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ABSTRACT

With the rise and advent of graph learning techniques, graph data has become
ubiquitous. However, while several efforts are being devoted to the design of new
convolutional architectures, pooling or positional encoding schemes, less effort
is being spent on problems involving maps between (possibly very large) graphs,
such as signal transfer, graph isomorphism and subgraph correspondence. With
this paper, we anticipate the need for a convenient framework to deal with such
problems, and focus in particular on the challenging subgraph alignment scenario.
We claim that, first and foremost, the representation of a map plays a central role
on how these problems should be modeled. Taking the hint from recent work
in geometry processing, we propose the adoption of a spectral representation for
maps that is compact, easy to compute, robust to topological changes, easy to plug
into existing pipelines, and is especially effective for subgraph alignment prob-
lems. We report for the first time a surprising phenomenon where the partiality
associated to the subgraph is manifested as a special structure of the map coeffi-
cients, even in the absence of exact subgraph isomorphism, and which is consis-
tently observed over different families of graphs up to several thousand nodes.

1 INTRODUCTION

The ability to align data is at the heart of many successful techniques in machine learning and related
areas. In its most abstract form, the problem has a straightforward formulation: Given two generic
domains D1 and D2, find a transformation T such that TD1 ≈ D2 according to some approximation
metric that depends on the task. Examples of such problems are found in numerous applications,
including molecular docking (Gainza et al., 2020), image-based rendering (Fachada et al., 2021) , 3D
reconstruction (Zhao et al., 2022), generative models (Dai & Hang, 2021) and style transfer (Zhang
et al., 2022), in addition to countless others. Recent remarkable examples include CLIP Meila
& Zhang (2021), where images are associated to corresponding captions by aligning their learned
embeddings, or MaSIF (Gainza et al., 2020), where the interaction site between protein structures
(i.e., the surface patches where the proteins geometrically align) is predicted by a geometric deep
learning pipeline.

Perhaps the most challenging setting for alignment problems arises whenever the two domains only
correspond partially, for example due to the lack of observations or noise in the data. In this case,
one is not only interested in aligning the two domains, but also in discovering which portions of the
domains actually align. The problem is particularly hard if an exact alignment does not even exist,
requiring additional robustness to local perturbations in the data.

In this paper, we focus on the general problem of subgraph alignment, as it is representative of a
broad spectrum of applications including those mentioned above. We assume to be given two graphs
G1 and G2, where G2 appears within G1, possibly up to topological changes. A special case appears
when G2 is isomorphic to a subgraph of G1, which is referred to as subgraph isomorphism (see (ii)
in Figure 1). This case is included in our treatment, but we also consider noisier settings where a
subgraph isomorphism does not exist (see (iii) in Figure 1), yet a semantic correspondence can still
be defined.

Contribution. In this paper, we focus in particular on the choice of a representation for the corre-
spondence. That is, instead of introducing a new matching pipeline to solve subgraph alignment, we
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Figure 1: Functional maps of size 50 × 50 between a full graph (depicted on the left) and three
different graphs, respectively: an isomorphic graph (i), an isomorphic subgraph containing 80% of
the original nodes (ii), and a non-isomorphic subgraph obtained by randomly rewiring the former
(iii). The green edges are novel and randomly added (10% of the total), the red edges are randomly
removed (10% of the total). The map representation still maintains a visible structure despite the
significant changes of connectivity that span several hops.

show an alternative way of representing maps between a graph and its subgraphs. In cases where the
map is unknown and must be sought for, the new representation makes the inference problem easier
to solve; while if the map is given, the new representation is more compact, has a regularizing ef-
fect, and bears a natural structure that is missing from classical representations such as node-to-node
binary correspondence matrices.

From a technical perspective, the map representation is defined with respect to a spectral basis;
namely, the eigenvectors of the graph Laplacian. This idea, introduced a decade ago in the geometry
processing area (Ovsjanikov et al., 2012), brought significant progress to several tasks in graphics
and vision – yet, its application to graphs has been largely overlooked.

We claim that part of the reason is a common misconception. The lack of a smooth metric (i.e., a
smooth manifold underlying the graph) leads to the assumption that key properties of the spectral
representation of the maps, such as those observed in Ovsjanikov et al. (2012); Rodolà et al. (2017),
only exist for surface domains. With this work, we challenge this view by showing extensive empir-
ical evidence that not only these spectral maps are applicable to general subgraphs, but also that they
exhibit robustness properties that go beyond what was shown on surfaces. Therefore, we propose to
embrace the spectral representation of maps as compact, efficient, interpretable, robust, and easy to
manipulate objects that can be naturally integrated into several pipelines, including but not limited
to graph learning models.

We summarize our main contributions as follows:

• We propose the adoption of spectral representations for maps between graphs and sub-
graphs. For the first time, we show that such maps exhibit a special structure in their
coefficients, capturing the similarity between the Laplacian eigenspaces of the two graphs.

• We further show robustness of the representation to topological modifications of the sub-
graph, due for example to graph rewiring. This leads to well-defined maps even in the
absence of exact isomorphism.

• We include extensive experiments showing practical applications, such as signal transfer
and subgraph matching, on graphs spanning a few dozen to tens of thousands of nodes, and
demonstrate key benefits in terms of robustness to noise, interpretability, and computational
complexity.

All the code and generated data will be publicly released upon acceptance.

2 RELATED WORK

Graph alignment problems are ubiquitous in applications from social network analysis (Liu et al.,
2016) to bioinformatics (Singh et al., 2008). Given its relevance, a rich body of literature is devoted
to this problem. A comparative study on several network alignment techniques can be found in
Trung et al. (2020). Though not exhaustive, we discuss the most relevant works in the following.
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Node-to-node correspondence. IsoRank (Singh et al., 2008) is widely considered the baseline for
protein-to-protein interaction (PPI) alignment. It constructs an eigenvalue problem for every pair
of input networks and extracts a global alignment across a set of networks by a k-partite matching.
Subsequently, it inspired other works, such as Liao et al. (2009); Nassar et al. (2018); Feizi et al.
(2019), that still use a spectral approach. Other works leveraged an optimization process based on
attribute and topological information (Zhang & Tong, 2016) or propagated the ground-truth matches
over the input graphs (Yartseva & Grossglauser, 2013; Kazemi et al., 2015). Another thriving line of
works first computes node embeddings and then aligns the nodes using the similarity between these
features. The embeddings can be computed from the Laplacian eigenvectors (Knossow et al., 2009),
the connectivity structure and node attributes (Heimann et al., 2018) or directly use representation
learning methods (Liu et al., 2016; Man et al., 2016; Zhou et al., 2018), thus requiring manually
corresponding matches during the training phase.

All these methods directly look for a node-wise correspondence between input graphs, soon becom-
ing infeasible when the size of the graphs reaches thousands of nodes. We investigate a different
approach, where we adopt a functional (as opposed to node-wise) representation to define a cor-
respondence between graphs. Furthermore, previous works mostly focus on a single application,
either global PPI network alignment (Singh et al., 2008; Liao et al., 2009), synthetic datasets with
structural noise (where a small portion of edges are randomly removed) (Hermanns et al., 2021;
Trung et al., 2020), or social networks (Liu et al., 2016; Man et al., 2016; Zhou et al., 2018). In
our analysis, we address the general task of subgraph alignment, where a large portion of the graph
is missing, without focusing on any specific domain. This is also different from the problem of
subgraph isomorphism, which concerns the decision problem as to whether small query graphs exist
within larger graphs (Duong et al., 2021).

Functional correspondence. The functional maps framework (Ovsjanikov et al., 2012) was first in-
troduced in the shape analysis field to find correspondences between deformable 3D shapes. Thanks
to its flexibility, many extensions of this framework were later proposed, improving the correspon-
dence accuracy by means of dedicated regularizers (Ovsjanikov et al., 2017; Nogneng & Ovsjanikov,
2017; Ezuz & Ben-Chen, 2017; Melzi et al., 2019; Ren et al., 2020a). To allow matching non-
isometric shapes, Kovnatsky et al. (2013) apply the framework to approximate eigenbases obtained
with a joint diagonalization algorithm. The same approach was later adapted to partial shape match-
ing in Rodolà et al. (2017); Litany et al. (2017); Cosmo et al. (2016c), where the goal is to map a
part of a deformed 3D shape to a possibly incomplete model.

In the context of graphs, a first attempt to represent similarity between graphs in a functional space
was proposed in Wang et al. (2019). However, there the functional representation is on the edge
domain, and its application is limited to the case of Euclidean graphs. More related to our work
is the recent GRASP (Hermanns et al., 2021), which detects an alignment among graphs by em-
ploying a functional correspondence among pre-aligned Laplacian eigenvectors. Different to our
work, GRASP considers only the setting of noisy complete graphs, i.e., a full network is perturbed
by randomly deleting edges with a probability p up to 0.25. Instead, we study the correspondence
problem on a much broader class of graphs, undergoing strong partiality transformations in addition
to strong perturbation of the connectivity, and consider larger scales reaching up to several thousand
nodes.

3 PRELIMINARIES

Graphs and Laplacian eigenvectors. We consider undirected, unweighted graphs G = (V,E)
with nodes V and edges E ⊆ V × V . We denote as A ∈ {0, 1}|V |×|V | the adjacency matrix of G,
which is a binary matrix where A(i, j) = 1 if an edge connects node i to node j, and A(i, j) = 0
otherwise.

The symmetric normalized Laplacian for G is defined as the square matrix L = I − D− 1
2AD− 1

2 ,
where D is a diagonal matrix of node degrees, with entries D(i, i) =

∑|V |
j=1 A(i, j). This linear

operator is symmetric and positive semi-definite; it admits an eigendecomposition L = ΦΛΦ⊤,
where Λ is a diagonal matrix that contains the eigenvalues, and Φ is a matrix having as columns the
corresponding eigenvectors. Throughout this paper, we assume the eigenvalues (and corresponding
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eigenvectors) to be sorted in non-descending order 0 = λ1 ≤ λ2 ≤ . . . ≤ 2; this assumption is
important for interpreting the functional maps that we define in the sequel.

Each eigenvector ϕl for l = 1, . . . , |V | has length |V |, and can be interpreted as a scalar function de-
fined on the nodes of the graph; for this reason, we will occasionally refer to them as eigenfunctions
for added clarity. The eigenfunctions form an orthonormal basis for the space of functions defined
on the graph nodes. Usually, one may consider a subset of eigenfunctions, namely those associated
with the k smallest eigenvalues, to approximate the graph signals in a compact way.

Functional maps. Ours is a direct adaptation of the functional map representation introduced
in Ovsjanikov et al. (2012) for pairs of quasi-isometric surfaces. We present the original framework
for surfaces here, and discuss its application to graphs and subgraphs in Sections 4 and Appendix A.

Consider two smooth manifolds M and N , and let T : N → M be a point-to-point map between
them. Given a scalar function f : M → R, the map T induces a functional mapping via the
composition g = f ◦T , which can be seen as a linear map TF : f 7→ g from the space of functions on
M to the space of functions on N . As a linear map, the functional TF admits a matrix representation
after choosing a basis for the two function spaces.

To this end, consider a discretization of M and N , with vetices V1 and V2 respectively, and the
corresponding disretized version of their Laplace-Beltrami operators (LBOs) (the counterpart of
the graph Laplacian on smooth manifolds). The first k eigenfunctions of the two LBOs can be
concatenated side by side as columns to form the matrices Φ ∈ R|V1|×k and Ψ ∈ R|V2|×k. Further,
assume the pointwise map T is available and encoded in a binary matrix S, such that S(y, x) = 1 if
y ∈ V2 corresponds to x ∈ V1, and 0 otherwise. By choosing Φ and Ψ as bases, the functional map
TF can be encoded in a small k × k matrix C via the change of basis formula:

C = Ψ†SΦ , (1)

where † is the Moore-Penrose pseudoinverse. The size of C does not depend on the number of
points in M and N , but only on the number k of basis functions. In other words, C represents the
linear transformation that maps the coefficients of any given function f : M → R expressed in the
eigenbasis Φ, to coefficients of a corresponding function g : N → R expressed in the eigenbasis Ψ.

When the pointwise similarity S is unknown, one can directly compute the matrix C as the solution
of a regularized least-squares problem with k2 unknowns, given some input features on the two
surfaces (e.g., landmark matches or local descriptors). For further details we refer to Ovsjanikov
et al. (2012; 2017).

4 FUNCTIONAL MAPS FOR SUBGRAPHS

In this work, we consider the setting where we are given a graph G1 and a possibly noisy subgraph
G2 = (V2, E2) of G1, such that V2 ⊆ V1 and E2 ⊆ E1. When moving from surfaces to graphs,
Equation 1 takes a simpler expression as we show in Appendix A.1.

4.1 MOTIVATION

Classically, maps are represented as binary matrices S whose dimensions scale quadratically with
the number of nodes in the graphs. One can directly adopt Equation (4) to shift to a spectral repre-
sentation C of the map; however, recall that we consider the setting where G2 is a subgraph of G1.
This simple fact leads to the following important observation, that is central to our contribution:

In many practical cases, the eigenspaces of the normalized graph Laplacian are well preserved
under non-isomorphic transformations of the graph, including strong partiality, topological per-
turbations, and edge rewiring.

Put simply, the values of the Laplacian eigenfunctions stay approximately the same (up to sign, in
case of simple spectrum) at the nodes that are not directly involved in the perturbation – which is to
say that the eigenvectors of the partial graph G2, encoded in Φ2, correlate strongly with the those of
G1, encoded in Φ1. This observation is not trivial and has not been reported before, to the best of
our knowledge.
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Figure 3: Left: Functional map matrix between a smooth surface M and a deformed part N ; the
slanted-diagonal structure suggests that the eigenspaces of M are mostly preserved in N . Right:
Functional map matrices between a graph G1 and different subgraphs; G2 is obtained by removing
40% of the nodes of G1, while G3, G4 are obtained by removing 55% and 80% of the edges from
G2 respectively. The slanted-diagonal structure can still be observed, and gets dispersed only at very
high partiality. In the graphs above, corresponding nodes have the same color.

In the sequel we show extensive empirical evidence of this surprising behavior, and describe its
practical consequences.

4.2 EIGENVECTORS CORRELATION
2 5 10

2 4 8

Figure 2: Corresponding eigen-
functions of Minnesota (top row)
and its subgraph (bottom row).

To get a better understanding of this phenomenon, in the inset
we show an example where the Laplacian eigenfunctions of a
Minnesota subgraph strongly correlate with the eigenfunctions
of the complete graph, i.e., the Laplacian eigenfunctions have
similar values at corresponding nodes, up to sign. Above each
image, we also report the index of the plotted eigenfunction,
leading to the following remark:

Remark (eigenvector indexing): The eigenfunctions of the
complete graph and those of the subgraph do not necessarily
correlate at the same index (see pair 5-4) and the correlation
may not be exact (see pair 10-8); the extent to which the eigen-
functions correlate is captured precisely by the structure of C.

In 3D geometry processing, a similar behavior was observed for the discrete Laplace-Beltrami op-
erator under partiality transformations (Rodolà et al., 2017; Postolache et al., 2020); however, their
theoretical analysis assumes the data to be Riemannian surfaces with a smooth metric – an assump-
tion that does not hold in the case of general graphs. We refer to Appendix A.2 for further details.

4.3 MAP STRUCTURE

The most direct consequence of this preservation of eigenspaces is reflected in the structure of the
functional map C. According to Equation (4), each coefficient cij of C corresponds to a dot product
between ϕ2

i and Sϕ1
j ; this measures the correlation at corresponding nodes between a Laplacian

eigenvector ϕ2
i of G2, and a Laplacian eigenvector ϕ1

j of G1. Each eigenvector ϕ2
i is expressed as a

linear combination of eigenvectors Sϕ1
j , and the combination coefficients are stored in row i of C.

In Figure 3 we show several examples of matrix C for different subgraphs. In the left side, the
slanted-diagonal structure of the map between M and N is explained by an application of Weyl’s
law to 2-dimensional Riemannian manifolds, see (Rodolà et al., 2017, Eq. 9) and Appendix A.2.
However, there is no theoretical counterpart to explain the map structure between G1 and its sub-
graphs, due to the complete absence of metric information about the underlying surface: the eigen-
functions are computed purely from the graph connectivity. Yet, the diagonal structure is preserved
even under rather dense removal of edges, suggesting deeper algebraic implications.

One might legitimately ask whether the presence of a structure in the maps of Figure 3 is due to the
specific choice of the data, where the subgraphs derive from a 3D mesh (although the normalized
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graph Laplacian dismisses any edge length information) and where the type of partiality resembles
a neat ‘cut’ (although we also perform random edge removals). However, the same behavior is also
observed with abstract graphs, as we show with CORA (McCallum et al., 2000) in Figure 4, and
with the datasets PPI0 (Hamilton et al., 2017), Amazon Photo (McAuley et al., 2015) and Amazon
Computer (McAuley et al., 2015) in Figure 7 of the Appendix.

CORA
class removal

CORA
random cut

Figure 4: Functional maps between CORA and
two different subgraphs.

To explain with an example how the structure
of C relates to the graph eigenspaces, consider
the example of the Minnesota graph in Fig-
ure 1. Suppose we map the full graph to its per-
muted version (i). In this case, the two graphs
have the same eigenspaces due to the permu-
tation equivariance of Laplacian eigenvectors.
Thus, matrix C is diagonal with ±1 along the
diagonal, because cij = 0 for i ̸= j (due to
orthogonality of the eigenvectors), while cii =
±1 (due to the sign ambiguity of the eigenvectors). In the case of repeated eigenvalues, one may ob-
serve small blocks of coefficients along the diagonal due to the non-uniqueness of the choice of the
eigenvectors spanning high-dimensional eigenspaces. When we map the full graph to its subgraph
(ii), the two graphs have partially similar eigenspaces, meaning that the inner products between ϕ2

i
and Sϕ1

j tend to be close to zero and close to ±1, but not exactly equal. The matrix C has a sparse
structure but is not necessarily diagonal. This is because the eigenvectors on the subgraph corre-
late with those of the full graph at different indices i ̸= j – unlike the full-to-full case, where the
correspondence happens at i = j.

Remark (map structure): The functional map matrices are not necessarily diagonal, but may present
a different sparsity structure which depends on the particular graph and subgraph.

As we will show in Section 5, the presence of a sparse structure in the functional map matrix C
works as a regularizer, in all those cases where the map is not given but must be estimated from the
graph data.

4.4 NON-ISOMORPHIC SUBGRAPHS

In many practical settings, there are cases where the subgraph G2 is contained in the bigger graph
G1 only up to some topological alterations; for example, in the graph learning literature, topolog-
ical perturbations frequently occur due to noise in the data, or are explicitly obtained by rewiring
operations (Chamberlain et al., 2021) or adversarial attacks (Jin et al., 2021) among others.

In Figure 1, we show the functional map between Minnesota and a subgraph after rewiring (iii). We
still observe a correspondence between the eigenvectors of the full graph and those of the subgraph.
The functional map has a sparse pattern, but it loosens up as the topological modifications increase.
In Section 5.1, we further investigate this property and show the robustness of the functional repre-
sentation to local topological changes.

Remark (topological changes): The harder case, where there is partiality in conjunction with topo-
logical changes, still manifests a sparse structure in the coefficient matrix.

All the remarks so far directly depend on graph connectivity, and it is hard to find analogies for
smooth surfaces. We conjecture that local topological transformations of a graph, while they can
certainly induce strong transformations of some of its Laplacian eigenspaces (similar to single-point
perturbations on planar manifolds, see Filoche & Mayboroda (2012)), are less likely to distort all
the eigenspaces at once. This way, the functional map matrix tends to maintain its global structure
intact, and exhibits local perturbations.

5 EMPIRICAL RESULTS AND ANALYSIS

In this section we validate the claims made in the previous sections with additional qualitative and
numerical results. More experiments and details of the used datasets can be found in Appendix B.
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Figure 5: Robustness of the map to the simultaneous action of partiality and rewiring of the sub-
graph. We compare the addition of gaussian noise (µ = 0;σ = 0.2) with the impact of increasing
rewiring (from 3% to 30% of the total number of edges) on the functional map C of size 50 × 50.
On the left, we plot three graphs with their functional map: no rewiring (Subgraph), the addition of
gaussian noise (Noise), 3% of edges rewired (3%), and 30% of edges rewired (30%). On the right,
we plot the variation of C at different percentages of rewiring (solid lines) and with the addition of
noise (dashed lines) for each graph.

5.1 ROBUSTNESS TO REWIRING

In section 4.4, we claimed that the functional representation is robust to changes in graph connec-
tivity. For this to be true, we expect that small changes in graph connectivity lead to small changes
in the matrix coefficients. See Appendix B.2 for the formal definition.

In Figure 5, we evaluate the changes of the functional map at increasing percentages of rewiring
of a subgraph. We consider six graphs and compute a subgraph from each one. Then, we apply
small incremental changes to the topology of the subgraphs, with increments of 3% of the total
number of edges; the changes are performed by removing and adding random edges, obtaining new
subgraphs Gi. The plot on the right shows how much the functional map representation is affected
by the increasing topological changes compared to adding Gaussian noise. In all the cases, the
rewiring produces less variation in the functional map than adding Gaussian noise. In particular,
the functional representation is more robust on larger graphs, such as cat (10000 nodes) or citeseer
(2120 nodes), while on smaller graphs such as QM9 (29 nodes) and Karate (34 nodes), removing
or adding an edge has a more significant impact. This observation demonstrates the effectiveness
of the spectral representation, especially on larger graphs. In Appendix B.2, we show the complete
qualitative analysis; while in Appendix C.2 we push this experiment to stronger rewiring.

5.2 SIGNAL TRANSFER

Within a graph, nodes may often come with numerical or vector-valued attributes, for instance,
encoding molecular properties in PPIs, user identities in social networks, or positional encodings
to better distinguish and characterize nodes. We can model such data as a collection of functions
f : V1 → R that map each node of G1 to a real value. Recent works (Brüel-Gabrielsson et al., 2022)
have demonstrated that transferring the positional encoding from a graph to its rewired version can
improve GNN performance. The functional map C allows us to transfer these functions from a graph
G1 to a subgraph G2 without requiring the explicit computation of a node-to-node correspondence.
For each function f , it is sufficient to project f onto the Laplacian eigenfunctions of G1, apply
the linear transformation C to the obtained coefficients, and finally reconstruct the signal on the
target graph G2 as a linear combination of its Laplacian eigenfunctions. The described procedure is
implemented by the simple formula:

ĝ = Φ2CΦ⊤
1 f , (2)

where the function ĝ : V2 → R is the transfer of f to G2. Motivated by the results from Brüel-
Gabrielsson et al. (2022), we leverage this property of the spectral representation to transfer the
positional encoding computed on a graph to its subgraphs. In Figure 6, we analyze the functional
map transfer performance while increasing the number of eigenfunctions used for the map repre-
sentation. We consider pairs composed of the original graph and a series of subgraphs extracted
according to a semantic criterion, e.g., nodes belonging to the same class or nodes connected by the
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Figure 6: RMSE obtained by transferring positional encodings (PE) using the functional map with
an increasing amount of eigenfunctions. On the left, we show a qualitative example of signal transfer
on PPI0. The first row shows the full graph and the partial graph, with the PE plotted on top. The
bottom row shows the results of signal transfer with different percentage of eigenfunctions. On the
right, we plot the RMSE at increasing percentages of eigenfunctions.

same edge type. We transfer the Random Walk Positional Encoding (Dwivedi et al., 2022) com-
puted on the full graphs to the subgraphs. We normalize each dimension of the node features of
the original graph to exhibit zero mean and unitary standard deviation throughout all the nodes, and
then transfer this signal through Equation 2. In Figure 6, we can see how the Root Mean Squared
Error between the functional map and the ground truth transfer (we refer to Appendix B.3 for more
details on the evaluation) decreases as the number of eigenfunctions increases. In particular, the er-
ror rapidly decreases at 10%-30% of eigenvectors. This behavior demonstrates that using a compact
representation with few eigenvectors can approximate the signal well. The qualitative examples on
the left of Figure 6 portray the transferred signal on PPI0. Already at 1% of the eigenfunctions the
transfer reaches a good approximation, while at 75% it is almost identical. In Appendix A.3, we
show more experiments with different number of eigenfunctions.

Suppose the graph and subgraphs are equipped with features independent of topological changes
(like in Citeseer). In that case, we can compute the functional map C from these features with-
out needing ground truth correspondence a priori. To show the effectiveness of this alternative, in
Appendix B.3, we show the results of signal transfer via an estimated C.

5.3 NODE-TO-NODE CORRESPONDENCE

Table 1: Comparison of the Mean Average Precision of different graph matching methods. We use
k = 50 eigenfunctions for the functional map representation. We also report the percentage of
eigenfunctions used w.r.t. the number of nodes of the full graph (k%).

Partiality k% IsoRank FINAL REGAL PALE GRASP FMW FMW+ZM GT

Cat
patch

0.5 0.1 ± 0.0 0.2 ± 0.0 93 ± 1.9 6.8 ± 0.4 11 ± 0.0 68 ± 14 69 ± 14 92 ± 3.9

Minnesota 1.9 0.2 ± 0.1 1 ± 0.0 87 ± 3.3 13 ± 0.4 18 ± 2 88 ± 4 89 ± 3.7 94 ± 1.6

Cora 2 0.5 ± 0.0 0.6 ± 0.0 54 ± 3.5 22 ± 2.9 6.8 ± 1.8 33 ± 9.4 34 ± 9.5 65 ± 3.1

Cora class 2 0.4 ± 0.0 0.4 ± 0.0 55 ± 3.4 17 ± 2 51 ± 22 71 ± 16 60 ± 21 85 ± 6.5

Douban online-offline 1.3 0.6 1.1 70 6 0.7 0.8 0.8 3.1

One of the advantages of the spectral representation is to reduce the NP-hard problem of finding
node-to-node correspondences (usually formulated as a quadratic assignment problem (Loiola et al.,
2007)) to the more tractable (polynomial) problem of finding the linear transformation between
the reduced eigenbases of the graphs (at least under the reasonable assumption of smoothness of
the sought correspondence, i.e., nearby nodes on the input graph are located nearby also on the
target subgraph). Assuming a list of m corresponding functions staked column-wise in two matrices
F1 = {f (1)

1 | . . . |f (m)
1 } and F2 = {f (1)

2 | . . . |f (m)
2 }, respectively defined on the node sets V1 and V2,

the general functional map matching algorithm corresponds to the following minimization problem:

argmin
C

∥CΦ⊤
1 F1 − Φ⊤

2 F2∥22 + reg(C) , (3)

8



Under review as a conference paper at ICLR 2023

where reg(C) is a regularization imposing desired properties on C (e.g. sparsity, diagonal structure).
The corresponding functions can be any consistent function between the two graphs, such as input
features coming with the data.

In this experiment, we apply two functional map-based matching algorithms. We adopt the off-
the-shelf partial functional map algorithm (FMW ) (Rodolà et al., 2017) and then the ZoomOut
refinement (Melzi et al., 2019) (FMW + ZM ). We compare the spectral representation with the
network alignment methods proposed in the benchmark (Trung et al., 2020): IsoRank (Singh et al.,
2008), FINAL (Zhang & Tong, 2016), REGAL (Heimann et al., 2018) and PALE (Man et al., 2016).
For all the methods, we use as input 50 landmark matches. For the two functional map methods we
truncate the basis to the first 50 eigenvectors and use smooth indicator functions computed on the
given landmarks as corresponding functions. We refer to the appendix B.4 for further details.

To investigate the degradation of the correspondence induced by the truncated eigenbasis, excluding
errors generated by the matching algorithm, we also compute the correspondence starting from the
ground-truth functional map (GT in the table).

We report in Table 1 the Mean Average Precision (MAP) defined as 1
n

∑n
i=1

1
rai

where rai is the
rank (position) of positive matching node in the sequence of sorted candidates. For our evalua-
tion we consider different graphs and subgraphs. We extract 10 partial graphs by considering k-hops
subgraphs starting from random points. As we can see from the GT column, the functional represen-
tation seems to preserve well the correspondence on these graphs, reaching the highest performance
in almost all cases. Even if the functional map based methods leverage a more compact represen-
tation, their performance is satisfactory, being the best performing method in Minnesota and the
second best in the other two datasets. Moreover, Appendix B.5 demonstrates that the functional
map representation remains the fastest method in every graph. We note that for social graphs like
CORA, characterized by few nodes with high degrees, the performance improves when the subgraph
is semantically meaningful, obtained by removing all the nodes belonging to a specific class (fourth
row). REGAL performs better since it is an ad-hoc algorithm for node-to-node correspondences on
graphs, while our method is a more general solution that leverages a simple linear system. We find
it remarkable that using a functional map as a representation without any fine-tuning works better in
most cases, and are positive that this could lead to follow-up work for subgraph matching.

Finally, we test the functional representation on Douban (Wu et al., 2016), a real-world dataset com-
posed of an online and offline version of the same social network. In this case, both the nodes and
connectivity are very different between the two graphs, resulting in incompatible eigenbases mak-
ing this scenario particularly challenging for a functional representation, as can also been observed
by the low accuracy achieved using the GT functional map. In Appendix C and A.3, we further
investigate the performance of the functional representation at increasing partiality and number of
eigenfunctions.

6 CONCLUSIONS

The spectral representation of functional maps for encoding graph and subgraph correspondences
lends itself well to several applications, and we anticipate that it will be a useful addition to the graph
learning toolset. Among the promising directions that we aim to explore are the definition of novel
positional encodings for graphs robust to partiality transformations and to graph rewiring, and the
application of functional mapping to more abstract structures such as learned graph embeddings.

Further, while in this paper we showed extensive evidence that the spectral map representation bears
a special structure depending on the type of partiality, currently we have not taken full advantage of
this structure. When the task at hand requires seeking for the subgraph alignment, i.e. whenever the
map is unknown, it may be possible to design stronger regularizers to induce sparsity in the matrix
representation of the map. This is quite different from the better known setting of 3D surfaces, where
this sparse structure is typically just diagonal or slanted-diagonal.

In the light of the increasing interest of the graph learning community toward spectral techniques,
adopting a spectral representation for maps between graphs is a natural next step; it is simple to
adopt, easy to manipulate, and memory-efficient, and has the potential to become a fundamental
ingredient in spectral graph learning pipelines in the near future.
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7 REPRODUCIBILITY STATEMENT

All the code and generated data will be publicly released upon acceptance. In the supplementary ma-
terial, we have provided an anonymous sample of the MATLAB code for reproducibility. In Section
5, we have specified the parameters used in the experiments, such as the number of eigenvectors,
the error formulation or the probe functions. In particular, Appendix B focuses on clarifying our
experiments’ details and presenting the dataset used throughout our work.
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O. Litany, E. Rodolà, A. M. Bronstein, and M. M. Bronstein. Fully spectral partial shape matching.
Computer Graphics Forum, 36(2):247–258, 2017.

Li Liu, William K Cheung, Xin Li, and Lejian Liao. Aligning users across social networks using
network embedding. In Ijcai, pp. 1774–1780, 2016.

Eliane Maria Loiola, Nair Maria Maia de Abreu, Paulo Oswaldo Boaventura Netto, Peter Hahn, and
Tania Maia Querido. A survey for the quadratic assignment problem. Eur. J. Oper. Res., 176(2):
657–690, 2007. doi: 10.1016/j.ejor.2005.09.032.

Tong Man, Huawei Shen, Shenghua Liu, Xiaolong Jin, and Xueqi Cheng. Predict anchor links
across social networks via an embedding approach. In Ijcai, volume 16, pp. 1823–1829, 2016.

Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based
recommendations on styles and substitutes. CoRR, abs/1506.04757, 2015.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3(2):127–163,
2000.

11



Under review as a conference paper at ICLR 2023

Marina Meila and Tong Zhang (eds.). Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, 2021. PMLR.
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A INTERPRETATION OF THE FUNCTIONAL MAP MATRIX

A.1 MATRIX REPRESENTATION

In the case of graphs, the functional map matrix is simply written as:
C = Φ⊤

2 SΦ1 , (4)

where Φ1 ∈ R|V1|×k,Φ2 ∈ R|V2|×k contain the first k eigenvectors of the symmetrically normalized
graph Laplacians of G1 and G2 respectively, and S ∈ R|V1|×|V2| is a matrix encoding the node-to-
node correspondence. Note that differently from the case of surface meshes, in Equation 4 we
write Φ⊤

2 instead of using the pseudo-inverse Φ†
2; this is due to the fact that the graph Laplacian

eigenvectors are orthogonal with respect to the standard dot product, i.e., Φ⊤
2 Φ2 = I and Φ⊤

1 Φ1 = I .
This makes the matrix C easy to compute by simple matrix multiplication.

A.2 COMPARISON WITH SMOOTH SURFACES

In the case of smooth surfaces, it has been shown (Rodolà et al., 2017) that the sparsity pattern
of matrix C can be well approximated by a simple formula. Given a surface M and an isometric
part N , the matrix C is approximately diagonal, with diagonal angle α proportional to the ratio of
surface areas:

α ∼ Area(N )

Area(M)
. (5)

As a a special case, full-to-full isometric shape matching yields a diagonal matrix C, since
Area(N ) = Area(M). This result comes directly from an application of Weyl’s asymptotic law
for Laplacian eigenvalues of smooth manifolds (Weyl, 1911), which relates the eigenvalue growth
to the surface area of the manifold via the relation:

λℓ ∼
(2π)2

Area(M)2/d
ℓ2/d , ℓ → ∞ (6)

where d is the dimension of the manifold (d = 2 for surfaces). We refer to (Rodolà et al., 2017, Eq.
9) for additional details pertaining surfaces.

However, Weyl’s law (Equation 6) does not hold for graphs, since there is not a well-defined notion
of “area” of a graph. In fact, when we work with graphs and subgraphs, we observe that matrix C
does not necessarily follow a diagonal pattern. More general sparse structures are observed in the
coefficients of C, but an explanation rooted in differential geometry is not readily available.

In Figure 7, we report additional examples with large abstract graphs undergoing partiality transfor-
mations, showing that clear patterns appear rather consistently across different datasets.

Based on these observations, we believe there is an intriguing theoretical gap between what has
been observed in the case of smooth manifolds, and what we report for graphs in this paper. In the
former case, a geometric explanation has been proposed in the literature. In the latter case, empirical
evidence yields similar results, yet it seems to be a purely algebraic phenomenon that remains to be
addressed.
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Figure 7: Functional maps computed over abstract graphs from 4 different datasets (CORA (McCal-
lum et al., 2000), PPI0 (Hamilton et al., 2017), Amazon Photo (McAuley et al., 2015) and Amazon
Computer (McAuley et al., 2015)), showing a clear pattern in all cases. For each dataset, we compute
the functional map matrix C between the complete graph and a subgraph; the subgraph is obtained
according to a semantic criterion depending on the dataset, e.g., for Amazon Photo, by considering
the subgraph of nodes belonging to the same product category. For each functional map matrix C,
we also show a zoom-in (framed in red). All the matrices are sparse, and have a clean structure
that in some cases approximates a slanted diagonal. The wide matrix on the bottom is computed on
Amazon Photo (using a different subgraph than the one used in the example above it), and shows
that the sparse behavior is maintained throughout the entire spectrum.

A.3 NUMBER OF EIGENVECTORS

Given two graphs G1 and G2 with m and n nodes respectively, the node-to-node map S has size
n×m, thus scaling quadratically with the number of nodes.

By contrast, matrix C as defined in Equation 4 has dimensions that only depend on the number of
Laplacian eigenvectors encoded in the matrices Φ1,Φ2. If one chooses the first k1 ≪ m Laplacian
eigenvectors for G1 and the first k2 ≪ n Laplacian eigenvectors for G2, the size of C is k2 × k1.
Observe that C is rectangular in general, but can be made square by choosing k1 = k2 if so desired.

The experiments in Figure 6 and 8 show that as the number of eigenvectors increases, the perfor-
mance also increases. In particular, Figure 8 demonstrates that, in most of the cases, a low percentage
of eigenvectors (about 5%) suffices to retrieve a good node-to-node correspondence; while at 50% of
the eigenvectors on all graphs the error is above 90%. As a general guideline, in this paper we typi-
cally use k = 20 ∼ 50 for a graph with 1000 nodes, leading to an especially compact representation
C.

A.4 REGULARIZING BEHAVIOR

Using k ≪ n eigenvectors in the construction of C has a regularizing effect on the map, akin to a
low-pass filtering of the correspondence.
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Figure 8: MAP(%) of the correspondence on different datasets at increasing number of eigenvectors
(expressed as percentages, growing from 1% to 75%). The correspondences are obtained from
ground-truth functional maps.

In particular, when we use all the eigenvectors Φ1 and Φ2 to construct C, Equation 4 corresponds
to an orthogonal change of basis; therefore, the representations S and C are equivalent and have
the same dimensions. Truncating the bases to the first k1 and k2 eigenvectors, as described in
Appendix A.3, yields a low-rank approximation C ≈ S. In signal processing terms, we see the
matrix C as a band-limited representation of the node-to-node correspondence S.

The regularizing effect is desirable in many cases, but is traded off for a loss in accuracy if a precise
node-to-node correspondence is desired. On the one hand, if the map C is used to transfer a smooth
signal (e.g. node-wise features like spectral positional encodings or carrying semantic information
depending on the data), then the loss in accuracy is negligible, since Laplacian eigenvectors are
optimal for representing smooth signals (Aflalo et al., 2015); on the other hand, transferring non-
smooth signals via a small C has the effect of filtering out the high frequencies. If high frequencies
are desired, it is often sufficient to just increase the values of k1, k2, leading to a bigger matrix C.

A.5 CHOICE OF LAPLACE OPERATOR
L = D − A L = I − D−1/2AD−1/2

Figure 9: Functional map computed
with two different Laplacians between the
CORA graph and its subgraph.

A functional map can be computed from the eigenbasis
of any linear operator. In this paper we use the symmet-
rically normalized graph Laplacian L = I − D

1
2AD

1
2 .

A valid alternative is the standard Laplacian L = D−A,
which shows similar behavior to the normalized counter-
part. At a practical level, we observed that the Lapla-
cian L suffers from more problems of high multiplicity
at lower frequencies, see Figure 9.

In the special case where the graph is constructed on top
of a point cloud sampled from a (possibly high-dimensional) manifold M, it has been shown that
the eigenvectors of the normalized graph Laplacian converge to the eigenfunctions of the Laplace-
Beltrami operator on M (Belkin & Niyogi, 2006). However, as discussed in Appendix A.2, our
case is more general. We consider generic abstract graphs without an explicit underlying manifold,
i.e. we do not construct our graphs from input point clouds. Further, in Belkin & Niyogi (2006)
it is assumed that M is a compact infinitely differentiable Riemannian submanifold of Rd without
boundary, meaning that partiality transformations, which are the main focus of this paper, are not
considered.

B DATASET AND IMPLEMENTATION DETAILS

In this section we report additional details about the experimental setup used in the main manuscript.

15



Under review as a conference paper at ICLR 2023

B.1 DATASETS

In Table 2 we sum up the main statistics across all the datasets and benchmarks used in our experi-
ments. In addition to number of nodes, number of edges, graph diameter and average node degree,
in the table we also report the application domain of each dataset, the task where they are used, the
type and number of node-wise features (where used). Since PPI and QM9 are collections of graphs,
we used only a subset. In particular, from the PPI dataset we used the first and fourteenth graphs
(specified with 0 and 13 in the experiments). The Cat graph is derived from the corresponding mesh
of the SHREC’16 Partial Deformable Shapes benchmark (Cosmo et al., 2016b).

Table 2: Summary of statistics about the datasets used in our experiments.

Dataset Nodes Edges Diameter Average
degree Domain Task Features Number

of features
QM9 (Klicpera et al., 2020) 29 47 6 3.24 Chemistry Graph regression - -
Karate (Zachary, 1977) 34 78 5 4.59 Social networks Node classification - -
PPI 0 (Hamilton et al., 2017) 1546 17699 8 21.90 Chemistry Graph regression Gene attributes 50
Citeseer (Giles et al., 1998) 2120 3731 28 3.50 Citation networks Node classification Bag-of-Words 3703
Cora (McCallum et al., 2000) 2485 5069 19 4.08 Citation networks Node classification - -
Minnesota 2635 3298 98 2.5 Roadmap - - -
PPI 13 (Hamilton et al., 2017) 3480 56857 8 31.68 Chemistry Graph regression Gene attributes 50
Douban (Wu et al., 2016) 3906 8164 13 4.18 Social networks Network alignment - -
Amazon Photo (McAuley et al., 2015) 7487 119044 11 31.80 Co-purchase Node classification Bag-of-Words 745
Cat (Cosmo et al., 2016a) 10000 19940 86 5.99 Geometry processing Shape matching - -
FraudAmazon (Zhang et al., 2020) 11944 4417576 4 739.71 Product reviews Fraud detection Bag-of-Words 25
Amazon Computer (McAuley et al., 2015) 13381 245778 10 36.74 Co-purchase Node classification Bag-of-Words 767

B.2 ROBUSTNESS TO REWIRING

In this Section, we formally define the connectivity changes and functional map robustness used
in Section 5.1. Given two graphs G = (V,E) and G′ = (V ′, E′), we measure the amount of
change from G to G′ as the (minimum) number of edits needed to transform E to E′, divided by
|E|: (|E−E′|+|E′−E|)

|E| . In our experiments, we consider small changes in the graph connectivity as
a perturbation of 3% of the edges. The rewiring operation that we applied to the graphs consists of
the deletion or addition of the same amount of edges.

We define the difference between the functional map C and C ′ as ∥C − C ′∥2F . Note that there is
ambiguity in the sign of the eigenfunctions of C ′; to factor it out from the error computation, we use
the sign that minimizes the error.

In Figure 10 we show the functional maps generated from the experiment in Figure 5. Figure 10a
shows the functional map between the full and partial graphs from 0% to 30% of rewiring; Fig-
ure 10b shows the variation in the functional representation between the non-rewired case and the
different percentages of rewiring.

B.3 SIGNAL TRANSFER

We evaluate the fidelity of the transferred signal with the Root Mean Squared Error between the
transferred signal ĝ and the ground truth signal g (obtained via the ground truth node-to-node corre-
spondence):

RMSE =

√√√√ 1

n

n∑
i

(g(i)− ĝ(i))2 , (7)

where n is the number of nodes in the subgraph. Table 3: RMSE of the signal transfer com-
puted with two functional maps obtained with
different methods.

Subgraph Cgt C

1 0.68 0.85
2 0.96 0.97
3 0.60 0.63
4 0.81 0.83
5 0.72 0.77

Mean 0.75 0.81

As anticipated in the main manuscript, the func-
tional map C can also be computed from features
independent of topological changes with Equation
8. On Citeseer, the node features are Bag-of-Words
that identify each node, therefore they should not
change under perturbations of the graph topology.
We use as probe functions the features defined on
each node and compute a map C using 50 eigen-
functions without any regularizer or refinement to
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(a) The plotted matrices represent the functional map between the full and partial graphs from 0% to 30% of
rewiring, showing the effect of rewiring on the functional map structure.
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(b) The plotted matrices encode the element-wise error of the functional map after the topological perturba-
tions. Error is encoded as color, growing from white to red.

Figure 10: Robustness of the map to the simultaneous action of partiality and rewiring of the
subgraph. The rewiring operations are increasingly stronger, with increments of 3% of the total
number of edges (starting from 3% and reaching 30%). The second column shows one representative
example (per dataset) of such topological modifications, depicting the added edges in green, and
the removed edges in red. The plotted matrices represent the functional map after the topological
perturbations, showing the effect of rewiring on the functional map structure.
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highlight the contribution of the features. We compare the results of this functional map C with the
ones of a map Cgt obtained from the ground truth correspondences (Equation 4). Each row of Table
3 represents the RMSE of a different subgraph, while the bottom row reports the mean. The results
show that even if we do not have a ground truth correspondence between two graphs, the functional
map C can transfer signals with a good approximation.

B.4 NODE-TO-NODE MAP INFERENCE

As stated in the main manuscript, to test the effectiveness of the spectral representation when seeking
a node-to-node correspondence matrix, we adopt the off-the-shelf partial functional maps algorithm
(FMW ) (Rodolà et al., 2017) and then refine the correspondence with ZoomOut (Melzi et al., 2019)
(FMW + ZM ). These algorithms are not specifically designed for graph matching, but can work
with generic spectral representations, which is one of their main benefits.

We implemented the FMW optimization in MATLAB through the manopt package (Boumal et al.,
2013). We considered a minimization problem with the form:

C = argmin
C∈Rk×k

∥CA−B∥2,1 +R(C) , (8)

where A and B are the coefficients in the Laplacian basis for a set of corresponding probe functions,
while R(C) is some additional regularizer. As probe functions we computed smooth δ functions
for the given set of landmark matches. For all the methods that accepted nodes features (FINAL,
REGAL, GRASP) as input, we used the same functions as nodes features. R(C) fosters additional
structure to C and is defined as:

R(C) = µ1∥C ⊙W∥22 + µ2

∑
ℓ ̸=h

(C⊤C)2ℓ,h + µ3

∑
ℓ

((C⊤C)ℓ,ℓ − dℓ)
2 , (9)

where each term has its weight µ1, µ2 and µ3. W is a mask matrix that acts through element-
wise multiplication ◦ and encodes the relation between the eigenvalues of the two shapes, which
approximates the slanted-diagonal structure of C induced by the partiality. In particular, we com-
puted W with the complex resolvent method proposed in Ren et al. (2020b). The term weighted
by µ2 promotes orthogonality of the map by penalizing the off-diagonal entries of C⊤C. Finally
dℓ ∈ {0, 1} ∀ℓ; the entries equal to 1 represent which singular values of C are expected to be non-
zero. A refinement, similar to the iterative closest point algorithm (Besl & McKay, 1992) in the
space of the coefficients, is then applied to the matrix C. As a final step, the spectral refinement ap-
proach of ZoomOut (Melzi et al., 2019) is applied to the computed C. Given a map of size 50× 50
as input, we apply ZoomOut to its 37 × 37 sub-matrix and get back a refined matrix CZM of size
50× 50.

The ground-truth functional map (GT ) is obtained through Equation 4 where S is the ground-truth
correspondence matrix.

All the methods we compared to in Section 5.3 of the main paper were taken from the public bench-
mark (Trung et al., 2020). To run the experiments, we used the standard parameters suggested in
their code. As node features, we used the same probe functions defined from the landmarks as in
FMW . PALE was trained on the ground-truth correspondences given by the 50 landmarks.

B.5 COMPUTATIONAL TIME

In Table 4, we report the optimization time needed to compute the correspondences of Table 1 from
the main paper. For functional map-based matching algorithms (FMW , FMW + ZM ) we did not
consider the computation of the eigenvectors since it is an offline cost as eigenvectors can be pre-
computed once and re-used. For FMW +ZM , we only report the computational time of ZoomOut
refinement starting from an input functional map. All the experiments were performed on a Intel(R)
Core(TM) i7-9700K CPU @ 3.60GHz.
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Table 4: Comparison of the computational time (in seconds) needed by different methods to compute
a node-to-node correspondence, across several datasets. Spectral based methods (last two columns)
are the most efficient.

Partiality IsoRank FINAL REGAL PALE GRASP FMW FMW+ZM
Cat

patch
270.44 ± 9.84 156.49 ± 2.73 36.78 ± 0.86 3586.4 ± 109.5 1057.7 ± 100.59 20.73 ± 1.67 5.45 ± 0.28

Minnesota 32.18 ± 3.94 10.21 ± 0.15 7.08 ± 0.07 145.72 ± 9.14 648.43 ± 267.5 2.83 ± 0.66 0.33 ± 0.03

Cora 31.54 ± 3.1 10.48 ± 0.55 7.33 ± 0.15 211.99 ± 1.87 198.22 ± 148.3 2.89 ± 0.42 0.39 ± 0.4

Cora class 14.92 ± 2.4 51.61 ± 10.2 10.92 ± 0.9 434.13 ± 35.6 118.61 ± 72 1.96 ± 0.1 0.38 ± 0.02

Douban online-
offline 11.54 27.07 10.41 337.56 16.32 4.43 0.03

Subgraph size

M
A

P(
%

)

(a) Patch
Subgraph size

M
A

P(
%

)
(b) Holes

Figure 11: MAP(%) of the correspondence on different datasets at decreasing size of the subgraph
(expressed as percentages, decreasing from 90% to 50%) with two types of partiality: patch (left)
and holes (right). The correspondences are obtained from ground-truth functional maps.

C ADDITIONAL EXPERIMENTS

C.1 PARTIALITY PERCENTAGE

The aim of this experiment is to study how much the performance of the functional representation
for a correspondence task degrades with different levels and types of partiality.

In Figure 11, we perform an experiment similar to the one in Section 5.3 of the main paper and
test how the MAP of the correspondence changes when we consider subgraphs of different dimen-
sions. In particular, we test 2 partialities: patch and holes. The former is obtained by expanding
a neighborhood from a given random node until a certain number of nodes is reached. The latter
is obtained by removing random nodes with their immediate neighborhood. The main difference is
in the sparsity of the two partialities. The first keeps a cluster of nodes without changing the inner
connectivity of the graph; the latter is sparser in the sense that it removes paths between nodes of
the graph, changing the whole connectivity of the graph. In Figure 12, we plot the functional maps
at different percentages of partiality of type patch (left) and holes (right).

C.2 REWIRING

In the main paper and in Figure 10, we highlight how the functional map degrades when we apply a
sequence of local rewiring operations. Here we consider a much stronger variation, namely, a global
rewiring where we do not limit the topological perturbation to a local neighborhood. The results are
reported in Figure 13.

Finally, in Figures 14 and 15, we show the functional maps under the action of pure rewiring pertur-
bations, without any partiality involved.
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(b) Holes

Figure 12: Robustness of the map to the action of two partialities: patch and holes. The partialities
are increasingly wider, from a subgraph with 90% of the nodes to a subgraph with 50% of the nodes.
As partiality increases, the functional map structure becomes less defined.
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Figure 13: Robustness of the map to the simultaneous action of partiality and rewiring of the
subgraph. The rewiring operations are increasingly wider, involving nodes and edges farther apart.
The left column shows the full graph, while the pairs composed by a graph and a matrix show the
rewiring operation and the resulting functional map, starting with a rewiring involving just nodes
within 1% of the graph diameter (left) up to the full graph diameter (right).
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8% 16% 24% 32% 40% 48% 56% 64% 72% 80%

8% 16% 24% 32% 40% 48% 56% 64% 72% 80%

Figure 14: Robustness of the map to rewiring of the subgraph. The rewiring operations are increas-
ingly stronger, with increments of 8% of the total number of edges (starting from 8% and reaching
80%). The plotted matrices represent the functional map after the topological perturbations, show-
ing the effect of rewiring on the functional map structure.
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Figure 15: Robustness of the map to rewiring of the subgraph. The rewiring operations are increas-
ingly wider, involving nodes and edges farther apart. The left column shows the full graph, while
the others columns show the resulting functional map, starting with a rewiring involving just nodes
within 1% of the graph diameter (left) up to the full graph diameter (right)
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