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ABSTRACT

Data pruning, the process of carefully selecting a small subset of training data, has
been shown to improve both training efficiency and performance. It typically in-
volves two steps: (1) obtaining a representation for each instance, and (2) applying
a selection algorithm using these representations. However, the distinct roles of
these two steps, as well as their interactions, remain unclear. To address this, we
conduct a systematic study of data pruning, focusing on NLP fine-tuning. Our
theoretical and empirical findings reveal that data representation often plays a more
fundamental role than the selection algorithm: gradients, despite being compu-
tationally expensive, provide stronger pruning signals than other representations,
making gradient-based methods consistently outperform cheaper alternatives. We
also demonstrate that different selection algorithms excel in specific scenarios but
are heavily influenced by the chosen representation. These insights provide clear
guidelines for future research and practical applications.

1 INTRODUCTION

The remarkable success of modern deep learning is largely driven by vast training datasets (Kaplan
et al., 2020; Hoffmann et al., 2022; Sardana et al., 2024). However, scaling the size of datasets comes
with great computational costs. Fortunately, recent studies have shown that by carefully selecting a
small subset of the original large dataset, a process known as data pruning, it is possible to improve
training efficiency while also improving generalization performance (Paul et al., 2021; Sorscher et al.,
2022; Du et al., 2023; Xia et al., 2024). Moreover, effective pruning methods can offer insights into
learning algorithms and the roles of training data (Koh & Liang, 2017; Ilyas et al., 2022).

Most data pruning methods involve two steps: First, obtaining a representation for each instance in
the original training set (e.g., hidden states from a pretrained language model); second, selecting
instances based on these representations given a data budget (e.g., 30% of the training set), according
to a selection algorithm. Despite the success of data pruning, existing studies treat these two steps
as a single process, leaving fundamental questions about the roles of representations and selection
algorithms unanswered: Which data representations and selection algorithms are most effective, and
what is their suitability for different tasks? How do different representations impact the data points
selected by each selection algorithm? To address these questions, we conduct a thorough study of
data pruning through both theoretical and empirical lenses, focusing on NLP fine-tuning tasks. Our
contributions are as follows:

1. We offer a systematic overview of existing data pruning methods (§2). From this overview,
we identify three common ways to create representations: based on training dynamics, hid-
den states, and gradients. We also identify three common objectives of selection algorithms:
maximizing difficulty, maximizing diversity, and maximizing validation performance.

2. We both theoretically analyze the pruning signals contained in different representations
(§3), and empirically validate that the representations of stronger signals, despite being
computationally more expensive, are more effective (§4). Specifically, we find that data
pruning based on gradients often performs the best. In contrast, data pruning based on
hidden states, which is computationally cheaper, often does not perform better than random
selection, especially with low data budgets. Our experiments evaluate six representative
methods across common representations and selection algorithms, covering a wide range of
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NLP tasks: hate speech detection (classification), commonsense reasoning (multiple choice),
and summarization (text generation).

3. Our empirical experiments (§4) further show that maximizing difficulty requires a higher
data budget to perform well, maximizing validation performance excels when train-test
distributions differ, and that maximizing diversity in general does not work very well.

4. Through both interpretable experiments with synthetic data (§3) and common NLP tasks
(§4), we show that with the same selection objective, different data representations can
lead to drastically different selections of instances. For instance, when the aim is to select
the most difficult instances, using hidden states results in selecting instances far from the
decision boundary, while using gradients select instances close to it. Moreover, we show
that the sensitivity of selection algorithms towards the change of representations vary, and
that data representations often matter more than selection algorithms.

Our findings highlight the strengths and limitations of current data pruning methods, offering clear
guidelines for selecting appropriate representations and algorithms given specific tasks and constraints.
We recommend prioritizing the development of efficient gradient-based methods, due to their superior
performance and better interpretability (Pruthi et al., 2020; Park et al., 2023).

2 OVERVIEW OF DATA PRUNING METHODS

Various data pruning methods have been proposed. They typically follow two steps for data selection:
(1) obtaining a representation for each instance, and (2) using an algorithm to select instances based
on their representations. Regarding representations, most methods rely on one of the three types:
training dynamics, hidden states, and gradients. Our overview is structured accordingly. While recent
studies have explored external large language models, by prompting and distillation, particularly in
instruction tuning (Sachdeva et al., 2024; Chen et al., 2024; Lu et al., 2024; Liu et al., 2024), we focus
on representations from the model that we are training. This allows us to analyze signals that directly
reflect its learning behavior.

Regarding selection algorithms, most methods are built on one or more of the following objectives:
retaining the most difficult data instances, maximizing the diversity of selected data, and retaining the
training instances that improve a model’s performance on held-out data the most.

2.1 TRAINING-DYNAMIC-BASED METHODS

Most data pruning methods based on training dynamics aim to maximize the ratio of difficult instances
being selected, where the difficulty is defined by heuristics like low prediction confidence and high
training loss. For example, Toneva et al. (2019) determine the difficulty of examples by the earliest
epoch after which that example is always correctly classified; Jiang et al. (2019) keep the examples
with the highest training loss; Swayamdipta et al. (2020) and Du et al. (2023) use the standard
deviation and mean of prediction probabilities of the correct class across different epochs; Paul et al.
(2021) keep the examples with the largest error norm; Baldock et al. (2021) select examples that need
to pass through more layers before being correctly classified; and Marion et al. (2023) and Kwok
et al. (2024) quantify difficulty by perplexity. Moreover, Maini et al. (2022) show that examples that
are forgotten slower when training on a held-out subset are more rare and thus worth keeping. In the
context of instruction tuning, Li et al. (2024) quantify the difficulty of a response by the ratio of its
losses between generations with and without its instruction.

Other selection objectives have also been explored. For instance, Mindermann et al. (2022) prioritize
training on learnable, worth-learning, and not-yet-learned examples, quantified by the loss difference
between the model itself, and a small reference model trained on a held-out dataset. Furthermore,
Yang et al. (2024) aim to diversify the training data by clustering instances based on their training
losses across different epochs and sampling evenly from each cluster.

2.2 HIDDEN-STATE-BASED METHODS

Hidden-state-based methods often exploit similarities between data samples to realize various se-
lection objectives. For example, Sorscher et al. (2022) first perform a k-means clustering of hidden
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states, then select the ones that lie farther from their cluster centroids, because these instances are
less prototypical and therefore more likely to be difficult. Abbas et al. (2023) and Tirumala et al.
(2023) extend this approach by identifying and removing semantic duplication after clustering. This
de-duplication step helps balance data diversity and difficulty by discarding redundant instances.

2.3 GRADIENT-BASED METHODS

Another line of methods uses gradient information of each training instance to estimate its importance.
Specifically, most gradient-based methods estimate the impact of removing instances by simulating
re-training scenarios. These approaches use gradient-based tools like influence functions (Koh &
Liang, 2017; Pruthi et al., 2020) and datamodels (Ilyas et al., 2022; Park et al., 2023).

The most common objective is to maximize or maintain validation performance. For example, Xia
et al. (2024) and Engstrom et al. (2024) discard training instances with low contribution towards
the validation performance of the target task. They approximate this influence by using the TracIn
influence function (Pruthi et al., 2020) and datamodels (Ilyas et al., 2022). Moreover, Killamsetty
et al. (2021) and Yang et al. (2023) keep instances that likely result in similar models as when training
on the full dataset.

Gradients are also often used to select difficult instances. For example, Feldman & Zhang (2020)
demonstrate that data instances of high self-influence (i.e., training on itself contributes more to
its prediction) are more difficult and help generalization. Using the TracIn influence function, this
self-influence score can be estimated as the gradient norm. Similarly, Thakkar et al. (2023) prioritizes
data instances of different self-influences at different stages of pretraining, to limit the influence of
noisy data while focusing on higher-quality ones; and Bejan et al. (2023) uses automatic curriculum
learning to filter noisy data.

3 A TALE OF DATA REPRESENTATIONS AND SELECTION ALGORITHMS

This section studies the distinct roles of data representations, selection algorithms, and their interac-
tions. Specifically, we focus on six representative methods that span all three major types of data
representations and selection objectives. First, we provide in-depth explanations of each method
(§3.1). Next, we present a theoretical analysis of the signals each representation offers (§3.2). Finally,
we conduct interpretable synthetic experiments to study how the data instances favored by each
selection algorithm are shaped by the chosen data representations (§3.3).

Notation We now summarize the notation used in this paper. We denote the original training set
with N instances as D = {(xi, yi)}Ni=1. The selected subset of data is represented by S ⊂ D. We
use B to denote the data budget (e.g., B = |S| = 0.2N ). For a data point (xi, yi) and a model
with parameters θ, we use fθ(xi) to denote the model’s logits, ℓ(fθ(xi), yi) to denote the loss,
and pθ(yi|xi) to denote the prediction probability of the correct class or token. Moreover, we use
hθ(xi) to denote the last layer hidden state of input xi, and gθ(xi, yi) = ∇θℓ(fθ(xi), yi) to represent
the gradient. Moreover, we train each model for T epochs, use pt(yi|xi) to denote the prediction
probability of the correct class at epoch t ≤ T , and use ηt to denote the learning rate at epoch t.

3.1 PRELIMINARIES: DETAILS OF DATA PRUNING METHODS

Data pruning typically involves two steps under a given data budget (e.g., 20% of the original dataset).
First, a reference model is used to obtain representations for each instance, such as hidden states from
a pretrained model. Second, a selection algorithm chooses a subset based on these representations,
e.g., the ones that are farthest from the clustering centroids, following a selection objective, e.g.,
selecting the most difficult instances. The selected instances are then used to a train new main model
which is the final model of interest. We summarize the representations and selection objectives of
these methods in Appendix B.

We first describe two training-dynamic-based methods, Hard-to-Learn and SmallToLarge (S2L).
These training dynamics (e.g., training losses) are collected from a reference training run, during
which a reference model is trained on the original dataset.
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Hard-to-Learn The Hard-to-Learn method is based on a simple intuition: training instances that
are difficult for models to fit often contain fewer regularities, and these instances can improve model
generalization (Swayamdipta et al., 2020; Jiang et al., 2021). Concretely, it represents each training
instance by a score computed from the training dynamics of a reference model. In classification tasks,
for a given instance (xi, yi), its score is defined as the average prediction probability of the correct
label across different epochs, i.e., shard(xi, yi) = 1

T

∑T
t=1 pt(yi|xi). Instances with the lowest

scores are selected for training the main model, i.e., S = argmin|S|=B

∑
(xi,yi)∈S shard(xi, yi). To

extend this concept to generation tasks, Bhatnagar et al. (2022) and İnce et al. (2023) replace shard
with the inverse perplexity. Additionally, Jiang et al. (2021) show that shard correlates well with the
expected accuracy of an instance when it is excluded from the training data. This correlation also
suggests that Hard-to-Learn instances contain fewer regularities, supporting the intuition.

SmallToLarge Also based on training dynamics, SmallToLarge (S2L) aims to select diverse
instances. Specifically, Yang et al. (2024) observe that training instances with different loss trajectories
across epochs likely require different knowledge. To make sure different skills are evenly represented
in the subset S, S2L performs three steps. Initially, it represents each training instance by its cross
entropy loss trajectory. Then, it performs a k-means clustering on these trajectories, and sorts these
clusters by size in an ascending order. Finally, it iteratively samples (B−|S|)/(K− k+1) instances
from each cluster1, where K is the number of clusters, and k is the current cluster index. This sample
size choice helps S2L prioritize smaller clusters to increase the diversity of the selected data.

Next, we discuss two hidden-state-based methods, Prototypicality and SemDeDup. Hidden states
are usually computed using a reference pre-trained model, and thus require no further training, making
them computationally more efficient than other methods.

Prototypicality The Prototypicality method (Sorscher et al., 2022) aims to select difficult instances
by exploiting their similarities: it measures difficulty based on how prototypical an instance is in
the dataset. Specifically, after representing instances by their hidden states, prototypicality applies
k-means clustering and ranks instances based on their distances to their cluster centroids. Instances
with larger distances are considered less prototypical, more difficult, and selected for further training.

SemDeDup Building on Prototypicality, SemDeDup adds one more step to account for data
diversity besides difficulty (Abbas et al., 2023). Concretely, after the clustering step of Prototypicality,
SemDeDup identifies semantically duplicate pairs of instances within each cluster using cosine
similarities of their hidden states. For each identified duplicate pair, it retains the instance that lies
farther from the cluster centroid, thereby prioritizing diversity while maintaining difficulty.

Finally, we discuss two gradient-based methods, LESS and Memorization. They require training a
reference model on the original dataset, and computing gradients using different checkpoints. This
makes them very costly, because they require performing back-propagation with batch sizes of 1 to
obtain the gradients, which have a high dimensionality, equal to the number of model parameters.

LESS Unlike the above methods that only rely on representations of the training data, LESS
assumes the availability of a validation set. It aims to select instances that maximize the validation
performance, measured by validation loss reduction (Xia et al., 2024). Naively, this estimation
requires retraining models on a large number of random training subsets, which is prohibitively
expensive for modern neural models. Therefore, LESS employs influence functions for approxima-
tion (Pruthi et al., 2020). Specifically, given the t-th reference model checkpoint θt, LESS estimates
the loss reduction of a training instance (xi, yi) w.r.t. a validation instance (xval, yval) by the dot
product of their (normalized) gradients. For multiple checkpoints, LESS performs weighted averag-
ing by learning rates. Formally, sLESS(xi, yi) =

∑T
t=1 ηtgθt(xi, yi) · gθt(xval, yval). The instances

with the highest scores are kept. Moreover, for efficiency, LESS uses LoRA (Hu et al., 2022) and
random projection (Park et al., 2023; Johnson & Lindenstrauss, 1984) for dimensionality reduction.
Additionally, LESS considers optimizer states when computing training gradients.

Memorization Feldman & Zhang (2020) define memorization in training as the loss increase of a
training instance before and after it is removed from the training set, i.e., self-influence. Following a

1For simplicity, here we reload |S| as the number of already sampled instances.
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similar intuition as Hard-to-Learn, Feldman (2020) argues that instances with high memorization
scores are usually more difficult and thus contribute more to generalization. Similar to LESS,
memorization is also usually approximated by influence functions using gradients (Thakkar et al.,
2023; Bejan et al., 2023; Pruthi et al., 2020). In this work, following Pruthi et al. (2020), we compute
the memorization score of a training instance (xi, yi) by

∑T
t=1 ηtgθt(xi, yi) · gθt(xi, yi). Inspired by

Xia et al. (2024), we also adopt LoRA and random projection for efficiency.

3.2 WHAT DO DIFFERENT REPRESENTATIONS REVEAL?

Data representation is central to data pruning, yet it remains unclear how different representations
vary in the signals they retain. This section offers theoretical insights into this question. Specifically,
as described in §3.1, most data pruning methods rely on the similarity between instances based on
their representations (e.g., S2L, Prototypicality, and LESS). We therefore ask: How does the notion of
similarity between two instances change across different representation spaces? Our analyses build
insights into the pruning signals from different representations, which we will further study in the
following synthetic (§3.3) and NLP task (§4) experiments.

For clarity of analysis, we consider a binary classification task with labels y ∈ {−1,+1}, optimized
with binary cross-entropy loss. For the representations, we focus on the prediction probability of the
correct class, the hidden states before the classification layer (parameterized by w, i.e., the classifier
or language modeling head), and the gradients of this classification layer.2 Given a training instance
(xi, yi) and a model θ, let h(xi; θ) be the hidden states. We can derive the prediction probability of the
correct class pθ(yi|xi) = σ(yiw

Th(xi; θ)), where σ is the sigmoid function. We can also compute
the gradients as gw(xi, yi) = ∇wℓ(fθ(xi), yi) = (1− σ(yiw

Th(xi; θ)))yih(xi; θ). Specifically, we
use Euclidean distance as the similarity metric, and consider hidden states as the fundamental units,
given their involvement in both prediction probability and gradient expressions.

We first consider the correct class prediction probability difference. Formally, given two training
instances (xi, yi) and (xj , yj), this is |pθ(yi|xi)− pθ(yj |xj)| = |σ(yiwTh(xi))− σ(yjw

Th(xj))|.
Because the Sigmoid function is smooth and monotonically increasing, when this difference is small,
wT |yih(xi)− yjh(xj)| should also be small. We can identify two cases: when the labels agree, i.e.,
yi = yj , h(xi) and h(xj) should be close in both direction and length (i.e., L2 norm) after being
projected onto w; when labels do not agree, i.e., yi ̸= yj , h(xi) and h(xj) should be opposite but of
similar length. In other words, in contrast to distances between hidden states, i.e., ∥h(xi)− h(xj)∥,
the difference in prediction probabilities also considers label agreement.

Let us now analyze the Euclidean distance between instances represented as gradients3,

∥gw(xi, yi)− gw(xj , yj)∥2 =
√
∥gw(xi, yi)∥22 + ∥gw(xj , yj)∥22 − 2gw(xi, yi)T gw(xj , yj)

=
√
err2i ∥hi∥22 + err2j∥hj∥22 − 2errierrjh(xi)Th(xj)yiyj , where erri = 1− σ(yiw

Th(xi)).

Here erri is the prediction error of instance (xi, yi). We discuss two scenarios. First, if the gradients
are normalized (as in LESS), the first two terms above are both 1. The third term depends on the
cosine similarity (equivalent to the dot product) of hidden states and label agreement. To minimize
gradient distance, when yi = yj , h(xi) and h(xj) should have high cosine similarities; when yi ̸= yj ,
h(xi) and h(xj) should be of low cosine similarities. This is similar to the prediction probability
case, except that the similarity between hidden states is independent of both their lengths and w.

Second, when gradients are not normalized, the gradient distance is ∥errih(xi)− errjh(xj)∥2 and
∥errih(xi) + errjh(xj)∥2 respectively when yi = yj and yi ̸= yj . Similar to the case for prediction
probability, when the gradient distance is small, hidden states should be similar when their labels
agree, and dissimilar when their labels disagree. However, here the hidden states are scaled by their
prediction errors: if we assume that the length of hidden states are similar (which holds in practice),
we require their prediction errors to be similar as well.

In summary, similarities based on training dynamics and gradients are closely related to hidden states.
Besides, they both implicitly encode label agreement, and gradients also encode prediction errors.

2Classification layer gradient is a popular choice for large-scale models, e.g., Pruthi et al. (2020).
3Our conclusions apply to cosine similarity, as used in LESS (equates to using normalized gradients here).
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Figure 1: Interactions between data representations and selection algorithms. We generate 600 data
points from a 2D Gaussian mixture model and compare different methods to select 30% (180) of the
data points. The color represents the ground-truth label, and the red Xs are the selected data points.
(1) Using different representations with the same selection objective or algorithm leads to drastically
different subset selections (a–c, g–h); (2) The sensitivity of selection algorithms towards the used
representations varies (e.g., compare d–f with b–c).

3.3 HOW DO REPRESENTATIONS AND SELECTION ALGORITHMS INTERACT?

This section analyzes how different representations affect the outcomes of selection algorithms.
Specifically, we aim to answer two questions: does a given selection algorithm choose different subset
selections when using different representations? Which selection algorithms are more sensitive to
representation changes? For this purpose, we first conduct an interpretable analysis using a synthetic
dataset. Building on these insights, we will empirically study more complex scenarios in §4.

To compare selection objectives across different representations, we focus on three selection algo-
rithms that are representation-agnostic: prototypicality (prioritizing difficulty), S2L (prioritizing
diversity), and LESS (prioritizing influence on validation set performance). We also include Hard-
to-Learn for comparison. We generate 600 data points from a 2D Gaussian mixture model and use
each method to select 30% (180) of the data points (Figures 1 and 6). We train a logistic regression
classifier to serve as the reference model to obtain training dynamics and gradients, and the original
data points are used as hidden states. Our observations are as follows.

First, even when data pruning methods have the same objective, the representations and selection
algorithms used can result in drastically different subset selections. For example, both Hard-to-Learn
and Prototypicality aim to select difficult instances. To achieve this, Hard-to-Learn selects instances
with low correct class probabilities, which favors the ones that are located near the decision boundary
(Figure 1a). In contrast, Prototypicality clusters data instances based on hidden states, and selects
those that are far from the cluster centroids. As a result, it selects instances from the sparsely
populated regions (Figure 1b).

Second, even the same selection algorithm can prefer different data points, when using different
representations. As discussed in §3.2, instances with similar hidden states but different labels are far
apart in gradient space (§3.2). For example, when using gradients, Prototypicality favors instances
near the decision boundary as they are far from centroids (Figure 1c). In contrast, with hidden states,
it selects instances far from the decision boundary, as mentioned above (Figure 1b).

Third, selection algorithms vary in sensitivity towards representations. For example, S2L selects sim-
ilar instances with different representations (Figures 1d–f). Indeed, diversity-preserving algorithms
are less affected by the choice of representation because they sample evenly from different regions.
In contrast, both Prototypicality (Figure 1b–c) and LESS (Figure 1g–h) select remarkably different
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Figure 2: Spearman correlation of scores calculated by different methods (2a-2b, all methods select
instances with the highest scores to retrain) and their model performance under different data budgets
(2c-2f). Here Hard, Proto, and Mem refer to Hard-to-Learn, Prototypicality, and Memorization.
LESS-OOD refers to LESS using DynaHate as the validation set. We also experimented with forced
label matching. Regarding correlations, we identify two pairs of methods with moderate to high
correlations: Hard-to-Learn and Memorization, and Prototypicality and SemDedup. Regarding model
performance, we show that 1) data pruning is not always effective: hidden-state-based methods do
not outperform random selection, while LESS (with label matching) is competitive on all tasks;
2) different objectives suit different scenarios: maximizing difficulty performs well with high data
budgets, and prioritizing validation performance works better when there is a mismatch between the
train and test distributions; preserving diversity works less well.

data points using hidden states and gradients, because instance similarities computed by gradients
additionally encode their label agreement and the magnitudes of their prediction errors (§3.2).

4 EMPIRICAL EVALUATIONS

4.1 EXPERIMENTAL SETUP

Building on our theoretical and synthetic analyses (§3), we now study the impact of various data
representations and selection algorithms from §3.1 on NLP tasks. We evaluate their consistency
(§4.2) and performance across different data budgets (§4.3). We also perform ablation studies to
examine the role of each component, as well as their effectiveness in handling label noise (§4.4).

We evaluate on three diverse NLP tasks: CAD (hate speech detection, binary classification (Vidgen
et al., 2021)), WinoGrande (common sense reasoning, multiple choice (Sakaguchi et al., 2021)),
and DialogSum (summarization, generation (Chen et al., 2021)). For CAD, we include Dyna-
Hate (Kiela et al., 2021) as an OOD test set. For CAD and WinoGrande we use DeBERTaV3Large and
DeBERTaV3Base (He et al., 2023), and for DialogSum we use OPT-125M and OPT-350M (Zhang
et al., 2022).4 We experiment with six data budgets: 5%, 15%, 30%, 50%, 70%, and 100% of the
original dataset, and fine-tune all models for 15 epochs. For fair comparisons, we use the same

4We use relatively small models to avoid huge computation during both training (trained 1200+ models for
controlled comparisons) and gradient projection (can take > 10 times because of the high dimensionality).
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reference models as the main models (more details in Appendix A), although recent works (Du et al.,
2023; Yang et al., 2024) have shown the promising performance of using efficient reference models.
We also experimented with forced label matching to match the original dataset (LESS-balanced in
Figure 2d, and Figure 2f), to address highly skewed pruned datasets (details in §4.3).

4.2 CONSISTENCY BETWEEN DATA PRUNING METHODS

This section analyzes whether different pruning methods rank data points similarly. We use Spear-
man’s r to compare the scores assigned to each instance by various methods5 because (1) rank-based
correlation are more suitable for comparing scores of different ranges, and (2) it allows for evaluation
without setting a fixed data budget. Results for DeBERTaV3Large on WinoGrande and OPT-350M on
DialogSum are shown in Figures 2a and 2b, with additional results in Appendix C.2.

Consistent with §3.3, we observe that the same objective can lead to different data selections: For
instance, although both Prototypicality and Hard-to-Learn aim to select difficult instances, they show
almost no correlation. However, the pairs Prototypicality - SemDedup and Hard-to-Learn - Memo-
rization show moderate consistency across datasets and models. This aligns with our expectations:
Both Prototypicality and SemDedup are based on clustering hidden states, with SemDedup adding a
step for semantic deduplication. Meanwhile, both Hard-to-Learn and Memorization select difficult
instances whose predictions are barely improved by training on other instances (Jiang et al., 2021).
Since Memorization requires gradients, it is far more costly, making Hard-to-Learn the more scalable
option, although the moderate correlation suggests there are still differences in their data selections.

4.3 PERFORMANCE UNDER DIFFERENT DATA BUDGETS
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Figure 3: DeBERTaV3Large on
CAD: the ratio of hateful instances
in selected instances, under differ-
ent data budgets.

Our previous analyses focus on how different components in-
fluence data selection. This section further analyzes their impli-
cations on model performance under different data budgets, to
answer questions regarding which data pruning method to use in
specific scenarios. Three baselines are considered: random se-
lection (Rand), the full original dataset (100% data budget), and
a dummy predictor (Dummy, the better one between a random-
ized predictor and a majority class predictor), as performance
below it is considered as failed (Mosbach et al., 2021). We
make three observations (Figures 2c to 2f, and Appendix C.3).

First, data pruning is not always effective. For example, Hard-
to-Learn and S2L perform underperform random selection on
DialogSum (Figure 2c) and CAD (Figure 2d). Surprisingly,
hidden-state-based methods (Prototypicality and SemDedup),
perform worse or similar to random selection on all tasks, sug-
gesting clustering pretrained hidden states is not suitable for our setting.6

Second, higher data budgets are needed for methods that select difficult instances, i.e., Hard-to-Learn
and Memorization. They achieve good performance with > 30% data budgets on CAD (Figure 2d)
and WinoGrande (Figure 8e), but they both struggle with lower data budgets (< 30%) (e.g., worse
or comparable to Dummy). This is consistent with Swayamdipta et al. (2020): including only the
most difficult instances will make models fail to converge. Moreover, due to their consistency in
both scores (§4.2) and classification performance, future studies may prioritize Hard-to-Learn over
Memorization for selecting difficult instances in classification tasks, aiming for better efficiency.

Third, gradient-based methods (LESS and Memorization) are competitive (Figure 2c-2e), indicating
that gradients are effective data representations. Between them, LESS performs better but requires
label matching for highly skewed datasets. For example, on CAD, where 90% of instances are
non-hateful, directly applying LESS yields poor results (Figure 2d).

5All methods, except S2L, assign scores to instances and retain the highest-scoring ones. Since S2L only
assigns cluster labels, we exclude it from this analysis. We also experimented with overlaps under different data
budgets and obtain consistent observations.

6Note that our experiments differ from previous studies that use hidden states, as they focused on high data
budget settings (Sorscher et al., 2022) and noisy pretraining datasets (Abbas et al., 2023).
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Hidden States: OPT-350M on Di-
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(b) Representation-Selection Rela-
tion: DeBERTaV3Large on Wino-
Grande (Accuracy)

0.0 0.2 0.4 0.6
Data Budget

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Full Data

Pruning Metric
S2L
Proto
LESS-OOD
Feature
Training Dynamic
Hidden State
Gradient

(c) Representation-Selection Rela-
tion: DeBERTaV3Large on Dyna-
Hate (F1)

Figure 4: Ablation studies on pretrained vs. fine-tuned hidden states (4a), and using different data
representations with the same selection algorithm (4b-4c).

We hypothesize the reason to be as follows. LESS ranks training instances based on their gradient
similarity to validation data. However, gradient similarities depend on labels: since hidden states
usually have > 0 cosine similarities (known as anisotropic space), instances with the same label have
higher gradient similarities (§3.2). This makes LESS over-select instances with the majority label
when using unbalanced validation sets, e.g., non-hateful instances in CAD, leading to pruned datasets
with even more skewed label distributions.

We validate this by plotting the ratio of hateful labels in selected instances across different methods
and data budgets in Figure 3. We confirm that non-hateful instances have much higher LESS scores
than hateful ones, with very few hateful instances being selected until the data budget reaches 90%,
unlike other methods.7 To address this, we enforced the selected label ratio to match the original
dataset, which substantially improves LESS performance (Figure 2f). However, this constraint can
harm methods like Hard-to-Learn and memorization, which favor hateful instances.

4.4 ABLATION STUDIES

This section presents ablation studies to explore the impact of key components, including fine-tuned
versus pretrained hidden states, the interaction between representations and selection algorithms (as
in §3.3 but focusing on task performance), and the ability of these methods to handle label noises.
We include our results in Figure 4 and Appendix C.4.

Fine-Tuned Hidden States Our previous results show that hidden-state-based methods perform
comparably to random selection. However, fine-tuning could potentially encode task-specific and
label information into hidden states, helping identify prototypical and diverse training instances.

We therefore study whether using fine-tuned hidden states can improve model performance. Specif-
ically, we experiment with two types of fine-tuned hidden states: early (fine-tuned for one epoch,
retaining more pretrained knowledge) and late (fine-tuned for 15 epochs, encoding more task-specific
and label information). The results of both prototypicality and SemDedup are shown in Figure 4a.
Fine-tuned hidden states can barely improve model performance: there is little difference between
using different hidden states, and they all perform comparably to random selection.

Representation-Selection Relation It remains unclear whether the effectiveness of different data
pruning methods stems primarily from the representations they use, the selection algorithms they use,
or a specific combination of both. Similar to §3.3, to disentangle the contributions from these different
components, we conduct a systematic study that combines all three different data representations with
the selection algorithms of S2L, Prototypicality, and LESS, which respectively prioritize difficulty,
diversity, and validation performance. We show the results for DeBERTaV3Large on WinoGrande and
DynaHate in Figure 4b and Figure 4c, and make two observations.

7Sorscher et al. (2022) reported a similar imbalance for Prototypicality. We also observe marginally more
skewed pruned datasets, and forced matching slightly improve their performance (especially with high data
budgets, which is their original setting). However, their performance is overall comparable to random selection.
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First, similar representations often lead to similar performance. For example, Figure 4b shows that
the performance of using the same representation with different selection algorithms are more similar
than using different representations with the same selection algorithm. This indicates that, compared
to selection algorithm, representation plays a more fundamental role.

Second, the optimal selection algorithm is task-dependent and still plays a key role. For example,
Figure 4c shows that methods using the LESS selection algorithm outperform others on DynaHate.
One possible explanation is that DynaHate is an OOD test set that presents a substantial distribution
shift from the training data (CAD), while the LESS selection algorithm compensates for this shift by
selecting instances matching the validation set. This observation suggests that future practitioners
should choose algorithms based on goals: prioritizing difficulty for better robustness, and prioritizing
contribution to validation performance when adapting models to a different domain.
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Figure 5: The percentage of se-
lected noisy instances in all noisy
instances of DeBERTaV3Large on
WinoGrande, with 2% noise rate.

Noise Detection An important applications of data pruning is
removing noise from training data (Swayamdipta et al., 2020;
Paul et al., 2021). To evaluate the noise detection capabilities of
different methods, we create two noisy versions of each dataset
by changing 2% and 5% of the training labels. Concretely, we
flip the labels for CAD and WinoGrande (both datasets have
binary labels), and substitute the summaries of DialogSum with
a randomly selected one. We then train reference models on
these noisy datasets, and use different methods to select data.
We use fine-tuned hidden states (both early and late) instead
of pretrained hidden states, as pretrained hidden states do not
encode label-relevant information.

We analyze the percentage of selected noisy instances out of
all noisy instances across data budgets. Figure 5 shows results
for DeBERTaV3Large on WinoGrande (2% noise rate), with
additional results in Appendix C.4.8 Except for Hard-to-Learn, which is proposed for noise detec-
tion (Swayamdipta et al., 2020), none of the methods effectively filter out noisy instances. However,
Hard-to-Learn tends to select more noisy instances, which conflicts with our goal of identifying
clean data. Consequently, none of the data pruning methods are suitable for training with noisy data.
Notably, although Memorization shows moderate consistency with Hard-to-Learn (§4.2), it only
ranks noisy instances marginally higher than clean instances.

5 CONCLUSION

Summary Despite the success of data pruning, the roles of its two key components – data represen-
tation and selection algorithm – and their interactions, are not well understood. In this work, we have
conducted both theoretical and empirical analyses on these two choices in fine-tuning tasks. Our
results highlight the importance of using rich data representations, showing that gradient-based meth-
ods consistently outperform computationally cheaper alternatives. Additionally, the optimal selection
algorithm varies depending on specific use cases, although the outcomes are heavily influenced by the
chosen representation. Moving forward, our findings stress the need for the development of scalable
supervised representations, i.e., representations that encode label-relevant information, as more
effective alternatives to the current unsupervised ones, e.g., pretrained hidden states.

Limitations The most notable limitation of our work is its focus on task-specific fine-tuning that
leaves multi-task instruction tuning unexplored. This is largely due to (1) the huge amount of
computation required to conduct rigorous controlled studies as ours, and (2) the challenges in scalable
and low-cost evaluation (Zheng et al., 2023). Future studies could explore instruction-tuning with
synthetic data, which has been recently shown to be effective for proof-of-concept studies (Allen-Zhu
& Li, 2024). Moreover, we focus on methods that do not require external models (e.g., prompting
language models to evaluate example quality). Future work can extend our analysis to them.

8S2L samples instances from different clusters in a balanced way (§3.1). Therefore, even with a data budget
of 100%, it does not select all data points, making the percentage does not reach 100%.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Amro Kamal Mohamed Abbas, Kushal Tirumala, Daniel Simig, Surya Ganguli, and Ari S. Morcos.
Semdedup: Data-efficient learning at web-scale through semantic deduplication. In ICLR 2023
Workshop on Mathematical and Empirical Understanding of Foundation Models, 2023. URL
https://openreview.net/forum?id=4vlGm9gv6c.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=5x788rqbcj.

Robert John Nicholas Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the
lens of example difficulty. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=WWRBHhH158K.

Irina Bejan, Artem Sokolov, and Katja Filippova. Make every example count: On the stabil-
ity and utility of self-influence for learning from noisy NLP datasets. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 10107–10121, Singapore, December 2023. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.625. URL https:
//aclanthology.org/2023.emnlp-main.625.

Rajat Bhatnagar, Ananya Ganesh, and Katharina Kann. CHIA: CHoosing instances to annotate
for machine translation. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Find-
ings of the Association for Computational Linguistics: EMNLP 2022, pp. 7299–7315, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.findings-emnlp.540. URL https://aclanthology.org/2022.
findings-emnlp.540.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
Srinivasan, Tianyi Zhou, Heng Huang, and Hongxia Jin. Alpagasus: Training a better alpaca with
fewer data. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=FdVXgSJhvz.

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang. DialogSum: A real-life scenario dialogue
summarization dataset. In Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021, pp. 5062–5074, Online, August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.findings-acl.449. URL https://aclanthology.org/2021.
findings-acl.449.

Yupei Du, Albert Gatt, and Dong Nguyen. Ftft: efficient and robust fine-tuning by transferring
training dynamics. arXiv preprint arXiv:2310.06588, 2023. URL https://arxiv.org/abs/
2310.06588.

Logan Engstrom, Axel Feldmann, and Aleksander Madry. Dsdm: Model-aware dataset selection
with datamodels. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=GC8HkKeH8s.

Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pp. 954–959,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450369794. doi:
10.1145/3357713.3384290. URL https://doi.org/10.1145/3357713.3384290.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering
the long tail via influence estimation. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 2881–
2891. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. DeBERTav3: Improving deBERTa using ELECTRA-
style pre-training with gradient-disentangled embedding sharing. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=sE7-XhLxHA.

11

https://openreview.net/forum?id=4vlGm9gv6c
https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=WWRBHhH158K
https://openreview.net/forum?id=WWRBHhH158K
https://aclanthology.org/2023.emnlp-main.625
https://aclanthology.org/2023.emnlp-main.625
https://aclanthology.org/2022.findings-emnlp.540
https://aclanthology.org/2022.findings-emnlp.540
https://openreview.net/forum?id=FdVXgSJhvz
https://aclanthology.org/2021.findings-acl.449
https://aclanthology.org/2021.findings-acl.449
https://arxiv.org/abs/2310.06588
https://arxiv.org/abs/2310.06588
https://openreview.net/forum?id=GC8HkKeH8s
https://doi.org/10.1145/3357713.3384290
https://proceedings.neurips.cc/paper_files/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry.
Datamodels: Understanding predictions with data and data with predictions. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pp. 9525–9587. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/ilyas22a.html.
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A EXPERIMENTAL DETAILS

Implementation Details All experiments were conducted using the AdamW optimizer. For most
models, we set the learning rate to 2e-5, except for DeBERTaV3Large, where we followed He et al.
(2023) and used 1e-5. Additionally, we warmup the learning rate for the first 10% of training steps.
For gradient-based pruning, the reference models were trained with LoRA, using a higher learning
rate of 1e-4, r = 64, and α = 16 following Ivison et al. (2023), and apply LoRA on all linear layers.
We train all models for 15 epochs, For batch size, we used 16 for both WinoGrande and DialogSum,
and 32 for CAD, to fit all experiments on a single NVIDIA A100-40GB GPU. We use maximum
sequence lengths of 300, 128, and 512 tokens. For all experiments we use the same reference models
as the main models for fair comparison.

For k-Means clustering in S2L, Prototypicality, and SemDedup, we use 100 clusters on CAD and
DialogSum, and 200 clusters on WinoGrande, following the suggestions from Tirumala et al. (2023)
to set the number of clusters to around the square root of the number of instances. Moreover,
we compute gradients using the first five checkpoints for all experiments, and project them into a
1024-dimensional space using Park et al. (2023) (details see hyperparameter search).

Evaluation Metrics We evaluated CAD and DynaHate using the macro F1 score, WinoGrande by
accuracy, and DialogSum by ROUGE-1, ROUGE-2, and ROUGE-L (from HuggingFace Evaluate),
following the original studies (Vidgen et al., 2021; Sakaguchi et al., 2021; Chen et al., 2021).

Infrastructure All experiments were run on a single NVIDIA A100-40GB GPU using three
random seeds. We used PyTorch 2.3, Transformers 4.42, and vLLM 0.5 for training and inference.
Moreover, we use bfloat16 on all experiments to improve efficiency.

Hyperparameter Search We mainly searched for four hyperparameters: the number of training
epochs, the number of clusters for k-Means clustering, the dimensionality of the projected gradients,
and the checkpoints to use for gradient computation.

For the number of training epochs, we first perform a search of 3, 5, 7, and 10 epochs on all datasets
and models, using three random seeds. We observe that models of different sizes share similar
performance trends over epochs, with improvements continuing as the number of epochs increased.
We therefore use the smaller models, i.e., DeBERTaV3Base and OPT-125M, and extend this search
over 15, 20, and 25 epochs. Across all datasets, the best performance is achieved with 15 epochs.

For the number of clusters, we search over 2, 5, 10, 20, 50, 100, and 200 clusters for each dataset and
model, using three random seeds. The results are highly consistent across cluster numbers. Following
Tirumala et al. (2023), we use the square root of the dataset size as a guideline, settling on 100
clusters for CAD and DialogSum, and 200 for WinoGrande.

For gradients, we use smaller models (DeBERTaV3Base and OPT-125M) for hyper-parameter search,
and only one random seed (0) to avoid the high costs of computing and projecting gradients. We
compute the gradients for all 15 checkpoints, and project them into 1024, 2048, and 4096 dimensions.
First, we observe that different dimensionality compute similar results, and thus choose 1024 for
further experiments for efficiency. Second, we experimented with different strategies for selecting
checkpoints, including the first three, the last three, the first five, the last five, and evenly spaced three
and five checkpoints. Using the first checkpoints is the most consistent with using all checkpoints,
with the first five yielding a minimum Spearman’s rank correlation of 0.96. We therefore use the first
five checkpoints for all experiments.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B OVERVIEW OF DATA PRUNING METHOD

Representations
Selection Training dynamics Hidden states Gradients

Max. diversity SmallToLarge
(Yang et al., 2024)

SemDedup
(Abbas et al., 2023)

Max. difficulty

Hard-to-learn
(Swayamdipta et al.,
2020; Jiang et al.,
2021; İnce et al., 2023)

Prototypicality
(Sorscher et al., 2022)
SemDedup
(Abbas et al., 2023)

Memorization
(Feldman & Zhang, 2020)

Val. contribution LESS
(Xia et al., 2024)

Table 1: Pruning methods from §3.1, categorized by their representations and selection objectives.
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C ADDITIONAL RESULTS

C.1 TOY EXAMPLE
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Figure 6: Interactions between data representations and selection algorithms. We generate 600 data
points from a 2D Gaussian mixture model and compare different methods to select 30% (180) of the
data points. The color represents the ground-truth label, and the red Xs are the selected data points.

C.2 CONSISTENCY BETWEEN DATA PRUNING METHODS
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(c) DeBERTaV3Base on WinoGrande
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(d) OPT-125M on DialogSum

Figure 7: Spearman correlation of scores calculated by different methods (all methods select instances
with the highest scores to retrain).

C.3 PERFORMANCE UNDER DIFFERENT DATA BUDGETS
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Figure 8: Model performance under different data budgets.

C.4 ABLATION STUDY
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Figure 9: Ablation studies on pretrained vs. fine-tuned hidden states.
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Figure 10: Ablation studies on using different data representations with the same selection algorithm.
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(c) DeBERTaV3Large on CAD (5%
noise)
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(d) DeBERTaV3Base on Wino-
Grande (2% noise)
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(f) DeBERTaV3Large on Wino-
Grande (2% noise)
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(h) OPT-125M on DialogSum (2%
noise)
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(i) OPT-125M on DialogSum (5%
noise)
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(j) OPT-350M on DialogSum (2%
noise)
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(k) OPT-350M on DialogSum (5%
noise)

Figure 11: The percentage of selected noisy instances in all noisy instances for different models,
datasets, and noise rates.
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