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Abstract

Spatial Intelligence (SI) is rapidly becoming a cornerstone capability for MLLMs,
enabling them to seamlessly perceive, reason about, and interact with complex
3D environments — a critical step towards truly embodied AI systems. However,
previous works typically focus on a few specific 3D tasks, offering only a frag-
mented view of MLLMs’ spatial abilities. Inspired by cognitive science studys,
we propose SpatialTree, a hierarchical taxonomy that organizes SI into a capability
tree—from low level perception (L1), mental mapping (L2), mental simulation
(L3), to high level agentic competence (L4). Building on this taxonomy, we in-
troduce the first capability-centric benchmark that thoroughly evaluates the spatial
abilities of MLLMs. Moreover, extensive experiments are conducted to investigate
the compositional nature of spatial abilities, examining the dependencies among
the abilities and identifying the atomic abilities that exert the greatest influence on
others. Furthermore, we introduce SpatialEngine, an extensible framework that
integrates 3D vision perception models with MLLMs into a progressive annotator,
enabling comprehensive data annotation across the entire tree.
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Figure 1: SpatialTree. Inspired by cognitive science, our proposed SpatialTree organizes spatial
intelligence into a four-layer hierarchy (L1-L4). Rooted in foundational multi-modal capabilities
(L0), the tree progressively branches from Basic perception (L1) to agentic competence (L4).
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1 Introduction

Developing Spatial Intelligence (SI) Sytems to perceive, reason, and interact within the physical
world is a long-standing challenge across cognitive science (Tolman, 1948; Shepard & Metzler,
1988; Newcombe & Huttenlocher, 2000), symbolic AI (Kuipers, 1978; 2000; Harnad, 1990), and
robotics (Durrant-Whyte & Bailey, 2006; Thrun, 2002). However, progress has historically been
limited by the lack of a unified model capable of integrating perception, reasoning, and action. The
emergence of Multimodal Large Language Models (MLLMs), with their powerful vision-language
understanding and reasoning capabilities, has opened new opportunities for advancing SI.

Recent research on spatial intelligence (SI) in MLLMs has largely followed a task-centric trajectory.
Early works focused on simple spatial tasks in single images (Ma et al., 2024; Wang et al., 2024a;
Fu et al., 2024), such as relative object positioning and size estimation. Later studies expanded
these tasks to 3D grounding, detection, and captioning from point clouds (Zhu et al., 2024; Hong
et al., 2023; Xu et al., 2024). With multi-view and video-capable VLMs, benchmarks quickly
diversified (Yang et al., 2025a; Wang et al., 2025d;c; Gholami et al., 2025; Yang et al., 2025c; Jia
et al., 2025), covering a wide array of tasks from spatiotemporal reasoning to egocentric and dynamic
object understanding.

However, this prevailing task-centric approach, while foundational, has naturally led to a landscape
of benchmarks that often focus on specific, sometimes overlapping, spatial tasks. This fragmentation
makes it challenging to gain a holistic view of an MLLM’s overall spatial intelligence or to understand
the inherent dependencies between these skills. This motivates us to ask:

Can we move beyond fragmented, task-centric benchmarks to uncover a compact
set of atomic capabilities that capture spatial intelligence and its dependencies?

Inspired by Piaget’s theory in cognitive science Piaget (2013), we advocate a capability-centric
paradigm for spatial intelligence (SI). We further decompose SI into a multi-level capability tree
(Fig. 1). Based on this taxonomy, we construct the first comprehensive benchmark for SI in MLLMs,
offering comprehensive ability coverage and a diverse set of evaluation metrics beyond simple
multiple-choice tests used in prior works. We also develop a Spatial Engine, an extendable annotation
framework. It integrates multiple perception models to generate annotations for each capability layer.
At the highest level (L4), we propose a spatial action mapping which converts continuous actions into
discrete, high-level motion primitives, providing MLLMs with an executable action space for agentic
tasks. We leverage the proposed Spatial Engine to generate diverse annotation data from public
datasets covering video games, robot manipulation, and human-object interactions, with details
provided in Sec. 3.1. To cover the lower levels (L1–L3), we extract relevant portions from multiple
public datasets and benchmarks (Yang et al., 2025c;a; Jia et al., 2025; Lin et al., 2025; Wang et al.,
2025c; 2024a; Zhu et al., 2024; Yin et al., 2025; Xu et al., 2025; Liu et al., 2025), reorganizing them
onto our capability tree. We further enrich questions and evaluation protocols to improve coverage
and cross-layer overlap. To address missing capabilities, we introduce SpatialPlus, generated by
SpatialEngine, encompassing Orientation (L1), Memory Retrieval (L2), Relational Reasoning (L3),
and Agentic Competence (L4). All resulting data and annotations are systematically organized and
re-weighted within the SpatialTree benchmark to ensure balanced evaluation across layers.

Evaluation on SpatialTree-Bench reveals a clear hierarchical structure in spatial intelligence: low-
level abilities (L1–L2) are largely independent, whereas higher-level abilities (L3–L4) exhibit strong
interdependencies, reflecting their compositional nature. Furthermore, we observe that certain
foundational abilities—Geo.Size (L1), Geo.Dist (L1), and Relat.Corr (L2)—as well as higher-level
reasoning skills (L3) correlate strongly with agentic competence (L4). To systematically validate
these relationships, we design an atomic prompting protocol: for L4 navigation tasks, we provide
MLLMs with additional prompts encoding relevant L1, L2, and L3 signals. By this, we find lower
level information could significantly improves performance on higher 3D agentic tasks, yielding
clear gains (e.g., w/ Corres: 12.1%, w/ Depth: 22.1%, w/ Size: 5.1%).

In summary, our work makes the following key contributions:

• Propose a capability-centric paradigm for spatial intelligence, offering a systematic and
interpretable framework beyond task-centric benchmarks.
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• Construct the first comprehensive benchmark for spatial intelligence in MLLMs, covering
multiple ability layers with diverse evaluation metrics.

• Develop a Spatial Engine and a spatial action mapping to generate annotations and enable
MLLMs to perform interactive tasks.

• Validate the hierarchical classification and inter-level dependencies through experiments,
demonstrating that high-level abilities benefit from lower-level information.

2 Related Work

Spatial Cognitive Modeling. Understanding spatial cognition has long been a central goal in
cognitive science and AI. A common insight from classical theories is that spatial abilities are
hierarchical, ranging from basic perception and sensorimotor interactions to higher-level reasoning
and planning. Piaget Piaget (2013) highlighted the developmental progression of such abilities,
Tolman Tolman (1948) introduced the idea of cognitive maps to represent environments for flexible
navigation, and Kuipers Kuipers (1978; 2000) formalized a hierarchical spatial representation linking
local perception to global knowledge. More recent symbolic and neural approaches Shepard &
Metzler (1988); Newcombe & Huttenlocher (2000) extend these insights to computational models of
spatial representation, memory, and reasoning. These studies collectively motivate our SpatialTree,
which organizes spatial intelligence into multi-level capabilities, bridging classical theory with
systematic computational evaluation.

Multi-modal Large Language Models. The success of GPT-3 Brown et al. (2020) and GPT-
3.5 OpenAI (2023a) demonstrated the potential of large language models for complex linguistic
understanding and reasoning. GPT-4V OpenAI (2023b) extends GPT-4 Achiam et al. (2023) with
visual inputs, enabling single-image understanding and basic spatial reasoning. Open-sourced mod-
els such as LLaVA Liu et al. (2023) and QwenVL Bai et al. (2023) gradually added multi-image and
video capabilities, supporting spatiotemporal reasoning. Reasoning-augmented LLMs, pioneered by
OpenAI O1 Jaech et al. (2024) and DeepSeek-R1 Guo et al. (2025a), integrate chain-of-thought and
reinforcement learning to enhance high-level inference. Building on these advances, GPT-4O Hurst
et al. (2024) and Gemini 2.5 Comanici et al. (2025) combine perception and reasoning to support
complex, agentic decision-making. Collectively, these milestones progressively enable hierarchical
spatial intelligence in MLLMs, motivating structured benchmarks and evaluation frameworks across
low-level perception, intermediate reasoning, and high-level agentic competence.

Benchmarks for Spatial Intelligence in MLLMs. Benchmarks for spatial abilities in MLLMs
have evolved alongside the models themselves. Early efforts, such as BLINK Fu et al. (2024),
SpatialEval Wang et al. (2024a), and 3DSR-Bench Ma et al. (2024), focused on evaluating spatial
understanding tasks in single images, including distance estimation, relational question answering,
and spatial captions. As MLLMs increasingly support multi-frame and video inputs, benchmarks
such as VSI-Bench Yang et al. (2025a) and MMSI-Bench Yang et al. (2025c) have emerged to
evaluate spatial reasoning across multiple views and dynamic scenes. To further enrich task diversity
and coverage, Omnispatial Jia et al. (2025), SITE Wang et al. (2025d), and IR3D-Bench Liu et al.
(2025) extend benchmarks to geometry puzzles, dynamic reasoning, and inverse rendering tasks.
Built upon prior efforts, our SpatialTree benchmark systematically organizes spatial abilities into a
hierarchical framework, providing the first thorough evaluation across different capabilities.

3 SpatialTree: Our Framework for Spatial Intelligence

In this section, we present SpatialTree, a top-down hierarchical decomposition of spatial capabilities
into four levels, from high-level agentic competence (L4) to foundational perception (L1). Different
samples for different level of capabilities are shown in Figure 2.

3.1 Agentic Competence

We begin from the ultimate objective of a Spatial AI Agent — an MLLM-driven system that integrates
multi-modal observations, updates its memory, and selects actions to interact with the 3D world in
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Figure 2: A gallery of representative tasks. Leveraging our capability tree, we’ve built a thorough
benchmark covering diverse spatially relevant tasks in all aspects.

an intuitive manner. Formally, the agent performs sequential decision-making by modeling:

(𝑆𝑡 , 𝐴𝑡 , 𝑀𝑡 ) ∼ 𝑃𝜃

(
·
�� 𝑂𝑡 , 𝐻𝑡−1

)
, 𝐻𝑡−1 = {(𝑂0, 𝐴0, 𝑀0), . . . , (𝑂𝑡−1, 𝐴𝑡−1, 𝑀𝑡−1)} (1)

where𝑂𝑡 ∈ O is the current multi-modal observation, 𝑆𝑡 ∈ S the internal latent state (e.g., goal, plan,
or belief), 𝐴𝑡 ∈ A the chosen action, and 𝑀𝑡 ∈ M the updated memory representation. MLLMs
are expected to output interactive actions executable across 3D environments and embodiments,
such as games, simulators, and the physical world. Unlike Vision-Language Action Models (VLAs)
decording the low-level control signals in robotics (Intelligence et al., 2025), MLLMs take the
language as the only interface to link with environments like GUI Agents (Qin et al., 2025).

Spatial Action Mapping. In the context of spatial agents, navigation and manipulation represent
the most common forms of interaction within 3D environments. We address each with a distinct
action space design. For navigation, we conceptualize agent movement as a series of camera motion
controls (referring to recent video world models (Ball et al., 2025; Mao et al., 2025a)). To enable
precise and intuitive control, we decompose complex camera movements into a set of fundamental
motion primitives inspired by established cinematography techniques. This approach allows us to
translate high-level language instructions (e.g., "move to the left," "look up") into a structured, low-
level action space. The six fundamental primitives, their corresponding cinematic terms, degrees of
freedom (DoF), and parameterization are detailed in Table 1.

Formally, the camera trajectories are defined with a series of Camera-to-World (C2W) transformation
matrices Tmotion = {T|𝑖0, 𝑖 = 0, 1, . . . , 𝑡}, while the camera transformation at each moment is T𝑖→𝑖+1 =

T𝑖+1T−1
𝑖 , 𝑖 = 0, 1, . . . , 𝑡 − 1. Then the continuous camera transformation can be decomposed into

different components corresponding to each motion primitive, and discretized into the navigation
action 𝐴nav using a speed threshold:

Anav
𝑖 = T𝑖→𝑖+1 = {ΔR,Δt} ≈ {𝑡𝑖 · 𝑣𝑖 , 𝑡𝑘 · 𝜔𝑘 | 𝑖, 𝑘 ∈ {𝑥, 𝑦, 𝑧}, 𝑡𝑖 , 𝑡𝑘 ∈ Z≥0}, (2)

whereΔR = (Δ𝑅𝑥 ,Δ𝑅𝑦 ,Δ𝑅𝑧) represents the rotation components obtained via Euler decomposition,
Δt = (Δ𝑡𝑥 ,Δ𝑡𝑦 ,Δ𝑡𝑧) denotes the translation components along the 𝑥, 𝑦, and 𝑧 axes, and 𝑡𝑖 , 𝑡𝑘 are
discrete integers ranging from 0 up to the video frame rate (FPS). For manipulation, we focus on
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Table 1: Spatial Action Mapping. This table defines a standardized interface that maps continuous
6-DoF motions and discrete control signals into action primitives with unified parameterization,
enabling MLLMs to plan and execute embodied behaviors for agentic competence evaluation.

Primitive Primitive Term Category Description Action Mapping Param. Threshold

𝑃truck Truck Translation Move camera left/right
(X-axis) 𝐴/𝐷 𝑣𝑥 ±0.01 m/s

𝑃dolly Dolly Translation
Move camera

forward/backward
(Z-axis)

𝑊/𝑆 𝑣𝑧 ±0.01 m/s

𝑃pedestal Pedestal Translation Move camera up/down
(Y-axis) 𝑄/𝐸 𝑣𝑦 ±0.01 m/s

𝑃pan Pan Rotation Turn camera left/right
(yaw) ← /→ 𝜔𝑦 ±0.5◦/s

𝑃tilt Tilt Rotation Tilt camera up/down
(pitch) ↑ /↓ 𝜔𝑥 ±0.5◦/s

𝑃roll Roll Rotation Roll camera CW/CCW
(roll) 𝑍/𝑋 𝜔𝑧 ±0.5◦/s

𝑂gripper Gripper Gripper Control Open or close the
gripper 𝐺/𝐻 State ∈ {0, 1} N/A

𝑂push/pull Push/Pull Gesture Push or pull object
along forward axis 𝑃/𝐿 Dir. ∈ {−1,+1} N/A

𝑂grab Grab Gesture Grab or release object None State ∈ {0, 1} 𝐺/𝐻

two representative scenarios to simplify the problem and enable controlled evaluation: human-
hand manipulation and robotic gripper manipulation. For the gripper setting, we include gripper
open/close actions along with wrist-level 6-DoF motion. For the human-hand setting, we define a
small set of intuitive gesture primitives (i.e., push, pull, grab) seen in Table. 1 that capture essential
interaction patterns. These manually defined mappings create a unified yet tractable action space for
analyzing MLLMs’ planning and manipulation competence.

Building on the proposed spatial action mapping, we curate annotated data from diverse sources,
including human-hand manipulation videos, navigation video games, robotic arm manipulation
datasets, and simulation environments. This unified dataset enables us to evaluate whether MLLMs
can accurately plan and execute actions in the defined metric action space. Further implementation
details are provided in Sec. 4 and in the experimental section.

3.2 Mental Simulation

Reasoning and planning prior to action execution are essential components of Multimodal Large
Language Models (MLLMs), aligning naturally with the Chain-of-Thought paradigm in language
model reasoning. In spatial cognitive science, this process is commonly referred to as mental
simulation. We further decompose mental simulation into two core components: causal reasoning
and sequential planning.

Causal Reasoning allows MLLMs to model spatial interactions, physical dynamics, and entity
relationships within a simulated mental space. It includes reasoning about object geometry (e.g.,
how shapes interlock in spatial puzzles), predicting motion under kinematic constraints (e.g., how
an object traverses a path), and analyzing semantic–spatial relations (e.g., object A is left of object
B). By mentally simulating cause–effect chains in spatial scenarios, MLLMs establish the logical
substrate for subsequent planning.

Sequential Planning converts causal insights into coherent, goal-directed action plans expressed in
language. It entails designing high-level, step-by-step strategies (e.g., "first move toward the door,
then turn right, and finally interact with the handle") and generating abstract routes that respect
spatial logic (e.g., "go around the table to reach the sofa"). By chaining linguistic action primitives,
MLLMs produce strategic plans that ensure the conceptual sequence aligns with the overarching
goal before any low-level execution.

3.3 Mental Mapping

Level 3’s advanced mental simulation requires a coherent internal world model, a foundation provided
by Level 2’s mental mapping. This process constructs and maintains a dynamic 3D representation of
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the environment by relying on two essential facets. The first is spatial understanding: the ability to
interpret the immediate scene. This includes recognizing objects and their affordances, mapping the
spatial relations between them, and understanding the scene from various perspectives (perspective
taking). In essence, it’s about making sense of what is currently perceived. The second facet is
memory. It allows the agent to retain this understanding over time, retrieving past observations to
build a cognitive map that extends far beyond the current field of view. This creates a persistent and
comprehensive mental model of the world. Ultimately, these two facets—understanding the present
and remembering the past—organize and integrate the foundational perceptual data from L1, paving
the way for L3’s predictive simulations.

3.4 Perception

Perception forms the foundation for high-level spatial reasoning. We categorize L1 Perception into
five core aspects: Orientation: Captures spatial alignment, crucial for understanding the agent’s
pose and maintaining balance. Key sub-tasks are Gravity (estimating pitch and roll to determine
“up”/“down”) and Object Orientation (recognizing object poses), supporting scene reconstruction
and manipulation. Geometry: Involves spatial form, size, and metric relationships. Sub-tasks
include Size, Shape, and Distance, enabling reasoning about object properties and facilitating nav-
igation and grasping. Motion: Encodes spatial dynamics over time. Sub-tasks are Egocentric
Motion (self-motion estimation) and Allocentric Motion (tracking object or scene changes), critical
for predicting future states and planning actions. Relation: Concerns spatial relationships between
entities. Sub-tasks include Correspondence (matching entities across views) and Relative Direc-
tion (e.g., left of, in front of), supporting object tracking, path planning, and interaction reasoning.
Localization: Anchors perception within 3D space. Sub-tasks include 3D Detection (identify-
ing object extents) and 3D Grounding (associating observations with coordinates), enabling scene
reconstruction, navigation, and embodied reasoning.

4 Spatial Engine: Our Data Annotator Pipeline

We propose an extensible data engine designed to generate annotations for every layer of the Spa-
tialTree. Our approach begins with a diverse set of low-level 3D perception models, each tailored
to a specific task, including metric depth estimation (Wang et al., 2025b; Yang et al., 2024), ori-
entation estimation (Wang et al., 2024b), gravity estimation (Veicht et al., 2024), correspondence
matching (Leroy et al., 2024; Xiangli et al., 2025), 3D localization (Mao et al., 2025b), 3D point
tracking (Xiao et al., 2024; 2025), and camera pose estimation (Wang et al., 2025a;e). Nevertheless,
all these comprehensive 3D perception models can be seamlessly encompassed within our taxonomy
of five perception abilities.

Data Annotation Framework. As shown in Figure 3, our pipeline encapsulates three hierarchical
entities: models, pipelines, and workflows. The lowest level comprises the perception models de-
scribed above, along with advanced MLLMs for semantic captioning. Building upon these models,
we construct several reusable pipelines that serve as atomic components for higher-level workflows.
Specifically, we implement 12 pipelines, including metric 3D reconstruction, 3D orientation align-
ment, 3D point tracking, and affordance pointing. Each pipeline processes raw sensory data, such
as RGB images or 3D point clouds, and produces intermediate outputs that are further integrated
by the workflows. Based on these pipelines, we assemble 24 workflows, each targeting a specific
perception ability or a combination of abilities, to generate comprehensive annotations for our Spa-
tialTree. These reusable pipelines not only streamline the annotation process but also facilitate future
extension to new tasks or models. Overall, this hierarchical design ensures modularity, scalability,
and a clear separation of responsibilities across models, pipelines, and workflows.

Data Resources. As seen in Fig. A, our SpatialTree-Bench is constructed by systematically reorganiz-
ing a broad range of recent datasets, including VSI-Bench (Yang et al., 2025a), MMSI-Bench (Yang
et al., 2025c), LLaVa3D (Zhu et al., 2024), SpatialEval (Wang et al., 2024a), MindCube (Yin et al.,
2025), CameraBench (Lin et al., 2025), Omnispatial (Jia et al., 2025), EmbodiedBench (Yang et al.,
2025b), SpatialViz (Wang et al., 2025c), Multi-SPA (Xu et al., 2025), and 3DSR-Bench (Ma et al.,
2024). To address their scattered capability coverage and over-reliance on simple multiple-choice
questions, we first map each question to our SpatialTree framework. We then enhance the evaluation
protocol; for instance, complex reasoning tasks from CameraBench and MMSI-Bench are converted
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to a hybrid multi-option + GPT-4 evaluation format for a finer-grained assessment. Furthermore,
to address the remaining gaps in capability coverage, we introduce our SpatialPlus dataset. It is
specifically designed to target underrepresented abilities such as Orientation (L1), Shape (L1), and
Spatial Caption (L2), with a primary emphasis on the complex tasks of Agentic Competence (L4).
To generate this data, we leverage our proprietary SpatialEngine to automatically create annotations
from a diverse array of video sources, including 3D reconstruction datasets, in-game footage Ju et al.
(2024), egocentric manipulation videos (Hoque et al., 2025), and robotics data (Khazatsky et al.,
2024). More implementation details are discussed in Sec. 6
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Figure 3: SpatialTree Data Engine. A highly modular and scalable framework that decomposes
high-level spatial tasks into low-level components, supporting human-in-the-loop supervision.

5 Experiments

This section presents a comprehensive evaluation of the hierarchical spatial reasoning capabilities
of advanced Multimodal Large Language Models (MLLMs) using our SpatialTree framework. Our
objectives are twofold: 1) to establish a fine-grained capability benchmark for current MLLMs across
all levels of the SpatialTree, and 2) to analyze the dependencies between foundational spatial skills
and their influence on higher-level abilities, such as spatial reasoning.

5.1 Models and Metrics

Benchmarked Models. We select a diverse set of state-of-the-art MLLMs for our evaluation,
ensuring broad coverage of model families, architectures, and functional paradigms. Our selection
spans three key dimensions: (1) reasoning-focused closed-source models renowned for advanced
general reasoning capabilities, including GPT-4o (Hurst et al., 2024), and GPT-5 (OpenAI, 2025);
Google’s Gemini 2.5 Flash and Gemini 2.5 Pro (Comanici et al., 2025); Anthropic’s Claude 3.7
Sonnet (Anthropic, 2025); and GLM-4.5V Hong et al. (2025), SeedVL1.5 Guo et al. (2025b); (2)
non-reasoning models such as Gemini-2.5-Pro-Nonthink Comanici et al. (2025), Gemini-2.5-Flash-
Nonthinking, and SeedVL1.5-Nonthink (Guo et al., 2025b), which represent specialized paradigms
outside traditional reasoning-centric designs; and (3) open-source models (e.g., Qwen25VL (Bai
et al., 2025) series and Kimi-VL (Team et al., 2025)) that reflect the cutting edge of community-
driven research. This deliberate diversity allows us to compare performance across reasoning vs.
non-reasoning paradigms, closed vs. open-source ecosystems, and varying scales (from 32B to 72B
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L1 Perception L2 Mental Mapping L3 Mental Simulation L4 Agentic Competence
Methods Rank Avg. Geom. Motion Rel. Local. Orient. Underst. Memory Caus. Reas. Seq. Plan. Goal Exec. Open Expl.
Proprietary Models
GPT-4o 5 44.2 43.4 30.0 59.7 73.3 41.2 61.7 41.1 37.2 53.2 19.0 22.0
GPT5 4 46.7 44.5 34.0 58.4 77.9 36.1 60.6 55.3 38.6 52.1 23.6 19.4
Gemini2.5 Flash NT 6 44.1 45.3 28.6 60.5 70.6 45.1 56.6 50.7 34.2 50.3 16.7 21.3
Gemini2.5 Pro NT 3 46.9 51.4 27.9 64.2 75.1 45.4 62.8 49.8 38.6 52.9 21.8 18.3
claude3.7-sonnet NT 9 43.4 39.2 26.0 61.6 66.2 40.3 58.1 45.6 38.0 53.0 21.1 21.4
SeedVL1.5 NT 12 38.9 35.8 30.7 63.4 71.2 39.0 61.0 27.6 37.5 53.6 10.9 6.6
Thinking Models
SeedVL1.5-Thinking 7 43.5 48.0 29.3 62.6 76.4 42.1 62.4 42.0 34.3 48.2 16.3 14.7
GLM4.5V 10 42.3 48.4 25.9 67.0 71.7 42.9 54.0 42.9 37.4 52.1 17.0 9.3
Gemini2.5-Pro 1 50.9 53.9 33.9 64.6 77.2 45.8 62.9 60.7 44.0 55.8 24.9 24.7
Gemini2.5-Flash 2 47.8 42.9 25.9 62.8 75.5 42.2 59.8 60.5 36.6 53.7 22.7 25.7
claude3.7-sonnet 8 43.4 41.1 30.6 66.6 66.5 27.8 58.2 37.4 40.1 59.1 24.7 24.5
Open-source Models
Qwen2.5VL-3B 14 32.0 29.0 29.3 38.3 53.4 33.4 43.7 28.0 26.7 41.5 18.3 11.7
Qwen2.5VL-7B 16 29.0 28.2 31.2 36.2 52.4 30.3 43.0 18.6 26.6 34.5 14.3 11.8
Qwen2.5VL-32B 15 31.5 33.5 29.3 39.6 58.7 35.0 41.7 16.1 27.0 41.7 20.2 14.1
Qwen2.5VL-72B 11 41.3 38.5 22.7 59.3 66.0 35.9 59.0 36.4 32.6 53.0 23.8 20.1
Kimi-VL-A3B-Instruct 13 32.5 30.7 23.3 39.3 58.0 33.3 49.4 31.1 26.6 35.0 16.2 7.8

Table 2: Our-Bench. Dark gray indicates the best result among all models and light gray indicates
the best result among open-source models. NT denotes the non-thinking model. Avg is aggregated
by our weighted strategy seen in Sec. 6.

parameters), providing a holistic view of the current MLLM landscape. A complete list of evaluated
models is provided in Table 2.

Evaluation Metrics. Our evaluation employs a multi-faceted set of metrics tailored to the specific
abilities at each level of the SpatialTree. For perception and understanding tasks (L1-L2), we
primarily use accuracy-based metrics, such as classification accuracy for object recognition, Mean
Squared Error (MSE) for distance estimation, and angular difference for orientation tasks. For
higher-level reasoning and planning tasks (L3-L4), we measure task success rates. In the case of
agentic tasks (L4), we further analyze the quality of generated actions using metrics like positional
error (L2 distance) and orientation error (angular difference) against ground-truth trajectories.

5.2 Performance on SpatialTree-Bench

A

B

C

Figure 4: Inter-Capability Dependencies via Pearson
Correlation. (A) Correlation matrix among higher-level
capabilities (L3 and L4); (B) Correlation matrix among
foundational L1 capabilities; (C) Salient low-level abilities
influencing higher-level tasks.

We first present the overall perfor-
mance of all benchmarked models
on our proposed SpatialTree-Bench,
with detailed results summarized in
Table 2. In our benchmark, the rea-
soning models achieve clear improve-
ment than their non-thinking ver-
sion, e.g. Gemini2.5-Pro (53.9) v.s.
Gemini2.5-Pro-NT (51.4).

5.3 Analysis
of Ability Dependencies

To explore the structure of spatial
intelligence in MLLMs, we analyze
the dependencies among fine-grained
sub-abilities using the Pearson cor-
relation coefficient. A high positive
correlation indicates that models per-
forming well on one ability tend to
perform well on the other. Fig. 4
shows a heatmap of these correlations
across all models.

The heatmap suggests a compo-
sitional nature in spatial abilities:
higher-level capabilities (L3 and L4)
exhibit stronger correlation as shown
in region A. This reflects that complex tasks, such as route planning and causal reasoning, depend on
overlapping foundational sub-skills. As a result, performance in one high-level ability often predicts
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w/ visual correspondence

w/o visual correspondence

Initial state

Target state

Extra Visual Info.

Figure 5: Correspondence Prompting for Navigation. The correspondence prompt guides
Gemini2.5-pro to navigate and move more accurately within 3D environments.
performance in others. At the lowest level (L1), atomic abilities exhibit weak correlations, indicating
that they are largely independent. Foundational skills such as shape perception, distance estimation,
and relative direction capture distinct aspects of spatial perception. This orthogonality provides a
diverse and comprehensive perceptual foundation for the model.

Finally, we identify a set of low-level critical abilities that act as prerequisites for a wide range
of higher-level competencies. For example, strong performance in geometric perception tasks,
particularly distance estimation (L1-Geo.Dist) and size estimation (L1-Geo.Size), shows a strong
positive correlation with many advanced abilities, including open exploration (L4-Open.Expl.),
and causal reasoning (L3-Seq.Plan.Ope, L3-Caus.Reas.Rel). This indicates that a model’s ability
to perceive fundamental geometric properties is a cornerstone upon which more abstract spatial
reasoning is constructed. These findings strongly support our hypothesis that a core set of atomic
abilities forms the basis for the emergence of broader spatial intelligence in MLLM.

5.4 Atomic Prompting for Hierarchical Scaffolding

To investigate the influence of low-level perceptual aids on high-level agentic reasoning, we conducted
a controlled experiment on the L4 agentic navigation task (Seen in Fig. 5). The experimental design
aimed to isolate the effect of supplementary low-level information while keeping the primary goal
and basic visual information consistent across conditions. Specifically, in the baseline condition,
the model was provided with visual observations of the initial and final states, alongside a defined
6-Degrees-of-Freedom (6DoF) action space, and was tasked with generating a sequence of actions
to connect the two states. In the experimental condition, we augmented the input with explicit visual
correspondence figures to provide additional low-level guidance. We evaluated the performance in
both settings using our L4 agentic evaluation metric. The results revealed a significant performance
uplift: supplying the explicit visual cues improved the model’s score by a notable 12%. This finding
suggests that even for high-level planning tasks, grounding the reasoning process of MLLMs with
explicit, low-level visual information can substantially enhance their performance in complex spatial
navigation scenarios.

6 Conclusion and Discussion

We propose the first capability-centric Spatial Intelligence framework, SpatialTree, organizing spatial
capabilities into four hierarchical layers. Our experiments reveal the compositional structure of
these abilities, showing how foundational skills support higher-level performance. Leveraging the
scalability of SpatialTree and SpatialEngine, we can systematically generate tasks and annotations
guided by the capability hierarchy, providing a framework to enhance pre-training and SFT, and to
accelerate the development of next-generation embodied MLLMs.

9
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Figure A: Construction of SpatialTree-Bench. We build our benchmark by reorganizing various
existing datasets and mapping them to our capability tree, where SpatialPlus, a complementary
dataset are introduced to ensure the capability coverage.

A Visualization of Data Sources

How different datasets contribute to our SpatialTree evaluation is shown in Fig. A.

B Evaluation Metrics Details

Multi-Option QAs. For multi-option question answering, each model is evaluated on its ability to
select the correct option from a predefined set. We measure accuracy by comparing the predicted
choice against the ground-truth answer. This paradigm captures a model’s understanding of spatial
relations, object properties, and causal dynamics within a scene, corresponding to the low- and
mid-level capabilities in the SpatialTree (L1–L3).

Numeric QAs. Numeric QAs require models to predict continuous quantities such as distances,
angles, or 3D coordinates. We evaluate performance using relative error metrics, for example:

Relative Error =
| 𝑦̂ − 𝑦 |
|𝑦 | ,

where 𝑦̂ is the predicted value and 𝑦 is the ground truth. This metric ensures that predictions are
scaled appropriately across different magnitudes and emphasizes precision in spatial reasoning.

GPT Judge. For tasks that are open-ended or involve complex reasoning (e.g., trajectory descrip-
tion, action sequence explanation), we leverage a GPT-based judge to assess correctness. The judge
evaluates whether the generated response satisfies the task requirements, optionally scoring par-
tial correctness. This approach allows flexible evaluation beyond rigid numeric or multiple-choice
formats, especially for mid- and high-level capabilities in L3–L4.
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Figure B: Orientation Annotations. The left side is the gravity field estimated from GeoCalib Veicht
et al. (2024), while the right side is from OrientAnything.

Agentic Evaluation. To assess agentic competence, models are deployed in interactive simulated
environments, such as those provided by EmbodiedBench (Yang et al., 2025b). We evaluate naviga-
tion and manipulation tasks along multiple dimensions: success rate in completing the target goal,
relative translation accuracy, and directional alignment. For each action step, a combined metric is
computed using relative distance and cosine similarity of movement vectors, producing a normalized
score in [0, 1]. Aggregating scores over all steps yields a comprehensive measure of an agent’s
ability to plan and execute actions in long-horizon, embodied tasks.

C SpatialPlus: Complementary Data Annotations for SpatialTree

C.1 Orientations (L1)

The Orientation capability, a fundamental yet under-explored area, involves estimating both gravity
direction and 3D object orientation. To generate annotations, we leveraged Geocalib Veicht et al.
(2024) for gravity vector estimation and OrientAnything Wang et al. (2024b) for object poses. We
applied these tools to datasets suited for each task: for gravity, we annotated 500 images sampled
from the diverse, drone-captured TartanAir Wang et al. (2020) dataset; for object orientation, we
utilized the object-centric Co3dv2 Reizenstein et al. (2021) dataset (Seen in Fig. B). For gravity, the
goal is to estimate the camera’s orientation relative to the gravity vector, typically represented by the
pitch and roll angles. Formally, let the gravity vector in the world frame be:

g𝑤 =

[ 0
0
−1

]
, (3)

and let R𝑐𝑤 ∈ 𝑆𝑂 (3) denote the rotation from the world frame to the camera frame. The gravity
direction in the camera frame is then:

g𝑐 = R𝑐𝑤 g𝑤 . (4)

From g𝑐 = [𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧]⊤, the pitch and roll angles can be computed as:

pitch = arctan 2(−𝑔𝑥 ,
√︃
𝑔2
𝑦 + 𝑔2

𝑧), (5)

roll = arctan 2(𝑔𝑦 , 𝑔𝑧). (6)

Here, pitch measures the forward–backward tilt of the camera, while roll measures the sideways tilt.
To evaluate an MLLM’s proficiency in this task, we require the model to analyze the input image
and return these same three parameters in a structured JSON format. An example of our prompt
template is shown in Listing 1.
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1 {

2 "role": "system",
3 "content": "You are a vision model specialized in estimating camera

orientation from images.↩→

4 Your task is to infer the gravity direction from the input image by

predicting the↩→

5 camera's pitch and roll angles, as well as the vertical field of view

(vFOV).↩→

6 Always output your prediction strictly in the following JSON format:

7 {

8 \"pitch\": <float, camera pitch angle in degrees>,

9 \"roll\": <float, camera roll angle in degrees>,

10 \"vfov\": <float, vertical field of view in degrees>

11 }

12 Do not include any additional text or explanation outside of the JSON

object."↩→

13 }

Listing 1: Prompt template for Orientation Estimation.

For evaluation, we move beyond a simple absolute error metric and adopt a probabilistic approach
that accounts for the inherent uncertainty of the ground-truth annotations provided by Geocalib. For
each predicted parameter (pitch, roll, and vFOV), Geocalib also outputs an uncertainty value, which
we interpret as the standard deviation (𝜎𝑔𝑡 ). We then calculate a normalized similarity score (𝑆) for
each parameter using a Gaussian kernel, defined as:

𝑆(𝑦pred, 𝑦gt, 𝜎gt) = exp

(
−
(𝑦pred − 𝑦gt)2

2𝜎2
gt

)
(7)

where 𝑦pred is the MLLM’s prediction, 𝑦gt is the ground-truth value from Geocalib, and 𝜎gt is its
associated uncertainty. This scoring function gracefully penalizes deviations from the ground truth:
the score is 1 for a perfect match and decays towards 0 as the error increases. Crucially, a larger
uncertainty 𝜎gt in the ground truth leads to a slower decay, making the scoring more lenient when the
ground truth itself is less certain. The final score for the task is the average of the individual scores
for pitch, roll, and vFOV. For object orientation estimation, most of metrics are similar to gravity,
and the evaluation are conducted on Azimuth, Polar and Rotation these three angles.

C.2 Agentic Competence (L4)

C.3 Goal-driven Navigation

(a) (b)

Figure C: Navigation Data Curation. (a) shows paired images used for evaluation, where MLLMs
are expected to move from left to right. (b) illustrates our curation process: reconstructing metric
3D models and camera trajectories, then converting them into actions.
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Goal-driven Navigation. We leverage our SpatialEngine to get the action annotations as shown
in Fig. C. We first extract the metric pose trajectories from the games videos, and convert them
into discrete actions with our spatial action mapping, and then we randomly sample several image
pairs from the video with the correspondence checking. For evaluation, the goal is a image, and the
MLLMs are supposed to control the character to move to the target positions. We use the prompt
template as below:

{

"role": "system",
"content": "Task Details:\n

Analyze Images: Compare the start image <Image 1> and the target image <Image

2> to understand the required translation and rotation for the robot

arm's end-effector.\n

↩→

↩→

Define Motion: Decompose the movement into 6 steps, each containing one or

more elementary actions.\n↩→

Quantify Actions: For each action, specify an integer step_num that

represents its intensity.\n\n↩→

Coordinate System:\n

Right-hand frame attached to the end-effector: +Z forward, +X right, +Y

downward.\n\n↩→

Action Space:\n

Translation: Dolly In (W), Dolly Out (S), Truck Left (A), Truck Right (D),

Pedestal Up (space), Pedestal Down (shift).\n↩→

Rotation: Pan Left (←), Pan Right (→), Tilt Up (↑), Tilt Down (↓), Roll CW
( R⃝), Roll CCW ( L⃝).\n↩→

Special Action: Stay (STOP).\n\n

Step Size:\n

Translation: 0.019375 m/step. Rotation: 0.4509 rad/step.\n\n

Output Format:\n

Return a single JSON object with keys step_1–step_6. Each step contains:\n

actions: list of action symbols\n

step_nums: corresponding integers.\n\n

Example:\n

{

\"step_1\": {

\"actions\": [\"W\", \"A\"],

\"step_nums\": [5, 2]

},

\"step_2\": {

\"actions\": [\"W\", \"↑\"],
\"step_nums\": [3, 4]

}

}"

}

Listing 2: Prompt of navigation.

In this prompt, translation and rotation steps are computed from the actual movement, while capping
the number of steps at 10 to prevent overly long action sequences. To evaluate MLLMs, we compute
a normalized metric in the range [0, 1] by combining relative distance and directional accuracy.
Specifically, for each step, let Δppred and Δpgt denote the predicted and ground-truth translation
vectors, respectively.
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The relative distance score is defined as:

𝑠𝑑 = max
(
0, 1 −

∥Δppred − Δpgt∥
∥Δpgt∥

)
,

and the directional score is computed by the cosine similarity:

𝑠𝜃 =
Δppred · Δpgt

∥Δppred∥ ∥Δpgt∥
.

The final step-wise accuracy is then: 𝑠step = 𝑠𝑑 ·max(0, 𝑠𝜃 )
which ensures a value in [0, 1], where 1 indicates perfect alignment in both distance and direction.
Aggregating 𝑠step across all steps provides a comprehensive measure of the model’s precision in
executing end-effector motions.

Goal-driven Manipulation For the Goal-Driven Manipulation capability, we utilize action an-
notations from the Droid Khazatsky et al. (2024) and EgoDex Hoque et al. (2025) datasets. This
task requires the MLLM to generate a sequence of precise actions to move a robot end-effector or
a human hand from a starting state to a target state, both specified by images. The action space for
Droid encompasses 7-DoF control: 6-DoF for the end-effector’s pose (translation and rotation) and
a binary state for the gripper (open/close). A similar action space is adapted for EgoDex, controlling
wrist pose and finger grip. The MLLM is prompted to generate a sequence of continuous action
vectors, as shown in the template below:

To evaluate the MLLM’s performance, we assess the accuracy of the predicted action sequence against
the ground truth. For the translational component of the motion, we reuse the step-wise accuracy
metric 𝑠step from the navigation task, which combines relative distance and directional scores. For
the rotational component, we compute a normalized score based on the angular difference between
the predicted orientation and the ground truth. Let 𝑅pred and 𝑅gt be the predicted and ground-truth
rotation matrices for a step. The rotational error angle 𝜃err is calculated from the error rotation matrix
𝑅err = 𝑅pred𝑅

𝑇
gt:

𝜃err = arccos
(
Tr(𝑅err) − 1

2

)
.

The rotation score 𝑠rot is then defined as:

𝑠rot = max
(
0, 1 − 𝜃err

𝜋

)
,

which normalizes the error to a [0, 1] range, where 1 indicates a perfect rotational match. Finally,
the gripper score 𝑠gripper is a binary accuracy (1 if the predicted state matches the ground truth, 0
otherwise). The final score for each step is a weighted combination of these three metrics, providing
a holistic evaluation of the model’s ability to perform precise, multi-faceted manipulation tasks.

D Embodied Agent Evaluation within Simulation

EmbodiedBench (Yang et al., 2025b) provides a closed-loop evaluation framework in which MLLMs
are deployed within interactive simulators. It includes four primary environments—EB-ALFRED,
EB-Habitat, EB-Navigation, and EB-Manipulation—supporting long-horizon tasks that require both
high-level planning and low-level control. Following the benchmark’s evaluation protocol, we assess
our models’ navigation and manipulation capabilities in these simulated settings.

E Benchmark Metric Aggregation

To derive a single, comprehensive score for a model’s spatial intelligence, we employ a hierarchical
aggregation methodology. This approach is designed to reflect the complex, multi-layered nature
of spatial cognition, rather than treating all abilities as equally important. The design is principally
guided by established theories in cognitive psychology, which posit that spatial intelligence is
constructed hierarchically, with fundamental perceptual skills forming the bedrock for more abstract
reasoning and planning.
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Figure D: An illustration of the hierarchical weighting scheme for metric aggregation with in the
SpatialTree. Each node represents a capability layer, with the assigned weight used for the bottom-up
calculation of the final score. The weighting prioritizes foundational perceptual abilities (L1) as they
are prerequisites for higher-level cognitive tasks.

Our aggregation framework is built upon the SpatialTree structure. The assignment of weights within
this tree is determined by a synthesis of theoretical principles and empirical, data-driven insights:

Cognitive Hierarchy. In line with cognitive science literature, our weighting scheme prioritizes
foundational capabilities, as shown in Fig. D. The L1 layer, which represents low-level spatial
perception, is assigned the largest weight, as these skills are prerequisites for almost all higher-level
spatial tasks found in L2 (Mental Mapping) and L3 (Mental Simulation).

Empirical Dependency from Correlation Analysis. The theoretical hierarchy is further refined
and validated by our empirical findings from the Pearson correlation heatmap (Fig. ??). The heatmap
allows us to identify atomic abilities that exhibit strong, widespread correlations with a multitude
of other skills. These influential abilities are considered more fundamental to the overall spatial
intelligence network and are consequently assigned higher weights within their respective sub-trees.
This ensures our metric is not just theoretically sound, but also reflects the actual dependencies
observed in model performance.

The final score is calculated via a bottom-up, weighted summation. The performance score for any
parent node in the tree is the weighted sum of the scores of its immediate children. This process is
recursively applied until the root node is reached, yielding a single, principled score that holistically
quantifies the spatial intelligence of a given MLLM.

F LLM Usage Declarations

We declare that Large Language Models (LLMs) were used in a limited capacity during the prepa-
ration of this manuscript. Specifically, LLMs were employed for grammar checking, word choice
refinement, and typo correction. All core technical contributions, experimental design, analysis, and
conclusions are entirely our own. The use of LLMs did not influence the scientific methodology,
result interpretation, or theoretical contributions of this research.
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{

"role": "system",
"content": "Task Details:\n

Compare the start image <Image 1> and target image <Image 2> to infer the

translation and rotation required for the robot arm's end-effector.\n↩→

Decompose the motion into up to 6 steps, each combining any number of

elementary actions.\n\n↩→

Action Space:\n

We define a 7D action vector per step:\n

[dx, dy, dz, d_roll, d_pitch, d_yaw, gripper_state]\n

- Translation (dx, dy, dz): Displacement in meters along +X, +Y, +Z.\n

- Rotation (d_roll, d_pitch, d_yaw): Rotation in radians about +Z, +X, +Y

respectively.\n↩→

- gripper_state: 0=open, 1=closed.\n\n

Each dx, dy, dz, d_roll, d_pitch, d_yaw is computed from selected actions and

their step_nums:\n↩→

Δq = step_num × unit_step_size (translation in meters or rotation in

radians)\n\n↩→

Available Actions:\n

W/S: Dolly In/Out (+/-Z)\n

A/D: Truck Left/Right (-/+X)\n

space/shift: Pedestal Up/Down (-/+Y)\n

←/→: Pan Left/Right (± yaw)\n
↑/↓: Tilt Up/Down (± pitch)\n
R⃝/ L⃝: Roll CW/CCW (± roll)\n
STOP: No movement\n\n

Output Format:\n

Return a single JSON object where each step is a key (\"step_1\", \"step_2\",

...).\n↩→

Each step contains:\n

- actions: a list of action symbols\n

- step_nums: a list of integers specifying intensity (1–10)\n

- gripper: 0 or 1 for gripper state\n\n

Example:\n

{

\"step_1\": {

\"actions\": [\"W\", \"A\"],

\"step_nums\": [5, 2],

\"gripper\": 0

},

\"step_2\": {

\"actions\": [\" R⃝\"],
\"step_nums\": [3],

\"gripper\": 1

}

}"

}

Listing 3: Prompt for Goal-Driven Manipulation with 7D Action Representation.
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