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Abstract

Stochastic gradient-based optimisation for discrete latent variable models is challenging
due to the high variance of gradients. We introduce a variance reduction technique for
score function estimators that makes use of double control variates. These control variates
act on top of a main control variate, and try to further reduce the variance of the overall
estimator. We develop a double control variate for the REINFORCE leave-one-out estimator
using Taylor expansions. For training discrete latent variable models, such as variational
autoencoders with binary latent variables, our approach adds no extra computational cost
compared to standard training with the REINFORCE leave-one-out estimator. We apply our
method to challenging high-dimensional toy examples and training variational autoencoders
with binary latent variables. We show that our estimator can have lower variance compared
to other state-of-the-art estimators.

1. Background

Several problems in machine learning, such as variational inference and reinforcement
learning, require the optimisation of an intractable expectation of an objective function
f(x) under a distribution qη(x) with tunable parameters η. Here f(x) is a differentiable
objective function. x is a D-dimensional vector. Since f(x) can have a complex non-linear
form, Eqη(x) [f(x)] and its exact gradients are generally intractable. Several techniques apply
stochastic optimisation based on unbiased Monte Carlo gradients by sampling from qη(x).

Pathwise or reparametrization gradients (Glasserman, 2003) have been shown to be
effective for machine learning problems (Kingma and Welling, 2014; Rezende et al., 2014;
Titsias and Lázaro-Gredilla, 2014), but they are only applicable to continuous distributions.
A very general class of gradient estimators that apply to both continuous and discrete
variables is the score function or REINFORCE estimator (Glynn, 1990; Williams, 1992;
Carbonetto et al., 2009; Paisley et al., 2012; Ranganath et al., 2014; Mnih and Gregor,
2014). However, these estimators suffer from high variance and reducing the variance
remains an important open problem. Variance reduction techniques for REINFORCE
estimators range from simple baselines (Ranganath et al., 2014; Mnih and Gregor, 2014)
and Rao-blackwellization (Titsias and Lázaro-Gredilla, 2015; Tokui and Sato, 2017) to more
advanced gradient-based control variates (Tucker et al., 2017; Grathwohl et al., 2018; Gu
et al., 2016) and coupled sampling (Yin and Zhou, 2019; Dong et al., 2020; Yin et al., 2020;
Dimitriev and Zhou, 2021). The score function estimator with a baseline b is given by
1
K

∑K
k=1 (f(xk)− b)∇η log qη(xk), xk ∼ qη(x).
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Figure 1: Variance reduction for a toy high-dimensional maximization problem, following
Tucker et al. (2017), with binary latent variables and fitting probabilities σ(ηi)
(where σ(ηi) = 1 is optimal); see Section 3.1. Panel (a) shows the gradient
variances (estimated by 2000 samples) for four different estimators. Panel (b) the
objective function that we want to maximize and (c) the average of the estimated
σ(ηi)s. The proposed double control variate estimator is the most effective one.

Another variance reduction method that has become prominent recently is the REIN-
FORCE leave-one-out estimator (RLOO) (Salimans and Knowles, 2014; Kool et al., 2019;
Richter et al., 2020). Given K ≥ 2 samples, it takes advantage of multiple evaluations of f
to avoid learning the baseline b:

1

K

K∑
k=1

f(xk)−
1

K − 1

∑
j 6=k

f(xj)

∇η log qη(xk), (1)

where each
(

1
K−1

∑
j 6=k f(xj)

)
∇η log qη(xk) acts as a sample-specific control variate. Despite

its simplicity, this estimator performs very strongly for training discrete latent variables
models (Dong et al., 2020; Richter et al., 2020). Presumably this is because the leave-one-out
stochastic baselines can automatically adapt to the non-stationarity of the f(x). Specifically,
f(x) := fθ(x) often contain additional model parameters θ updated at each optimization
step1, as for instance in variational autoencoders (VAEs) (Kingma and Welling, 2014;
Rezende et al., 2014). Although θ is changing, the sample-specific baseline 1

K−1
∑

j 6=k fθ(xj)
always remains an unbiased estimate of Eqη(x)[fθ(x)].

However, RLOO is still limited in how much variance reduction it can achieve.

Proposition 1 Consider the estimator R∗(η) = 1
K

∑K
k=1 (f(xk)− Ef)∇η log qη(xk), where

Ef = Eqη(x)[f(x)] is a constant baseline across all samples. Then, V ar(RLOO) ≥ V ar(R∗).

According to Prop. 1, the performance of RLOO is bounded by R∗ which uses the mean
Ef (usually intractable in practice) as a constant baseline. Therefore, there is scope to
further reduce the variance of this estimator.

In this work, we focus on the RLOO estimator and enhance it by adding extra control
variates. We refer to the added baselines as double control variates since they co-exist with

1. For θ, it is straightforward to obtain low variance gradients.

2



Double Control Variates

the main RLOO baseline, and are designed to have a complementary effect by reducing the
variance of the initial RLOO estimator. For training latent variable models with discrete
variables, our proposed estimator runs roughly at the same speed as the RLOO estimator.

2. Double Control Variates for REINFORCE LOO

We construct these new control variates along two directions:

(a) Since the main baseline 1
K−1

∑
j 6=k f(xj) is stochastic and thus has variance, we can

try to reduce the variance by adding a control variate for each stochastic term f(xj).

(b) We want to add a different type of control variate that depends on xk which may have
a complementary effect to the main RLOO baseline.

In the remaining of Section 2 we use s(x) := ∇η log qη(x) to denote the score func-
tion. To accomplish both (a) and (b) simultaneously we start with the unbiased esti-
mator 1

K

∑K
k=1 [f(xk) + αb(xk)] s(xk) − αEqη(x)[b(x)s(x)], where we introduced a control

variate b(xk), that depends on the current sample xk and has analytic global correction
Eqη(x)[b(x)s(x)]. Then, to create a double control variate estimator we treat f(x) + αb(x) as
the “new effective objective function” and apply the leave-one-out procedure to it:

1

K

K∑
k=1

f(xk)+αb(xk)−
1

K−1

∑
j 6=k

(f(xj)+αb(xj))

s(xk)− αEqη(x)[b(x)s(x)]. (2)

The scalar α is a regression coefficient that can be further optimised to reduce the variance.
In the above estimator we have highlighted with blue the first appearance b(xk), which can
be thought of as a baseline paired with the value f(xk), and with red the second appearances
b(xj) paired with the remaining values f(xj). Intuitively, b(xk) can be considered as targeting
to reduce the variance of f(xk) and b(xj) the variance of f(xj).

In Sections 2.1 and 2.2 we describe two approaches to specify b(x). For training latent
variable models such as VAEs, the second will be the most practical since it adds no extra
cost. The first method helps to introduce the idea and is based on a mean field argument.

2.1. Mean Field Approach

To specify b(x) we can construct an approximation of f(x) that correlates well with the exact
value f(x). While any surrogate of f(x) with a tractable global correction could work, next
we focus on the case when f(x) is differentiable w.r.t. the input x and we use a first order
Taylor expansion around the mean µ = Eqη(x)[x], so that f(x) ≈ f(µ)+∇f(µ)>(x−µ). Since
any constant term in b(x) cancels out in (2), the constant f(µ) in the Taylor approximation
can be dropped, yielding the double control variate b(x) = ∇f(µ)>(x− µ). By substituting
this function in Eq. (2) we obtain the general estimator

1

K

K∑
k=1

[
f(xk) + α∇f(µ)>(xk − µ)− 1

K−1

∑
j 6=k

(
f(xj) + α∇f(µ)>(xj − µ)

)]
s(xk)

−αEqη(x)[s(x)(x− µ)>]∇f(µ), (3)

3



Double Control Variates

where Eqη(x)[s(x)(x−µ)>] will typically have an analytical form. For binary latent variables

x ∈ {0, 1}d and a factorised Bernoulli distribution of the form qη(x) =
∏d
i=1 µ

xi
i (1 −

µi)
1−xi , µi = σ(ηi). Eqη(x)[s(x)(x− µ)>] = diag(µ ◦ (1− µ)) and the global correction term

simplifies to −αµ ◦ (1− µ) ◦ ∇f(µ), where ◦ denotes element-wise vector product.

2.2. An Estimator without Extra Gradient Evaluations

The estimator in Eq. (3) requires a backpropagation operation to compute the gradient
∇f(µ), which adds extra computational cost compared to standard RLOO. Next, we wish to
develop an alternative estimator that avoids this extra cost for certain problems. For many
applications, such as VAEs, the function f(x) depends on model parameters θ (typically
different than η) that we update at each optimisation iteration by computing the gradients
{∇θf(xj)}Kj=1. Then, from the same backpropagation operations is easy to also return the

gradients w.r.t. the latent vectors, i.e. to compute {∇f(xj)}Kj=1. We would like to utilize
these latter gradients to define the double control variate b(x).

Starting from b(x) = ∇f(µ)>(x− µ), we first want to modify b(xk) by replacing ∇f(µ)
with some new gradient computed from {∇f(xj)}Kj=1. We cannot use the full average because

this will lead to ( 1
K

∑K
j=1∇f(xj))

>(xk − µ) which has an intractable global correction due

to the intractable term Eqη(xk)[∇f(xk)
>(xk − µ)∇η log qη(xk)]. However, we can use the

leave-one-out gradient, i.e. by leaving out ∇f(xk), which gives

bk(x1:K) =

 1

K − 1

∑
j 6=k
∇f(xj)

> (xk − µ), (4)

This has a tractable correction term Eqη(xk)[bk(x1:K)∇ log qη(xk)].

Proposition 2 For bk(x1:K) from (4) we obtain the following unbiased gradient estimator

1

K

K∑
k=1

[
f(xk)+αbk(x1:K)− 1

K−1

∑
j 6=k

(f(xj)+αbj(x1:K))

]

× s(xk)− αEqη(x)[s(x)(x− µ)>]

(
1

K

K∑
k=1

∇f(xk)

)
. (5)

The proof of unbiasedness is given in the appendix. We choose the regression coefficient
α by minimizing the total variance. If g(α) denotes the stochastic gradient and ḡ =
E[g(α)] the exact gradient where the latter does not depend on α, the total variance is
Tr[E(g(α) − ḡ)(g(α) − ḡ)>] = E[||g(α)||2] + const. Thus, in practice at each optimisation
iteration we can perform a gradient step towards minimizing the empirical variance ||g(α)||2.

3. Experiments

3.1. Toy Learning Problem

We consider a generalization of the artificial problem considered by Tucker et al. (2017), where
the goal is to maximize E(η) = Eqη(x)[D−1

∑D
i=1(xi − p0)2], where qη(x) =

∏D
i=1 σ(ηi)

xi(1−
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Bernoulli Likelihoods Gaussian Likelihoods

MNIST Fashion-MNIST Omniglot MNIST Fashion-MNIST Omniglot

RLOO −103.11± 0.16 −241.53± 0.24 −116.83± 0.05 668.07± 0.40 179.52± 0.23 443.51± 0.93
DoubleCV − 102.45± 0.13 −240.96± 0.17 −116.22± 0.08 676.87± 1.18 186.35± 0.64 446.95± 0.63
DisARM −102.56± 0.09 −241.02± 0.20 −116.36± 0.05 668.03± 0.61 182.65± 0.47 446.22± 1.38

RELAX −101.86± 0.11 −240.63± 0.16 −115.79± 0.06 688.58± 0.52 196.38± 0.66 462.30± 0.91

Table 1: Training nonlinear binary latent VAEs with K = 2 (except for RELAX) on MNIST,
Fashion-MNIST, and Omniglot. We report the average ELBO on the training set
over 5 independent runs.

σ(ηi))
1−xi , p0 = 0.499 and the optimal solution is σ(ηi) = 1 for all i = 1, . . . , D. While

Tucker et al. (2017) considered D = 1, here we additionally consider a more difficult high-
dimensional case with D = 200. We compare three methods: (i) RLOO, (ii) DisARM and
our proposed double control variates estimator (Double CV) from Eq. (5). We use K = 2
samples for all methods. Also we include in the comparison R∗ which is tractable in this toy
example. Fig. 1 compares the methods in terms of variance, the objective function and the
average value of the D probabilities σ(ηi). Fig. 6 shows further comparison for the D = 1
case, as in Tucker et al. (2017). We observe that Double CV gradients have smaller variance
which results in much faster optimisation convergence.

3.2. Variational Autoencoders with Binary Latent Variables

3.2.1. Experimental setup

We consider training nonlinear variational autoencoders (Kingma and Welling, 2014; Rezende
et al., 2014) with binary latent variables. We conduct separate experiments for binary output
data y ∈ {0, 1}d and continuous data y ∈ Rd. For binary data we use the standard Bernoulli
likelihood. For continuous data we centered data between [−1, 1] and consider a Gaussian
likelihood of the form pθ(y|x) = N (y|mθ(x),Σ), where mθ(x) is a decoder mean function
that depends on the latent variable x and Σ is a learnable diagonal covariance matrix. We
consider the datasets MNIST, Fashion-MNIST and Omniglot. For all three datasets we use
both the dynamically binarized versions and their original continuous versions. More details
and the results for linear VAEs are included in the appendix.

We compared the following estimators: RLOO, DisARM and the proposed Double CV
method where all three estimators use K samples. We experimented with K = 2 and K = 4.
For K = 4 we also compare to the state-of-the-art ARMS estimator recently proposed by
Dimitriev and Zhou (2021). Besides, we include in the comparison the RELAX estimator that
combines concrete relaxation (Tucker et al., 2017) with a learned control variate (Grathwohl
et al., 2018). We point out that RLOO, DisARM, Double CV, and ARMS (when K = 4)
have roughly the same running time on a P100 GPU while RELAX is computationally
more expensive and is roughly twice slower than the other four estimators with K = 4 (see
Table 3). Also note that RELAX is less generally applicable since it assumes the existence
of a concrete relaxation for x.
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Bernoulli Likelihoods Gaussian Likelihoods

MNIST Fashion-MNIST Omniglot MNIST Fashion-MNIST Omniglot

RLOO −100.50± 0.22 −239.03± 0.15 −114.75± 0.07 687.83± 0.50 195.27± 0.24 460.23± 1.42
DoubleCV −99.89± 0.12 −238.98± 0.18 −114.56± 0.06 691.51± 0.75 199.01± 0.60 463.03± 0.94
DisARM −100.67± 0.07 −239.20± 0.15 −115.05± 0.07 683.28± 0.89 192.96± 0.29 458.38± 0.88
ARMS −100.07± 0.08 −238.50± 0.13 −114.57± 0.06 687.26± 1.21 197.25± 0.48 463.30± 0.86

RELAX −101.86± 0.11 −240.63± 0.16 −115.79± 0.06 688.58± 0.52 196.38± 0.66 462.30± 0.91

Table 2: Training a nonlinear binary latent VAE with K = 4 (except for RELAX) on
MNIST, Fashion-MNIST, and Omniglot. We report the average ELBO on the
training set over 5 independent runs.
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Figure 2: Variance of gradient estimates in training nonlinear binary latent variational
autoencoders with K = 4 on MNIST, Fashion-MNIST, and Omniglot. Top: Using
Bernoulli likelihoods and dynamically binarized datasets. Bottom: Using Gaussian
likelihoods and non-binarized datasets.

3.2.2. Results

Table 1 shows the training ELBO for binarized and continuous datasets when training the
VAE by different estimators with K = 2. We can observe that Double CV consistently
outperforms RLOO in all experiments, while having approximately the same running time.
Double CV also outperforms DisARM in all cases for both Bernoulli and Gaussian likelihoods.
Furthermore, Fig. 3 plots the gradient variance and the training ELBO for the binarized
datasets as a function of the training steps. Similarly, Fig. 4 shows the corresponding results
for the non-binarized (continuous) datasets where a Gaussian likelihood is used. We observe
that the Double CV estimator can have lower variance than RLOO and DisARM. Also,
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while RELAX performs better than the other methods it is less generally applicable and
more expensive.

For K = 4, the final training ELBO values are reported in Table 2 and the variances of
the different estimators are plotted in Fig. 2. We can observe that Double CV consistently
has lower variance than other estimators and it outperforms ARMS in terms of training
ELBO in most cases. It also significantly outperforms RELAX. Note that, even with K = 4,
Double CV is still nearly twice faster than RELAX.
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Figure 3: Training nonlinear binary latent VAEs with Bernoulli likelihoods with K = 2
(except for RELAX) on dynamically binarized MNIST, Fashion-MNIST, and
Omniglot. Top: Variance of gradient estimates. Bottom: Average ELBO on
training examples.
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Figure 4: Training nonlinear binary latent VAEs with Gaussian likelihoods with K = 2
(except for RELAX) on non-binarized MNIST, Fashion-MNIST, and Omniglot.
Top: Variance of gradient estimates. Bottom: Average ELBO on training examples.
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Appendix A. Related Work

Our proposed gradient estimators follow the general form of unbiased REINFORCE estima-
tors (Williams, 1992; Glynn, 1990; Carbonetto et al., 2009; Paisley et al., 2012; Ranganath
et al., 2014; Mnih and Gregor, 2014), which unlike reparametrization or pathwise gradients
(Kingma and Welling, 2014; Rezende et al., 2014; Titsias and Lázaro-Gredilla, 2014), are
applicable also to discrete latent variables. The double control variates we develop build
on top of the RLOO estimator (Kool et al., 2019; Salimans and Knowles, 2014; Richter
et al., 2020); see also the VIMCO method of Mnih and Rezende (2016) who also used a
leave-one-out procedure. RLOO was shown to be a competitive estimator for challenging
problems such as training VAEs with binary or categorical latent variables (Dong et al., 2020;
Richter et al., 2020; Dong et al., 2021). As shown by our experiments, our enhancement
of RLOO with double control variates leads to further variance reduction, and without
increasing the computational cost when training VAEs.

In our current framework, the double control variates are constructed by using the
gradients of the objective function fθ(x). These gradients are also used by other unbiased
gradient techniques based on control variates, such as the MuProp estimator (Gu et al., 2016),
the concrete relaxation methods REBAR (Tucker et al., 2017) and RELAX (Grathwohl
et al., 2018). Our method differs significantly since our control variates act on top of the
sample-specific RLOO baseline 1

K−1
∑

j 6=k fθ(xj), i.e., they try to have complementary effect
to this existing control variate. This means that our estimators preserve RLOO’s property
of capturing the non-stationarity of fθ(x), since the leave-one-out baseline always tracks the
expected value E[fθ(x)] as θ evolves. In contrast, previous gradient-based estimators use
stand-alone global control variates. For instance, the baseline in MuProp (Gu et al., 2016)
is constructed using only fθ(µ) and xk, which can be a poor tracker of the expected value
E[fθ(x)]. Unlike MuProp, REBAR (Tucker et al., 2017) and RELAX (Grathwohl et al.,
2018) are much more effective, however they are more expensive than our method — they
require differentiating fθ three times, while our method can work with just two, and they
are less generally applicable since they assume a concrete relaxation for x.

Other recent REINFORCE type of estimators for discrete latent variables are based on
coupled sampling (Owen, 2013), such as antithetic sampling (Yin and Zhou, 2019; Dong
et al., 2020; Yin et al., 2020; Dimitriev and Zhou, 2021). For instance, the recent DisARM
estimator independently proposed by Dong et al. (2020) and Yin et al. (2020) was shown to
give state-of-the-art results for binary latent-variable models with K = 2 antithetic samples.

Appendix B. Proofs

B.1. Proof of Proposition 1

The RLOO estimator can be written as

1

K

K∑
k=1

(f(xk)− Ef)∇η log qη(xk)︸ ︷︷ ︸
R∗

+
1

K

K∑
k=1

Ef − 1

K − 1

∑
j 6=k

f(xj)

∇η log qη(xk)︸ ︷︷ ︸
E

(6)

where R∗ is the REINFORCE estimator with baseline Ef and E is a residual term of zero
mean. To prove the Proposition we will use V ar(RLOO) = V ar(R∗ + E) = V ar(R∗) +
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V ar(E) + 2Cov(R∗, E). Then, it suffices to show that Cov(R∗, E) = 0. We have

Cov(R∗, E) =
1

K2

K∑
k=1

K∑
k′=1

E
[
(f(xk)− Ef)(Ef − f−k′)∇η log qη(xk)∇η log qη(xk′)

>
]

where we used f−k′ = 1
K−1

∑
j 6=k′ f(xj) for short. For all terms in the double sum such that

k = k′ the expectation

E
[
(f(xk)− Ef)(Ef − f−k)∇η log qη(xk)∇η log qη(xk)

>
]

= 0

because the zero-mean random variable Ef − f−k is independent from the remaining product
(since it does not contain the sample xk). For all cross terms k 6= k′ the whole product
(f(xk)−Ef)(Ef−f−k′)∇η log qη(xk) does not contain the sample xk′ . Therefore this product
is independent from ∇η log qη(xk′) and thus each cross term is zero because of the score
function property E[∇η log qη(xk′)] = 0. This shows that Cov(R∗, E) = 0 which completes
the proof.

B.2. Proof of Prop. 2

The estimator can be written as

1

K

K∑
k=1

f(xk)−
1

K − 1

∑
j 6=k

f(xj)

∇η log qη(xk)

+ α
1

K

K∑
k=1

bk(x1:K)− 1

K − 1

∑
j 6=k

bj(x1:K)

∇η log qη(xk)

− αEq(x)[∇η log qη(x)× (x− µ)>]

(
1

K

K∑
k=1

∇f(xk)

)
, (7)

where bk(x1:K) =
(

1
K−1

∑
j 6=k∇f(xj)

)>
(xk−µ) and bj(x1:K) =

(
1

K−1
∑

m 6=j ∇f(xm)
)>

(xj−
µ). It suffices to show that the expectation of the second line is minus the correction term at
the third line. The expectation of each term bj(x1:K)∇η log qη(xk) for j 6= k is zero because
the zero-mean term xj − µ is always independent from the rest terms in the product. Then,
we need to examine only the expectation of

1

K

K∑
k=1

bk(x1:K)∇η log qη(xk) =
1

K(K − 1)

K∑
k=1

∇η log qη(xk)(xk − µ)>
∑
j 6=k
∇f(xj).

Then observe that the expectation of ∇η log qη(xk)× (xk − µ)> is the same for every sample
xk, so the above reduces to

Eqη(x)[∇η log qη(x)× (x− µ)>]
1

K(K − 1)

K∑
k=1

∑
j 6=k
∇f(xj)

from which the result follows since
∑K

k=1

∑
j 6=k∇f(xj) = (K − 1)

∑K
k=1∇f(xk).
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B.3. The “half” Double Control Variate Estimators

One question is whether we need both b(xk) and b(xj) or we could keep one of them, i.e. to
use an “b(xk) only” or “b(xj) only” estimator. It is straightforward to express these latter
unbiased estimators, as follows. The “b(xk) only” estimator is given by

1

K

K∑
k=1

f(xk) + αb(xk)−
1

K−1

∑
j 6=k

f(xj)

∇η log qη(xk)− αEqη(x)[b(x)∇ηlog qη(x)]. (8)

and the “b(xj) only” by

1

K

K∑
k=1

f(xk)−
1

K−1

∑
j 6=k

(f(xj) + αb(xj))

∇η log qη(xk). (9)

It is easy to show that both estimators are unbiased. However, in practice these estimators
can be much less effective in terms of variance reduction than their Double CV combination.
In Figure 5 we apply these two estimators to the toy learning problem with D = 10. Both
estimators are significantly outperformed by the full Double CV estimator. Notably, the
“b(xk) only” estimator could outperform R∗ since it uses a baseline that depends on the
current sample xk, while “b(xj) only” reduces the variance of the RLOO control variate but
remains bounded by R∗.
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Figure 5: Left: Variance of the “only b(xk)” estimator where only the half part of the
double control variate is used. Right: The corresponding plot for the “only b(xj)”
estimator where the other half part of the double control variate is used. The
full double control variate estimator (Double CV), RLOO, DisARM and R∗ are
included for comparison. The experiment corresponds to the toy problem with
D = 10 and b(x) was chosen according to Eq. (4), i.e. the full Double CV estimator
is from (5).

Appendix C. Additional Results and Experimental Details

C.1. Toy Experiment with D = 1

For completeness, we include the results of a simpler version of the toy experiment described
in Section 3.1, where we set D = 1. This is the setting used in several previous works (Tucker
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et al., 2017; Grathwohl et al., 2018; Yin and Zhou, 2019; Dong et al., 2020). The variances
of the gradient estimators and the training curves of σ(η) are plotted in Fig. 6.
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Figure 6: Left: Variance of the gradient estimators for the toy problem with D = 1. Right:
The estimated value σ(η) across iterations (optimal value is 1).
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Figure 7: The evolution of the estimated regression coefficient α during optimisation for the
toy learning problem.

C.2. Training Binary Latent VAEs

C.2.1. Experimental Details

We follow the VAE models used in Yin and Zhou (2019); Dong et al. (2020). The VAE
model uses fully connected neural networks with two hidden layers of 200 LeakyReLU
activation units with the coefficient 0.3. All models are trained using Adam (Kingma and
Ba, 2014) with learning rate 10−3 for the binarized data, while for the continuous data
we used smaller learning rate 10−4. In all experiments α was trained with learning rate
10−3. For all experiments we use a uniform factorized Bernoulli prior over the D = 200
dimensional latent variable x. The model was trained by maximizing the ELBO using an
amortised factorised variational Bernoulli distribution.
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C.2.2. Time comparison

In Fig. 3 We report the per-step running time of RLOO, Double CV, DisARM, ARMS
estimators when K = 4 and compare to RELAX. RELAX is almost twice slower.

RLOO Double CV DisARM ARMS RELAX

Time (sec/step) 0.0035 0.0036 0.0031 0.0037 0.0080

Table 3: Time per step when training a Bernoulli VAE with K = 4 (except for RELAX) on
dynamically binarized Fashion-MNIST.

C.2.3. Full results of training ELBOs

Here we include the full results of final training ELBOs from the experiment in Section 3.2.
Table 4 and Table 5 extend Table 1 to include the linear VAE results trained under the
same setting. Table 6 and Table 7 extend Table 2 to include the linear VAE results trained
under the same setting. The linear VAE has 200 dimensional latent variable x and use a
single fully-connected layer to produce the logits (for Bernoulli likelihoods) or the mean (for
Gaussian likelihoods) of the distribution of y.

C.2.4. Additional figures for nonlinear VAEs

In Fig. 8 we plot the average training ELBOs as a function of training steps from the K = 4
experiment in Section 3.2.

C.2.5. Additional figures for linear VAEs

We plot the gradient variance and average training ELBOs of training linear VAEs in
Figures 9,10,11, and 12.
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RLOO Double CV DisARM RELAX

MNIST :
Linear −113.06± 0.05 −112.82± 0.07 −112.72± 0.07 −112.18± 0.07
Nonlinear −103.11± 0.16 −102.45± 0.13 −102.56± 0.09 −101.86± 0.11

Fashion-MNIST :
Linear −257.38± 0.17 −256.21± 0.17 −257.01± 0.06 −255.16± 0.17
Nonlinear −241.53± 0.24 −240.96± 0.17 −241.02± 0.20 −240.63± 0.16

Omniglot :
Linear −119.63± 0.05 −119.52± 0.02 −119.42± 0.03 −119.16± 0.02
Nonlinear −116.83± 0.05 −116.22± 0.08 −116.36± 0.05 −115.79± 0.06

Table 4: Training binary latent VAEs with K = 2 (except for RELAX) on dynamically
binarized MNIST, Fashion-MNIST, and Omniglot. We report the average ELBO
on the training set over 5 independent runs.

RLOO Double CV DisARM RELAX

MNIST
Linear 503.01± 0.22 504.33± 0.98 504.43± 0.93 513.38± 0.52
Nonlinear 668.07± 0.40 676.87± 1.18 668.03± 0.61 688.58± 0.52

Fashion-MNIST
Linear 29.75± 0.40 31.08± 0.24 31.71± 0.20 37.54± 0.30
Nonlinear 179.52± 0.23 186.35± 0.64 182.65± 0.47 196.38± 0.66

Omniglot
Linear 245.73± 0.33 245.97± 1.02 247.70± 0.85 255.69± 0.70
Nonlinear 443.51± 0.93 446.95± 0.63 446.22± 1.38 462.30± 0.91

Table 5: Training binary latent VAEs with Gaussian likelihoods using K = 2 (except for
RELAX) on non-binarized MNIST, Fashion-MNIST, and Omniglot. We report the
average ELBO on the training set over 5 independent runs.

RLOO Double CV DisARM ARMS

MNIST :
Linear −111.89± 0.09 −111.79± 0.09 −112.01± 0.06 −111.87± 0.02
Nonlinear −100.50± 0.22 −99.89± 0.12 −100.67± 0.07 −100.07± 0.08

Fashion-MNIST :
Linear −254.59± 0.16 −254.52± 0.23 −255.01± 0.10 −254.67± 0.20
Nonlinear −239.03± 0.15 −238.98± 0.18 −239.20± 0.15 −238.50± 0.13

Omniglot :
Linear −118.89± 0.02 −118.95± 0.02 −118.97± 0.01 −118.87± 0.02
Nonlinear −114.75± 0.07 −114.56± 0.06 −115.05± 0.07 −114.57± 0.06

Table 6: Training binary latent VAEs with K = 4 on dynamically binarized MNIST, Fashion
MNIST, and Omniglot. We report the average ELBO on the training set over 5
independent runs.
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RLOO Double CV DisARM ARMS

MNIST :
Linear 516.65± 0.54 515.79± 0.71 512.47± 0.72 514.55± 0.71
Nonlinear 687.83± 0.50 691.51± 0.75 683.28± 0.89 687.26± 1.21

Fashion-MNIST :
Linear 36.70± 0.41 36.61± 0.34 34.90± 0.52 37.56± 0.43
Nonlinear 195.27± 0.24 199.01± 0.60 192.96± 0.29 197.25± 0.48

Omniglot :
Linear 257.43± 0.16 257.88± 0.69 254.99± 0.69 258.22± 0.18
Nonlinear 460.23± 1.42 463.03± 0.94 458.38± 0.88 463.30± 0.86

Table 7: Training binary latent VAEs with Gaussian likelihoods using K = 4 on non-
binarized MNIST, Fashion-MNIST, and Omniglot. We report the average ELBO
on the training set over 5 independent runs.
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Figure 8: Average training ELBOs for nonlinear binary latent VAEs trained by different
estimators with K = 4 on MNIST, Fashion-MNIST, and Omniglot. Top: Using
Bernoulli likelihoods and dynamically binarized datasets. Bottom: Using Gaussian
likelihoods and non-binarized datasets.
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Figure 9: Training linear binary latent VAEs with Bernoulli likelihoods with K = 2 (except
for RELAX) on dynamically binarized MNIST, Fashion-MNIST, and Omniglot.
Top: Variance of gradient estimates. Bottom: Average ELBO on training examples.

0K 200K 400K 600K 800K 1000K
Training Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

G
ra

di
en

t V
ar

ia
nc

e

MNIST

0K 200K 400K 600K 800K 1000K
Training Step

0.0

0.1

0.2

0.3

0.4

0.5

Fashion-MNIST

0K 200K 400K 600K 800K 1000K
Training Step

0.00

0.05

0.10

0.15

0.20

0.25

Omniglot

RLOO
Double CV
DisARM
RELAX

200K 400K 600K 800K 1000K
Training Step

420

440

460

480

500

Tr
ai

ni
ng

 E
LB

O

200K 400K 600K 800K 1000K
Training Step

30

20

10

0

10

20

30

40

200K 400K 600K 800K 1000K
Training Step

180

200

220

240

260

RLOO
Double CV
DisARM
RELAX

Figure 10: Training linear binary latent VAEs with Gaussian likelihoods with K = 2 (except
for RELAX) on non-binarized MNIST, Fashion-MNIST, and Omniglot. Top:
Variance of gradient estimates. Bottom: Average ELBO on training examples.
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Figure 11: Training linear binary latent VAEs with Bernoulli likelihoods with K = 4 (except
for RELAX) on dynamically binarized MNIST, Fashion-MNIST, and Omniglot.
Top: Variance of gradient estimates. Bottom: Average ELBO on training
examples.
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Figure 12: Training linear binary latent VAEs with Gaussian likelihoods with K = 4 (except
for RELAX) on non-binarized MNIST, Fashion-MNIST, and Omniglot. Top:
Variance of gradient estimates. Bottom: Average ELBO on training examples.
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