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Abstract

This study addresses the challenge of statistically extracting generative fac-
tors from complex, high-dimensional datasets in unsupervised or semi-supervised
settings. We investigate encoder-decoder-based generative models for nonlin-
ear dimensionality reduction, focusing on disentangling low-dimensional latent
variables corresponding to independent physical factors. Introducing Aux-VAE,
a novel architecture within the classical Variational Autoencoder framework,
we achieve disentanglement with minimal modifications to the standard VAE
loss function by leveraging prior statistical knowledge through auxiliary vari-
ables. These variables guide the shaping of the latent space by aligning latent
factors with learned auxiliary variables. We validate the efficacy of Aux-VAE
through comparative assessments on multiple datasets, including astronomical
simulations.
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1 Introduction

Semantic data representations are critical in artificial intelligence, significantly enhanc-
ing model performance in tasks like transfer and zero-shot learning (Lake et al.,
2017). Central to this effort is to disentangle latent representations in generative
models—representations where each latent dimension corresponds to an independent
underlying factor of variation in the data. Disentanglement is achieved by leverag-
ing statistical properties of the latent space and the dataset, enabling models where
changes in one latent dimension affect only its corresponding factor without impacting
others. This not only improves model interpretability but also enhances robust-
ness against adversarial attacks (Yang et al., 2021). For a comprehensive review of
disentanglement and its statistical underpinnings, see Wang et al. (2023).

Datasets encountered in scientific research are often heterogeneous in modalities,
fidelities, and accuracy where a particular entity or a state may be simultaneously
associated with multiple images, graphs, vectors, scalar parameters, or labels with
various associated measurement uncertainties. Besides, many natural and non-natural
phenomena exhibit stochasticity, increasing the problem complexity. In many scientific
problems, domain experts aim to understand and characterize underlying patterns and
associations of physical quantities in order to improve their predictability for instance,
or elucidate on the underlying physical phenomena. However, due to the problem com-
plexity and data diversity (modality, fidelity, accuracy) these patterns are typically
hard to extract from traditional data exploration tools. Moreover, domain experts
are often cognizant of “known knowns” and “known unknowns”, whereas several
research problems also have associated “unknown unknowns” Hatfield (2022). Classi-
cal data exploration rarely incorporates this type of partial or “unknown unknowns”
information, hence the need for novel tools as proposed here to advance science.
Finally, sensitivity analyses or computation of model response surfaces of input phys-
ical parameters are crucial for uncertainty quantification and forecasting Razavi and
Gupta (2016); Raghavan Sathyan et al. (2018).

In Earth system science, for instance, information about a physical quantity can
arise from numerical simulations, satellite imaging, or in situ sensors with various
fidelities and uncertainties. For example, understanding the variation in weather pat-
terns based on changing sea surface temperatures is essential for understanding the
impacts of long-term environmental dynamics Deser et al. (2014); Maulik et al. (2020).
However, capturing the complex multi-scale variability of atmospheric phenomena
remains an open challenge Bauer et al. (2015), where data diversity along with par-
tial expert knowledge is a typical setting, which remained un-leveraged by classical
data science tools. Similar multi-modal, multi-fidelity datasets are also often encoun-
tered in astronomy: images and fluxes of galaxies are observed via telescopes, and a
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subset of the associated physical parameters, such as the stellar mass or galactic dis-
tances, are calculated Bonvin and Durrer (2011). Relationships between these factors
provide valuable information about the evolution of galaxies over cosmic time New-
man and Gruen (2022), but they do not exhaustively explain all the physical processes
and associations Somerville and Davé (2015). In such studies, researchers might find
it intriguing to use a generative model, where the latent factors are clearly disentan-
gled with the ‘known knowns’ generative factors. Latent factors representing ‘known
unknowns’ or ‘unknown unknowns’, however, might remain entangled, collectively con-
tributing to the overall generation. Understanding these associations could aid domain
experts in gaining deeper insights into the underlying mechanisms driving their data
generation processes. In this paper, we demonstrate the applicability of our method
on a representative galaxy catalog that encompasses both the data-level complexities
and the desired science goals mentioned above.

Recent disentanglement research primarily explores unsupervised learning meth-
ods, introducing inductive biases into the Variational Autoencoder (VAE) framework
to structure the latent space without using known factors of variation. Works such
as (Higgins et al., 2017; Chen et al., 2018; Kumar et al., 2018) have advanced these
techniques, which are detailed in Section 2. However, these methods often overlook
auxiliary information that may be crucial in scientific datasets. Emerging semi/weakly
supervised methods (Chen and Batmanghelich, 2020; Mita et al., 2021) attempt
to address this by leveraging observable ground-truth generative factors, but these
approaches face challenges when auxiliary information is limited, requiring all ground-
truth factors, which can be restrictive. To address this gap, we propose the Auxiliary
information guided Variational AutoEncoder (Aux-VAE), focusing on scenarios with
available auxiliary information to disentangle representations with respect to known
ground-truth generating factors while preserving data reconstruction capability.

Our contributions: (i) Statistically Interpretable Latent Space with Pre-
served Reconstruction Ability: We partition the latent space into two segments to
disentangle known factors of interest using auxiliary information. The first d dimen-
sions align with d ground truth generative factors, enhancing interpretability, while
the remaining dimensions capture other unknown factors in an entangled state to
preserve overall accuracy. To achieve this, we construct a targeted prior and enforce
disentanglement through posterior regularization. This method balances the trade-off
between accurate data reconstruction and improved disentanglement. (ii) Enabling
Control Over Ground Truth Factors for Understanding Dataset Character-
istics: Our disentanglement approach establishes a direct correspondence between the
disentangled latent factors and the known generative factors of interest via the speci-
fication of the latent factor’s distributions. This facilitates a precise understanding of
specific physical characteristics of the data by reconstructing it with the correspond-
ing latent factors adjusted to reflect the controlled level of the generative factors.
This also enables a computationally efficient sensitivity study where one can compute
model responses across the space formed by ground truth factors. (iii) Introducing
a Novel Disentanglement Metric: We introduce a new metric that provides an
intuitive, cost-effective way to measure disentanglement in the latent space relying on
correlations between latent factors. This metric avoids the need for retraining separate
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models and quantitatively assesses the qualitative aspects of disentanglement, scor-
ing up to 1 for optimal separation of factors. The article outlines our methods and
results as follows. Section 2 formalizes key definitions and reviews relevant literature;
Section 3 introduces the Aux-VAE methodology; Section 4 presents experiments on
both scientific and benchmark datasets; and Section 5 offers conclusions and future
directions.

2 Variational Autoencoders (VAE) and related
literature

We begin with a generative model for observed data, where a latent variable z is sam-
pled from p(z), and an observation x is generated by sampling from pθ(x|z). The joint
density of the latent variables and observations is denoted as pθ(x, z) = p(z)pθ(x|z).
The inference problem involves computing the posterior of the latent variables con-

ditioned on the observations, i.e., pθ(z|x) = pθ(x,z)∫
pθ(x,z)dz

. Given a finite set of samples

(observations) from the true data distribution p(x), the exact computation of the pos-
terior is generally intractable and requires approximate inference. Variational inference
addresses this by positing a family of approximate densities Q over the latent fac-
tors and minimizing the Kullback-Leibler (KL) divergence to the true posterior, i.e.,
q∗x = minq∈Q KL(q(z)||pθ(z|x)) (Blei et al., 2017). A variational autoencoder (VAE)
utilizes the amortized inference, a recognition model, parameterized by ϕ to encode
an inverse map from observations to approximate posteriors. The recognition model
parameters are learned by optimizing the problem minϕ Ex[KL(qϕ(z|x)||pθ(z|x))],
where the outer expectation is over the true data distribution p(x) from which we have
samples. This optimization is equivalent to maximizing the Evidence Lower Bound
(ELBO):

argmin
ϕ

Ex[KL(qϕ(z|x)||pθ(z|x))] = argmax
ϕ

ExEz∼qϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x)||p(z))

(1)
Often, the density forms of p(z) and qϕ(z|x) are chosen such that their KL-
divergence can be written in a closed-form expression (e.g., p(z) is N (0, I) and qϕ(z|x)
is N (µϕ(x),Σϕ(x))) (Kingma and Welling, 2022). This framework encourages the
encoder to learn meaningful representations in the latent space while enabling the
decoder to generate data samples that closely match the input data.

Unsupervised approaches: In the context of representation learning, all the
unsupervised approaches follow the basic structure of the VAE and enforce the desired
disentangling characteristic in the latent space with an additional term in the loss
function. For example, β−VAE Higgins et al. (2017) imposes a weight β > 0 to the
KL-term in the VAE-objective to ensure that each latent factor captures independent
sources of variation in a disentangled manner. Building upon this, Kim and Mnih
(2018) introduce an additional term in the VAE loss function, KL(q(z)||

∏
j q(zj)),

encouraging the aggregate posterior q(z) to align with the product of marginals q(zj),
thereby achieving independent latent factors, originally referred to as Total Corre-
lation (TC) in the literature. Numerous representation learning algorithms Kumar
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et al. (2018); Kim and Mnih (2018) have been proposed in this unsupervised fash-
ion, proving beneficial in scenarios where auxiliary information on the ground truth
factors is unavailable. However, a plausible drawback of unsupervised methods is the
identifiability issue, where different models may yield entirely different latent vari-
ables despite having the same marginal data and prior distributions due to potential
transformations of the latent variable while preserving the marginal distribution. To
address this, posterior regularization via the choice of variational family and the prior
distribution has been investigated in the literature Mathieu et al. (2019); Kumar and
Poole (2020). Nonetheless, a common limitation of unsupervised approaches is their
tendency to exhibit high variance, making it challenging to identify well-disentangled
models without supervision (Locatello et al., 2019). This is consistent with the the-
oretical findings of Locatello et al. (2019), suggesting that unsupervised learning of
disentangled representations is unfeasible without appropriate inductive biases.

Disentanglement with auxiliary information: In response to certain limita-
tions, a category of methods has emerged that leverages auxiliary information about
ground truth factors within the traditional VAE framework. For example, existing
semi-supervised approaches tackle the disentanglement of observed factors by utiliz-
ing limited supervised data on class levels (Reed et al. (2015); Cheung et al. (2014);
Mathieu et al. (2016); Paige et al. (2017); Kingma et al. (2014)). State-of-the-art
weakly-supervised disentanglement methods operate under the assumption that obser-
vations are grouped based on known relationships between images within the same
group and their corresponding groups ((Bouchacourt et al., 2018; Hosoya, 2018; Chen
and Batmanghelich, 2020; Locatello et al., 2020)). A concise overview of these method-
ologies can be found in Shu et al. (2019). While these approaches have demonstrated
success in computer vision and other scientific domains, they face challenges in sce-
narios where generating factors are continuous and multiple sources of true generative
factors remain unknown. This property is often seen in a wide range of scientific
datasets, from astrophysics (both in observational datasets such as the COSMOS Scov-
ille et al. (2007) or simulated datasets created for telescope surveys Korytov et al.
(2019)) to earth system studies (e.g., Kaltenborn et al. (2023)) and medical sciences
(e.g., Efron et al. (2004)). In the context of such datasets, clustering the images into
distinct groups (or any other operation on the latent space of the VAE – such as clas-
sification, regression, or anomaly detection) is difficult if auxiliary information is not
used along with a robust disentanglement scheme.

Taking a step towards a more general setting, Khemakhem et al. (2020) intro-
duced the Identifiable-VAE (IVAE) framework. This framework learns a disentangled
representation by employing a factorized prior from the exponential family, condi-
tioned on auxiliary variables representing certain generative factors. Building upon
this foundation, Mita et al. (2021) proposed an iterative training strategy ‘IDVAE’
utilizing two VAEs: one to capture latent representations from auxiliary information
and the other to leverage these latent distributions for learning the data distribu-
tion. Despite the appealing theoretical guarantee of identifiability, Kim et al. (2023)
observed that IVAEs may overlook observations in certain cases, potentially leading
to posterior collapse in experiments. As discussed in Kumar et al. (2018), one poten-
tial remedy for this issue involves imposing regularization on the Expected variational
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posterior. We extend this approach by incorporating limited auxiliary information on
the ground-truth factors, as elaborated in Section 3.

3 Limited available auxiliary information and
proposed approach

Observed database: Moving forward, let us presume access solely to a subset of the
ground truth factors Sobs ∈ Rd, conveyed through auxiliary variables u ∈ Rd. Each
auxiliary variable is intended to encapsulate a specific ground truth factor within Sobs.
Our aim lies in disentangling the latent space concerning these identified ground truth
factors Sobs, observable via u. We initiate this endeavor with an observed database
D comprising n independent and identically distributed pairs of x and u, denoted as
D = {(x(1), u(1)), (x(2), u(2)), . . . , (x(n), u(n))}. We begin by reformulating the ELBO
of a VAE:

LV AE = Ez∼q(z|x) [log p(x|z)]−KL (q(z|x)||p(z)) , (2)

where, q(z|x) denotes the encoder, p(x|z) represents the decoder, and p(z) is the
prior distribution. To incorporate information from auxiliary variables, we partition
the latent space into two distinct components: auxiliary-informed latent factors zaux

and residual latent factors zrecon, represented as: z1×dZ =
(
z1×d
aux , z

1×(dZ−d)
recon

)
. Here,

the auxiliary-informed latent factors Zaux signify the latent features associated with
auxiliary variables in a disentangled fashion, while the residual latent factors Zrecon

characterize the latent features necessary to capture the underlying factors not explic-
itly covered by the auxiliary variables u. Hence, conditional on the auxiliary variables
u, we define the prior in the following way:

pz|u(z) =

(
d∏

j=1

pN (uj ,
1
n )(zj)

)
pN (0,IdZ−d)(z(d+1):dZ

) = pN (µ0,Σ0)(z) (3)

where µ0 = (u1, u2, . . . , ud, 0, . . . , 0) and Σ0 = diag( 1nId, IdZ−d) denotes the mean
and variance of the Gaussian distribution in the prior. Now, while optimizing the
ELBO in Eq. (2) (derivation detailed in the SM), the first term can be estimated by

simple Monte-Carlo approximation: Ez∼q(z|x) [log p(x|z)] =̂ 1
J

J∑
j=1

log(p(x|zj)).

Now, the KL part can be decomposed as follows utilizing the closed-form structure
of the Gaussian distributions:

KL (q(z|x)||p(z|u)) = KL (N (µϕ,Σϕ)||N (µ0,Σ0))

=
1

2

[
log

|Σ0|
|Σϕ|

− dZ + (µϕ − µo)
′Σ−1

0 (µϕ − µo) + tr(Σ−1
0 Σϕ)

]
.

(4)
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Advancing Disentanglement via Expected Variational Posterior:

Achieving disentangled latent spaces requires more than aligning the encoder distri-
bution qϕ(z|x) with the desired prior. Disentanglement should also be fostered in the
expected posterior pθ(z) =

∫
pθ(z|x)p(x)dx. Its variational counterpart is expressed as

the inferred prior or expected variational posterior: qϕ(z) =
∫
qϕ(z|x)p(x)dx. Utiliz-

ing the pairwise convexity property of KL-divergence, we can show that the distance
between qϕ(z) and pθ(z) is bounded by the objective of the variational inference Kumar
et al. (2018):

KL(qϕ(z)||pθ(z)) = KL
(
Ex∼p(x)qϕ(z|x)||Ex∼p(x)pθ(z|x)

)
≤ Ex∼p(x)KL(qϕ(z|x)||pθ(z|x)). (5)

Hence, although, maximizing ELBO (2) would ideally decrease KL(qϕ(z)||pθ(z)), in
many complex scenarios, the two sides of equation (5) might deviate at the station-
ary point of convergence (Kumar et al., 2018). Explicitly minimizing KL(qϕ(z)||p(z))
provides better control over the disentanglement. However, due to the intractable
KL term, we implicitly enforce the following three main characteristics of the disen-
tangled prior concerning auxiliary information u, such as: (1) Inter-independence:
u ⊥ zrecon, (2) Intra-independence: uj ⊥ zaux,j′ for j, j

′ = 1, 2, . . . d, j ̸= j′, and (3)
Explicitness: Ez∼p(z|u)(zaux,j) = uj for j = 1, 2, . . . d.

Quantifying the interdependency among zaux, zrecon, and the auxiliary information
u presents a challenge. To address this, we turn to polynomial regression, a tech-
nique that assesses nonlinear relationships among variables Rawlings et al. (1998).
This approach measures the strength of dependency by aggregating correlations across
various polynomial degrees and utilizes Monte Carlo samples of encoder outputs to
compute these correlations. Specifically, to calculate these correlations, we utilize
the expected latent factors µϕ from the encoder qϕ(z|x). This choice is justified by
the theorem of total variance. For instance, in the case of Inter-independence, the
covariance between the polynomials uk and zk

′

recon can be expressed as:

Cov(uk, zk
′

recon) = E(x,u)∼p(x,u)Covu,z∼qϕ(z|x)(u
k, zk

′

recon)

+ Cov(x,u)(u
k, Ez∼qϕ(z|x)(z

k′

recon)

= Cov(x,u)(u
k, µk′

ϕ,d+1:dZ
). (6)

In this expression, under the outer expectation, the covariance in the first term
becomes zero conditioned on u. Analogous properties apply to Intra-independence and
Explicitness as well (detailed in Section 1 of the SM). For notational simplicity, let us
denote, µϕ,1:d = µϕ,aux and µϕ,d+1:dZ

= µϕ,recon.
With this approach, for two random vectors vmv×1 and wmw×1,mv ≤ mw, we

define the correlation matrix Corr(v, w) as diag(Σv,v)
−1/2Σv,wdiag(Σw,w)

−1/2, with
Σmv×mw

v,w = E[(v − E(v))(w − E(w))′]. Subsequently, we formulate the following two
dependency metrics:
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RK
0 (v, w) =

1

Kmvmw

K∑
k,k′=1,k ̸=k′

mv∑
i=1

mw∑
j=1

|
(
Corr(vk, wk′

)
)
ij
|, (7)

RK
1 (v, w) =

1

Kmvmw

K∑
k,k′=1,k ̸=k′

mv∑
i=1

(
1− |

(
Corr(vk, wk′

)
)
ii
|
)
. (8)

In these metrics, the first summation aggregates associations from all possible
polynomial combinations up to degree K, while the second sum separately considers
various terms of the covariance matrix in R0(·, ·) and R1(·, ·). Consequently, R0(·, ·)
and R1(·, ·) quantify the strength of pairwise nonlinear dependency by evaluating the
association among the polynomials of the variables, enhancing our understanding of
disentanglement.

These metrics are then incorporated into the loss function to enforce optimal dis-
entanglement within and between Zaux and Zrecon. Specifically, three regularization
terms are introduced into the objective function:

LAux−V AE = LV AE + λ1

d∑
j=1

(
RK

1 (uj , µϕ,aux,j) +RK
0 (uj , µϕ,aux,−j)

)
︸ ︷︷ ︸

Intra-independence and explicitness regularizer

+ λ2

(
RK

0 (u, µϕ,rec)
)

︸ ︷︷ ︸
Inter-independence regularizer

(9)

Here, the three regularizers play a crucial role and align with the intuitive logic of
achieving disentanglement. The intra-group regularization includes two terms: the first
ensures that each dimension of zaux closely aligns with the auxiliary information u,
while the second imposes a penalty on the dependency between any two latent factors
in zaux using the defined polynomial dependency metric. Similarly, the inter-group
regularization aims to reduce the dependency between zaux and zrecon. No restrictions
are imposed on the dependency within zrecon to ensure good reconstruction quality.

4 Experiments

4.1 Experimental settings

We compare the proposed approach against two major alternative disentanglement
methods: β-VAE (Higgins et al., 2017), and IDVAE (Mita et al., 2021). These two
methods were chosen to represent different classes of existing disentangling approaches.
β-VAE (Higgins et al., 2017) serves as a baseline for its simple yet effective unsu-
pervised approach with minimal assumptions. It represents the class of unsupervised
methods utilizing no ground-truth factor for disentanglement, but a regularization
term is introduced to enforce disentanglement. On the other hand, IDVAE (Mita
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et al., 2021) represents recent algorithms on auxiliary variable-informed methods,
which is the most closely related approach in the literature analogous to Aux-VAE.
We implemented these methods using the same hyperparameter settings as their pub-
licly available repositories. All methods were implemented in PyTorch (Paszke et al.,
2019), with code available at Ganguli et al. (2024).

4.1.1 Datasets

We have created a representative scientific dataset where measurements from instru-
ments such as telescopes are associated with physical quantities. We simulate the
galaxy images observed from telescopes using GalSim Rowe et al. (2015), a widely
used in current and future space- and ground-based telescope missions Collaboration
et al. (2021); Everett et al. (2022); Merlin et al. (2023). Each image is associated with
5 physical parameters, Apparent brightness of the galaxy (flux, in number counts),
radius of the galaxy (radius, in arc-seconds), 2 reduced gravitational shear compo-
nents (g1 and g2 in Cartesian coordinates), and the full width of half maximum of
the Gaussian function (also called point-spread function, psf) used in the convolution.
Further details of the experimental design are provided in the SM Section 1.

To maintain experiment realism, we refrain from using all ground-truth
information as auxiliary variables. Instead, we compare results under a more

Fig. 1: t-SNE plot of the galaxy images colored by each of the gen-
erating factors, highlighting psf as the least important generator in
this dataset.

practical
setting.
Specifically,
we categorize
the auxil-
iary variables
into impor-
tant and less
important
categories.
The quanti-
ties radius,
g1, and g2 as
well as flux
are considered important, as they focus on essential physical characteristics, while
psf is deemed less significant. This hierarchy of importance is illustrated in Figure 1.
While this heuristic characterization is based on domain expertise, one may investi-
gate correlation structures to identify auxiliary variables. In light of this, we examine
the following three cases: Case 1: Using all five ground truth generating factors as
auxiliary information, Case 2: Using only the important factors (radius, g1, and
g2) as auxiliary information, excluding flux and psf , and Case 3: Using mostly
the less important factors (flux, and psf) as auxiliary information, omitting radius,
g1, and g2. Evaluating these cases illustrates the interplay between the Zaux and
Zrecon factors, offering insights for datasets where exhaustive ground-truth factors are
unknown. All ground-truth factors were normalized within the range [0, 1], assuming
an implicit ordering for discrete factors before normalization.
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Furthermore, to showcase the consistency and efficacy of our proposed method
using auxiliary information, we conduct experiments on two other synthetic datasets:
‘Cars3D’ (Reed et al., 2015) and ‘DSprites’ (Burgess et al., 2018). These datasets pro-
vide explicit access to ground-truth factors, allowing us to assess our method against
competing approaches.

4.1.2 Disentanglement metric

Assessing the degree of disentanglement among latent factors is crucial in understand-
ing the effectiveness of a generative model, yet a nontrivial task in practice. While
various disentanglement metrics exist in the literature Higgins et al. (2017); Kim and
Mnih (2018); Kumar et al. (2018), many rely on fitting a supervised regression between
the learned latent space and ground-truth factors. However, implementing additional
regression models for evaluation can incur significant computational costs. Moreover,
studies have shown that these model-based metrics may not always correlate well with
qualitative disentanglement observed in latent traversal plots (Kumar et al., 2018). To
address these challenges and efficiently evaluate disentanglement, we propose a novel
metric called the Linear Disentanglement Score (LDS). For the auxiliary features uj ’s
and the latent factors zl’s, the LDS is defined as:

LDS =
1

d

d∑
j=1

max
l

Corr(uj , zl)

dZ∑
l=1

|Corr(uj , zl)|
. (10)

The underlying idea stems from the concept that each generative factor uj should
ideally correlate with only one latent factor zl. Therefore, for any uj , a value closer
to 1 for the term inside the summation indicates better disentanglement among the
latent factors. Through a straightforward mathematical rationale, we establish that
LDS ∈ [ 1

dZ
, 1]. While the idea of measuring the strength of linear dependence for this

purpose is not new. The SAP score (Kumar et al., 2018) is computed as the average
difference in prediction accuracy between the most and second-most predictive latent
dimensions for each generative factor. A higher SAP indicates that a factor is cap-
tured predominantly by a single latent variable, reflecting strong disentanglement. For
continuous factors, SAP ranges in (0, 1]. For categorical factors, balanced classifica-
tion accuracy is used, allowing SAP to exceed 1. Our LDS metric offers an extension,
providing a bounded version of the SAP-score for evaluating disentanglement. More-
over, it is crucial to recognize that a high SAP score might not exclude the possibility
of one latent dimension effectively capturing multiple generative factors. Conversely,
our proposed metric emphasizes evaluating each latent factor’s capacity to represent
individual generative factors distinctly or become entirely independent, thus offering
a more comprehensive assessment of disentanglement.

4.2 Experimental results

In this section, we present the results of our numerical experiments, focusing on four
main criteria: (1) Reconstruction accuracy, (2) The relative importance of Zaux and
Zrecon in the overall reconstruction, (3) Disentanglement among the latent factors,
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(4) Latent traversal (generating from the learned decoder network by varying only
one latent while keeping the others fixed) across Cases 1, 2, and 3 for the galaxy
dataset mentioned in Section 4.1. To highlight the versatility of our method, we present
results from Aux-VAE on both a galaxy simulation dataset and non-scientific datasets
like Cars3D’ and DSprites’. Primarily, we focus on the galaxy dataset due to space
constraints, with further results available in the supplementary materials.

4.2.1 Reconstruction accuracy

It is common to encounter a trade-off between reducing reconstruction error and

Fig. 2: Distribution of SSIM between the original
and reconstructed test images.

inducing disentanglement
through posterior regulariza-
tion. As a result, achieving
disentanglement often comes
at the cost of increased recon-
struction error. Therefore,
we use β−VAE as a baseline
for assessing reconstruction
accuracy. For evaluation, we
employ the structural simi-
larity index measure (SSIM)
(Wang et al., 2004; Müller
et al., 2020), a metric adept
at quantifying image similar-
ity by considering luminance,
contrast, and structure. The
SSIM between two image patches x and y is defined as

SSIM(x, y) =

(
2µxµy + C1

) (
2σxy + C2

)(
µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) ,
where µx, µy are the local means of x and y, σ2

x, σ
2
y are the local variances, σxy is the

local covariance between x and y, L denotes the dynamic range of the pixel values
(e.g. 255 for 8-bit images), C1 = (K1L)

2 and C2 = (K2L)
2 are stabilizing constants

(typically K1 = 0.01 and K2 = 0.03). In our experiments, SSIM is computed via
the Python library skimage.metrics.structural similarity (van der Walt et al.,
2014). With SSIM scores ranging between -1 and 1, where 1 signifies perfect similarity,
0 denotes no similarity, and -1 implies perfect anti-correlation, it offers a nuanced
assessment compared to pixel-wise methods. Figure 2 presents the SSIM scores for all
methods across Cases 1, 2, and 3 using the galaxy image dataset.

Aux-VAE maintains strong reconstruction capabilities, on par with the baseline
VAE, especially in Case 3, where key factors are missing from the auxiliary infor-
mation, by effectively leveraging the residual latent factors Zrecon. Although IDVAE
displays similar overall performance, it experiences a noticeable reduction in accuracy
from Case 1 to Case 3, due to the exclusion of many crucial generative factors from
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the auxiliary information and the absence of other latents in their implementation to
compensate for missing information.

4.2.2 Disentanglement among the latent factors with respect to the
ground-truth generating factors

Building on the fundamental concept of ‘disentanglement’ outlined in Section 1, where
each latent factor is expected to correspond to a single underlying generative factor,
we approach this comparison from two distinct angles. Quantitatively, we calculate
the LDS metric (10) and SAP score Kumar et al. (2018) across all cases and datasets,
as summarized in Table 1. Aux-VAE achieves notably high LDS scores, reflecting
its strong ability to capture underlying relationships with robust disentanglement, as
further supported by the reconstruction quality in Figure 2. While the SAP score
shows a similar trend, it tends to be higher when multiple latent factors are related
to the same generating factor, a known limitation (Kumar et al., 2018).

Table 1: Disentanglement Comparison Across Methods on
Various Datasets and Cases Using the Proposed LDS Metric
(SAP Scores in Parentheses).

Dataset β-VAE IDVAE Aux-VAE

Galaxy image
Case 1 0.48 (0.39) 0.65 (0.72) 0.88 (0.81)
Case 2 - 0.73 (0.74) 0.94 (0.89)
Case 3 - 0.59 (0.68) 0.81 (0.84)

Card3D - 0.21 (0.18) 0.67 (0.55) 0.93 (0.85)
DSprites - 0.26 (0.27) 0.39 (0.43) 0.83 (0.78)

From a more qualitative standpoint, we examine each latent factor with respect
to the underlying generative factors. Figure 3 showcases Case 2 for the galaxy image
dataset, with similar plots for other datasets provided in the SM. We observe that
Aux-VAE’s auxiliary-informed latent factors Zaux exhibit clear associations with the
corresponding generating factors, remaining independent of the remaining latent fac-
tors. In Case 2, the residual latent factors Zrecon are less significant, since the auxiliary
information encompasses most of the crucial ground-truth generating factors. Nonethe-
less, it is apparent that they are collectively attempting to represent the flux in an
entangled manner. Meanwhile, IDVAE also demonstrates some degree of one-to-one
association with the associated factors. However, these relationships are often entan-
gled, making it challenging to definitively attribute one particular latent factor to a
specific generating factor. Despite IDVAE’s factorized prior promoting independence
in the latent space, the collective impact of entire auxiliary information on each dimen-
sion of the latent distribution may hinder complete disentanglement, especially for
interdependent generative factors. A similar pattern is observed for basic β−VAE
(relegated to the SM), where representations appear to be even more entangled.
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Fig. 3: Visualizing Disentanglement: Latent factors are displayed along the x-axis
and generative factors along the y-axis. This scatterplot contrasts latent factors (Z,
represented by grey dots) with the latent means (µϕ, shown as maroon dots), alongside
highlighting the LDS metric.

4.2.3 Relative importance between Zaux and Zrecon

The proposed method, Aux-VAE, relies heavily on the interplay between two classes of
latent factors, Zaux and Zrecon. While the former aims to capture limited information

Fig. 4: Assessing Latent Factor Impor-
tance: Zaux vs Zrecon Analysis with Gaus-
sian Noise Perturbation.

from the auxiliary data in a disen-
tangled manner, the latter endeavors
to reconstruct the remaining unknown
generative factors, not covered by the
auxiliary data, in an entangled manner
to achieve better reconstruction. There-
fore, in scenarios where the majority
of generative factors remain unknown
and are absent from the auxiliary data,
Zrecon becomes increasingly important
in understanding the overall data gen-
eration process.

To empirically demonstrate this, we
consider three cases for the galaxy
images dataset outlined in Section 4.1.
To assess the relative importance of
the latent factors, we conduct the fol-
lowing experiment: For each case, we
utilize the encoder model on 1000 test
images to obtain their latent represen-
tations Ztest = (Ztest

aux , Z
test
recon) and use

the decoder to generate the outputs. Then, to understand the importance of Zaux,
we perturb only the factors in Ztest

aux with additive Gaussian noise, creating Zperturbed
aux ,

and reconstruct the images using the decoder with Zperturbed = (Zperturbed
aux , Ztest

recon).
Similarly, to assess the importance of Zrecon, we conduct a similar experiment but
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Fig. 5: Latent space traversal - Visualization of Latent Factor Adjustments in VAE,
IDVAE, and Aux-VAE, showing how systematic changes to individual factors impact
generated galaxy images.

perturb Ztest
recon instead. The SSIM boxplots for the 1000 test images are illustrated in

Figure 4. We denote the first reconstruction with Ztest = (Ztest
aux , Z

test
recon) as ‘No pertur-

bation,’ and the subsequent experiments as ‘Zaux perturbed’ and ‘Zrecon perturbed.’
As expected, under the ‘No perturbation’ (magenta) setting, all three models perform
similarly. However, with perturbations, a decrease in reconstruction quality due to the
disruption of a significant latent factor will result in lower SSIM values, signaling the
greater importance of that factor. In the ‘Zaux perturbed’ (green) setting, we observe
a gradual increase in SSIM from Case 1 to Case 3. In Case 1, where all true generating
factors are included in the auxiliary information, Zaux is most sensitive to pertur-
bations compared to Cases 2 and 3. Conversely, under ‘Zrecon perturbed’ (maroon)
setting, we observe no sensitivity in Case 1, while in Case 3, where most important
generative factors are unavailable in the auxiliary data, Zrecon shows high sensitivity,
resulting in a significant drop in SSIM. This experiment validates the intuition behind
Aux-VAE’s latent structure formation and underscores the importance of Zrecon in
more realistic scenarios where most of the true generative factors are unknown.

4.2.4 Latent space traversal - systematically changing each
dimension of Zaux at a time

In our exploration of the latent space traversal, we aim to unravel the influence of
individual latent factors on the generated outputs. Beginning with the extraction of
latent factors from a sample image using the encoder network, we initiate the traversal
by incrementally adjusting one latent factor’s values at a time while keeping the others
constant. Leveraging the decoder network, we then produce the corresponding output
for each adjustment, visualizing the results along a row in Figure 5. This systematic
exploration allows us to gain insight into how variations in latent factors affect the
generated images. Figure 5 features three models—β-VAE, IDVAE, and our proposed
Aux-VAE, used in case 2 of the galaxy image dataset. Due to space limitations, we
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present the latent space traversal for only the top six most sensitive latent factors out
of ten for each method. Detailed traversal results for this and additional datasets are
provided in the SM.

We note that Aux-VAE’s auxiliary latent factors Zaux effectively adapt to the
corresponding generating factors like radius, g1, and g2, thereby maintaining the geo-
metric significance of these auxiliary factors. Given the minimal importance of Zrecon

in this scenario, no noticeable changes are observed in the generated images during
latent space traversal for Zrecon. This underscores the model’s capacity to encapsu-
late relevant auxiliary information in a disentangled fashion. In contrast, for VAE
and IDVAE, the latent factors exhibit more entangled relationships, as observed in
the scatterplot shown in Figure 3. However, in the latent space traversal experiment,
IDVAE performs better than VAE, likely due to the encompassing of auxiliary infor-
mation. Specifically, the fifth, second, and eighth latent factors in IDVAE align well
with the underlying generative factors radius, g1, and g2, respectively.

5 Conclusion

The proposed Aux-VAE method introduces a novel approach to variational autoen-
coder architecture, effectively integrating auxiliary (potentially non-exhaustive) infor-
mation to enhance latent space disentanglement while preserving data generation qual-
ity. Demonstrated through extensive experiments across diverse datasets, Aux-VAE
surpasses traditional VAEs and other disentanglement techniques, showcasing robust-
ness and versatility due to its additional latents compensating for non-exhaustive
auxiliary information, which is typical in scientific applications.

Looking ahead, we will validate Aux-VAE on real-world datasets and deepen its
theoretical foundations. In particular, we plan to move beyond our current polynomial,
pairwise dependency measures by adopting mutual-information–based metrics that
more efficiently capture nonlinear relationships between latent factors and auxiliary
variables. We also intend to investigate potential downstream uses of Aux-VAE—for
example, determining whether a candidate measurement truly contributes independent
variation by training without it and then assessing its alignment with the learned
latent dimensions. We believe these efforts will both refine Aux-VAE’s performance
and broaden its applicability across diverse scientific domains.
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Somerville, R.S., Davé, R.: Physical models of galaxy formation in a cosmological

20

https://proceedings.neurips.cc/paper_files/paper/2016/file/ef0917ea498b1665ad6c701057155abe-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/ef0917ea498b1665ad6c701057155abe-Paper.pdf
https://doi.org/10.1016/j.ascom.2015.02.002
https://doi.org/10.1016/j.ascom.2015.02.002
https://arxiv.org/abs/1407.7676
https://doi.org/10.1007/0-387-22753-9_8
https://doi.org/10.1007/0-387-22753-9_8
https://proceedings.neurips.cc/paper_files/paper/2015/file/e07413354875be01a996dc560274708e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/e07413354875be01a996dc560274708e-Paper.pdf


framework. Annual Review of Astronomy and Astrophysics 53, 51–113 (2015)

Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of Machine Learning
Research 9(86), 2579–2605 (2008)

Walt, S., Schönberger, J.L., Núñez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N.,
Gouillart, E., Yu, T., contributors: scikit-image: Image processing in python. PeerJ
2, 453 (2014) https://doi.org/10.7717/peerj.453

Wu, X., Balaprakash, P., Kruse, M., Koo, J., Videau, B., Hovland, P., Tay-
lor, V., Geltz, B., Jana, S., Hall, M.: ytopt: Autotuning scientific appli-
cations for energy efficiency at large scales. Concurrency and Computation:
Practice and Experience 37(1), 8322 (2025) https://doi.org/10.1002/cpe.8322
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.8322

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from
error visibility to structural similarity. IEEE Transactions on Image Processing
13(4), 600–612 (2004) https://doi.org/10.1109/TIP.2003.819861

Wang, X., Chen, H., Tang, S., Wu, Z., Zhu, W.: Disentangled Representation Learning
(2023)

Yang, S., Guo, T., Wang, Y., Xu, C.: Adversarial robustness through disentangled rep-
resentations. Proceedings of the AAAI Conference on Artificial Intelligence 35(4),
3145–3153 (2021) https://doi.org/10.1609/aaai.v35i4.16424

21

https://doi.org/10.7717/peerj.453
https://doi.org/10.1002/cpe.8322
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.8322
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1609/aaai.v35i4.16424


A Theoretical justification on regularizing the
Expected Variational Posterior

In this section, we formalize the problem setting and outline the underlying assump-
tions. Suppose that our true generative model is x = g∗(s) + ϵ, where ϵ ∼ N(0, σ2)
denotes the random fluctuations. We aim to learn a latent-variable model with prior

p(z) and generator g, where g(z)
d
= g∗(s). We also assume our access solely to a subset

of the ground truth factors sobs ⊂ s, sobs ∈ Rd, conveyed through auxiliary variables
u ∈ Rd. Each auxiliary variable is intended to encapsulate a specific ground truth fac-
tor within sobs. Hence, our observed database contains n independently and identically
distributed pairs of x and u, denoted as D = {(x(1), u(1)), (x(2), u(2)), . . . , (x(n), u(n))}.

Defining the VAE objective:

Under this setting, the generative process can be written as:

z ∼ p(z) (11)

x ∼ pθ(x|z, u) = pθ(x|z) (12)

as, the latent factors z collectively represents the whole ground-truth generative
factors, conditional on z, x and u are independent. Similarly, to develop the
VAE framework, our first pathway is the inference process, denoted qϕ(x, z, u) =
qϕ(z|x, u)q(x, u) = qϕ(z|x)q(x, u). Now, to obtain a sample (z, x, u) from this joint
distribution, one would simply consider:

x, u ∼ q(x, u)

z ∼ qϕ(z|x) (13)

where q(x, u) denotes the ground truth data distribution, and qϕ(z|x) is the learnable
variational posterior. The inference process aims to extract latent representations from
actual samples from the data distribution q(x, u). Hence, as illustrated in Kingma and
Welling (2019), one feasible approach to optimize wrt the KL distance:

argmaxθ,ϕ −KL
[
qϕ(x, z, u)||pθ(x, z, u)

]
= Eqϕ(x,z,u)

[
log

pθ(x, z, u)

qϕ(x, z, u)

]
= Eqϕ(z|x)

[
log

pθ(x|z, u)p(z, u)
qϕ(z|x)

]
− Eqϕ(z|x)logq(x, u))

= Eqϕ(z|x)
[
logpθ(x|z)

]
+ Eqϕ(z|x)

[
log

p(z, u)

qϕ(z|x)

]
− constant

= Eqϕ(z|x)
[
logpθ(x|z)

]
+ Eqϕ(z|x)

[
log

p(z|u)
qϕ(z|x)

]
− constant

= Eqϕ(z|x)
[
logpθ(x|z)

]
−KL

[
qϕ(z|x)||p(z|u)

]
− constant
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= likelihood−KL
[
qϕ(z|x)||p(z|u)

]
− constant (14)

Regularization over Expected Variational Posterior:

As discussed in Section 2 of the main manuscript, enforcing disentanglement can be
approached by directly minimizing the KL divergence between the expected variational
posterior qϕ(z) =

∫
qϕ(z|x)p(x)dx and the prior p(z). However, this KL term lacks a

closed-form expression, which complicates optimization efforts. As an alternative, we
propose to promote the major structural properties of p(z) within qϕ(z). Specifically,
we concentrate on the following three disentangled properties of p(z) which can be
expressed through its conditional distribution wrt u:

• Inter-independence: u ⊥ zrecon

Proof:

As we observe that, for 1 ≤ j ≤ d, 1 ≤ j
′ ≤ dZ − d,

E(ujzj′ ) =

∫
ujzj′p(uj , zj′ )dujdzj′

=

∫
ujzj′p(zj′ |uj)p(uj)dujdzj′

=

∫
ujzj′p(zj′ )p(uj)dujdzj′

= E(uj)E(zj′ ) (15)

• Intra-independence: uj ⊥ zaux,j′ for j, j
′ = 1, 2, . . . d, j ̸= j′

Proof:

E(ujzj′ ) =

∫
ujzj′p(uj , zj′ )dujdzj′

=

∫
ujzj′p(zj′ |uj)p(uj)dujdzj′

=

∫
ujzj′p(zj′ )p(uj)dujdzj′

= E(uj)E(zj′ ) (16)

• Explicitness: Corr(uj , zj) → 1, for 1 ≤ j ≤ d as n → ∞.

Proof:

By the theorem of total probability,

cov(uj , zj) = Eucovu,z∼p(z|u)(uj , zj) + covu(uj , E(zj |u)) = cov(uj , uj) = var(uj)

var(zj) = Euvar(zj |u) + varu(E(zj |u)) =
1

n
+ var(uj)
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corr(uj , zj) =
cov(uj , zj)√
var(uj)var(zj)

=
var(uj√

( 1n + var(uj))var(uj)
→ ∞

as n → ∞
Quantitatively measuring these non-linear dependencies to measure Inter and Intra-
independence strength under qϕ(z) is also non-trivial, and we turn our attention to
polynomial regression here.

• Inter-independence: To measure the Inter-independence strength, we aggre-
gate the correlation between different degrees of polynomials of u and Zrecon.
e.g.

Cov(uk, zk
′

recon) =E(x,u)∼p(x,u)Covu,z∼qϕ(z|x)(u
k, zk

′

recon)+

Cov(x,u)(u
k, Ez∼qϕ(z/x)(z

k′

recon)

= Cov(x,u)(u
k, µk′

ϕ,d+1:dZ
). (17)

Hence, we simply use a running estimate of these correlations between the u
and the means of the latent factors to create the summary statistics R0(·, ·) and
R1(·, ·)which are informative in assessing the non-linear dependency. Similarly,

• Intra-independence:

Cov(uk
j , z

k′

aux,j′
) =E(x,u)∼p(x,u)Covu,z∼qϕ(z|x)(u

k
j , z

k′

aux,j′
)+

Cov(x,u)(u
k
j , Ez∼qϕ(z|x)(z

k′

aux,j′
)

= Cov(x,u)(u
k
j , µ

k′

ϕ,j′
), for j, j′ = 1, 2, . . . d, j ̸= j′. (18)

and
• Explicitness: This property also indicates that under qϕ(z|u), the correlation
between Zaux,j and uj , j = 1, 2, . . . , d should be strong. Hence, we calculate

Cov(uj , zaux,j) =E(x,u)∼p(x,u)Covu,z∼qϕ(z|x)(uj , zaux,j)+

Cov(x,u)(uj , Ez∼qϕ(z|x)(zaux,j)

= Cov(x,u)(uj , µϕ,j), for j = 1, 2, . . . d. (19)

Hence,

Corr(uj , zaux,j) =
Cov(uj , zaux,j)√
var(uj)var(zaux,j)

=
Cov(uj , µϕ,j)√

var(uj)(E(varz∼qϕ(z|x)(zaux,j)) + var(µϕ,j)
(20)

This incorporates Corr(uj , zaux,j) < Corr(x,u)(uj , µϕ,j), for j = 1, 2, . . . d. While it
is theoretically feasible to regularizing Corr(uj , zaux,j) in eq. 20 towards one, we
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observed through our experiments that regularizing Corr(x,u)(uj , µϕ,j) is computa-
tionally much more efficient and achieves similar levels of accuracy. For datasets with
higher complexity, however, one may need to directly regularize Corr(uj , zaux,j) using
eq. 20 using eq. 20 to capture the finer relationships within the data.

Hence, the final objective function of Aux-VAE incorporates the concepts of non-
linear dependency between the latent factors and the auxiliary information into the
optimization of the ELBO, thus effectively achieving the desired disentanglement.
When constructing the main loss for Aux-VAE, we focus on Pearson’s correlation
coefficient due to its bounded nature and use running estimates over the mini-batch
for the correlation.

B Additional Experimental Details

B.1 Brief description of the galaxy simulation data

In simulated and experimental datasets in scientific research, a subset of the auxiliary
variables may be ‘controlled’ in the experimental design. Whereas in observational

Table 2: Parameter descriptions and ranges of galaxy image dataset

Parameters Short description Range

flux Apparent brightness of the galaxy (Number counts) 104 – 105

radius Radius of the galaxy (Arc-seconds) 0.1 – 1

g1, g2
Reduced gravitational shear components (Cartesian
coordinates)

-0.5 – 0.5

psf Full width at half maximum of the point-spread function 0.2 – 0.4

research domains such as astronomy, such quantities may just be measured or inferred
either directly or with complementary studies. The dataset we have utilized in this
effort is a representative simulation of telescopic observations created using GalSim
Rowe et al. (2015). We assume that the light profile of each galaxy can be approxi-
mated as an exponential disk, which is known to be a good description of the outer,
star-forming regions of spiral galaxies Lackner and Gunn (2012). In reality, galaxies
can exhibit spiral, elliptical, barred spirals, irregulars, and other diverse morphologies
Block and Freeman (2015). Telescopes are often systematically sensitive to certain
types of galaxies, depending on which stage of galaxy evolution is probed based on
instrumental specifications. For creating the synthetic galaxy image dataset, we first
consider 5 physical parameters of varying importance. Ranges of these parameters are
heuristically determined based on real observations, a Latin-Hypercube sampling over
the range is performed to select 16,384 simulation points. The details of the ranges
of the parameters are shown in Table 2. Each galaxy image is created with 33x33
pixels, with galaxies at the centers. We also note that while the galaxies here are
in grayscale, the majority of the modern telescopes observe the Universe in multiple
bands of channels of the light spectrum.
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Fig. 6: Comparative t-SNE Visualization of Latent Spaces from VAE and IDVAE
Across Multiple Scenarios with Respect to Generative Factors for the Galaxy Simula-
tion Dataset

B.1.1 Relative importance between Zaux and Zrecon

To elucidate the roles of Zaux and Zrecon, we conducted a t-SNE analysis (van der
Maaten and Hinton, 2008), illustrated in Figures 6 and 7. This analysis visualized the
2D components of t-SNE representations derived from original test images and latent
factors from VAE, IDVAE, and Aux-VAE models across three scenarios outlined in
Section 3 of the main manuscript. The plots are organized in a grid, with each column
representing different configurations and each row color-coded by one of five generative
factors, providing a method to assess each model’s factor representation.

Key Observations:

1. From t-SNE representation of latent spaces of competing methods in
Figure 6:

• The first column, featuring t-SNE plots of original images, reveals the mini-
mal impact of the psf factor on generative modeling, as shown by the absence
of distinct clustering for psf .
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Fig. 7: Distinct Impact of Zaux and Zrecon on Generative Factor Representation in
Aux-VAE’s Latent Space: A t-SNE Visualization

• The second column displays t-SNE plots of VAE’s 10-dimensional latent fac-
tors from 1000 test images, indicating VAE’s ability to recognize underlying
generative factors, albeit with entangled representations. This suggests that
while VAE identifies different factors, it has difficulty clearly separating them
in the latent space.

• Columns 3-6 present t-SNE plots from IDVAE’s application on cases 1, 2,
and 3 (detailed in Section 3). Despite incorporating flux and psf as auxiliary
information in Case 3, IDVAE did not effectively represent these factors,
struggling to distinctly segregate them in the latent space, which points to
shortcomings in its auxiliary data integration.

2. From the t-SNE representation of latent space of Aux-VAE in Figure
7: This analysis was segmented into three parts, each examining the t-SNE rep-
resentations of all latent factors, as well as the separate contributions of Zaux and
Zrecon to the preservation of generative factor information in the latent space.

• Case 1: Here, all generative factors are encapsulated by the auxiliary fea-
tures, and thus by Zaux. The t-SNE plots show similar patterns for Z−all’ and
Zaux only’, indicating that Zrecon does not significantly contribute additional
information regarding the generative factors in this scenario.
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Fig. 8: Perturbed images and SSIM boxplots evaluating adversarial robustness across
Beta-VAE, IDVAE, and Aux-VAE models under FGSM attack.

• Cases 2 and 3: A consistent pattern emerges across these cases. The genera-
tive factors that Zaux covers are clearly depicted by the corresponding latent
factors, while Zrecon effectively captures the remaining factors. For instance,
in case 3, factors like flux, g1, and g2 are distinctly represented in the t-
SNE plots of Zrecon, demonstrating its effectiveness in portraying uncovered
generative aspects.

This analysis underscores how Aux-VAE dynamically adjusts the relative importance
of Zaux and Zrecon, from scenarios with comprehensive auxiliary information (case
1) to those with limited auxiliary data (case 3). This flexibility demonstrates Aux-
VAE’s capability to adapt and effectively utilize the available information to maintain
accurate representation of underlying generative factors.

B.1.2 Adversarial robustness

In the adversarial robustness comparison experiment, we subjected the models to a
Fast Gradient Sign Method (FGSM) attack, a common technique for testing model
robustness against adversarial examples (Goodfellow et al., 2014). For an input image,
the FSGM method uses the gradients of the loss with respect to the input image to
create a perturbed new image that maximizes the loss. The perturbation strength
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Fig. 9: Visualizing Disentanglement for VAE: This scatterplot contrasts latent factors
(Z, represented by grey dots) with the latent means (µϕ, shown as maroon dots),
alongside highlighting the LDS metric.

is controlled by a parameter epsilon (ϵ). These perturbed images were then used to
evaluate the models’ performance under attack. In Figure 8, an illustration of the per-
turbed images under varying perturbation strength ϵ is presented. Additionally, for a
test set of 1000 images, we calculate the SSIM metric between the input images and
the reconstructed images after the FGSM attack, and the boxplots are presented in
Figure 8. Naturally, we see a decline in SSIM-metric with the increase in perturbation
strength ϵ. As anticipated, β-VAE, lacking proper disentanglement, exhibited height-
ened vulnerability to the adversarial attack. Conversely, both IDVAE and Aux-VAE,
which demonstrate some level of disentanglement, exhibited comparatively greater
robustness. Notably, in Case 3, where the auxiliary information lacks representation
of several crucial generative factors, both IDVAE and Aux-VAE displayed relatively
poor performance, suggesting the importance of comprehensive auxiliary information
for enhanced adversarial robustness.

B.1.3 Disentanglement among the latent factors wrt the
ground-truth generating factors - On the galaxy simulation
data, Cars3D and Dsprites datasets

Following Section 3 of the main manuscript, here we present the remaining results
on Disentanglement among the latent factors wrt the ground-truth generating factors
across VAE, IDVAE and Aux-VAE.
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Fig. 10: Disentanglement Visualization for IDVAE and Aux-VAE: This scatterplot
illustrates the comparison between latent factors (Z, depicted as grey dots) and latent
means (µϕ, represented as maroon dots), with an emphasis on the LDS metric. The
plot includes results for cases 1 and 3 of the galaxy simulation dataset, with case 2
detailed in Section 3 of the main manuscript.
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Fig. 11: Latent space traversal for IDVAE on the three cases considered for the galaxy
simulation dataset.
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Fig. 12: Latent Space Exploration for Aux-VAE Across Three Scenarios in the Galaxy
Simulation Dataset. In case 1, Zaux includes Z1:5; in case 2, Zaux comprises Z1:3; and
in case 3, Zaux consists of Z1,2. The results demonstrate that in each scenario, Zaux

effectively adapts to the associated generative factors.
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(a) Latent space representation on DSprites dataset by t-SNE: four columns represent the
generative factors ’Scale’, ’Orientation’, ‘Position x’, and ‘Position y’. Aux-VAE achieves
better disentanglement compared to the other competing methods.

(b) Latent space representation on Cars3D dataset by t-SNE: three columns represent three
generative factors ‘height’, ‘azimuth’, and ‘size’. Aux-VAE achieves better disentanglement
than the other competing methods.

Fig. 13: Latent space representation on Cars3D and DSprites dataset by t-SNE
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(a) Evaluation of Aux-VAE on the DSprites Dataset: Four columns display the generative
factors ’Scale’, ’Orientation’, ’Position x’, and ’Position y’, demonstrating the model’s recon-
struction accuracy and latent space traversal. This analysis focuses exclusively on circular
shapes within the dataset. Aux-VAE exhibits superior disentanglement relative to competing
models, aligning with findings from previous studies Chen et al. (2018); Mita et al. (2021).
Notably, Aux-VAE shows enhanced precision in capturing the ’Orientation’ factor, a chal-
lenge where other models have shown limitations.

(b) Demonstration of Aux-VAE’s reconstruction accuracy and latent space traversal on
Cars3D dataset: four columns represent the generative factors ‘Scale’, ‘Orientation’, ‘Posi-
tion x’, and ‘Position y’. Aux-VAE achieves better disentanglement compared to the other
competing methods.

Fig. 14: Demonstration of Aux-VAE’s reconstruction accuracy and latent space
traversal on DSprites and Cars3D dataset

34



(a) Visualizing Disentanglement in ‘DSprites’ dataset: This scatterplot contrasts latent
factors (Z, represented by grey dots) with the latent means (µϕ, shown as maroon dots),
alongside highlighting the LDS metric.

(b) Visualizing Disentanglement in ‘Cars3D’ dataset: This scatterplot contrasts latent fac-
tors (Z, represented by grey dots) with the latent means (µϕ, shown as maroon dots),
alongside highlighting the LDS metric.

Fig. 15: Disentanglement in ‘DSprites’ and ‘Cars3D’ dataset: Each latent factor
is plotted against the underlying generative factors available. It shows the first d
latent factors (where d= no. of generative factors) are properly disentangled wrt the
corresponding generative factors.
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C Details on model evaluation, hyperparameter
tuning, and code repository

C.1 Architectures

The architecture for the competing methods, β−VAE and IDVAE, follows the specifi-
cations from their respective repositories: β−VAE-repo and IDVAE repo. Each of the
training is carried out on a single-NVIDIA A100 GPU. For Aux-VAE (code available
at Ganguli et al. (2024)), we employed a basic grid-search approach for hyperparam-
eter tuning, evaluating the mean squared error (MSE) and the disentanglement score
(LDS) across different configurations. Specifically, we split the data into 7:2:1 as train,
validation and test split. On the validation split, we tested dr different combinations
of hyperparameters (β, λ1, λ2), calculating the test MSE and test LDS for each con-
figuration, denoted as MSE1,MSE2, . . . ,MSEdr and LDS1, LDS2, . . . , LDSdr . We
standardized these criteria and calculated their product MSE(1 − LDS) to identify
the optimal hyperparameter setting that jointly optimizes both reconstruction and
disentanglement. Figure 16 illustrates the experiment and the hyperparameter values
to select for the experiment. Table 4 shows the final selected values of the hyperpa-
rameters for each dataset. For other architecture details, we set batch size=64, and
learning rate=1e-3 with Adam as the optimizer. However, we recognize that with an
increasing number of hyperparameters, grid-search becomes impractical. In such cases,
one would adopt stochastic hyperparameter optimization algorithms, such as Deep-
hyper (Balaprakash et al., 2018; Wu et al., 2025), for a more efficient search. Table 3
outlines the basic configuration of Aux-VAE used for the galaxy simulation dataset.
For the Cars3D and DSprites datasets, the configurations are adjusted to align with
the IDVAE settings discussed in Mita et al. (2021).

For β−VAE and IDVAE, we checked the MSE and LDS scores to find the optimal
level of regularization, in the case of galaxy simulation data analysis. For our β-VAE
implementation, we grid-searched β ∈ {1, 5, 10, 20} and found β = 10 optimal for the
galaxy simulation dataset. For Cars3D and dSprites, we adopted β = 5 following Mita
et al. (2021), given its proven balance of reconstruction fidelity and disentanglement.
To be consistent with the settings of IDVAE, our experiments primarily focused on
convolutional layers. A simpler MLP-based configuration is also provided in the Aux-
VAE code repository for more general usage.

Table 3: Architecture of the Aux-VAE for the Galaxy Simulation Dataset

Encoder Decoder
Input: 33× 33× 1 Input: R10

Conv2d(1, 32, 4, stride 2, padding 1), ReLU ConvT2d(32, 128, 4, stride 2, padding 1), ReLU
Conv2d(32, 64, 4, stride 2, padding 1), ReLU ConvT2d(128, 64, 4, stride 2, padding 1), ReLU
Conv2d(64, 128, 4, stride 2, padding 1), ReLU ConvT2d(64, 32, 4, stride 2, padding 1), ReLU
Conv2d(128, 256, 4, stride 2, padding 1), ReLU ConvT2d(32, 1, 5, stride 4, padding 0), Sigmoid

FC 256, FC 2× 10
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Fig. 16: Hyperparameter Tuning for Aux-VAE on Galaxy Simulation Data: Grid
Search Approach. The final scores are rounded up to two decimal places. The selected
configuration, highlighted in the table, effectively balancethe s optimization of MSE
and disentanglement in the latent factors.

Dataset β λ1 λ2

Galaxy simulation dataset 5 1 0.1
Cars3D 5 2 1
DSprites 10 2 2

Table 4: Hyperparameter values used
for Aux-VAE on each evaluated dataset.
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