Under Review - Proceedings Track 1-14, 2025 Symmetry and Geometry in Neural Representations

On neural circuits of working memory sequence permutation:
optimizing circuit architectures via Cayley graphs

Kevin Bien KEVIN.BIENQTCU.EDU
Texas Christian University, Fort Worth, Texas

Junfeng Zuo ZUOJUNFENGQ@PKU.EDU.CN
Peking University, Beijing, China

Wen-Hao Zhang WENHAO.ZHANGQUTSOUTHWESTERN.EDU
UT Southwestern Medical Center, Dallas, Texas

Editors: List of editors’ names

Abstract

The brain’s ability to store and manipulate working memory (WM) sequences is pivotal
for higher cognitive reasoning. Although the neural circuit mechanisms for storing WM
sequences have been extensively studied, those for manipulating WM sequences remain
largely unknown. Inspired by a recent WM sequence manipulation experiment in mon-
keys, we design a functional, biologically plausible neural circuit model that realizes WM
sequence permutations using guidance from permutation groups and their Cayley graph
representations. The circuit consists of two interconnected modules: a memory module
composed of continuous attractor-based memory motifs that store and interchange items
in WM sequences, and a control module that sends gain modulations to guide permutation
operations within the memory module. The control module features a hierarchical tree
structure that decomposes complex permutations into a sequence of basic two-item swaps,
simplifying circuit implementations. We demonstrate that permutation circuit architec-
tures have one-to-one correspondence with Cayley graphs representing permutation group
structure, where the group generating set directly determines the connectivity between
memory motifs. Since each permutation group may have multiple generating sets, there
are multiple circuit architectures implementing the same permutation. We therefore uti-
lize Cayley graph analysis to determine trade-offs between computational efficiency, circuit
complexity, and circuit robustness. Our study establishes connections between abstract
group theory, Cayley graphs, and biologically plausible circuit architectures, providing in-
sights into principled circuit design via algebraic frameworks.

1. Introduction

Working memory (WM) is one of the central components of cognitive reasoning (Fuster
and Alexander, 1971; Miller and Cohen, 2001), which includes maintaining information
temporarily and manipulating this information based on some rules. Studying how neural
circuits in the brain implement WM maintenance and manipulation can advance our un-
derstanding of the neural basis of cognitive reasoning and may inspire next-generation Al
systems. While WM research has traditionally focused on maintenance, recent experimen-
tal and theoretical studies have begun to investigate WM manipulation. An elementary
operation of WM manipulation is re-ordering WM sequences (Stephens, 1963; Tarr and
Pinker, 1989; Miller et al., 2018; Tian et al., 2024), e.g., swapping two WM items. A recent

© 2025 K. Bien, J. Zuo & W.-H. Zhang.

BIEN ZUO ZHANG

neuroscience experiment (Tian et al., 2024) provided unprecedented electrophysiological
observations on the neural dynamics underlying this operation. It suggests that the frontal
cortex explicitly swaps the WM items stored in two memory subspaces using a parallel
swapping algorithm with two steps: loading the content from two memory subspaces to
corresponding temporary subspaces, then cross loading the content from temporary sub-
spaces back to memory subspaces (Fig.1A). Building on this finding, a circuit model (Zuo
et al., 2025) was developed to maintain and manipulate WM sequences. The model consists
of two interconnected modules: a memory module composed of continuous attractor net-
work (CAN)-based (temporary) memory subspaces storing WM item features and a control
module issuing gain-modulation commands to orchestrate specific operations in the memory
module. The circuit successfully swaps the two items in the WM sequence by utilizing au-
tonomous circuit dynamics and generates neuronal responses consistent with experimental
observations. Furthermore, the model was extended to permute 3-item WM sequences by
executing two swaps in sequence.

The present study focuses on the scalability of the permutation operation. Given a
set of basic operations, we ask whether arbitrarily complex operations can be efficiently
executed through their proper composition. Specifically, by strategically selecting which
items to swap, an n-item permutation (for large n) can be constructed with a minimal
number of swaps. Because such compositions are naturally captured by the symmetric
(permutation) group, we assess the scalability of different circuit architectures by examining
their corresponding Cayley graph representations. This approach allows us to identify
which architectures most efficiently and robustly manipulate longer WM sequences. Our
analysis suggests that optimal performance is achieved when a small subset of memory
subspaces function as relay centers—that is, when the memory module exhibits a community
structure—so that items stored in WM can be flexibly routed to and from these hubs. To
demonstrate the viability of our approach, we develop and simulate a circuit capable of
manipulating sequences of up to 6 items.

2. A neural circuit model for WM swapping and permutation

The swap can be implemented by a neural circuit model governed by autonomous dynamics.
This model is built from well-established canonical neural circuit motifs and operations,
which are organically integrated to realize swaps between WM items. The detailed math of
the circuit dynamics is in App. A.

2.1. Overview of circuit architecture for swapping

The circuit has two recurrently connected modules (Fig. 1B-C): A memory module for
storing information, and a control module for manipulating WM contents. The control
module sends gain modulation to excite the memory module, while the memory module
sends inhibitory feedback to the control module to register the execution of an operation.
Mimicking typical WM experiments (e.g., Tian et al. (2024)), each WM item is a con-
tinuous feature like orientation and needs to be stored in the memory module circuit. In the
present study, the memory circuit storing one WM item is modeled as a continuous attrac-
tor network (CAN), a canonical circuit model in neuroscience that represents continuous
features (Compte et al., 2000; Wimmer et al., 2014; Ben-Yishai et al., 1995; Knierim and

OPTIMIZING CIRCUIT ARCHITECTURES VIA CAYLEY GRAPHS

A Step 1O B C D
'.. 21 ’:‘
740 W SmT—T— 1.Swaprule —= 2. Motor output rule —
Control module N M
OO S TADTAR —
------ v . Gain
g 28 c§ Y N Y VYV N V% I = | P RGO L CL T EEPEPE R -_—
i T2 2 s 8 S5 |imhro = \"Tm'.‘ T T Me
-0 Ec 8 | R [| p—
g] é | k‘_‘ [|
I 1 1 I
— e @ 5@ @ s ® —
T2 2 N Memen/modile I b’} r [1\ r .
----- @ " I Mutual | Tt A q
@ @ inhibition P)
Thresholdi
Qi 1 o @ @ Tw| -
N Ty O .
Time(ms)

Figure 1: (A) Diagram of the parallel swap algorithm shown to be used in primate WM.
(B-C) The modular structure of the recurrent circuit for swapping and outputting two WM
items. (D) Population activities of (temporary) memory motifs during swapping. Shaded
areas indicate the time windows when the swapping cue is presented (gray) and swapping
control neuron fires (purple). Adapted from Zuo et al. (2025).

Zhang, 2012; Wu et al., 2016; Khona and Fiete, 2022). A CAN consists of feature-selective
excitatory (E) neurons and a pool of inhibitory (I) neurons. The E neurons utilize their
structured recurrent kernel to give rise to structured population responses to store WM
items (Eq. 6), while I neurons stabilize the network dynamics. Importantly, the gain of E
neurons can be modulated by the control circuit (Eq. 8) that switches a CAN between Up
(high response) and Down (low response) states via the cusp bifurcation (Guckenheimer
and Kuznetsov, 2007). We will show the control circuit can utilize the gain modulation to
command the memory module to execute corresponding operations.

Different CANs are interconnected through recurrent connection kernels. To execute a
swap, it requires two memory motifs (M; and Ms) to store the items and two temporary
motifs (T2 and T51) to hold the items in intermediate steps. These motifs form a circle
structure in connection topology (M; — T2 — Ms — Ty — My, Fig. 1C). I neurons
associated with each CAN are driven by E neurons in the same and neighboring CANs (Eq.
9). The shared inhibition between CANs introduces competitions between them, which is
crucial for autonomous swapping.

The control circuit also has recurrent dynamics consisting of E and I neurons. When
receiving external swapping signals, it provides gain modulations to E neurons in the tempo-
rary motif, and meanwhile receives feedback from memory motifs. The mutual interactions
between the control and the memory modules are crucial for utilizing the recurrent circuit’s
autonomous dynamics to perform swapping while rule cues are transiently presented.

The swapping process is coordinated by gain modulation from the control circuit (Fig.
3B). The key principle is that gain modulation can flexibly switch the flow of information
on or off without altering synaptic weights. Memory items were initially stored in memory
motifs M; and Ms. Once the swapping process is initiated, the control circuit will be
activated to increase the gain of temporary motifs (T2 and T5) and switch them on,
corresponding to loading the content from memory motifs. Meanwhile, content in memory
motifs will be erased by mutual inhibition. The swapping control neuron provides sustained
gain to temporary motifs, enabling temporary motifs to reactivate subsequent memory

BIEN ZUO ZHANG

>
vy)
@)
O

Memory Motif Activity (hz) Control Neuron Activity (hz) F~Rule £ Co

c— —3 (123) EFEEED
» 05 % 12 | Mon
(T2) [TTTT e
0.0 \ (13 Mo

— 12

m 2)

W] [.
5 ° — (3 Tt
M - B a3 My
° \ Motor
0 .0

50.0 i 250 Steps
Time (ms)

Permutation
Neuron

Swap
Neurons

o = N
State Transition
= Jaliealic 4
|
)

Motor Memory

Module Module
—
| —

o
@
3
N
I
=4
>
)

Time (ms)

Figure 2: (A) Diagram of 3-item permutation circuit. The gain input from the 3-
permutation to swapping control neurons decreases with the order of swaps in the sequence.
Triangles are permutation/swap control neurons; orange circles are conjugate neurons. (B)
Neural activity of memory motifs. (C) Neural activity of control neurons. (E) State tran-
sition matrix illustrating component activity across time. Adapted from Zuo et al. (2025).

motifs and relay WM contents to them, completing the WM item swapping. In the end,
control neuron will be shut down by inhibitory feedback from memory motifs after they
rebuild their activities, confirming that the swapping operation is executed.

2.2. From swapping to sequence permutation

Permutation group theory can be used to describe the underlying structure of permutations.
The set of 3-item permutations is represented by the group S3 containing 6 permutations:
{0,(1 2),(2 3),(1 3),(1 23),(132)} (using the cycle notation). () is the identity operation
that does not change the sequence, (1 2) denotes swapping the first and second items, i.e.,
changing the sequence ab into ba. (1 2 3) denotes moving position 1’s original item to
position 2, position 2’s original item to position 3, and position 3’s original item to position
1, i.e., changing the original sequence abc to cab.

Any permutation can be generated through a sequence of elementary swaps. For exam-
ple, (12 3) can be decomposed as:

(123) = (13)(12): abe °25 bac L2 can, (1)

where the order of the two-swap product defines sequential execution. Note that this de-
composition is not unique, e.g., (1 2 3) can also be decomposed as (2 3)(1 3) or (1 2)(2 3).

2.3. A neural circuit for 3-item sequence manipulation

Inspired by the structure of the permutation group S35 (Eq. 1), a tree-structured control
module can be developed to extend the swapping circuit to perform 3-item permutations:
each 3-item permutation (represented by a parent node) can be orchestrated by composing
multiple 2-item swaps (represented by child nodes).

Child nodes (Fig. 2A, triangles) execute individual swaps by modulating the gain sent to
the memory module, while parent nodes modulate the gain sent to child nodes to execute a
sequence of swaps. To ensure that swaps are executed in order, the top-down modulations

OPTIMIZING CIRCUIT ARCHITECTURES VIA CAYLEY GRAPHS

Generating Set Generating Set Generating Set Generating Set
A{ , ,(23)} B {(12),(23)} C {(13),(23)} D {(12), }

e
Q.
g ®
S
O
>
)
>
©
° ()

o

o

2]

°

=

o

g

o 2

£ 2
[&]
x
=
[&]
S
<<
x
[&]
=
O

Figure 3: The Cayley graph of S5 based on the generating set (shown at the top) corre-
sponds to the connectivity between memory modules. Top row: Cayley graphs where each
node represents a permutation and each bidirectional edge represents the swap convert-
ing the permutations at its two ends. Bottom row: the corresponding circuit architecture
implementing the denoted generating set. Each swap in the generating set requires that
corresponding memory slots are connected via two temporary slots, e.g., (1 2) requires M;
and My to be connected via 172 and To;.

on the tree has a spatial gradient over the child nodes. Nodes on the same level will
mutually inhibit each other, preventing them from interference. Similar to the swapping
circuit, child nodes feed back an inhibitory signal to their parent nodes to confirm the
execution of swaps. Furthermore, each neuron in the control tree is paired with a conjugate
neuron (Fig. 2A, orange circles) that provides inhibitory feedback. The conjugate neuron
is activated once the corresponding swap is executed, and remains so until the completion
of the whole permutation (controlled by the root node). The conjugate neurons counteract
redundant gain on the already executed swaps, instantiating an ’'inhibition of return’.

While there is not yet empirical evidence that neural systems manipulate WM sequences
by composing basic swaps, our model makes direct predictions about the activity of memory
subspaces during a sequence manipulation task (Fig. 2B), and could be validated through
existing experimental paradigms (Tian et al., 2024).

3. Comparing circuit architecture efficiency

Directly swapping the contents of two memory motifs requires the use of two temporary
motifs, which are gain-modulated by the control circuit. This process consumes both time
and storage resources. However, as discussed in the previous section, the decomposition of
permutations is not unique. By carefully selecting which swaps to execute, the system can
significantly reduce the average cost associated with implementing any possible permutation.

BIEN ZUO ZHANG

3.1. Analyzing the circuit architecture via the group generating set

A set of swaps from which we can compose all permutations in a permutation group is
called a generating set. Given a permutation group S, there can be multiple generating
sets. For example, S3 has four generating sets of swaps: {(12),(13),(23)}, {(12),(23)},
{(13),(23)}, and {(1 2),(1 3)}. Permutations in S5 are are produced by elements in the
generating sets through function composition. One way to visualize the group structure
given the choice of a generating set G C S,, is the Cayley graph C(S,,G) (Fig. 3). Each
node of C(S,, G) represents a permutation in S, and two nodes are connected if one can
be transformed into another by applying a single swap from set GG, represented by an edge.
A decomposition of a permutation is given by the path between it and the identity node.
By tracing the shortest path from each node (a permutation) to the identity node (), we
can determine the optimal decomposition of each 3-item permutation under the choice of
generating set. For example, we can see that the permutation node (1 2 3) is connected to
() through the path ((12),(13)) (Fig. 3A), visualizing Eq. (1).

Different generating sets allow different decomposition strategies. A larger generating
set can decompose permutations in fewer steps with higher computational efficiency. For
example, every node in C(S3, {(12),(13),(23)}) (Fig. 3A) is no more than 2 edges away
from (), but all other graphs corresponding to smaller generating sets have a permutation
with longer paths of 3 edges (Fig. 3B-D). Therefore, by choosing a large generating set,
we can minimize the number of swaps executed to implement each permutation, in turn
improve the computation efficiency. However, at the circuit level, implementing one swap
in a generating set requires two temporary motifs connecting a pair of memory motifs, so
a larger generating set requires more temporary motifs and increased circuit complexity.
Thus there is a trade-off between circuit complexity and computational efficiency.

3.2. Balancing circuit complexity and computational efficiency

For the circuit to decompose every permutation in 5, into the minimal number of swaps,
it would need to implement the full set of swaps, which would require 2 x (g) temporary
motifs to implement. To determine whether another memory module architecture could
decompose permutations nearly as efficiently without requiring as many temporary motifs,
we examined how the average number of swaps needed to decompose a permutation in S,
varied across different generating sets. We can compute this using Cayley graphs as:

q(Gn) = S d(w, (), veC(S,,),)

where d(v,()) is the minimal number of edges between the node v and the identity ()
on C(S,,G). We first consider three example generating sets with corresponding circuit
architectures shown in Fig. 4A: the full set of swaps (denoted as F'), the set of swaps between
adjacent motifs (denoted as A), and a centralized set composed of (1 i), i € {2,...,n}
(denoted as C). Fig. 4B plots d(G,n) across each of these generating sets. The average
decomposition length was computed for permutation groups up to Sg, whose sequence length
is longer than the typical working memory capacity, ranging from 4 to 7 (Luck and Vogel,

1997; Cowan, 2001).

OPTIMIZING CIRCUIT ARCHITECTURES VIA CAYLEY GRAPHS

B C a=05,4=05

@ ¥ — s, p 7 -
124 — (S, A)

0] — s 0 1

— C(S,, CS)

) & W) [
Fully Connected Centrally Connected =%
Memory Module Memory Module °
25 ¢
&
Adjacently Connected Community Structured
Memory Module Memory Module

Average Distance to ()
N s oo o

Cost

Generating Set Size
=
G

3 4 5 6 7 8 3 4 5
Symmetry Group Symmetry Group

Figure 4: (A) Diagrams of memory modules implementing different generating sets of Se.
(B, top) Average distance to () on Cayley graphs across different generating sets (d(G,n))
for 3 < n < 8. (bottom) Sizes of different generating sets (|G|) for 3 < n < 8. (C)

Cost(G,n) across different generating sets and weights for 3 <n <8

To determine which generating set achieves the best balance between time and memory
efficiency, we define a cost function:

Cost(G,n) = a|G| + Bd(G,n) (3)

where o and S are trade-off coefficients, and |G| denotes the size of the generating set. We
found that across a wide range of coefficients («, 5 € [0.25,0.75]), the centralized archi-
tecture has the minimal cost (Fig. 4C), suggesting the circuit obtains an optimal balance
between circuit complexity and computational efficiency when it relays activity between a
central memory motif (a “relay motif”, M; in this case) and every other memory motif.

3.3. Improving the circuit robustness via a community structured memory
module

Although the centralized architecture achieves a balance between time and memory effi-
ciency, it has a severe vulnerability: if the relay motif is dysfunctional, the circuit will
not be able to produce any permutation. To mitigate this vulnerability, we can rearrange
the memory module so that motif connections are distributed across multiple relay motifs.
Each relay motif is a locally centralized node forming a local community, while relay motifs
across communities are connected, creating a community structured network. Such an
architecture can emerge organically through a simple preferential attachment mechanism
(see Alg. 1).

By incorporating multiple relay motifs, we can ensure that losing one relay motif only
impairs permutations for the corresponding community while leaving other communities
intact. This implies that the community structured architecture is less vulnerable to failure
from a single component and is more robust.

To quantify the robustness, we measure the minimum number of permutations the
memory module can still execute after inactivating one memory motif. To formalize this,

BIEN ZUO ZHANG

>
o

100001 — C

—Cs (145623)

8000

Permutation
Neuron

6000

Robustness
Swap
Neurons

4000

2000

Memory
Module

4 6 8 10 12 14
Symmetry Group

Figure 5: (A) Robustness (r(G,n)) of generating sets C' and C'S for 3 < n < 15. (B) A
simplified circuit diagram of the network for producing 6-item permutations. All elements
depicted in Fig. 2B (such as conjugate neurons, the motor module, mutual inhibition
between control neurons) are included in the network but some are left out of the diagram
for visual simplicity. Similarly, inhibitory feedback from the memory motifs to swap neurons
is only partially depicted. Notice that the memory module is arranged with the community
structured architecture highlighted in Fig. 4A.

let G\; denote the remaining swaps in the generating set G C S, after removing all swaps
involving the memory motif M;. For example, given a generating set G = {(1 2),(2 3)},
after removing swaps involving M3, the remaining subset G\3 = {(1 2)}. Consequently, the
dysfunction of motif M; does not impair the swaps contained in G\;, nor the permutations
composed from swaps in G\;. We define r;(G) as the number of permutations generated by
G\;, i.e., the number of nodes in C(S,, G\;) connected to (). Therefore, the robustness of
the entire network is defined as the worst-case value of r;(G) across all motifs:

r(G,n) = miinri(G), ie{l,..n}. (4)

Fig. 5A visualizes r(C,n) and r(CS,n), showing that the community structured memory
module is substantially more robust than the centrally connected memory module. Al-
though the computational cost of the community structured memory module is slightly
higher than the centralized architecture (Fig. 4C), we conclude that the community struc-
ture achieves a better balance between circuit architecture complexity, computational effi-
ciency, and robustness.

As a proof of concept for our community structured memory module (Fig. 5B), we
expand the circuit so that it could produce the 6-item permutation (1 4 5 6 2 3) with
neuronal activities shown in Fig. Al. We emphasize that this extension of the circuit
required only the addition of control neurons and memory/temporary motifs, while the
underlying dynamics of the basic components of the model did not need to be changed,
demonstrating the scalability of the circuit.

OPTIMIZING CIRCUIT ARCHITECTURES VIA CAYLEY GRAPHS

4. Conclusion and Discussion

The present study investigates the architecture optimization of neural circuit models imple-
menting working memory sequence permutations. Our circuit model is based on a recent
mental programming circuit that realizes two-item swapping and three-item permutations
Zuo et al. (2025), and we scale the circuit model to longer sequence permutations utiliz-
ing the Cayley graph representation of permutation groups. Importantly, we demonstrate
that the Cayley graph structure has one-to-one correspondence with the circuit architec-
ture: the basic swaps in the group generating set of the Cayley graph directly specify the
connectivity between memory motifs and the associated memory module structure. Since
a permutation group can have multiple Cayley graphs with various generating sets, there
are multiple circuit architectures implementing the same permutation group while having
a trade-off between computational efficiency and circuit architecture complexity. Based on
the Cayley graph representation of the circuit architecture, we numerically estimate the
computational efficiency, circuit architecture complexity, and the robustness to local fail-
ures. Our results favor a community-structured architecture for the memory module, where
a few highly connected memory motifs act as relay motifs for exchanging working memory
item information.

Due to the working memory capacity limit (usually 4 to 7 items), we only examined
circuit models that can permute relatively small sequences (< 9 items), which can be scaled
to longer sequences with an architecture optimized by using the Cayley graph. With longer
sequences, the community-structured memory module will gradually converge into a scale-
free network, where the probability of a motif having k& connections is given by the power
law (Fig. A2B):

P(k) oc k™ (5)

This degree distribution implies that the memory module will feature a few highly connected
memory motifs to efficiently relay items. Around these highly connected relay motifs, the
scale-free memory module would be locally isomorphic to the centralized memory module
previously examined (Fig. A2A). Apart from the computational efficiency, scale-free con-
nection topology has been found in cortical circuits He (2014); Li et al. (2010), supporting
its biological plausibility.

Our work provides overarching connections of working memory circuit, sequence manip-
ulation, and permutation groups and Cayley graphs. It not only provides theoretical and
mechanistic insights on neural circuit mechanism of working memory sequence manipula-
tion, but also the circuit model can be a candidate of future building block for machine
learning models in structured sequential tasks such as language processing.

BIEN ZUO ZHANG

References

R Ben-Yishai, R Lev Bar-Or, and H Sompolinsky. Theory of orientation tuning in visual
cortex. Proceedings of the National Academy of Sciences, 92(9):3844-3848, 1995.

Albert Compte, Nicolas Brunel, Patricia S Goldman-Rakic, and Xiao-Jing Wang. Synap-
tic mechanisms and network dynamics underlying spatial working memory in a cortical

network model. Cerebral cortex, 10(9):910-923, 2000.

Nelson Cowan. The magical number 4 in short-term memory: A reconsideration of mental
storage capacity. Behavioral and brain sciences, 24(1):87-114, 2001.

Sophie Deneve, Peter E Latham, and Alexandre Pouget. Reading population codes: a
neural implementation of ideal observers. Nature Neuroscience, 2(8):740-745, 1999.

Joaquin M Fuster and Garrett E Alexander. Neuron activity related to short-term memory.
Science, 173(3997):652-654, 1971.

John Guckenheimer and Yuri A Kuznetsov. Cusp bifurcation. Scholarpedia, 2(4):1852,
2007.

Biyu J He. Scale-free brain activity: past, present, and future. Trends in cognitive sciences,
18(9):480-487, 2014.

Mikail Khona and Ila R. Fiete. Attractor and integrator networks in the brain. Nature
Reviews Neuroscience, 23(12):744-766, December 2022. ISSN 1471-0048. doi: 10.1038/
s41583-022-00642-0.

James J Knierim and Kechen Zhang. Attractor dynamics of spatially correlated neural
activity in the limbic system. Annual review of neuroscience, 35:267-285, 2012.

Xiaoli Li, Gaoxiang Ouyang, Astushi Usami, Yuji Ikegaya, and Attila Sik. Scale-free topol-
ogy of the cad hippocampal network: a novel method to analyze functional neuronal
assemblies. Biophysical journal, 98(9):1733-1741, 2010.

Steven J Luck and Edward K Vogel. The capacity of visual working memory for features
and conjunctions. Nature, 390(6657):279-281, 1997.

Earl K Miller and Jonathan D Cohen. An integrative theory of prefrontal cortex function.
Annual review of neuroscience, 24(1):167-202, 2001.

Earl K Miller, Mikael Lundqvist, and André M Bastos. Working memory 2.0. Neuron, 100
(2):463-475, 2018.

MA Stephens. Random walk on a circle. Biometrika, 50(3/4):385-390, 1963.

Michael J Tarr and Steven Pinker. Mental rotation and orientation-dependence in shape
recognition. Cognitive psychology, 21(2):233-282, 1989.

The Sage Developers. SageMath, the Sage Mathematics Software System, 2022. URL
https://www.sagemath.org. DOI 10.5281/zenodo.6259615.

10

https://www.sagemath.org

OPTIMIZING CIRCUIT ARCHITECTURES VIA CAYLEY GRAPHS

Zhenghe Tian, Jingwen Chen, Cong Zhang, Bin Min, Bo Xu, and Liping Wang. Mental
programming of spatial sequences in working memory in the macaque frontal cortex.
Science, 385(6716):eadp6091, 2024.

Klaus Wimmer, Duane Q Nykamp, Christos Constantinidis, and Albert Compte. Bump
attractor dynamics in prefrontal cortex explains behavioral precision in spatial working
memory. Nature neuroscience, 17(3):431, 2014.

Si Wu, Kosuke Hamaguchi, and Shun-ichi Amari. Dynamics and computation of continuous
attractors. Neural Computation, 20(4):994-1025, 2008.

Si Wu, KY Michael Wong, CC Alan Fung, Yuanyuan Mi, and Wenhao Zhang. Contin-
uous attractor neural networks: candidate of a canonical model for neural information
representation. F'1000Research, 5, 2016.

Junfeng Zuo, Cheng Xue, Si Wu, and Wenhao Zhang. Towards a mental programming
neural circuit: Insights from working memory sequence manipulation. bioRziv, pages
2025-07, 2025.

11

BIEN ZUO ZHANG

Appendix A. Dynamics of Circuit Components

This section provides a mathematical description of the dynamics of components in the
swapping circuit described in 2. This information is adapted from Zuo et al. (2025).

A.1. E neurons’ dynamics

E neurons are selective for a 1D angular feature z € (—m,w]. Denote 6; as the preferred
stimulus feature of the j-th E neuron, and the preferred feature of all Ng E neurons, {6; VNE i
uniformly cover the whole space z (Fig. 3C). Mathematically, in the continuum limit of an
infinite number of neurons (#; — @), the dynamics of E neurons can be written as (Deneve
et al., 1999; Wu et al., 2008),

ﬁ(evt) = —uﬁ(@,t) + pZn(mn ¥ T)(9 t) (m,n = {M17M27T127T21}) (6)

where u” (0,t) and rZ (0,t) represent, respectively, the synaptic inputs and firing rates of
neurons preferring z = 6. m is the index of memory motifs that is referred to as one of the
motifs in Fig. 3B. 7 is the time constant, and p = Ng /27 is the neuronal density covering
the stimulus feature space.

A.2. Recurrent connection kernel.

WZEE(§) is the recurrent connection kernel from E neurons in memory motif n to the motif
m, which are modeled as Gaussian functions in the model (Fig. 3C),

WEE(9) = whE (Vara) ™ exp(—67/24%), (7)
where wEE (scalar) is the peak recurrent weight and to be adjusted for realizing mental

programming. a the connection width across the stimulus feature space. The symbol x
denotes the convolution, ie., W(f) xr(f) = [W(§ — ¢)r(¢')dd’. The memory motifs
form a circle structure in connection topology (M7 — Tio — My — Ty — M), with the
connection weight shown in Fig. 3B and D.

A.3. Divisive normalization and gain modulation of E neurons.
Let rZ(6,t) denote the firing rate of E neurons in memory motif m.
ACRIE 0,0)%/[1 +w" vl ith = 0 8
m(0,1) = gm(re(t)) - [wm (0,)]5/[1 + 0™ -y, ()], with [z]y = max(z,0), (8)
where ! (t) (scalar) is the instantaneous mean firing rate of I neuron pool (Eq. 9). w¥! (a
positive scalar) characterizes the effective inhibition strength from I neurons to E neurons.
A.4. Shared inhibition across memory subspaces.

Denote 7! (t) (scalar) to be the mean firing rate of inhibitory neurons in memory motif m.

Tip (t) = =i () + 2, wilhp [] 2db’, 9)

IE (scalar) is the weight from E neurons in motif n to the I neuron pool in motif

where w;,;
m.

12

OPTIMIZING CIRCUIT ARCHITECTURES VIA CAYLEY GRAPHS

A.5. Swapping Control Sub-Module Dynamics

Denote u. and r. as synaptic input and firing rate of E neurons in the control circuit
respectively,

Tie(t) = —ue(t) + we 1e(t) + Irute = Ioar, 7e(t) = ge(t) - [ue()]3/ (1 + ke[uc(t)]3). (10)

Iuie is the external rule signal, and Iojy is the inhibitory feedback from memory subspaces.
The control circuit modulates the gain of E neurons in the temporary motif,

Im(t) = Wre -re(t), (m={T12,To1}) (11)

where W denotes the weight from swapping control module to temporary WM motifs.

Appendix B. Constructing Cayley Graphs and Generating Sets

All Cayley graphs and subgroups of S,, were constructed using the Sage math library (The
Sage Developers, 2022), which was also used to compute the distances on the Cayley graphs
to the identity node. The community structured memory module in Sec. 3 is generated
by recursively applying a single rule: to each motif u in the memory, attach deg(u) + 1
additional motifs, where deg(u) is the number of motifs connected to u. The generating set
CS of swaps implemented by this memory module is simply the set of motif connections.
For the purposes of comparing computational efficiency, we rewrite this as an iterative
algorithm so that the network contains only n memory motifs (1).

Algorithm 1: Community Structured Generating Set
Given n > 2:

1. Initialize graph G with vertices 1 and 2 and edge {1, 2}
2. While |vertices(G)| < n:

(a) Let C G
(b) For each u € vertices(C):
i. Repeat (degqo(u) + 1) times:
A. Add new vertex v < |vertices(G)| + 1 to G
B. Add edge {u,v} to G
C. If |vertices(G)| = n return edges(G)

13

BIEN ZUO ZHANG

Appendix C. 6-item Circuit Simulation Data

A

M, ¢

Memory Motif Activity (hz)

M,

State Transition

M, ©

Mg

.
-
b—
M, u b —
_
e —
Mg
50.0

Time (ms)

B

£ Rule & Go

(145623)

(12)

(12)

(13)

13)

(14)

(14)

(25)

@5)

26)

(26)

My
Tay
T
M,
T

13
My

Steps

] off
Jon
Ca
Mo
W
Had
He
(R

Figure Al: (A) Memory motif activity for 6-item permutation circuit. (B) State transition
matrix summarizing the activity of circuit components.

Appendix D. Degree Distribution of CS Memory Module

A

Community Structured Memory Module

B

Probability

Degree Distribution

10° 4

10714

,_.
2

,_.
2

"
5]
IS

._.
3

—— Empirical Distribution
—— Power Law Fit

100

10! 102 10°
Degree

Figure A2: (A) Visualization of the community structured memory module with 22 mo-
tifs. (B) Degree distribution of community structured memory module with 349526 motifs.
Both the x-axis and y-axis are plotted logarithmically. The blue line plots the observed
distribution and the orange line plots a power law curve of best fit. On a log-log scale, a
power law distribution appears as a straight line.

14

	Introduction
	A neural circuit model for WM swapping and permutation
	Overview of circuit architecture for swapping
	From swapping to sequence permutation
	A neural circuit for 3-item sequence manipulation

	Comparing circuit architecture efficiency
	Analyzing the circuit architecture via the group generating set
	Balancing circuit complexity and computational efficiency
	Improving the circuit robustness via a community structured memory module

	Conclusion and Discussion
	Dynamics of Circuit Components
	E neurons' dynamics
	Recurrent connection kernel.
	Divisive normalization and gain modulation of E neurons.
	Shared inhibition across memory subspaces.
	Swapping Control Sub-Module Dynamics

	Constructing Cayley Graphs and Generating Sets
	6-item Circuit Simulation Data
	Degree Distribution of CS Memory Module

