n+ 2t − r

n

)
− 1

n!

∣∣∣∣ . (14)

Proof. Let σ ∈ Sn. It was shown in Bayer & Diaconis (1992) that

q
(t)
RS(σ) =

1

2tn
·
(
n+ 2t − r

n

)
,

where r is the number of rising sequences of σ. Note that if two permutations have the same number
of rising sequences, then they have equal probability. Hence, we have

DTV

(
q
(t)
RS − q

(t′)
RS

)
=

1

2

∑
σ∈Sn

∣∣∣q(t)RS(σ)− q
(t′)
RS (σ)

∣∣∣ = 1

2

n∑
r=1

An,r

∣∣∣q(t)RS(σ)− q
(t′)
RS (σ)

∣∣∣
=

1

2

n∑
r=1

An,r

∣∣∣∣∣ 1

2tn

(
n+ 2t − r

n

)
− 1

2t′n

(
n+ 2t

′ − r

n

)∣∣∣∣∣ ,
as claimed. For (14), replace q

(t′)
RS (σ) with u(σ) = 1

n! in the above derivations.

G ADDITIONAL DETAILS ON EXPERIMENTS

G.1 DATASETS

Jigsaw Puzzle. We created the Noisy MNIST dataset by adding i.i.d. Gaussian noise with a mean
of 0 and a standard deviation of 0.01 to each pixel of the MNIST images. No noise was added to the
CIFAR-10 images. The noisy images are then saved as the Noisy MNIST dataset. During training,
each image is divided into n × n patches. A permutation is then sampled uniformly at random
to shuffle these patches. The training set for Noisy MNIST comprises 60,000 images, while the
CIFAR-10 training set contains 10,000 images. The Noisy MNIST test set, which is pre-shuffled, also
includes 10,000 images. The CIFAR-10 test set, which shuffles images on the fly, contains 10,000
images as well.

Sort 4-Digit MNIST Numbers. For each training epoch, we generate 60,000 sequences of 4-digit
MNIST images, each of length n, constructed dynamically on the fly. These 4-digit MNIST numbers
are created by concatenating four MNIST images, each selected uniformly at random from the entire
MNIST dataset, which consists of 60,000 images. For testing purposes, we similarly generate 10,000
sequences of n 4-digit MNIST numbers on the fly.

TSP. We take the TSP-20 dataset from (Joshi et al., 2021) 1. The train set consists of 1,512,000
graphs with 20 nodes, where each node is an i.i.d. sample from the unit square [0, 1]2. The labels are
optimal TSP tours provided by the Concorde solver (Applegate et al., 2006). The test set consists of
1,280 graphs with 20 nodes, with ground truth tour generated by the Concorde solver as well.

1https://github.com/chaitjo/learning-tsp?tab=readme-ov-file

19

https://github.com/chaitjo/learning-tsp?tab=readme-ov-file

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

G.2 ABLATION STUDIES

Choices for Reverse Transition and Decoding Strategies. As demonstrated in Table 5, we have
explored various combinations of forward and inverse shuffling methods across tasks involving
different sequence lengths. Both GPL and PL consistently excel in all experimental scenarios,
highlighting their robustness and effectiveness. It is important to note that strategies such as random
transposition and random insertion paired with their respective inverse operations, are less suitable
for tasks with longer sequences. This limitation is attributed to the prolonged mixing times required
by these two shuffling methods, a challenge that is thoroughly discussed in Section 3.1.2.

Table 5: More results on sorting the 4-digit MNIST dataset using different combinations of forward
process methods and reverse process methods. Results averaged over 3 runs with different seeds. RS:
riffle shuffle; GPL: generalized Plackett-Luce; IRS: inverse riffle shuffle; RT: random transposition;
IT: inverse transposition; RI: random insertion; II: inverse insertion.

Sequence Length

9 32 52

RS (forward) + GPL (reverse) + greedy

Denoising Schedule [0, 3, 5, 9] [0, 5, 7, 12] [0, 5, 6, 7, 10, 13]
Kendall-Tau ↑ 0.948 0.857 0.779
Accuracy (%) 89.4 54.8 24.4
Correct (%) 95.9 88.1 81.6

RS (forward) + PL (reverse) + greedy

Denoising Schedule [0, 3, 5, 9] [0, 5, 7, 12] [0, 5, 6, 7, 10, 13]
Kendall-Tau 0.953 0.867 0.799
Accuracy (%) 90.9 56.4 26.4
Correct (%) 96.4 89.0 83.3

RS (forward) + PL (reverse) + beam search

Denoising Schedule [0, 3, 5, 9] [0, 5, 7, 12] [0, 5, 6, 7, 10, 13]
Kendall-Tau ↑ 0.955 0.869 0.797
Accuracy (%) 91.1 57.2 26.4
Correct (%) 96.5 89.2 83.1

RS (forward) + IRS (reverse) + greedy

T 9 12 13
Kendall-Tau ↑ 0.947 0.794 0.390
Accuracy (%) 88.6 24.4 0.6
Correct (%) 95.9 82.5 44.6

RT (forward) + IT (reverse) + greedy

T (using approx. n
2 log n) 15 55 105

Kendall-Tau ↑ 0.490
Out of MemoryAccuracy (%) 18.0

Correct (%) 59.5

RI (forward) + II (reverse) + greedy

T (using approx. n log n) 25 110 205
Kendall-Tau ↑ 0.954

Out of MemoryAccuracy (%) 91.1
Correct (%) 96.4

Denoising Schedule. We also conduct an ablation study on how we should merge reverse steps. As
shown in Table 6, the choice of the denoising schedule can significantly affect the final performance.
In particular, for n = 100 on the Sort 4-Digit MNIST Numbers task, the fact that [0, 15] has 0
accuracy justifies our motivation to use diffusion to break down learning into smaller steps. The
result we get also matches with our proposed heuristic in Section 3.4.

Table 6: Results of sorting 100 4-digit MNIST images using various denoising schedules with the
combination of RS, GPL and beam search consistently applied.

Denoising Schedule [0, 15] [0, 8, 9, 15] [0, 7, 8, 9, 15] [0, 7, 8, 10, 15] [0, 8, 10, 15]

Kendall-Tau ↑ 0.000 0.316 0.000 0.000 0.646
Accuracy (%) 0.0 0.0 0.0 0.0 4.5
Correct (%) 1.0 39.6 1.0 1.0 69.8

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

G.3 LATENT LOSS IN JIGSAW PUZZLE

In the original setup of the Jigsaw Puzzle experiment using the Gumbel-Sinkhorn network (Mena
et al., 2018), the permutations are latent. That is, the loss function in Gumbel-Sinkhorn is a pixel-level
MSE loss and does not use the ground truth permutation label. However, our loss function (12)
actually (implicitly) uses the ground truth permutation that maps the shuffled image patches to their
original order. Therefore, for fair comparison with the Gumbel-Sinkhorn network in the Jigsaw
Puzzle experiment, we modify our loss function so that it does not use the ground truth permutation.
Recall from Section 3.2 that we defined

pθ(Xt−1|Xt) =
∑
σ′
t∈T

p(Xt−1|Xt, σ
′
t)pθ(σ

′
t|Xt). (22)

In our original setup, we defined p(Xt−1|Xt, σ
′
t) as a delta distribution δ(Xt−1 = Qσ′

t
Xt), but this

would require that we know the permutation that turns Xt−1 to Xt, which is part of the ground truth.
So instead, we parameterize p(Xt−1|Xt, σ

′
t) as a Gaussian distribution N

(
Xt−1|Qσt

Xt, I
)
. At the

same time, we note that to find the gradient of (12), it suffices to find the gradient of the log of (22).
We use the REINFORCE trick (Williams, 1992) to find the gradient of log pθ(Xt−1|Xt), which gives
us

∇θ log pθ(Xt−1|Xt)

=
1∑

σ′
t∈T

p(Xt−1|Xt, σ′
t)pθ(σ

′
t|Xt)

·
∑
σ′
t∈T

p(Xt−1|Xt, σ
′
t)∇θpθ(σ

′
t|Xt)

=
1∑

σ′
t∈T

p(Xt−1|Xt, σ′
t)pθ(σ

′
t|Xt)

·
∑
σ′
t∈T

p(Xt−1|Xt, σ
′
t)pθ(σ

′
t|Xt)

(
∇θ log pθ(σt|Xt)

)

=
Epθ(σt|Xt)

[
p(Xt−1|Xt, σ

′
t)∇θ log pθ(σt|Xt)

]
Epθ(σt|Xt)

[
p(Xt−1|Xt, σ′

t)
]

≈
N∑

n=1

p
(
Xt−1|Xt, σ

(n)
t

)
∑N

m=1 p
(
Xt−1|Xt, σ

(m)
t

) · ∇θ log pθ

(
σ
(n)
t |Xt

)
,

where we have used Monte-Carlo estimation in the last step, and σ
(1)
t , . . . , σ

(N)
t ∼ pθ(σt|Xt). We

further add an entropy regularization term−λ·Epθ(σt|Xt) [log pθ(σt|Xt)] to each of log pθ(Xt−1|Xt).
Using the same REINFORCE and Monte-Carlo trick, we obtain

∇θ

(
−λ · Epθ(σt|Xt)

[
log pθ(σt|Xt)

])
≈

N∑
n=1

−λ log pθ

(
σ
(n)
t |Xt

)
∇θ log pθ

(
σ
(n)
t |Xt

)
,

where σ
(1)
t , . . . , σ

(N)
t ∼ pθ(σt|Xt). Therefore, we have

∇θ

(
log pθ(Xt−1|Xt)− λ · Epθ(σt|Xt)

[
log pθ(σt|Xt)

])

≈
N∑

n=1

p
(
Xt−1|Xt, σ

(n)
t

)
∑N

m=1 p
(
Xt−1|Xt, σ

(m)
t

) − λ log pθ

(
σ
(n)
t |Xt

)
︸ ︷︷ ︸

weight

 · ∇θ log pθ

(
σ
(n)
t |Xt

)
, (23)

where σ
(1)
t , . . . , σ

(N)
t ∼ pθ(σt|Xt). We then substitute in

p
(
Xt−1|Xt, σ

(n)
t

)
= N

(
Xt−1|Qσ

(n)
t

Xt, I
)

for all n ∈ [N]. Finally, we also subtract the exponential moving average weight as a control variate
for variance reduction, where the exponential moving average is given by ema ← ema_rate ·
ema+ (1− ema_rate) · weight for each gradient descent step.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

G.4 TRAINING DETAILS AND ARCHITECTURE HYPERPARAMETERS

Hardware. The Jigsaw Puzzle and Sort 4-Digit MNIST Numbers experiments are trained and
evaluated on the NVIDIA A40 GPU. The TSP experiments are trained and evaluated on the NVIDIA
A40 and A100 GPU.

Jigsaw Puzzle. For the Jigsaw Puzzle experiments, we use the AdamW optimizer (Loshchilov &
Hutter, 2019) with weight decay 1e-2, ε = 1e-9, and β = (0.9, 0.98). We use the Noam learning rate
scheduler given in (Vaswani et al., 2023) with 51,600 warmup steps for Noisy MNIST and 46,000
steps for CIFAR-10. We train for 120 epochs with a batch size of 64. When computing the loss (12),
we use Monte-Carlo estimation for the expectation and sample 3 trajectories. For REINFORCE, we
sampled 10 times for the Monte-Carlo estimation in (23), and we used an entropy regularization rate
λ = 0.05 and an ema_rate of 0.995. The neural network architecture and related hyperparameters
are given in Table 7. The denoising schedules, with riffle shuffles as the forward process and GPL as
the reverse process, are give in Table 8. For beam search, we use a beam size of 200 when decoding
from GPL, and we use a beam size of 20 when decoding along the diffusion denoising schedule.

Table 7: Jigsaw puzzle neural network architecture and hyperparameters.

Layer Details

Convolution Output channels 32, kernel size 3,
padding 1, stride 1

Batch Normalization −
ReLU −

Max-pooling Pooling 2
Fully-connected Output dimension (dim_after_conv+ 128)/2

ReLU −
Fully-connected Output dimension 128

Transformer encoder 7 layers, 8 heads, model dimension (dmodel) 128,
feed-forward dimension 512, dropout 0.1

Table 8: Denoising schedules for the Jigsaw Puzzle task, where we use riffle shuffle in the forward
process and GPL in the revserse process.

Number of patches per side Denoising schedule
2× 2 [0, 2, 7]
3× 3 [0, 3, 5, 9]
4× 4 [0, 4, 6, 10]
5× 5 [0, 5, 7, 11]
6× 6 [0, 6, 8, 12]

Sort 4-Digit MNIST Numbers. For the task of sorting 4-digit MNIST numbers with n ≤ 100, we
use the exact training and beam search setup as the Jigsaw Puzzle, except that we do not need to use
REINFORCE. The neural network architecture is given in Table 9, The denoising schedules, with
riffle shuffles as the forward process and GPL as the reverse process, are give in Table 10.

For n = 200, we use the cosine decay learning rate schedule with 2350 steps of linear warmup and
maximum learning rate 5e-5. The neural network architecture is the same as that of n ≤ 100, with
the exception that we use dmodel = dfeed-forward = 768, 12 layers, and 12 heads for the transformer
encoder layer. We use the PL distribution for the reverse process. When computing the loss, we
randomly sample a timestep from the denoising schedule as in Eq.(20) in Appendix C.2 due to
efficiency reasons. All other setups are the same as that of n ≤ 100.

TSP. For solving the TSP, we perform supervised learning to train our SymmetricDiffusers to solve
the TSP. Let σ∗ be an optimal permutation, and let X0 be the list of nodes ordered by σ∗. We note
that any cyclic shift of X0 is also optimal. Thus, for simplicity and without loss of generality, we
always assume σ∗(1) = 1. In the forward process of SymmetricDiffusers, we only shuffle the second

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 9: Sort 4-digit MNIST numbers neural network architecture and hyperparameters.

Layer Details

Convolution Output channels 32, kernel size 5,
padding 2, stride 1

Batch Normalization −
ReLU −

Max-pooling Pooling 2

Convolution Output channels 64, kernel size 5,
padding 2, stride 1

Batch Normalization −
ReLU −

Max-pooling Pooling 2
Fully-connected Output dimension (dim_after_conv+ 128)/2

ReLU −
Fully-connected Output dimension 128

Transformer encoder 7 layers, 8 heads, model dimension (dmodel) 128,
feed-forward dimension 512, dropout 0.1

Table 10: Denoising schedules for the Sort 4-Digit MNIST Numbers task, where we use riffle shuffle
in the forward process and GPL in the revserse process.

Sequence Length n Denoising schedule
3 [0, 2, 7]
5 [0, 2, 8]
7 [0, 3, 8]
9 [0, 3, 5, 9]
15 [0, 4, 7, 10]
32 [0, 5, 7, 12]
52 [0, 5, 6, 7, 10, 13]

100 [0, 8, 10, 15]
200 [0, 9, 10, 12]

to the nth node (or component). In the reverse process, we mask certain parameters of the reverse
distribution so that we will always sample a permutation with σt(1) = 1.

The architecture details are slightly different for TSP, since we need to input both node and edge
features into our network. Denote by Xt the ordered list of nodes at time t. We obtain Yt ∈ Rn×dmodel

as in Eq. (15), where encoderθ is now a sinusoidal embedding of the 2D coordinates. Let
Dt ∈ Rn×n be the matrix representing the pairwise distances of points in Xt, respecting the order in
Xt. Let Et ∈ R(

n
2) be the flattened vector of the upper triangular part of Dt. We also apply sinusoidal

embedding to Et and add time_embd(t) to it. We call the result Ft ∈ R(
n
2)×dmodel .

Now, instead of applying the usual transformer encoder with self-attentions, we alternate between
cross-attentions and self-attentions. For cross-attention layers, we use the node representations from
the previous layer as the query, and we always use K = V = Ft. We also apply an attention mask
to the cross-attention, so that each node will only attend to edges that it is incident with. For self-
attention layers, we always use the node representations from the previous layer as input. We always
use an even number of layers, with the first layer being a cross-attention layer, and the last layer
being a self-attention layer structured to produce the required parameters for the reverse distribution
as illustrated in Appendix B. For hyperparameters, we use 16 alternating layers, 8 attention heads,
dmodel = 256, feed-forward hidden dimension 1024, and dropout rate 0.1.

For training details on the TSP-20 task, we use the AdamW optimizer (Loshchilov & Hutter, 2019)
with weight decay 1e-4, ε = 1e-8, and β = (0.9, 0.999). We use the cosine annealing learning rate
scheduler starting from 2e-4 and ending at 0. We train for 50 epochs with a batch size of 512. When
computing the loss (12), we use Monte-Carlo estimation for the expectation and sample 1 trajectory.
We use a denoising schedule of [0, 4, 5, 7], with riffle shuffles as the forward process and GPL as the

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

reverse process. Finally, we use beam search for decoding, and we use a beam size of 256 both when
decoding from GPL and decoding along the denoising schedule.

G.5 BASELINES IMPLEMENTATION DETAILS

Gumbel-Sinkhorn Network. We have re-implemented the Gumbel-Sinkhorn Network (Mena
et al., 2018) for application on jigsaw puzzles, following the implementations provided in the official
repository2. To ensure a fair comparison, we conducted a thorough grid search of the model’s
hyper-parameters. The parameters included in our search space are as follows,

Table 11: Hyperparameter Search Space for the Gumbel-Sinkhorn Network

Hyperparameter Values

Learning Rate (lr) {10−3, 10−4, 10−5}
Batch Size {50}
Hidden Channels {64, 128}
Kernel Size {3, 5}
τ {0.2, 0.5, 1, 2, 5}
Number of Sinkhorn Iterations (n_sink_iter) {20}
Number of Samples {10}

Diffsort & Error-free Diffsort We have implemented two differentiable sorting networks from
the official repository3 specific to error-free diffsort. For sorting 4-digit MNIST images, error-free
diffsort employs TransformerL as its backbone, with detailed hyperparameters listed in Table 12.
Conversely, Diffsort uses a CNN as its backbone, with a learning rate set to 10−3.5; the relevant
hyperparameters are outlined in Table 13.

For jigsaw puzzle tasks, error-free diffsort continues to utilize a transformer, whereas Diffsort employs
a CNN. For other configurations, we align the settings with those of tasks having similar sequence
lengths in the 4-digit MNIST sorting task. For instance, for 3 × 3 puzzles, we apply the same
configuration as used for sorting tasks with a sequence length of 9.

Table 12: Hyperparameters for Error-Free Diffsort on Sorting 4-Digit MNIST Numbers

Sequence Length Steepness Sorting Network Loss Weight Learning Rate

3 10 odd even 1.00 10−4

5 26 odd even 1.00 10−4

7 31 odd even 1.00 10−4

9 34 odd even 1.00 10−4

15 25 odd even 0.10 10−4

32 124 odd even 0.10 10−4

52 130 bitonic 0.10 10−3.5

100 140 bitonic 0.10 10−3.5

200 200 bitonic 0.10 10−4

TSP. For the baselines for TSP, we first have 4 traditional operations research solvers. Gurobi
(Gurobi Optimization, LLC, 2023) and Concorde (Applegate et al., 2006) are known as exact solvers,
while LKH-3 (Helsgaun, 2017) is a strong heuristic and 2-Opt (Lin & Kernighan, 1973) is a weak
heuristic. For LKH-3, we used 500 trials, and for 2-Opt, we used 5 random initial guesses with seed
42.

For the GCN model(Joshi et al., 2019), we utilized the official repository4 and adhered closely to its
default configuration for the TSP-20 dataset. For DIFUSCO(Sun & Yang, 2023), we sourced it from

2https://github.com/google/gumbel_sinkhorn
3https://github.com/jungtaekkim/error-free-differentiable-swap-functions
4https://github.com/chaitjo/graph-convnet-tsp

24

https://github.com/google/gumbel_sinkhorn
https://github.com/jungtaekkim/error-free-differentiable-swap-functions
https://github.com/chaitjo/graph-convnet-tsp

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 13: Hyperparameters for Diffsort on Sorting 4-Digit MNIST Numbers

Sequence Length Steepness Sorting Network
3 6 odd even
5 20 odd even
7 29 odd even
9 32 odd even

15 25 odd even
32 25 bitonic
52 25 bitonic

100 25 bitonic
200 200 bitonic

its official repository5 and followed the recommended configuration of TSP-50 dataset, with a minor
adjustment in the batch size. We increased the batch size to 512 to accelerate the training process. For
fair comparison, we also remove the post-processing heuristics in both models during the evaluation.

H LIMITATIONS

Despite the success of this method on various tasks, the model presented in this paper still requires a
time-space complexity of O(n2) due to its reliance on the parametric representation of GPL and the
backbone of transformer attention layers. This complexity poses a significant challenge in scaling up
to applications involving larger symmetric groups or Lie groups.

5https://github.com/Edward-Sun/DIFUSCO

25

https://github.com/Edward-Sun/DIFUSCO

	Introduction
	Related Works
	Learning Diffusion Models on Finite Symmetric Groups
	Forward Diffusion Process: Card Shuffling
	Card Shuffling Methods
	Mixing Times and Cut-off Phenomenon

	The Reverse Diffusion Process
	Inverse Card Shuffling
	The Plackett-Luce Distribution and Its Generalization

	Network Architecture and Training
	Denoising Schedule via Merging Reverse Steps
	Reverse Process Decoding

	Experiments
	Sorting 4-digit MNIST Images
	Jigsaw Puzzle
	The Travelling Salesman Problem

	Conclusion
	Additional Details of the GSR Riffle Shuffle Model
	Details of Our Network Architecture
	Discussions on Other Forms of the Loss
	Using KL Divergence
	Sampling a Random Timestep

	Additional Details of Decoding
	The Expressiveness of PL and GPL
	Results on TV Distances between Riffle Shuffles
	Additional Details on Experiments
	Datasets
	Ablation Studies
	Latent Loss in Jigsaw Puzzle
	Training Details and Architecture Hyperparameters
	Baselines Implementation Details

	Limitations

