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ABSTRACT

Class-Incremental Learning (CIL) is a practical and challenging problem for achiev-
ing general artificial intelligence. Pre-Trained Models (PTMs) have recently led to
breakthroughs in both visual and natural language processing (NLP) tasks. Despite
recent studies showing PTMs’ potential ability to learn sequentially, a plethora
of work indicates the necessity of alleviating the catastrophic forgetting of PTMs.
Through a pilot study and a causal analysis of CIL, we reveal that the problem lies
in the imbalanced effect between new and old data, which leads to the forgetting
of classifiers. To alleviate this problem, we propose BaCE, a method retrieving
the causal effects from new data to the adaptation of old classes and from old data
to the adaptation of new classes. By balancing the causal effects, BaCE enables
the causal effects from new and old data to help the adaptation to each class. We
conduct extensive experiments on three different tasks (Image Classification, Text
Classification, and Named Entity Recognition) with various backbones (ResNet-
18, ViT, BERT) in the CIL setting. Empirical results show the proposed method
outperforms a series of CIL methods on different tasks and settings. The code will
be publicly available after acceptance 1.

1 INTRODUCTION

Incremental Learning (IL) aims at endowing machine learning systems with the ability to continuously
learn novel concepts, which is critical for the research on human-level intelligence. This paper focuses
on Class-Incremental Learning (CIL), the most challenging and practical scenario in IL (Prabhu
et al., 2020; Buzzega et al., 2020; Van de Ven & Tolias, 2019). CIL requires models to classify all
classes seen so far without task indexes. Therefore, catastrophic forgetting (French, 1999; Rosenstein
et al., 2005; McCloskey & Cohen, 1989) may occur within tasks and between tasks (Tao et al., 2023).
While a good number of approaches (Kirkpatrick et al., 2017; Hu et al., 2021; Rebuffi et al., 2017;
Hou et al., 2019; Wu et al., 2019) have been proposed in recent years, most of them rely heavily on
experience replay (Chaudhry et al., 2019), and they suffer from substantial performance deterioration
when the replay data is limited or even non-existent.

Recently, Pre-Trained Models (PTMs), especially pre-trained Transformers (Vaswani et al., 2017),
have achieved remarkable progress in both computer vision (He et al., 2022; Dosovitskiy et al., 2020)
and natural language processing (NLP) (Devlin et al., 2019; OpenAI, 2023). Despite its success
across various benchmarks, the CIL ability of pre-trained Transformers is yet to be fully explored and
understood. On the one hand, the CIL performance of PTMs (Wang et al., 2022e; Huang et al., 2021;
Zheng et al., 2022; de Masson D’Autume et al., 2019) is still far from satisfactory with limited buffer
data. On the other hand, Ramasesh et al. (2022); Tao et al. (2023) show that PTMs are inherently
resilient to catastrophic forgetting even without buffer data. This contradictory phenomenon urges us
to explore the reason behind it.

First, we conduct a pilot study based on linear probing (Tao et al., 2023; Chen et al., 2023) in CIL
settings. In our linear probing study, the backbone of PTMs (i.e., the encoder) is frozen while the
classifier is re-trained on the data from all classes learned so far. Surprisingly, we find that simply

1Anonymous URL: https://anonymous.4open.science/r/BaCE-F055

1



Under review as a conference paper at ICLR 2024

re-training the classifier improves the average accuracy (Wang et al., 2022e; Chaudhry et al., 2019)
from 14.1% to 83.2% without buffer data and from 60.9% to 84.5% with 100 buffer samples in the
20-step setting of split CIFAR-100 (Krizhevsky et al., 2009). In other words, pre-trained encoders are
capable of learning new classes without much forgetting, but the classifier forgets how to classify
them.

In light of the fact that classifiers are usually randomly initialized while encoders are endowed with
prior knowledge during pretraining, classifiers may learn new knowledge in a different manner. Then,
we track the distance of class centers between encoders and classifiers. We find that when models
adapt to each new task, new class centers of classifiers always align with those of encoders. In stark
contrast, old class centers of classifiers are always pushed away from those of encoders. This finding
indicates that the effects of adapting to new and old classes are contradictory. Because pre-trained
encoders are more resilient to forgetting, the confrontation phenomenon between new and old classes
leads to the forgetting of classifiers. Moreover, we discover that the phenomenon also exists when the
encoder is ResNet-18 (He et al., 2016), indicating it may be prevalent in CIL.

To further analyze this problem, we introduce the causal graph: a graphical framework that stands in
the cause-effect interpretation of the data, but not merely the statistical association of them (Glymour
et al., 2016; Pearl, 2009). Specifically, by framing the data, features, and models into causal graphs,
we find that the community has overlooked two causalities in CIL: (1) the causal effect of new data
on learning old classes; (2) the causal effect of old data on learning new classes. Without these
two effects, only new/old data has a causal effect on adapting to new/old classes, which hinders the
adaptation of old/new classes. In other words, the effects of new and old data enhance the adaptation
to new and old classes separately but impede the learning of the other classes. To this end, we propose
Balancing Causal Effects (BaCE), a method that encourages new and old data mutually helps model
adaptation for mitigating the catastrophic forgetting in classifiers.

Finally, we conduct extensive experiments on three CIL tasks: Continual Image Classification,
Continual Text Classification, and Continual Named Entity Recognition. The experimental results
suggest that BaCE outperforms a series of CIL methods based on ResNet (He et al., 2016), e.g.Rebuffi
et al. (2017); Hou et al. (2019); Wu et al. (2019); Hu et al. (2021), Vision Transformers (Dosovitskiy
et al., 2020), e.g.,Wang et al. (2022e), and BERT (Devlin et al., 2019), e.g.,de Masson D’Autume
et al. (2019); Huang et al. (2021); Zheng et al. (2022); Wang et al. (2022b).

In summary, our contributions are three-fold: (1) We find that the confrontation phenomenon leads to
the forgetting of classifiers, resulting in models suffering from catastrophic forgetting seriously even
when encoders preserve old knowledge. (2) We delve into the causalities in CIL and reveal that the
reason for the confrontation phenomenon lies in the imbalanced causal effects between new and old
data. To address this, we propose BaCE to balance the causal effects when learning each category,
which enables models to learn new and old data jointly. (3) We conduct experiments on both visual
and NLP tasks to verify the effectiveness of BaCE. The result indicates that BaCE mitigates the
confrontation phenomenon and outperforms alternative CIL methods by a large margin.

2 RELATED WORK

We summarize six parts of related work: Class-Incremental Learning (A.1), Incremental Learning
with PTMs (A.2), Probing Study in Incremental Learning (A.3), Imbalanced Problem in CIL (A.4),
Causal Inference in CV and NLP (A.5), and Continual Causal Discovery (A.6). The full related work
is in the Appendix A.

Class-Incremental Learning. Existing CIL methods can be roughly divided into three
groups: regularization-based methods, exemplar-based methods, and architecture-based methods.
Regularization-based methods estimate the importance of parameters for previous tasks and penalize
the update of important parameters for mitigating forgetting (Kirkpatrick et al., 2017; Li & Hoiem,
2017; Zenke et al., 2017). These methods did not achieve satisfactory performance under challenging
and complex scenarios (Rebuffi et al., 2017). Exemplar-based methods store representative instances
from old classes and replay the stored instances when learning new tasks (Rebuffi et al., 2017;
Hou et al., 2019; Wu et al., 2019; Buzzega et al., 2020; Arani et al., 2022). Although they achieve
state-of-the-art performance on various CIL benchmarks (Chaudhry et al., 2019), their performance
typically deteriorates when the buffer size is small. More importantly, over-reliance on exemplars
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violates the setting of CIL and simplifies CIL as Multi-Task Learning (MTL). This study investigates
practical CIL scenarios where buffer size is limited or without rehearsal buffer. Architecture-based
methods increase model components incrementally to meet the requirements of new classes (Serra
et al., 2018; Rajasegaran et al., 2019; Yan et al., 2021; Kim & Han, 2023). However, these models
require large memory when there are many tasks. Furthermore, architecture-based methods implicitly
introduce an extra memory budget since the backbones from history are treated as unforgettable
checkpoints (Zhou et al., 2023a).

Incremental Learning with PTMs. Most existing Incremental Learning (IL) methods are based
on Convolutional Neural Networks (CNN). Recently, IL with PTMs has become a newly emerged
research direction. For example, Wang et al. (2022e;d) leverage prompt (Liu et al., 2023) for IL and
achieve superior performance even without replay data. However, Wang et al. (2022e;d) introduce an
extra architecture called prompt pool, which may implicitly serve as an extra memory for preserving
old knowledge. Different from Wang et al. (2022e;d), BaCE does not rely on extra components and
is applicable to various backbones. Besides, Ermis et al. (2022); Razdaibiedina et al. (2023) utilize
adapter (Houlsby et al., 2019) and prompt respectively to solve Task-Incremental Learning (TIL),
which is an easier scenario than CIL since the task indexes are given during inference. Wang et al.
(2022c) learns prompts independently across domains for Domain-Incremental Learning. Moreover,
Ke et al. (2022b;a); Jang et al. (2022) focus on continual pretraining with PTMs, which is a more
general scenario of continual learning.

3 A PILOT STUDY FOR CIL WITH PTMS

Typically, a model can be divided into two components: a feature encoder and a task-specific classifier.
Without loss of generality, we use PTMs (without original classification heads) as the feature encoder
and a linear layer with cosine normalization (Hou et al., 2019) as the classifier. This section will
clarify the key to PTMs’ forgetting. The training setting is in the Appendix B.1.
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Figure 1: The probing study on the 20-step split CIFAR-100. We use ViT-B/16 (ViT) pretrained
on ImageNet-21k (Dosovitskiy et al., 2020) as backbones. The buffer size is 200 in REPLAY. The
blue curve represents the accuracy on each task, and the black curve represents the average accuracy
over the tasks learned so far. The solid and the dotted line represent the probing and original average
accuracy, respectively.

3.1 PROBING STUDY

The linear probing (Tao et al., 2023; Chen et al., 2023) is a commonly used technique to measure the
encoding ability of feature encoders. In our probing study, we aim to probe each model checkpoint
in CIL. Specifically, we fix the encoder of each checkpoint and re-train its classifier on the data
of all tasks that have been learned so far. In this way, we obtain the probing performance of each
checkpoint, and this performance can be regarded as the upper limit performance when classifiers do
not forget (Fig. 3a). Correspondingly, we call the performance of models with original classifiers as
the original performance (B.2).

We consider three methods for probing: sequential training (SEQ), experience replay (REPLAY),
and multi-task learning (MTL). The result of the probing study on split CIFAR100 (Krizhevsky
et al., 2009) is shown in Fig. 1. Fig. 1 shows that pre-trained encoders are resistant to forgetting
while trained-from-scratch classifiers are prone to forgetting. Besides, more rehearsal data helps
close the gap between original and probing performance (B.3). Furthermore, we also conduct a
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probing study on ResNet-18 (He et al., 2016), and the result in the Appendix B.4 shows similar trends.
Although the probing performance of ResNet-18 is lower than ViT, the gap between probing and
original performance is prominent in both SEQ and REPLAY settings. Therefore, the probing study
on ResNet-18 and ViT reveals a prevalent phenomenon in CIL: classifiers forget at a much faster
speed than encoders.
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(b) ViT+REPLAY

1 2 3 4 5 6 7 8 9 1011121314151617181920
Task

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fe
at

ur
e-

Em
be

dd
in

g 
Di

st
an

ce

(c) ViT+MTL

Figure 2: The evolution of feature-embedding distance. The backbone model is ViT-B/16, and
the dataset is the 20-step split CIFAR-100. Each colour represents the average feature-embedding
distance of classes from an incremental task.

(a) Probing Study (b) Confrontation Phenomenon

Figure 3: The illustration of (a) the probing study and (b) the confrontation phenomenon in the
tracking study.

3.2 TRACKING STUDY

The probing study shows that classifiers and encoders always forget at a different speed. To understand
why it happens, we track the learning process of classifiers and encoders from a feature-level
perspective. In classifiers, the representation of each class (class embedding) corresponds to a row
vector in the weight matrix. In encoders, the representation of each class (class feature) can be
estimated as the average feature of all training samples from that class. Intuitively, the feature-
embedding distance of one class is small when models learn how to distinguish it from others, and
the feature-embedding distance of one class is large when models fail to do so.

We use the same settings in the probing study and track the feature-embedding distance in the
whole learning process. Fig. 2 shows that the feature-embedding distance of each task (each curve)
decreases to a small value when this task is newly adapted, and the distance increases as models
learn more tasks. For each CIL step, new classes are learned as their feature-embedding distances
are minimized. In contrast, old classes are forgotten as their feature-embedding distances grow. In
other words, models always align new class embeddings with the corresponding new class features
while simultaneously pushing old class embeddings away from the corresponding old class features.
Similarly, new classes will be forgotten if new models are trained only on old data. Therefore, the
new/old data hinders the adaptation of old/new classes, and we call it the confrontation phenomenon
in this paper (Fig. 3b). Alleviating the confrontation phenomenon is important because it may hinder
models from learning the optimal representations of both new and old data. It is worthy noting
that the confrontation phenomenon is different from the class-imbalanced problem since the former
describes the whole learning process at the feature level, while the latter describes the prediction bias
at inference time. Please refer to the Appendix A.4 for more details.
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Naturally, we can adopt the average feature-embedding distance of all tasks as an indicator of the
degree of the confrontation phenomenon. With the availability of more replay data, we find that (i) the
confrontation phenomenon is alleviated (Fig. 2) and (ii) the performance gap between probing and
original performance becomes smaller (Fig. 1). It indicates that we may close the performance gap
by alleviating the confrontation phenomenon (more details are in the Appendix B.3). We summarize
the findings in the probing and tracking study in the Appendix B.5.

How can we alleviate the confrontation phenomenon? Obviously, storing more old data is a straight-
forward solution. But how can we achieve this when storing limited old samples or even no old
samples? Recall that the confrontation phenomenon is caused by the effect of the adaptation process
of other tasks. Can we alleviate the confrontation phenomenon by encouraging models to adapt to
new and old tasks with “good” effects from both new and old data? To answer this question, we need
to first sort out the causal relationships in CIL.

4 METHODOLOGY

4.1 REVISITING THE CAUSALITIES IN CIL

Formally, the goal of CIL is to learn a single model fθ : x→ y ∈ Y from the sequence of tasks D
D = {D1,D2, · · · ,DT }, where the t-th task Dt = {(xt

i, y
t
i)}i=1 contains input samples xt

i ∈ Xt

and labels yti ∈ Yt. The label sets of different tasks are exclusive: Y1 ∩ Y2 · · · YT = ∅. When
adapting to each new task, the classifier expands the output dimension for predicting new categories.
In the data replay setting, a bufferM is introduced for storing old representative instances.

Each CIL step can be framed into a causal graph (Pearl, 2009), where nodes are variables and
directed edges represent the causalities between variables. Fig. 4a is the causal graph of SEQ.
In Fig. 4a, Xold,Xnew are the input samples from old and new tasks, and Hold, Hnew are the
extracted features, respectively. Z represents output logits, i.e., the model predictions before softmax
layer. The superscript old and new of Z represents they are computed from Xold and Xnew

respectively. Moreover, the subscript [old] and [new] represent the logits over the category from
old and new tasks. Since both features and class embeddings determine logits, optimizing the
logits of new (Z[new]) and old classes (Z[old]) encourages the adaptation of new and old classes,
respectively. Although Xnew have effects on both Znew

[new] and Znew
[old] in forward propagation, only

the causal path Xnew → Hnew → Znew
[new] helps models adapt to new classes while the other

path Xnew → Hnew → Znew
[old] hinders this process. The causal graph of REPLAY is shown in

Fig. 4b, where Xbuf is the rehearsal samples selected from Xold. Similarly, only the causal path
Xold → Xbuf → Hbuf → Zbuf

[old] adapts models to old classes.

4.2 BALANCING THE CAUSALITIES IN CIL

In both SEQ and REPLAY settings, the effect of adapting to new (old) classes is imbalanced since
only Xnew (Xold) contributes to the adaptation of new (old) classes. To address this problem, we
propose BaCE, which balances the effects from Xnew and Xold when adapting to each class. We
illustrate the difference between SEQ, REPLAY, and BaCE in Fig.4f.

Effectold: Learning Old Classes with Balanced Causal Effects from Xold and Xnew. Knowledge
distillation (Hinton et al., 2015) has been proven to be effective in CIL. Following Wu et al. (2019);
Hou et al. (2019); Buzzega et al. (2020); Li & Hoiem (2017), we use the model trained on previous
tasks (denoted as f t−1) as the teacher and the model of the current CIL step (denoted as f t) as the
student for knowledge distillation.

When not using data replay, we define Effectold as follows:

maxEffectold = E(x,y)∼Dt
(−αLKL(S

new
[old](x), S0

new
[old](x)) (1)

LKL(·, ·) is the Kullback-Leibler Divergence. (x, y) is sampled from Dt. Snew
[old] and S0

new
[old] are

the score of old classes output by f t and f t−1. α is the scaling hyper-parameters. The causal
graph of Effectold is shown in Fig. 4c and its rationale is as follows: Hnew

0 is the feature of Xnew

extracted by f t−1. Hnew
0 is also determined by Xold due to the fact that f t−1 is trained on Xold.
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(a) SEQ (b) REPLAY (c) BaCE w/ Effectold (d) BaCE w/ Effectnew (e) BaCE

(f) Comparison Between SEQ, REPLAY and BaCE

Figure 4: The Causal Graph of SEQ, REPLAY, and BaCE (Ours) with Effectold and Effectnew in
each CIL step. The directed edges represent the causal effects between variables in the forward
propagation. The blue and green paths represent the causal effects of adapting to old and new classes,
respectively, when taking back propagation into consideration.

Z0
new
[old] → Znew

[old] is built by minimizing Eq. 1. In summary, we build the following causal paths
from Xold and Xnew to Znew

[old] for adapting to old classes: Xold → Hnew
0 → Z0

new
[old] → Znew

[old],
Xnew → Hnew

0 → Z0
new
[old] → Znew

[old] and Xnew → Hnew → Znew
[old]. We provide detailed proof of

this conclusion in the Appendix C.1.

When using data replay, we follow DER++ Buzzega et al. (2020) to enhance the learning of old
classes by optimizing the classification and the distillation targets on old data. Effectold can be
enhanced as follows:

Effectold−replay = Effectold + E(x,y)∼M(−LCE(x, y)− ||Zbuf
[old](x)− Z0

buf
[old](x)||

2
2) (2)

LCE(·, ·) is the cross-entropy loss. Znew
[old] and Z0

new
[old] are the logits of old classes output by f t and

f t−1. || · ||2 is the Euclidean distance. We note that the proposed causal graphs in Fig. 4c are
independent of data replay since we consider Xold and Xbuf separately. It is worth noting that BaCE
is independent of DER++, which is considered a baseline in our experiments. We highlight that the
knowledge distillation term in Eq. 1 is crucial from the causal perspective and should not be discarded
as in DER++. We empirically show Effectold brings considerable improvement based on DER++.

Effectnew: Learning New Classes with Balanced Causal Effects from Xnew and Xold. Since
models are always strongly biased toward new classes, mitigating the confrontation phenomenon
in learning new classes is necessary. We propose to balance the effect on learning new classes by
building causal paths from both Xnew and Xold to Z[new] (denoted as Effectnew).

If we ignore the directionalities in Fig. 4c, there is a path from Xold to Znew
[new]: X

old → Hnew
0 ←

Xnew → Hnew → Znew
[new]. If Xnew is influenced by Xold, Xold will have an effect on Znew

[new] and
thus helps adapt to new classes. Thanks to causal inference, we can achieve this by conditioning
the collider Hnew

0 . Specifically, Hnew
0 is the joint outcome of the independent causes Xold and

Xnew. Interestingly, once the common effect Hnew
0 is observed, the causes Xold and Xnew become

dependent on each other 2. We would like to provide an example (Pearl, 2009) for clarifying this
phenomenon: Suppose a school’s admission criteria require high grades or special athletic talents.
In that case, these two attributes will be found to be negatively correlated in the school’s student
population, even if these attributes are not related throughout the entire population. By conditioning
on Hnew

0 , a bidirectional causal path Xold ↔ Hnew
0 ↔ Xnew is built as shown in Fig. 4d. We call

this effect the collider effect since it holds only when the collider Hnew
0 is observed.

2This phenomenon is also known as Berkson’s paradox in (Berkson, 1946) and as the explaining away effect
in (Peari & Kim, 1983).
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By utilizing the collider effect, Effectnew is estimated as follows:

Effectnew = −E(x,y)∼Dt
LCE(

∑
x̃∈{x}∪N (x)

W (x̃, x)S(x̃), y), (3)

where
∑

x̃∈x∪N (x) W (x̃, x) = 1; N is the set of K-Nearest-Neighbors (KNNs) in the feature space
of f t−1; S(x̃) is the score prediction of x̃; W (x̃, x) is the weight of S(x̃) and it is defined as follows:

W (x̃, x) =

{
W0, when x̃ = x;

(1−W0)/||H0(x̃)−H0(x)||2∑
x̃′∈N(x) 1/||H0(x̃′)−H0(x)||2 , otherwise. (4)

In Eq. 4, we define the weight of each neighbour as the normalized reciprocal of Euclidean distance
to the input sample. Eq. 3 is the same as the standard classification loss on new data, except that
scores are computed as the weighted sum of the score of input samples and their neighbours. In other
words, we estimate the score of a sample x as the joint score of the sample x itself as well as its
KNNs N (x). In the Appendix C.3, we provide detailed derivation and further explanation of Eq. 3.
From the causal perspective, Xold has causal effect on Znew

[new] through the path Xold ↔ Hnew
0 ↔

Xnew → Hnew → Znew
[new]. Therefore, maximizing Effectnew encourages models to adapt to new

classes with causal effects from both Xnew and Xold.

Overall Objective of BaCE. To sum up, the overall objective is given as follows: When rehearsal
buffer is unavailable, BaCE maximizes Effect = Effectnew + Effectold; When rehearsal buffer is
available, BaCE maximizes Effectreplay = Effectnew + Effectold−replay. Besides, we propose to
update the teacher model f t−1 = βf t−1 + (1− β)f t every training epoch to facilitate the adaptation
to new data distribution. We empirically find that β = 0.9 yields better performance. Besides, we
compare BaCE with prior works and summarize the algorithm in the Appendix C.2, C.4, C.5.

Why BaCE mitigates the confrontation phenomenon? In the REPLAY setting, the learning
objectives of new and old data are inherently contradictory. When the buffer size is limited, the
contradictory objectives hinder the adaptation to both new and old classes, and it results in the
confrontation phenomenon. BaCE fundamentally overcomes this problem because BaCE encourages
model adaptation on new and old data in a collaborative manner (Fig. 4e). Further discussion is
provided in the Appendix C.6 and C.7.

5 EXPERIMENTS

To verify the effectiveness of BaCE, we conduct experiments on three tasks: Continual Image
Classification (Continual IC), Continual Text Classification (Continual TC), and Continual Named
Entity Recognition (Continual NER). Due to the space limitation, additional empirical results (e.g.,
hyper-parameter analysis, runtime analysis, experiments of ResNet-18, and the evolution of average
accuracy) on Continual IC and all experiments on Continual TC and Continual NER are provided in
the Appendix D.2, and D.3.

5.1 EXPERIMENTAL SETTINGS

Training and Evaluation. We use CIFAR-100, CIFAR-10 (Krizhevsky et al., 2009), 5-datasets
(Ebrahimi et al., 2020), OminiBenchmark, Tiny-ImageNet, ObjectNet, ImageNet-R, VTAB in this
paper. The introduction and statistics are provided in Appendix D.1 and Table 5. We use ViT-B/16,
ViT-B/16-IN21K (Dosovitskiy et al., 2020), DeiT-S/16 Touvron et al. (2021) and ResNet-18 He
et al. (2016) as the backbone. We adopt three widely-used metrics for evaluation: Average Accuracy
(AverACC) (Chaudhry et al., 2019), Forgetting (FGT) (Chaudhry et al., 2018) and Forward Transfer
(FWT) (Chaudhry et al., 2018). The AverACC refers to the average accuracy after learning the final
task. In Effectnew, we set the number of neighbors K = 5 and the weight W0 = 0.95. In Effectold,
we set α = 5 when no buffer is available and α = 1 when the buffer is available. The detailed
training settings and hyper-parameter analysis are in the Appendix D.1.

Baselines We consider the following competitive CIL methods: Experience Replay (ER), LwF (Li
& Hoiem, 2017), EWC (Kirkpatrick et al., 2017), BiC (Wu et al., 2019), LUCIR (Hou et al., 2019),
PODNET (Douillard et al., 2020), DDE (Hu et al., 2021), DER++ (Buzzega et al., 2020), L2P (Wang
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et al., 2022e), Co2L (Cha et al., 2021), Gdumb (Prabhu et al., 2020), CLSER (Arani et al., 2022),
FOSTER (Wang et al., 2022a), MEMO(Zhou et al., 2023a), BEEF (Wang et al., 2023). Sequential
Training (SEQ) and Multi-Task Learning (MTL) are CIL’s lower and upper bounds. We load the
same backbone model for all baselines and our method. A detailed introduction and experimental
settings are in the Appendix D.1.

5.2 RESULTS AND ANALYSIS

Comparison with Baselines. The comparison between BaCE and various CIL baselines is shown in
Table 1 and 2. All methods use ViT-B/16 as the backbone. “OOM” refers to Out-Of-GPU memory. We
provide the full result with standard derivations and FWT on 5-/10-/20-step CIFAR100 and 5-datasets
in the Appendix D.1. When replay data is unavailable, BaCE outperforms the regularization-based
method EWC and the distillation-based method LwF significantly. The result indicates that simply
constraining the update of model parameters fails to utilize the inherent ability of PTMs. Besides,
it may be susceptible to negative transfer (Chen et al., 2019). When replay data is available, BaCE
performs better than a series of competitive CIL methods. The result also shows that BaCE has a
lower FGT and a higher FWT compared with other methods, indicating that balancing the causal
effects is beneficial to preserving old knowledge and learning new concepts.

Table 1: The comparison with baselines on
CIFAR-100.

Buffer Size Method
CIFAR100 (10 step)

AverACC (↑) FGT (↓)

0

SEQ 24.09 80.85
LwF 45.88 51.93
EWC 29.28 75.26

BaCE w/o Effectnew&Effectold 23.84 81.58
BaCE w/o Effectnew 46.03 50.72
BaCE w/o Effectold 29.43 72.22
BaCE (Ours) 51.84 32.99

500

ER 70.78 30.28
BiC 74.59 24.84
LUCIR 74.52 21.68
PODNET 48.29 55.42
DDE 72.02 28.43
DER++ 75.17 25.96
CLSER 78.54 19.68
FOSTER 76.84 /
MEMO 78.96 17.65
BEEF OOM OOM

BaCE w/o Effectnew&Effectold 75.45 24.91
BaCE w/o Effectnew 82.13 17.82
BaCE w/o Effectold 78.60 20.87
BaCE (Ours) 84.59 12.58

∞ MTL 91.25 /

Table 2: The comparison with baselines on 5-
datasets. †: Results from Wang et al. (2022e).

Buffer Size Method
5-datasets (5 step)

AverACC (↑) FGT (↓)

0

FT-seq-frozen † 39.49 42.62
FT-seq † 20.12 94.63
EWC † 50.93 34.94
LwF † 47.91 38.01

BaCE w/o Effectnew&Effectold 21.37 95.45
BaCE w/o Effectnew 50.61 47.49
BaCE w/o Effectold 30.69 75.64
BaCE (Ours) 54.99 37.79

500

ER † 84.26 12.85
Gdumb † 70.76 /
BiC † 85.53 10.27
DER++ † 84.88 10.46
Co2L † 86.05 12.28
L2P † 88.95 4.92
CLSER 89.43 6.20
FOSTER 74.96 /
MEMO 89.59 5.37
BEEF 79.13 /

BaCE w/o Effectnew&Effectold 86.20 9.16
BaCE w/o Effectnew 88.58 5.64
BaCE w/o Effectold 88.79 6.20
BaCE (Ours) 89.80 5.22

∞ MTL † 93.93 /

Ablation Study. We consider three ablated versions of BaCE: (1) BaCE w/o Effectnew: we substitute
the objective in Effectnew as traditional cross-entropy loss on new data. (2) BaCE w/o Effectold: we
remove the objective Effectold. (3) BaCE w/o Effectnew&Effectold: combining (1) and (2). When
buffer size is zero, Effectold is crucial for preserving old knowledge. We note that even when
using data replay, Effectold inflates the performance by exploiting the causal effects of new data,
which is overlooked by prior works (Buzzega et al., 2020). Besides, Effectnew brings considerable
improvements under various buffer size settings, suggesting that introducing the old data effect
to learning new classes alleviates the confrontation phenomenon and reduces the forgetting of old
knowledge.

Combined with Other Potential Solutions to the Confrontation Phenomenon. There are other
potential solutions for addressing the confrontation phenomenon: (1) Fixing encoders (Fix Enc);
(2) Fixing old classifiers (Fix Cls); (3) Fixing both encoders and old classifiers (Fix Enc Cls); (4)
Initializing the new classifiers with imprinted weights (Qi et al., 2018) (Imprinted Weights). We train
each method on the 20-step split CIFAR-100 with ViT-B/16, and the buffer size is 500. Table 3 shows
that Fix Enc Cls and Imprinted Weights improve ER. When we combine these two methods with
BaCE, BaCE+Imprinted Weights achieves superior performance. In contrast, Fix Enc Cls degrades
the performance of BaCE. The reason may be that Fix Enc Cls limits the potential forward/backward
transfer between tasks.
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Table 3: Potential solutions to the confrontation phenomenon.

Method AverACC (↑) ∆ AverACC Feat-Embd-Dist (↓) ∆ Feat-Embd-Dist
ER 70.78 / 0.24 /
ER+Fix Enc 57.10 -13.68 0.68 +0.44
ER+Fix Cls 24.59 -46.19 0.46 +0.22
ER+Fix Enc Cls 72.73 +1.95 0.20 -0.04
ER+Imprinted Weights 71.62 +0.84 0.18 -0.06

BaCE w/o Effectnew&Effectold 75.45 +4.67 0.18 -0.06
BaCE w/o Effectnew 82.13 +11.35 0.14 -0.10
BaCE w/o Effectold 78.60 +7.82 0.18 -0.06
BaCE (Ours) 84.59 +13.81 0.13 -0.11
BaCE+Fix Enc Cls 74.40 +3.62 0.19 -0.05
BaCE+Imprinted Weights 84.77 +13.99 0.13 -0.11

Figure 5: The KNNs in Effectnew

Visualization of K-Nearest-Neighbors in Effectnew. Recall that Eq. 3 estimates the collider effect
as the cross-entropy loss of the joint score of an input sample x and its neighbors N (x) in the feature
space of f t−1. Fig. 5 provides three examples to demonstrate how Xold affects Xnew through Hnew

0 .
(More examples are in the Appendix D.1) The ground-truth label is on the top of each image. The
green and red labels of neighbors represent whether or not they are the same as the input sample. In
the first example, the ground-truth category of the input sample (i.e., cups) is the same as those of
neighbors. It indicates that the teacher model f t−1 can recognize new classes with prior knowledge
before training on them. Although some neighbors may have different categories from those of input
samples (e.g., the latter two examples), input samples and their neighbors bear a resemblance in the
feature space of the teacher model and thus share the same prior knowledge about input samples.
Therefore, optimizing joint scores encourages models to preserve prior knowledge when adapting to
new classes.

(a) 20 steps (b) 10 steps

Figure 6: The absolute improvements of
Effectnew.

Table 4: The hyper-parameter analysis of Effectold.

Buffer Size Method
20 step 10 step

AverACC (↑) ∆ AverACC AverACC (↑) ∆ AverACC

0
BaCE w/o Effectold (α = 0) 19.53 / 29.43 /
BaCE (α = 1) 23.54 +4.01 37.22 +7.79
BaCE (α = 5,Ours) 35.36 +15.83 51.84 +22.41

100

BaCE w/o Effectold (α = 0) 57.15 / 64.28 /
BaCE (α = 0.01) 57.68 +0.53 65.21 +0.93
BaCE (α = 0.1) 64.13 +6.98 67.73 +3.45
BaCE (α = 1,Ours) 65.88 +8.73 74.81 +10.53

500

BaCE w/o Effectold (α = 0) 78.54 / 78.60 /
BaCE (α = 0.01) 78.71 +0.17 78.96 +0.36
BaCE (α = 0.1) 81.48 +2.94 79.64 +1.04
BaCE (α = 1,Ours) 82.46 +3.92 84.59 +5.99

Hyper-parameter Analysis. The hyper-parameters analysis is conducted on split CIFAR-100 with
ViT-B/16. Fig. 6 shows the difference between BaCE and BaCE w/o Effectnew) when different W0 is
selected. It indicates that the model has robust performance when W0 = 0.95. Table 4 indicates that
Effectold (Eq.1) brings considerable improvement based on DER++. We set α = 1 when the buffer is
available and α = 5 when it is unavailable. The results of other hyper-parameters are demonstrated
in the Appendix D.1.

6 CONCLUSION

In this research, we start from a contradictory phenomenon in recent studies and discover that
classifiers forget much faster than PTMs. To find out the cause, we conduct a pilot study based on
linear probing and reveal that the confrontation phenomenon leads to the forgetting in classifiers. To
this end, we propose BaCE to mitigate the confrontation phenomenon by balancing the causal effects
between new and old data when adapting to each class. Different from prior CIL methods, BaCE
tackles the confrontation phenomenon at the root by promoting models to learn new and old data
jointly with the balanced mutual causal effects. Finally, we verify the effectiveness of BaCE through
extensive experiments on both visual and NLP tasks.

There are two main limitations of this research. The proposed method does not fully address the
confrontation phenomenon, and the disparity with upper limit performance is still large when the
buffer size is small. Furthermore, the computation cost during training may increase by 2 to 5 times.
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A RELATED WORK

A.1 CLASS INCREMENTAL LEARNING

Apart from the related work in the main paper, there are some other directions in CIL. Wortsman
et al. (2020) finds subnetworks for each task during training and infers the task using gradient-based
optimization at inference. Since the model parameters are not updated in the training, this method
does not suffer from catastrophic forgetting. However, finding subnetworks prohibits the potential
forward and backward knowledge transfer in CIL. In our experiments, we find that freezing the
parameters of the encoder and the old classifier does not lead to satisfactory performance. Kim
et al. (2022b) decomposes the CIL problem into within-task prediction and task-id prediction and
proposes using out-of-distribution detection techniques for inferring task id. Kim et al. (2022a)
proposes to train a multi-head classifier with an out-of-distribution class for each head and utilizes
the adapter to prevent interference between the parameters of different tasks. Kim & Han (2023)
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proposes two techniques for alleviating the stability-plasticity dilemma. The first technique improves
an architecture-based method DER Yan et al. (2021). The second technique freezes the parameters of
the encoder and the old classifier, which is considered as a baseline in our experiments. Arani et al.
(2022) improves the replay buffer system using the complementary learning system theory. Unlike
Arani et al. (2022), BaCE is built based on the theory of causal inference and does not rely on the
replay buffer. The introduction of the CIL methods considered in our experiments of continual image
classification is in the Appendix D.1.

A.2 INCREMENTAL LEARNING WITH PTMS

Apart from the related work in the main paper, there are some other task-specific CIL methods in
natural language processing using PTMs, such as BERT. Wang et al. (2020) improves MBPA++
(de Masson D’Autume et al., 2019) and proposes a meta-lifelong framework for text classification
and question answering. Sun et al. (2020) utilizes the pretrained knowledge in gpt2 (Radford et al.,
2019) and generates pseudo-samples of old tasks when learning new tasks. Xia et al. (2022) proposes
a two-stage framework Learn-and-Review for continual NER. It utilizes knowledge distillation
and generates pseudo-samples of old entity types when learning new tasks. Zhang et al. (2023)
improves the knowledge distillation to take advantage of existing translation models. Xia et al.
(2023) proposes to split the last layer into previous and current classifiers to mitigate the classifier
bias and representation bias for continual relation extraction. The introduction of the CIL methods
considered in our experiments of continual text classification and continual image classification is in
the Appendix D.1.

A.3 PROBING STUDY IN INCREMENTAL LEARNING

Most previous studies measured catastrophic forgetting by evaluating performance drops on old tasks.
Probing is another useful technique to evaluate the representation ability of a model. However, there
is little understanding about the probing performance in Incremental learning. Davari et al. (2022)
uses linear probing to show that the representations still suffer from significant drift due to parameter
updates even when performance on previously learned tasks can be preserved. Different from Davari
et al. (2022), our study utilizes a probing study to show that classifiers forget much faster than PTMs.
Wu et al. (2021) conducts layer-wise probing studies on BERT and shows that catastrophic forgetting
happens in the top and middle layers. They also indicate that although BERT still maintains a high
representative ability at the last incremental step, the classifier has already lost the ability to classify
previously learned classes. Unlike Wu et al. (2021), this work considers a more comprehensive
scenario in the probing study, including three settings (SEQ, REPLAY, and MTL) and two backbones
(ViT-B/16 and ResNet-18). Tao et al. (2023) used linear probing to show that BERT is inherently
resilient to catastrophic forgetting even without buffer data in Task-Incremental Learning. Our work
focus utilizes probing study to investigate Class-Incremental Learning, which is a more challenging
and complicated scenario in incremental learning. Chen et al. (2023) conducted linear probing on
k-shot samples from the next task to show a strong correlation between retaining past information
and learning efficiency on new tasks.

A.4 CLASS IMBALANCED PROBLEM IN CIL

The class imbalanced problem (Japkowicz & Stephen, 2002; He & Garcia, 2009) between old and
new classes is a long-standing problem in CIL, and a lot of studies have attempted to alleviate this
problem. For example, LUCIR (Hou et al., 2019) proposes using a cosine classifier to avoid the
imbalanced magnitudes between new and old predictions. IL2M (Belouadah & Popescu, 2019)
introduces an additional memory for storing the statistics of old tasks obtained when they were
initially learned. BiC (Wu et al., 2019) addresses the data imbalance between the old and new classes
by fine-tuning classifiers on balanced data. The confrontation phenomenon described in this study is
closely related to the class imbalanced problem. Both of them imply that new and old tasks should
be learned in a balanced way. The difference is that the confrontation phenomenon describes the
whole learning process at the feature level, while the class imbalanced problem only describes the
prediction bias at inference time. Therefore, the confrontation phenomenon motivates us to learn new
and old tasks with balanced effects from both new and old data, while the class imbalanced problem
motivates previous works to design models that give balanced predictions.
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A.5 CAUSAL INFERENCE IN CV AND NLP

Causal inference (Glymour et al., 2016; Pearl, 2009) has been recently introduced to various visual
and NLP tasks such as image classification (Hu et al., 2021), long-tailed classification (Tang et al.,
2020; Nan et al., 2021), distantly supervised named entity recognition (Zhang et al., 2021), neural
dialogue generation (Zhu et al., 2020), continual named entity recognition (Zheng et al., 2022), and
fine-tuning (Zheng et al., 2023). Our idea stems from the causal view on forgetting in Hu et al. (2021),
and the proposed BaCE further seeks a balance between the causal effects of new and old data.

A.6 CONTINUAL CAUSAL DISCOVERY

Causality theory (Pearl, 2009) provides language, algorithms, and tools to discover and infer cause-
and-effect relationships from any collection of observational/experimental data based on a partial
understanding of a complex system. Despite causality having taken huge strides in recent years, few
studies consider the continual learning setting in causal discovery (Mundt et al., 2023). Javed et al.
(2020); Chu et al. (2020); Gong et al. (2023) focused on learning causal structures from a data stream.
Unlike them, our research focuses on class-incremental learning instead of finding causal structures
behind data.

B PROBING AND TRACKING STUDIES

B.1 TRAINING SETTINGS.

The training settings are the same as in the experiments of Continual Image Classification. When
using ViT-B/16 as the backbone, we train the model for 20 epochs and probe the model every four
epochs. Specifically, we randomly initialize the classifier and train five epochs with a learning rate of
0.1 on all data of the tasks learned so far. When using ResNet-18 as the backbone, we train the model
for 120 epochs and probe the model every 30 epochs. The classifier is re-trained for 15 epochs with a
learning rate of 0.1.

We use a linear classifier with cosine normalization (Hou et al., 2019) (i.e., cosine classifiers). The
cosine classifier has a weight matrix without bias. For example, when learning the second task, the
shape of the weight matrix is 10 × 768. Specifically, 10 is the number of categories learned so far,
and 768 is the hidden dimension of the encoder. After training the second task, we expand the weight
matrix to 15 × 768 and randomly initialize the new parameters. Since the logits are computed as the
cosine similarity between features and the row vectors in the weight matrix, each row vector can be
regarded as the representation learned by the classifier. In this paper, we call them class embeddings
for clarity.

B.2 DEFINITION OF PROBING AND ORIGINAL PERFORMANCE.

We explain how “Probing Accuracy”, “Original Accuracy”, “Average Probing Accuracy”, and
“Average Original Accuracy” are computed in the probing study. Recall that a model has two
components: the encoder and the classifier. During the CIL training, the encoder and the classifier
are not frozen. For example, in Fig. 8, we train a model normally from task 1 to task 20 and save
model checkpoints every 30 epochs. Since we train the model for 120 epochs in each incremental
task, we obtain 20× (120/30 + 1) = 100 model checkpoints. For each checkpoint, we can compute
its “Probing Accuracy”, “Original Accuracy”, “Average Probing Accuracy”, and “Average Original
Accuracy” as follows:

• To obtain the “Original Accuracy” of one task, we evaluate the model checkpoint on that task.
For example, to obtain the “Original Accuracy” of task 15, we evaluate the test accuracy of
task 15.

• To obtain “Average Original Accuracy”, we take the average of the “Original Accuracy”s
of all tasks that the model checkpoint has learned. For example, to obtain the “Average
Original Accuracy” of a model checkpoint in task 15, we take the average of the “Original
Accuracy” s of tasks 1,2,cdots,15.
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• To obtain the “Probing Accuracy” of one task, we first re-initialize the classifier, freeze
the encoder, and train the re-initialized classifier on all seen tasks’ data. After training the
classifier, we obtain a modified model checkpoint and evaluate its test accuracy on that
task. We note that the modified model checkpoint will NOT be used for the subsequent CIL
training.

• To obtain “Average Probing Accuracy”, take the average of the “Probing Accuracy” s of all
tasks that the model checkpoint has learned.

In the end, we measure the “Probing Accuracy”, “Original Accuracy”, “Average Probing Accuracy”,
and “Average Original Accuracy” of all 100 model checkpoints and obtain Fig. 8.

In summary, “Origin Accuracy” and “Average Original Accuracy” refer to CIL models’ accuracy and
average accuracy without additional training. “Probing Accuracy” and “Average Probing Accuracy”
measure the ideal performance when the classifier does not forget.

B.3 ADDITIONAL RESULTS ON VIT.
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Figure 7: The relationship between feature-embedding distance and (a) average accuracy and (b)
forgetting when using ViT-B/16 as the backbone. (c) shows the feature-embedding distance of old
and new tasks. “Average of Steps” means the distance is averaged over all incremental steps;“Last
Step” means the distance is calculated at the last incremental step.

Fig. 7a shows that when more replay data is available, the feature-embedding distance decreases,
and the gap between probing and original performance is narrowed. It indicates that minimizing
the feature-embedding distance may close the performance gap. Fig. 7b shows a similar trend
from the perspective of forgetting. Fig. 7c shows that the feature-embedding distance of new tasks
averaged over all incremental steps increases slightly while that of old tasks dramatically decreases
when training with more replay data. It indicates that the new and the old tasks are trained in a
confrontational manner. The confrontation phenomenon will not hurt the performance when all new
and old data are trained jointly,i.e., the MTL setting. However, when only limited old data is stored,
the confrontational effects may hinder models from learning the optimal representations of both new
and old data.

B.4 ADDITIONAL RESULTS ON RESNET-18.

The probing and tracking study results with ResNet-18 are provided in Fig. 8 and Fig. 9, respectively.
Fig. 8 indicates that ResNet-18 heavily relies on rehearsal data to preserve knowledge. Besides,
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Figure 8: The probing study on the 20-step split CIFAR-100 (Krizhevsky et al., 2009). We use
randomly initialized Resnet-18 (He et al., 2016) as the backbone. The buffer size is 2000 in REPLAY.
The blue curve represents the accuracy on each task, and the black curve represents the average
accuracy on all tasks learned so far. The solid and the dotted line represent the probing and original
accuracy, respectively.

1 2 3 4 5 6 7 8 9 1011121314151617181920
Task

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fe
at

ur
e-

Em
be

dd
in

g 
Di

st
an

ce

(a) Resnet18+SEQ

1 2 3 4 5 6 7 8 9 1011121314151617181920
Task

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fe
at

ur
e-

Em
be

dd
in

g 
Di

st
an

ce

(b) Resnet18+REPLAY

1 2 3 4 5 6 7 8 9 1011121314151617181920
Task

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fe
at

ur
e-

Em
be

dd
in

g 
Di

st
an

ce
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Figure 9: The evolution of feature-embedding distance in CIL. The backbone is ResNet-18, and
the dataset is the 20-step split CIFAR-100. Each colour represents the average feature-embedding
distance of classes from an incremental task.
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Figure 10: The relationship between feature-embedding distance and (a) average accuracy and (b)
forgetting when using ResNet-18 as the backbone. (c) shows the feature-embedding distance of old
and new tasks. “Average of Steps” means the distance is averaged over all incremental steps; “Last
Step” means the distance is calculated at the last incremental step.
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(a) SEQ (b) REPLAY (c) BaCE w/ Effectold (d) BaCE w/ Effectnew (e) BaCE

(f) Comparison Between SEQ, REPLAY and BaCE

Figure 11: The Causal Graph of SEQ, REPLAY, and BaCE (Ours) with Effectold and Effectnew in
each CIL step. The directed edges represent the causal effects between variables in the forward
propagation. The blue and green paths represent the causal effects of adapting to old and new classes,
respectively, when taking backpropagation into consideration. Besides, the black paths represent the
causal effects that cause confrontation.

the gap between probing and original performance is smaller than that of pre-trained ViT when no
buffer is available. Similar to the trend in ViT, more replay data closes the gap to the upper limit
performance. Fig. 9 shows the confrontation phenomenon also exists in ResNet-18.

Fig. 10a and 10b show the relationship between feature-embedding distance and average accuracy
and forgetting, respectively. Fig. 10c compares the feature embedding distance between new and old
tasks, showing similar trends as in ViT.

B.5 SUMMARY

We summarize the findings and insights from the probing and tracking studies:

• The catastrophic forgetting primarily happens in the classifier when using pre-trained ViT-
B/16 for CIL.

• The performance gap in pre-trained ViT-B/16 is larger than randomly-initialized ResNet-18.

• The confrontation phenomenon accelerates the forgetting in the classifier.

• The confrontation phenomenon is severe when limited replay data is available, and replaying
more old data helps alleviate the confrontation phenomenon.

C FURTHER EXPLANATION OF BACE

C.1 PROOF OF BALANCED CAUSAL EFFECTS FOR Effectold

This subsection proves that optimizing Effectold builds causal paths from Xold and Xnew to Znew
[old] as

shown in Fig. 11c. We define Effectold as:

Effectold = E(x,y)∼Dt
(−αLKL(S

new
[old](x), S0

new
[old](x)) (5)

LKL(·, ·) is the Kullback-Leibler Divergence. Snew
[old] and S0

new
[old] are the scores of old classes output

by f t and f t−1. α is the scaling hyper-parameter. And the rehearsal data further enhances Effectold
as follows:

Effectold−replay = Effectold + E(x,y)∼M(−LCE(x, y)− ||Zbuf
[old](x)− Z0

buf
[old](x)||

2
2) (6)
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LCE(·, ·) is the cross-entropy loss. Zbuf
[old] and Z0

buf
[old] are the logits of old classes output by f t and

f t−1. || · ||2 is the Euclidean distance.

Then, we prove Eq. 1 encourages models to learn old classes with causal effects from both new and
old data. We defined Effectold as the difference between the logits when Xold exists or not:

Effectold = P(Znew
[old]|do(X

old = xold))− P(Znew
[old]|do(X

old = 0)) (7)

Since Xold has no parent nodes, we simplify it as follows:

Effectold = P(Znew
[old]|X

old = xold)− P(Znew
[old]|X

old = 0) (8)

Then, we expand the above equation and obtain:

Effectold = P(Znew
[old]|Z0

new
[old], X

old = xold)P(Z0
new
[old]|Xold = xold)

− P(Znew
[old]|Z0

new
[old], X

old = 0)P(Z0
new
[old]|Xold = 0) (9)

= P(Znew
[old]|Z0

new
[old])P(Z0

new
[old]|Xold = xold)− P(Znew

[old]|Z0
new
[old])P(Z0

new
[old]|Xold = 0) (10)

= P(Znew
[old]|Z0

new
[old])(P(Z0

new
[old]|Xold = xold)− P(Z0

new
[old]|Xold = 0)) ̸= 0 (11)

The Eq. 10 holds because Z0
new
[old] is the only mediator (Pearl, 2009) from Xold to Znew

[old]. The Eq. 11
holds because Z0

new
[old] is regularized by Znew

[old], and P(Z0
new
[old]|Xold = xold) ̸= P(Z0

new
[old]|Xold = 0).

Furthermore, Znew
[old] is obtained from Xnew and thus Xnew has causal effects on Znew

[old]. Therefore,
we prove that both Xold and Xnew have causal effects on Znew

[old] when optimizing Effectold.

C.2 THE CONNECTION BETWEEN Effectold AND EXISTING WORKS

The objective of Effectold is the same as the knowledge distillation term in LWF (Li & Hoiem, 2017).
The latter term of Effectold−replay is the same as the regularization term in DER++ (Buzzega et al.,
2020). In the experiment, we observe that it is beneficial to encourage teacher and student response
similarly to data points of the current task when data replay, which is overlooked by DER++. From
the causal perspective, Effectold encourages models to preserve old knowledge with the causal effect
of new data. Therefore, adapting to old classes has a less negative impact on adapting to new classes,
i.e., the confrontation phenomenon is mitigated.

C.3 PROOF OF BALANCED CAUSAL EFFECTS FOR Effectnew

This subsection proves that optimizing Effectnew builds causal paths from Xold and Xnew to Znew
[new]

as shown in Fig. 11d. We denote the prediction score over categories as S, obtained from logits
through the softmax function. Firstly, Effectnew can be defined as the difference between the score
prediction of Xnew when Xold exists or not.

Effectnew = P(Snew|Hnew
0 , do(Xold = xold))− P(Snew|Hnew

0 , do(Xold = 0)) (12)
do(·) is the do-operation, which represents assigning a certain value to a variable without considering
its parent nodes. P(Snew|Hnew

0 , do(Xold = xold)) is the score prediction when f t−1 is trained on
xold. P(Snew|Hnew

0 , do(Xold = 0)) is the score prediction when f t−1 is trained without old data,
i.e., f t−1 is randomly-initialized. We note that Effectnew is defined as the difference between scores
instead of logits because scores may be invariant when logits change. In Eq. 12, the prediction score
Snew conditions on the collider Hnew

0 . In this case, Xold has causal effects on Xnew through the
collider Hnew

0 .

Then, we re-write Effectnew as the sum of the causal effect on each sample’s prediction:

Effectnew =

N∑
i

Effect(i)new (13)

By introducing the definition in Eq. 12, we have:

Effect(i)new = P(Snew(i)|Hnew
0 = h

(i)
0 , do(Xold = xold))− P(Snew(i)|Hnew

0 = h
(i)
0 , do(Xold = 0))

(14)

= P(Snew(i)|Hnew
0 = h

(i)
0 , Xold = xold)− P(Snew(i)|Hnew

0 = h
(i)
0 , Xold = 0) (15)
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Snew(i) is the score prediction of the i-th sample x(i). h
(i)
0 is the feature of x(i) extracted by the

encoder of f t−1(denoted as f t−1
enc ), i.e., h(i)

0 = f t−1
enc (x

(i)) . N is the number of samples in Xnew. Eq.
14 defines the causal effect on each sample (Effect(i)new) as the difference between the score prediction
of x(i) when f t−1 is trained on xold or not. Eq. 15 holds because Xold has no parent nodes.

And Then, Effect(i)new is estimated as follows:

Effect(i)new

=

N∑
k=1

(P(Snew(i)|Xnew = x(k), Hnew
0 = h

(i)
0 )(P(Xnew = x(k)|Hnew

0 = h
(i)
0 , Xold = xold)

(16)

− P(Xnew = x(k)|Hnew
0 = h

(i)
0 , Xold = 0))

=

N∑
k=1

(P(Snew(i)|Xnew = x(k))(P(Xnew = x(k)|Hnew
0 = h

(i)
0 , Xold = xold) (17)

− P(Xnew = x(k)|Hnew
0 = h

(i)
0 , Xold = 0))

≈
N∑

k=1

P(Snew(i)|Xnew = x(k))P(Xnew = x(k)|Hnew
0 = h

(i)
0 , Xold = xold)︸ ︷︷ ︸

Wi,k

(18)

≈
K∑

k=1

P(Snew(i)|Xnew = x(k))Wi,k (19)

Eq. 16 is obtained by applying the Bayes Rule to Eq. 15. Eq. 17 holds since Xnew is the only mediator
(Pearl, 2009) from Xold to Snew(i). Eq. 18 approximates P(Xnew = x(k)|Hnew

0 = h
(i)
0 , Xold = 0)

as zero because the likelihood is small when f t−1 is randomly initialized. We further expand the
latter term in Eq. 18 using the Bayes Rule as follows:

P(Xnew = x(k)|Hnew
0 = h

(i)
0 , Xold = xold) =

P(Hnew
0 = h

(i)
0 |Xnew = x(k), Xold = xold)P(Xnew = x(k)|Xold = xold)

P(Hnew
0 = h

(i)
0 |Xold = xold)

(20)

In Eq. 20, P(Hnew
0 = h

(i)
0 |Xold = xold) and P(Xnew = x(k)|Xold = xold) are intractable and

we regard them as constants. Then, P(Xnew = x(k)|Hnew
0 = h

(i)
0 , Xold = xold) mainly depends

on the likelihood term P(Hnew
0 = h

(i)
0 |Xnew = x(k), Xold = xold), which represents how likely

the hidden feature is h
(i)
0 when the input sample is x(k). Obviously, the likelihood is the largest

when k = i and becomes smaller when the hidden feature of x(k) becomes farther away from h
(i)
0 .

Recall that h(i)
0 is the hidden feature of x(i) extracted by f t−1

enc . The latter term in Eq. 18 can be
regarded as the scaling factor, which is determined by the distance of x(i) and x(k) in the feature
space of f t−1

enc . Considering estimating Eq. 18 on all training samples is prohibitive due to time
and space, we truncate top-K samples and obtain Eq. 19. In summary, Eq. 19 computes Effect(i)new

as the weighted sum of P(Snew(i)|Xnew = x(k)) on the K-Nearest-Neighbours of x(i). And the
weight Wi,k is larger when the distance between x(k) and x(i) in the feature space of f t−1

enc is smaller.
Noteworthily, when k = i, P(Snew(i) = y(i)|Xnew = x(i))3 is exactly the likelihood we expected to
maximize. Therefore, maximizing Effectnew amounts to minimizing the classification loss of each
sample, except that the score is the joint score estimated by itself and its neighbors.

On these grounds, Effect(i)new is estimated as follows:

Effect(i)new = −LCE(W0s
(i) +

∑
k∈[1,··· ,K]

Wi,ks
(i,k), y(i)), (21)

3y(i) is regarded as a one-hot distribution here.
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where s(i) and s(i,k) are the score prediction of x(i) and the k-th neighbours of x(i). W0 is the weight
of the input sample. Wi,k is the weight of neighbors and it is defined as follows:

Wi,k =
(1−W0)/||H0(x

(i,k))−H0(x
(i))||2∑

k′∈[1,··· ,K] 1/||H0(x(i,k′))−H0(x(i))||2
, (22)

where x(i,k) is the k-th neighbour of x(i); H0(x
(i,k)) and H0(x

(i)) are the feature of x(i,k) and x(i)

extracted by f t−1
enc ; and the denominator is a normalized term. In Eq. 4, the weights of neighbors are

defined as the normalized reciprocal of Euclidean distance to input samples in the feature space of
f t−1
enc . When W0 = 1, Effect(i)new degenerates to LCE(s

(i), y(i)).

In summary, Effectnew is estimated as follows:

Effectnew = −E(x,y)∼Dt
LCE(

∑
x̃∈{x}∪N (x)

W (x̃, x)S(x̃), y), (23)

where
∑

x̃∈x∪N (x) W (x̃, x) = 1; N is the set of K-Nearest-Neighbors (KNNs) in the feature space
of f t−1; S(x̃) is the score prediction of x̃; W (x̃, x) is the weight of S(x̃) and it is defined as follows:

W (x̃, x) =

{
W0, when x̃ = x;

(1−W0)/||H0(x̃)−H0(x)||2∑
x̃′∈N(x) 1/||H0(x̃′)−H0(x)||2 , otherwise. (24)

In Fig. 11d, the causal path from Xold to Znew
[new] is built by optimizing Eq. 3. Although Snew is

determined by both Znew
[new] and Znew

[old], only the causal effect between Snew and Znew
[new] helps models

adapt to new classes.

Furthermore, Znew
[new] is obtained from Xnew, and thus Xnew has causal effects on Znew

[new]. Therefore,
we prove that both Xold and Xnew have causal effects on Znew

[new] when optimizing Effectnew.

C.4 THE CONNECTION BETWEEN Effectnew AND EXISTING WORKS

Effectnew is inspired by DDE (Hu et al., 2021). Different from the collider effect in DDE, Effectnew
further estimates the weight of neighbors based on the Euclidean distance to input samples and thus
fundamentally works better than DDE. Furthermore, BaCE updates the neighborhood relationships
as well as the teacher model every training epoch, which promotes adaptation to the distribution of
new data.

C.5 THE CONNECTION BETWEEN BACE AND EXISTING WORKS

We note that the motivation of BaCE is different from the class imbalanced problem. We provide
a detailed explanation in Appendix A.4. Unlike the existing techniques for the class imbalanced
problem, BaCE exploits the causal effects of new and old data jointly and allows forward and
backward transfer during training on new data. Finally, we summarize the algorithm in Alg. 1.

C.6 WHY BACE MITIGATES THE CONFRONTATION PHENOMENON?

Recall that in the tracking study, we find that the learning process between new and old data is
“confrontational”. From the causal perspective, the confrontation phenomenon is caused by the
confrontational causal effects between new and old tasks. Recall that in the tracking study of SEQ,
the model only adapts to new data. Fig. 2a shows that in this case, (a) the class features and class
embeddings in new tasks reach their optimal positions, and (b) the class features and class embeddings
in old tasks are pushed away from their optimal positions (also see the illustration in Fig. 3b).

Unlike SEQ, in the setting of REPLAY and MTL, the losses of new and old data are jointly optimized.
Intuitively, the effect of optimizing the joint loss can be disentangled into two separate effects, i.e.,
the effect of optimizing the loss of new data and the effect of optimizing the loss of old data. In this
view, jointly optimizing old data’s loss and new data’s loss leads to two confrontational effects, i.e.,
the effect of adapting to new data and hindering the learning of old tasks and the effect of adapting
to old data and hindering the learning of new tasks. Furthermore, these two confrontational effects
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exist even in the MTL setting. Since all old data is available in MTL, the distribution of both new and
old data can be modeled properly, and the two confrontational effects are neutralized. However, in
the practical setting of CIL, the buffer size is limited (i.e., the REPLAY setting). This means that
the rehearsal samples may not reflect the true data distribution of old tasks. In this case, the two
confrontational effects are not neutralized, and it may result that the new task is well learned while
the old tasks are forgotten.

Additionally, we display a thought experiment to demonstrate our key intuition better. Suppose we
start from the MTL setting and gradually reduce the number of the new task’s samples to zero. If
we conduct a tracking study on this model, we may observe that the feature-embedding distance of
the new task increases monotonously. In contrast, the feature-embedding distance of the old tasks
decreases monotonously. In this case, the two confrontational effects are not neutralized, resulting in
the old task being well-preserved while the new task is not being properly learned.

In summary, the tracking study reveals that optimizing old data loss hinders learning new tasks, and
optimizing new data loss hinders learning old tasks potentially. In the REPLAY or MTL setting, the
confrontational effect of old data is partially or fully counteracted by the confrontational effect of
new data. It implies that both new and old tasks may be better learned in the REPLAY setting if we
alleviate the confrontational effect of both new and old data.

Motivated by this, we propose BaCE to “simulate” the new/old data effect when learning old/new
tasks. BaCE is built upon the balanced causal graphs for pursuing balanced causal effects when
learning all classes. We note that the causal graphs in Fig. 11c, 11d and 11e are independent of replay
buffer since Xold and Xbuf are different nodes. Therefore, the proposed BaCE is independent of the
replay buffer in principle.

C.7 WHAT IS THE REMAINING GAP IN FULLY ADDRESSING THE CONFRONTATION
PHENOMENON?

The experimental result in Table 7 shows that the performance gap is still large when buffer size = 0
or 100, although BaCE largely decreases the feature-embedding distance when buffer size = 500. It
indicates that the confrontation phenomenon is still severe when only limited old data is available. A
natural question is what is the remaining gap in fully addressing the confrontation phenomenon if the
causal relations between old/new data and old/new logits are completed as in BaCE.

To this question, we want to clarify that the implementation of Effectnew and Effectold can be various,
and different implementations may lead to different performance. By implementation, we mean that
optimizing other objectives may achieve the same goal from the causal perspective. For example, if
we define Effectold as the Cross-Entropy Loss between the teacher’s pseudo label and the student’s
prediction, the performance will differ, although the causal graphs remain unchanged. Another
example is that the improvement of Effectnew is different when a different value of hyper-parameter
W0 is selected. In summary, the proposed causal graphs Fig. 11c,11d, and 11e can be seen as a road
map for resolving the phenomenon of confrontation. We hope our findings motivate future studies to
investigate the confrontation phenomenon and further close the gap between original performance
and probing performance.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 CONTINUAL IMAGE CLASSIFICATION (CONTINUAL IC)

Training Details. We use SGD as the optimizer for all methods and backbones. The batch size
is set as 128. When using ViT-B/16 as the backbone, we train models on each task with a learning
rate of 1e-3. The input image is resized to 224×224 to match the pre-training process of ViT. When
using ResNet-18 as the backbone, we train models for 120 epochs with an initial learning rate of 1e-2.
We use a multi-step scheduler: the milestone is [50, 90], and γ is 0.1. The input image is padded
to 32×32. The hidden dimensions of ViT-B/16 and ResNet-18 are 768 and 512, respectively. For
each method, We exploit the herding algorithm (Rebuffi et al., 2017) to select old representative
samples. The implementation is based on PyTorch (Paszke et al., 2019). All experiments are run on
GeForce RTX 3090 GPU. We report the average result on three independent runs. We do not use
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Algorithm 1: Balancing Causal Effects (BaCE)

Input: Dt = {(x(i), y(i))}Ni=1: the training set of the t-th task; f t−1: the model trained on
previous t− 1 tasks; K: the number of neighbors; β: the hyper-parameter for controlling
the update speed of f t−1;M: the rehearsal buffer;

Output: f t: the model adapted to t tasks
1 Initialize the new model f t ← f t−1;
2 while not converge do
3 Compute the K nearest neighbors of each sample and obtain N ;
4 for (x(i), y(i)) in Dt do
5 Compute Effectnew according to Eq. 3;
6 ifM is available then
7 Compute Effectold−replay according to Eq. 2;
8 f t ← argmax

ft

Effectnew + Effectold−replay;

9 else
10 Compute Effectold according to Eq. 1;
11 f t ← argmax

ft

Effectnew + Effectold;

12 end
13 end
14 f t−1 ← βf t−1 + (1− β)f t;
15 end

additional data augmentation except for RandomHorizontalFlip and RandomCrop. The introduction
of the backbone models used in the paper is summarized in Table 6.

Table 5: The introduction of the image classification datasets used in the paper.

# classes # training samples # test samples Link

OmniBenchmark 300 89,697 5,985 Link
Tiny-ImageNet 200 100,000 10,000 Link
ObjectNet 200 26,509 6,628 Link
ImageNet-R 200 24,000 6,000 Link
CIFAR100 100 50,000 10,000 Link
VTAB 50 1,796 8,619 Link
SVHN 10 73,257 26,032 Link
Fashion-MNIST 10 60,000 10,000 Link
CIFAR10 10 50,000 10,000 Link
MNIST 10 50,000 10,000 Link
Not-MNIST 10 18,265 459 Link

Table 6: The introduction of the visual transformers used in the paper.

# params Link

ViT-B/16 86M Link
ViT-B/16-IN21K 86M Link
ResNet18 11M /
DeiT-S/16 22M Link

Datasets. The introduction of the image classification datasets used in the paper is summarized in
Table 5.

• CIFAR100 (Krizhevsky et al., 2009): CIFAR100 contains 60000 32×32 RGB images of 100
categories. Each class has 500 training images and 100 testing images. We follow Wang et al.
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(2022e); Wu et al. (2019) and split 100 classes evenly into 5, 10, and 20 incremental batches.
In our experiment, we learned the 100 classes in ascending order. In split CIFAR100, each
incremental task shares some similarities since some classes are from the same superclass.
Although CIFAR-100 is a simple image classification dataset, existing studies (Wang et al.,
2022e) show that pre-trained models still suffer from catastrophic forgetting when the buffer
size is small. CIFAR-100 is used following the MIT license.

• 5-datasets (Ebrahimi et al., 2020): We consider a CIL setting proposed in Ebrahimi et al.
(2020). 5-datasets consists of five image classification datasets: CIFAR-10 (Krizhevsky
et al., 2009), MNIST (LeCun, 1998), Fashion-MNIST (Xiao et al., 2017), SVHN (Netzer
et al., 2011), and notMNIST (Bulatov, 2011). CIFAR-10 dataset consists of 60000 32×32
color images in 10 classes, with 6000 images per class. Each category contains 5,000
training instances and 1,000 test instances. MNIST is a handwritten digits dataset that
is commonly used for benchmarking machine learning algorithms. It contains 10 classes
for each digit, and each class has 5000 training instances and 1000 test instances. The
fashion-MNIST dataset is a large, freely available database of fashion images. The dataset
contains 70000 28×28 grayscale images of fashion products from 10 classes, and each class
contains 6000 training instances and 1000 test instances. The Street View House Numbers
(SVHN) Dataset is a real-world image dataset collected in natural scenes. It contains 73257
training instances and 26032 test instances. The NotMNIST dataset is a collection of 28×28
grayscale images of 10 different letters (A-J). It contains 18265 training instances and 459
test instances. In our experiments, we train the model according to the same order as in
Wang et al. (2022e): SVHN, MNIST, CIFAR10, NotMNIST, Fashion-MNIST. Although
each dataset alone is not hard, the sequential training of them is fairly challenging even
with ImageNet pre-trained models (Wang et al., 2022e), since models are susceptible to
forgetting when the tasks are diverse (Mehta et al., 2021). MNIST is used following the
Creative Commons Attribution-Share Alike 3.0 license. CIFAR-10 and Fashion-MNIST are
used following the MIT license. The licensing information is not available for SVHN and
notMNIST.

• OminiBenchmark: OminiBenchmark is a large benchmark dataset covering more realms
and annotating more images of each realm compared with ImageNet-1k Zhang et al. (2022).

• Tiny-ImageNet: Tiny ImageNet has 200 classes, and each class has 500 training images, 50
validation images, and 50 test images. The images are down-sampled to 64 x 64 pixels.

• ObjectNet: ObjectNet is a large real-world test set for object recognition with control where
object backgrounds, rotations, and imaging viewpoints are random. Barbu et al. (2019)

• ImageNet-R: ImageNet-R(endition) contains art, cartoons, deviantart, graffiti, embroidery,
graphics, origami, paintings, patterns, plastic objects, plush objects, sculptures, sketches,
tattoos, toys, and video game renditions of ImageNet classes. ImageNet-R has renditions of
200 ImageNet classes, resulting in 30,000 images. Hendrycks et al. (2021)

• VTAB: The Visual Task Adaptation Benchmark (VTAB) is a diverse and challenging suite
of tasks designed to evaluate general visual representations. VTAB defines a good general
visual representation as one that performs well on unseen tasks when trained on limited
task-specific data. Zhai et al. (2019)

Discussion of the Overlap between Pretraining and Downstream Datasets.

The ViT-B/16 is pretrained on ImageNet-21k, which contains 21841 classes ranging from coarse-
grained to fine-grained. For example, an image may belong to a label [’animal’→’domestic
animal’→’dog’→’spitz’→’Samoyed’]. CIFAR-100 contains 100 classes, such as ’lion’ and ’tiger’.
Obviously, some classes in CIFAR-100 are close to or the same as those in ImageNet-21k. Since
ImageNet-21k contains so many images from coarse-to-fine-grained categories, some other widely-
used CIL datasets, such as Tiny-ImageNet, Mini-ImageNet, ImageNet-1000/100, inevitably contain
similar or the same classes in ImageNet-21k.

In computer vision, existing studies such as L2P (Wang et al., 2022e), DualPrompt (Wang et al.,
2022d), ADA (Ermis et al., 2022) and Ramasesh et al. (2022) use pre-trained ViT-B/16 as the backbone
and evaluate it on CIFAR100. Apart from 5-datasets, we still use CIFAR-100 for experiments for
two reasons: (1) Previous studies such as L2P show that the pretrained ViT-B/16 still suffer from
catastrophic forgetting with limited replay data. For example, REPLAY with 10×100=1000 samples
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only achieves 67% in the 5-step CIFAR-100 setting. (2) We can quickly compare our method with
previous works under exactly the same settings. Future works can readily reproduce or compare with
our method.

In IL of natural language processing (NLP), existing studies such as progressive prompt (Raz-
daibiedina et al., 2023), CT0 (Scialom et al., 2022), LAMOL (Sun et al., 2020), and MBPA++
(de Masson D’Autume et al., 2019) use strong PTMs such as BERT and T5. The pretraining corpus of
BERT contains the BooksCorpus (800M words) and English Wikipedia (2,500M words). BERT has
likely seen some sentences of AGNews and DBPedia during pretraining. However, existing studies
and our study also show much room for improvement in the CIL performance of BERT with limited
replay data.

Although the pretraining dataset may overlap with the downstream dataset, Incremental Learning
(IL) with Pre-Trained Models (PTMs) is still an under-explored and challenging research topic. More
importantly, exploring how to learn novel classes/tasks/domains incrementally with off-the-shell
PTMs is significant in the era of PTMs.

Baselines.

• ER (Chaudhry et al., 2019): ER is a simple rehearsal method that stores old examples in
memory buffers for later replay. Although it is simple, it is an effective and stable baseline.

• LwF (Li & Hoiem, 2017): LwF is a method that exploits knowledge distillation, where the
teacher is the model learned on previous tasks and the student is the new model. We set the
trade-off parameter in LwF as 5 for a fair comparison.

• EWC (Kirkpatrick et al., 2017): EWC is a regularization-based method that slows down the
updates on important parameters. We set the weight of the regularization term as 5000.

• BiC (Hou et al., 2019): BiC is an exemplar-based method that adds a regularization item
based on knowledge distillation. After each CIL step, BiC fine-tunes the linear layer and
learns two additional parameters to reduce the bias of the backbone network. We follow the
original paper and split the exemplar set as 9:1 for training and validation.

• IL2M Belouadah & Popescu (2019): Compared to exemplar-based methods, IL2M addi-
tionally stores old class statistics to reduce the prediction bias towards new classes. We
reimplement IL2M according to the officially released code in https://github.com/
EdenBelouadah/class-incremental-learning.

• iCaRL (Rebuffi et al., 2017): iCaRL proposes a herding algorithm for selecting old rep-
resentative samples. Besides, iCaRL adopts a nearest mean-of-exemplars classifier for
classification. We implement iCaRL on ViT according to the officially released code in
http://www.github.com/srebuffi/iCaRL.

• LUCIR (Hou et al., 2019): LUCIR is an exemplar-based method. LUCIR proposes some
modifications to promote separation in the feature space and generate more coordinated
incremental learning classifiers. The initial weight of the distillation loss λbase is set to 5,
K is set to 2, and m is set to 0.5.

• PODNet (Douillard et al., 2020): Apart from the classification loss of new data, PODNet
constrains the output of each intermediate layer and the feature output by the backbone
network. We use the same default hyper-parameters as in the officially released code in
github.com/arthurdouillard/incremental_learning.pytorch.

• DDE (Hu et al., 2021): DDE is based on causal inference, which proposes to extract the
causal effect between new and old data and capture the incremental momentum effect of
the data flow. We use the same default hyper-parameters as in the official released code in
https://github.com/JoyHuYY1412/DDE_CIL.

• L2P (Wang et al., 2022e): L2P learns a set of prompts that dynamically instruct models to
solve corresponding tasks. The set of prompts is called a prompt pool, which is structured in
a key-value shared memory space. However, the prompt pool is shared across different tasks,
which plays as an implicit external memory in CIL and is unfair to other CIL algorithms
(such as BaCE, LwF, DER++, · · · ) that require no additional model components. Therefore,
we do not compare with L2P when the buffer size is zero in our experiments.

29

https://github.com/EdenBelouadah/class-incremental-learning
https://github.com/EdenBelouadah/class-incremental-learning
http://www.github.com/srebuffi/iCaRL
github.com/arthurdouillard/incremental_learning.pytorch
https://github.com/JoyHuYY1412/DDE_CIL


Under review as a conference paper at ICLR 2024

• CLSER (Arani et al., 2022): CLSER improves the replay buffer system by using the
complementary learning system (CLS) theory. We use the same default hyper-parameters as
in the officially released code in https://github.com/NeurAI-Lab/CLS-ER.

• FOSTER (Wang et al., 2022a): FOSTER is a two-stage architecture-based method. In the
first stage, FOSTER dynamically expands new modules to fit the residuals between the
target and the output of the original model. In the second stage, FOSTER removes redundant
parameters and feature dimensions through an effective distillation strategy to maintain the
single backbone model. The boosting epochs, compression epochs, and the epochs of the
initial task are set to 5. Other hyper-parameters are the same as in the official released code
in https://github.com/G-U-N/ECCV22-FOSTER.

• MEMO (Zhou et al., 2023a): MEMO is a simple yet effective architecture-based method.
MEMO extends specialized layers based on the shared generalized representations. In our
experiments, we regard the topmost transformer layer as the specialized layer and the other
transformer layers as the task-agnostic layers. We use the same default hyper-parameters as
in the officially released code in https://github.com/wangkiw/ICLR23-MEMO.

• BEEF (Wang et al., 2023): BEEF is an architecture-based CIL method based on energy-
based theory. BEEF decouples the training of independent modules while achieving bi-
directional compatibility among modules. The expansion epoch number and the fusion
epoch number are set to 3, and the epoch number of the initial task is set to 5. Other
hyper-parameters are the same as in the official released code in https://github.
com/G-U-N/ICLR23-BEEF.

Table 7: The comparison with competitive baselines on split CIFAR-100. All methods use pre-trained
ViT-B/16 as the backbone. OOM: Out of GPU memory.

Buffer Size Method
20 step 10 steps

AverACC (↑) FGT (↓) FWT (↑) AverACC (↑) FGT (↓) FWT (↑)

0

SEQ 14.74 (1.73) 88.21 (1.21) 16.18 (2.01) 24.09 (1.28) 80.85 (1.79) 30.83 (3.20)
LwF (Li & Hoiem, 2017) 30.02 (0.82) 70.43 (1.94) 33.81 (1.63) 45.88 (0.76) 51.93 (2.30) 52.96 (1.69)
EWC (Kirkpatrick et al., 2017) 26.92 (0.77) 73.86 (1.30) 27.6 (2.39) 29.28 (1.02) 75.26 (2.77) 32.56 (3.28)

BaCE w/o Effectnew&Effectold 15.83 (2.88) 87.32 (2.15) 18.39 (2.19) 23.84 (1.12) 81.58 (3.52) 28.16 (1.94)
BaCE w/o Effectnew 31.27 (1.23) 69.63 (1.63) 35.35 (1.43) 46.03 (0.72) 50.72 (2.03) 53.70 (1.03)
BaCE w/o Effectold 19.53 (1.68) 82.59 (0.85) 22.94 (1.84) 29.43 (1.03) 72.22 (3.39) 34.97 (2.81)
BaCE (Ours) 35.36 (0.94) 63.20 (1.38) 41.96 (2.11) 51.84 (1.44) 32.99 (2.93) 55.24 (3.55)

100

ER 34.33 (0.59) 68.21 (1.27) 40.24 (0.94) 46.60 (1.36) 57.46 (1.02) 47.43 (1.79)
BiC (Wu et al., 2019) 35.96 (0.70) 65.52 (0.96) 42.06 (1.24) 47.38 (0.54) 55.72 (0.58) 48.62 (0.42)
LUCIR (Hou et al., 2019) 38.40 (0.58) 63.85 (0.42) 42.14 (1.58) 54.47 (1.06) 40.94 (2.43) 57.16 (0.86)
PODNET (Douillard et al., 2020) 26.19 (1.53) 76.72 (2.14) 35.68 (3.64) 43.47 (2.81) 60.73 (1.39) 46.35 (1.14)
DDE (Hu et al., 2021) 36.16 (0.39) 64.71 (0.81) 39.74 (1.39) 47.09 (0.58) 55.92 (0.76) 46.11 (1.03)
DER++ (Buzzega et al., 2020) 54.98 (0.23) 46.33 (1.14) 62.93 (1.03) 61.70 (0.18) 39.97 (0.43) 60.23 (0.49)
CLSER (Arani et al., 2022) 57.53 (0.48) 42.85 (1.05) 64.73 (2.66) 57.38 (1.24) 43.70 (0.41) 61.92 (0.77)
FOSTER (Wang et al., 2022a) 30.62 (1.28) / / 50.21 (0.15) / /
MEMO (Zhou et al., 2023a) 61.45 (0.49) 37.87 (0.69) 61.28 (1.10) 62.77 (0.70) 35.76 (1.44) 58.81 (0.48)
BEEF (Wang et al., 2023) OOM OOM OOM OOM OOM OOM

BaCE w/o Effectnew&Effectold 54.12 (0.29) 46.06 (1.64) 62.77 (0.52) 61.80 (0.61) 38.19 (1.58) 59.28 (1.23)
BaCE w/o Effectnew 62.85 (0.48) 38.14 (1.21) 67.11 (0.85) 70.06 (0.39) 30.51 (1.03) 63.47 (1.42)
BaCE w/o Effectold 57.15 (0.62) 43.55 (0.69) 63.14 (1.60) 64.28 (0.54) 37.08 (0.89) 61.48 (0.78)
BaCE (Ours) 65.88 (0.34) 34.05 (0.46) 69.53 (0.61) 74.81 (0.45) 24.78 (0.64) 67.14 (0.71)

500

ER 70.68 (0.26) 29.75 (0.24) 67.16 (1.03) 70.78 (0.42) 30.28 (0.36) 62.35 (0.66)
BiC (Wu et al., 2019) 72.86 (0.34) 28.10 (0.41) 68.07 (0.59) 74.59 (0.13) 24.84 (0.64) 65.36 (1.52)
LUCIR (Hou et al., 2019) 73.27 (0.20) 26.29 (0.48) 69.93 (0.98) 74.52 (0.41) 21.68 (1.66) 66.45 (1.34)
PODNET (Douillard et al., 2020) 31.10 (2.86) 71.54 (5.27) 41.54 (0.78) 48.29 (2.01) 55.42 (3.19) 50.43 (2.84)
DDE (Hu et al., 2021) 74.23 (0.27) 25.53 (0.44) 70.19 (1.20) 72.02 (0.58) 28.43 (1.14) 64.16 (0.58)
DER++ (Buzzega et al., 2020) 75.83 (0.35) 23.72 (0.59) 74.65 (0.64) 75.17 (0.29) 25.96 (0.61) 66.26 (0.95)
CLSER (Arani et al., 2022) 77.76 (0.82) 21.50 (1.14) 75.21 (1.42) 78.54 (0.52) 19.68 (0.35) 68.35 (0.78)
FOSTER (Wang et al., 2022a) 70.21 (0.54) / / 76.84 (0.29) / /
MEMO (Zhou et al., 2023a) 75.83 (0.42) 22.56 (0.27) 63.27 (0.59) 78.96 (0.35) 17.65 (0.46) 61.72 (0.93)
BEEF (Wang et al., 2023) OOM OOM OOM OOM OOM OOM

BaCE w/o Effectnew&Effectold 76.03(0.37) 23.65 (1.41) 74.59 (0.42) 75.45 (0.31) 24.91 (0.35) 67.49 (0.35)
BaCE w/o Effectnew 80.14 (0.28) 17.34 (0.48) 75.44 (0.65) 82.13 (0.22) 17.82 (0.51) 69.14 (0.21)
BaCE w/o Effectold 78.54 (0.13) 20.64 (0.54) 74.12 (0.48) 78.60 (0.25) 20.87 (0.38) 68.77 (0.79)
BaCE (Ours) 82.46 (0.25) 15.78 (0.63) 76.51 (0.66) 84.59 (0.20) 12.58 (0.33) 70.56 (0.48)

∞ MTL 91.67 (0.16) / / 91.25 (0.13) / /

Full Results on ViT. The full result with standard derivations is given in Table 7, 8 and 9. The
evolution of average accuracy is shown in Fig. 12, 14 and 13. When we run the officially released
code of BEEF (Wang et al., 2023) on CIFAR100 with two 24G RTX3090 GPUs, we encounter
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Figure 12: The evolution of average accuracy on split CIFAR-100 with ViT-B/16.

Table 8: The result on the 5-step split CIFAR-100. The backbone is pre-trained ViT-B/16. †: the
baseline results are from Wang et al. (2022e).

Buffer Size Method AverACC (↑) Forgetting (↓)

1000

ER † 67.87 (0.57) 33.33 (1.28)
LUCIR (Hou et al., 2019) 79.69 (0.22) 17.46 (0.60)
PODNET (Douillard et al., 2020) 64.19 (0.56) 39.50 (0.52)
DDE (Hu et al., 2021) 77.39 (0.43) 22.98 (0.75)
DER++† (Buzzega et al., 2020) 61.06 (0.87) 39.87 (0.99)
Gdumb † (Prabhu et al., 2020) 67.14 (0.37) /
BiC † (Wu et al., 2019) 66.11 (1.76) 35.24 (1.64)
Co2L † (Cha et al., 2021) 72.15 (1.32) 28.55 (1.56)
L2P † (Wang et al., 2022e) 84.21 (0.53) 7.72 (0.77)
BaCE (Ours) 85.16 (0.39) 6.86 (0.53)

5000

ER † 82.53 (0.17) 16.46 (0.25)
LUCIR (Hou et al., 2019) 84.58 (0.31) 15.97 (0.35)
PODNET (Douillard et al., 2020) 67.74 (1.02) 35.90 (1.59)
DDE (Hu et al., 2021) 84.05 (0.29) 16.52 (1.22)
DER++† (Buzzega et al., 2020) 83.94 (0.34) 14.55 (0.73)
Gdumb † (Prabhu et al., 2020) 81.67 (0.02) /
BiC † (Wu et al., 2019) 81.42 (0.85)) 17.31 (1.02)
Co2L † (Cha et al., 2021) 82.49 (0.89) 17.48 (1.80)
L2P † (Wang et al., 2022e) 86.31 (0.59) 5.83 (0.61)
BaCE (Ours) 88.43 (0.31) 4.33 (0.25)

∞ MTL 90.85 (0.12) /
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Figure 13: The evolution of average accuracy on 5-step split CIFAR100 with ViT-B/16.

Table 9: The comparison with competitive baselines on 5-datasets. All methods use pre-trained
ViT-B/16 as the backbone. †: The baseline results are from Wang et al. (2022e).

Buffer Size Method AverACC (↑) Forgetting (↓)

0

FT-seq-frozen † 39.49 (0.12) 42.62 (0.20)
FT-seq † 20.12 (0.42) 94.63 (0.68
EWC † (Kirkpatrick et al., 2017) 50.93 (0.09) 34.94 (0.07)
LwF † (Li & Hoiem, 2017) 47.91 (0.33) 38.01 (0.28

BaCE w/o Effectnew&Effectold 21.37 (1.53) 95.45 (0.61)
BaCE w/o Effectnew 50.61 (0.81) 47.49 (2.04)
BaCE w/o Effectold 30.69 (1.78) 75.64 (3.25)
BaCE (Ours) 54.99 (0.69) 37.79 (1.47)

250

ER † 80.32 (0.55) 15.69 (0.89)
Gdumb † (Prabhu et al., 2020) 56.99 (0.06) /
BiC † (Wu et al., 2019) 78.74 (1.41) 21.15 (1.00)
DER++ † (Buzzega et al., 2020) 80.81 (0.07) 14.38 (0.35)
Co2L † (Cha et al., 2021) 82.25 (1.17) 17.52 (1.35)
L2P † (Wang et al., 2022e) 85.56 (0.95) 4.22 (0.03)
CLSER (Arani et al., 2022) 86.51 (0.36) 10.58 (0.57)
FOSTER (Wang et al., 2022a) 74.21 (0.17) /
MEMO (Zhou et al., 2023a) 86.53 (0.31) 9.09 (0.36)
BEEF (Wang et al., 2023) 78.09 (0.22) /

BaCE w/o Effectnew&Effectold 84.36 (0.62) 9.58 (1.56)
BaCE w/o Effectnew 86.10 (0.86) 9.16 (0.97)
BaCE w/o Effectold 86.69 (0.40) 10.58 (1.13)
BaCE (Ours) 87.50 (0.57) 8.41 (1.27)

500

ER † 84.26 (0.84) 12.85 (0.62)
Gdumb † (Prabhu et al., 2020) 70.76 (0.12) /
BiC † (Wu et al., 2019) 85.53 (2.06) 10.27 (1.32)
DER++ † (Buzzega et al., 2020) 84.88 (0.57) 10.46 (1.02)
Co2L † (Cha et al., 2021) 86.05 (1.03) 12.28 (1.44)
L2P † (Wang et al., 2022e) 88.95 (0.78) 4.92 (0.71)
CLSER (Arani et al., 2022) 89.43 (0.26) 6.20 (0.75)
FOSTER (Wang et al., 2022a) 74.96 (0.30) /
MEMO (Zhou et al., 2023a) 89.59 (0.15) 5.37 (0.24)
BEEF (Wang et al., 2023) 79.13 (0.07) /

BaCE w/o Effectnew&Effectold 86.20 (0.42) 9.16 (1.32)
BaCE w/o Effectnew 88.58 (0.63) 5.64 (0.48)
BaCE w/o Effectold 88.79 (0.28) 6.20 (0.71)
BaCE (Ours) 89.80 (0.27) 5.22 (0.76)

∞ MTL † 93.93 (0.18) /
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Figure 14: The evolution of average accuracy on 5-datasets with ViT-B/16.

the out-of-memory error. We also find that the architecture-based methods FOSTER and BEEF
perform better than BaCE at the early stage of CIL. However, their performance degrades as more
tasks are learned. We conjecture that the reason may be the hyper-parameters are not robust across
datasets. Besides, we note that BaCE does not contain sensitive hyper-parameters and does not
require additional GPU memory for each new task.

Evaluation on DeiT-S/16 with Less Information Overlapping. To mitigate information overlap-
ping between pretraining data and the datasets for incremental learning, we follow the experimental
setting in (Kim et al., 2023) to further evaluate the proposed method. We use DeiT-S/16 Touvron et al.
(2021) as the backbone. We use the same model checkpoint as (Kim et al., 2023), which is trained
using 611 classes of ImageNet after removing 389 classes which are similar or identical to the classes
of CIFAR and Tiny-ImageNet. Following (Kim et al., 2023), we finetune adapters Houlsby et al.
(2019) to leverage the strong performance of the pre-trained model while adapting to new knowledge.

For CIFAR10, 10 classes are split into 5 tasks with 2 classes for each task (C10-T5). For CIFAR100,
100 classes are split into 10 and 20 tasks (C100-T10 and C100-T200. For TinyImageNet, 200 classes
are split into 5 and 10 tasks (T-5T and T-10T). Other experimental settings are consistent with (Kim
et al., 2023). The experimental results are summarized in Table 10 and 11.

Table 10: The average accuracy after the final task. The buffer size for replay-based methods is 2000
for CIFAR100 and TinyImageNet and 200 for CIFAR10. The baseline results are from Table 2 of
Kim et al. (2023).

Method C10-5T C100-10T C100-20T T-5T T-10T Average

HAT 79.36±5.16 68.99±0.21 61.83±0.62 65.85±0.60 62.05±0.55 67.62
OWM 41.69±6.34 21.39±3.18 16.98±4.44 24.55±2.48 17.52±3.45 24.43
SLDA 88.64±0.05 67.82±0.05 67.80±0.05 57.93±0.05 57.93±0.06 68.02
PASS 86.21±1.10 68.90±0.94 66.77±1.18 61.03±0.38 58.34±0.42 68.25
L2P 73.59±4.15 61.72±0.81 53.84±1.59 59.12±0.96 54.09±1.14 60.17

iCaRL 87.55±0.99 68.90±0.47 69.15±0.99 53.13±1.04 51.88±2.36 66.12
A-GEM 56.33±7.77 25.21±4.00 21.99±4.01 30.53±3.99 21.90±5.52 36.89
EEIL 82.34±3.13 68.08±0.51 63.79±0.66 53.34±0.54 50.38±0.97 63.59
GD 89.16±0.53 64.36±0.57 60.10±0.74 53.01±0.97 42.48±2.53 61.82
DER++ 84.63±2.91 69.73±0.99 70.03±1.46 55.84±2.21 54.20±3.28 66.89
HAL 84.38±2.70 67.17±1.50 67.37±1.45 52.80±2.37 55.25±3.60 65.39
MORE 89.16±0.96 70.23±2.27 70.53±1.09 64.97±1.28 63.06±1.26 71.59
ROW 90.97±0.19 74.72±0.48 74.60±0.12 65.11±1.97 63.21±2.53 73.72

BaCE 91.54±0.31 74.15±0.60 75.06±0.71 66.23±1.28 63.85±3.02 74.02
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Table 11: The average accuracy after the final task. The buffer size for replay-based methods is 1000
for CIFAR100 and TinyImageNet and 100 for CIFAR10. The baseline results are from Table 3 of
Kim et al. (2023).

Method C10-5T C100-10T C100-20T T-5T T-10T Average

iCaRL 86.08±1.19 66.96±2.08 68.16±0.71 47.27±3.22 49.51±1.87 63.60
A-GEM 56.64±4.29 23.18±2.54 20.76±2.88 31.44±3.84 23.73±6.27 31.15
EEIL 77.44±3.04 62.95±0.68 57.86±0.74 48.36±1.38 44.59±1.72 58.24
GD 85.96±1.64 57.17±1.06 50.30±0.58 46.09±1.77 32.41±2.75 54.39
DER++ 80.09±3.00 64.89±2.48 65.84±1.46 50.74±2.41 49.24±5.01 62.16
HAL 79.16±4.56 62.65±0.83 63.96±1.49 48.17±2.94 47.11±6.00 60.21
MORE 88.13±1.16 71.69±0.11 71.29±0.55 64.17±0.77 61.90±0.90 71.44
ROW 89.70±1.54 73.63±0.12 71.86±0.07 65.42±0.55 62.87±0.53 72.70

BaCE 90.46±0.78 73.76±0.64 72.42±0.33 65.59±1.02 63.27±1.20 73.10
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Figure 15: The confusion matrix of different methods on OmniBenchmark.

Evaluation on Challenging Datasets. We evaluate our model on four challenging datasets that
have large domain gaps with ImageNet, namely ImageNet-R Hendrycks et al. (2021), ObjectNet Barbu
et al. (2019), Omnibenchmark Zhang et al. (2022) and VTAB Zhai et al. (2019). ImageNet-R and
ObjectNet contain challenging samples that ImageNet pre-trained models cannot handle Zhou et al.
(2023b), while Omnibenchmark and VTAB contain diverse classes from multiple complex realms.
We follow the experimental setting in (Zhou et al., 2023b) and use ViT-B/16-IN21K Dosovitskiy
et al. (2020) as the backbone model, which is not supervised-finetuned on ImageNet1K. We use the
datasets 4 sampled by Zhou et al. (2023b), where Omnibenchmark contains 300 classes, ImageNet-R
and ObjectNet contain 200 classes, and VTAB contains 50 classes. We equally divide all classes into
10 tasks for each dataset.

We compare our method with several distillation-based methods: BiC Wu et al. (2019), IL2M
Belouadah & Popescu (2019), LUCIR Hou et al. (2019), DER++ Buzzega et al. (2020), CLSER Arani
et al. (2022). All baselines and BaCE store 5 samples for each class on ObjectNet, Omnibenchmark
and VTAB and store 20 samples for each class on ImageNet-R. All baselines and BaCE load the
same PTM (i.e., ViT-B/16-IN21K) for training. We set α = 2 for BaCE on the four datasets. The
results are summarize in Table 12.

Table 12: The average accuracy (Acc.), the difference of feature embedding distance between new
classes and old classes (Feat.Embed.Dist.) and the probing accuracy (Prob.Acc.) after learning the
final task on four challenging datasets.

OmniBenchmark ImageNet-R ObjectNet VTAB
Acc. Prob.Acc Feat.Embed.Dist Acc. Prob.Acc Feat.Embed.Dist Acc. Prob.Acc Feat.Embed.Dist Acc. Prob.Acc Feat.Embed.Dist

ER 68.50 74.51 0.1376 65.88 72.28 0.0731 46.14 52.14 0.1485 78.53 90.37 0.1954
BiC 71.84 74.36 0.0709 70.14 73.13 0.0782 48.65 52.63 0.1377 81.65 90.15 0.1732
LUCIR 67.18 73.85 0.1621 67.43 71.06 0.0956 47.39 52.77 0.1365 80.49 89.79 0.1814
IL2M 69.52 74.94 0.1230 69.39 74.70 0.0505 48.42 52.55 0.1106 80.37 90.55 0.1623
DER++ 72.11 74.68 0.1156 72.18 75.58 0.0476 49.18 52.61 0.0974 79.09 90.62 0.1836
CLSER 72.24 74.13 0.1235 71.93 76.02 0.0670 51.04 52.38 0.1182 79.56 90.51 0.1878

BaCE 73.30 75.17 0.0392 74.48 77.55 0.0345 52.29 53.30 0.0825 84.86 90.84 0.0652
BaCE + Bias Correction 73.93 75.17 0.0392 75.20 77.55 0.0345 53.32 53.30 0.0825 85.53 90.84 0.0652

4https://github.com/zhoudw-zdw/RevisitingCIL
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(e) BaCE+Bias Correc-
tion

Figure 16: The confusion matrix of different methods on ImageNetR.
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tion

Figure 17: The confusion matrix of different methods on ObjectNet.
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tion

Figure 18: The confusion matrix of different methods on VTAB.

The difference between causal imbalance problem and class imbalance problem. The class
imbalance problem is a long-standing problem in CIL. It refers to the phenomenon that models tend
to predict new classes. The class imbalance problem is caused by the imbalance in the number of
samples between new and old tasks. However, the causal imbalance problem (i.e., the confrontational
phenomenon) is different from the class imbalance problem. As mentioned in Appendix A.4, the
causal imbalance problem focuses on the learning process of both new and old classes. In contrast,
the class imbalanced problem only focuses on the scale of logits.

What is the benefit of addressing the causal imbalance problem instead of the class imbalance
problem? As shown in Table 12, addressing the causal imbalance problem reduces the feature
embedding distance between new and old classes significantly. More importantly, it improves the
probing accuracy over existing methods designed for the class imbalance problem. It indicates that
only balancing the scale of logits (e.g., BiC and IL2M) may not necessarily enhance the feature
learning process. In contrast, BaCE pursues causal-balanced learning for each class, thereby achieving
higher probing performance in IL.

To have a closer look at the class imbalance problem, we provide the confusion matrices of BaCE,
BiC, LUCIR, IL2M on the four challenging datasets in Fig. 15, Fig. 16, Fig. 17, and Fig. 18. BiC
shows the most balanced predictions, followed by BaCE and IL2M, and finally, LUCIR. However,
BiC and IL2M make more errors in predicting old classes and perform lower than BaCE. We speculate
that the reason behind this is that the old rehearsal data does not reflect the true distribution of the
old data, and pursuing a balanced prediction between the rehearsal data and new data may hurt the
representation ability during IL.
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Table 13: The result on the 10-step split CIFAR-100. All methods use randomly initialized ResNet-18
as the backbone.

Buffer Size Method
10 steps

AverACC (↑) FGT(↓)

0
SEQ 9.43 89.82
LwF (Li & Hoiem, 2017) 16.22 54.89
BaCE (Ours) 19.07 47.85

500

ER 22.10 73.64
BiC (Wu et al., 2019) 36.02 51.85
iCaRL (Rebuffi et al., 2017) 46.52 22.06
LUCIR (Hou et al., 2019) 40.59 34.55
DER (Buzzega et al., 2020) 36.60 54.99
DER++ (Buzzega et al., 2020) 38.25 50.54
BaCE (Ours) 42.18 43.11

2000

ER 38.58 53.58
BiC (Wu et al., 2019) 46.39 40.49
iCaRL (Rebuffi et al., 2017) 49.82 18.07
LUCIR (Hou et al., 2019) 41.73 25.41
DER (Buzzega et al., 2020) 51.89 34.54
DER++ (Buzzega et al., 2020) 53.63 33.66
BaCE (Ours) 57.73 23.53

∞ MTL 70.44 /

The confusion matrices also show that BiC has a more balanced prediction than BaCE. Therefore, we
rectify the prediction bias towards new classes in BaCE using the re-balancing method in BiC. Specif-
ically, we follow BiC to learn two additional parameters to correct the bias on the balanced datasets
and select the best parameters according to the validation set. We only re-balance the prediction after
learning the last task and the final model is denoted as BaCE+Bias Correction. The learned bias
parameters (α, β) on OmniBenchmark, ImageNetR, ObjectNet, and VTAB are (0.94423,−0.01378),
(0.93485,−0.06928), (0.84370,−0.09861), and (0.92134,−0.05441) respectively. As shown in
Table 12, correcting the bias slightly improves performance. Since the encoder and the classifier
are unchanged, the Prob.Acc. and the Feat.Embed.Dist remains unchanged. The confusion matrices
show that BaCE+Bias Correction achieves a more balanced prediction.

In summary, the causal imbalance problem and the class imbalance problem are different since the
former describes the learning process while the latter describes the scale of prediction logits. More
importantly, these two problems are not conflicting, and the technique for the class imbalance problem
can be combined with BaCE to improve the performance further. Analyzing the causalities in CIL
helps us to clarify the reason behind forgetting. The causal perspective helps us design algorithms
that better maintain the model representation ability in IL. In contrast, the methods for the class
imbalance problem superficially balance the scale of logits, and thus, they are difficult to guide the
model to learn better features.

Experiments on ResNet-18. Although our motivation is based on PTMs, BaCE is not limited to
CIL with PTMs. We apply BaCE to ResNet-18 with the same hyper-parameters as in ViT. The result
in Table 13 shows that BaCE also outperforms competitive CIL methods consistently. We notice
that the performance gain of BaCE becomes smaller when using ResNet-18 as the backbone. The
reason may be that BaCE closes the gap to probing performance by addressing the confrontation
phenomenon, but the probing performance of ResNet-18 is much lower than that of ViT. Moreover, it
indicates that mitigating the confrontation phenomenon is beneficial not only to pre-trained models
but also to generic models.

KNN Examples in Effectnew. We provide more KNN examples on CIFAR100 and 5-datasets in
Fig. 19. The ground-truth label is on the top of each image. The green and red labels of neighbors
represent whether or not they are the same as the input sample. Fig. 19 shows that the teacher
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(a) CIFAR100 (b) 5-datasets

Figure 19: The KNNs in Effectnew on CIFAR100 and 5-datasets

model can recognize new classes with prior knowledge to some extent, which is an intuitive way to
understand how Effectnew consider the causal effects from both new and old data.

The effect of KNNs in Effectnew To further explore the role of KNNs in Effectnew, we consider
the following variants: (1) only the neighbours with the same ground-truth labels as the input sample
are selected (denoted as w/ same labels); (2) only the neighbours with the different ground-truth labels
from the input sample are selected (denoted as w/ different labels); (3) the weights of all neighbours
are set as the same (denoted as w/ same weight); (4) the neighbours are randomly sampled from all
training data (denoted as w/ random neighbours); (5) the neighbours with the largest distance are
selected (denoted as w/ largest distance);

Table 14 shows that all ablated variants perform worse than BaCE. Besides, as shown in Fig. 19,
some neighbours have different labels as the input sample. It indicates that the teacher model may
provide incorrect information about new classes. However, the performance decreases when we filter
out the neighbours with different labels (i.e., w/ same labels). The results show that the KNNs act as
a constraint from the teacher model and thus build causal paths from both new and old data when the
student models adapt to new classes. For example, in Fig. 19a, the teacher model provides the prior
that cattle and camel are animals walking on land.

Table 14: The effect of KNNs in Effectnew. The average accuracy after the final task on the four
challenging datasets is reported.

OmniBenchmark ImageNet-R ObjectNet VTAB

BaCE 73.30 74.48 52.29 84.86
w/ same labels 72.73 73.59 50.68 83.26
w/ different labels 72.81 72.94 50.15 82.81
w/ same weight 73.02 73.97 51.66 84.22
w/ random neighbours 72.88 73.41 50.66 83.01
w/ largest distance 72.42 72.94 50.56 82.83
w/o Effectnew 72.82 73.46 50.78 83.17

Runtime and Hyper-parameter Analysis. We summarize the average accuracy of BaCE when
different K is selected in Table 15. The experiment is conducted on a 20-step split CIFAR100
with 500 replay instances using ViT as the backbone. Table 15 shows that BaCE achieves the best
performance when K = 5 and the performance is degraded when K = 10. It indicates that selecting
more neighbors is beneficial when K <= 5. However, estimating Effectnew with a large K may
bring noise to the learning process.
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Table 15: The hyper-parameter analysis of K.

Method REPLAY BaCE (K=0) BaCE (K=1) BaCE (K=2) BaCE (K=5) BaCE (K=10)
AverACC 70.68 80.14 81.38 82.11 82.46 81.04
Run Time ×1.0 ×1.2 ×2.5 ×2.7 ×3.2 ×5.2

We compare the runtime of BaCE and REPLAY. The result indicates that BaCE takes a longer training
time than REPLAY. The reason is that the neighbor relationship and the forward passes of neighbors
are computed.

D.2 CONTINUAL TEXT CLASSIFICATION (CONTINUAL TC)

Training Settings. We opt for bert-base-cased (Devlin et al., 2019; Wolf et al., 2019) as the
backbone model for all approaches since its popularity in NLP and the pre-trained weights are
downloaded from Huggingface (Wolf et al., 2019). We train each model for 3 epochs and tune the
batch size in 8, 16, the learning rate of the backbone model in 1e-4, 3e-5, 1e-5. The learning rate of
the final linear classifier is set as 1e-3, and the maximum sequence length is set as 128.

Hyper-parameters In Effectnew, we fix the number of neighbors K = 5 and the weight W0 = 0.95.
In Effectold, we fix α = 2 when no buffer is available and α = 1 when a buffer is available.

Datasets. We use three publicly available topic classification datasets, including AGNews, DBPedia,
and Yahoo (Zhang et al., 2015), which are collected from various domains. Different from de Mas-
son D’Autume et al. (2019), we do not use Yelp and Amazon since their labels are product ratings
from 1-5, which simplifies CIL to Task-Incremental Learning. Besides, we divide DBPedia and
Yahoo into two sub-datasets with disjoint label sets, respectively. In total, we obtained five datasets,
including TC AGNews, DBPedia1, DBPedia2, Yahoo1, and Yahoo2. Since we focus on CIL, we
remove the overlapping labels to ensure the label set between datasets is disjoint. Then, the categories
in each dataset are as follows: AGNews (4 classes including: World, Sports, Business, Sci Tech);
DBPedia1 (6 classes including: Artist, Athlete, OfficeHolder, MeanOfTransportation,Building, Natu-
ralPlace); DBPedia2 (6 classes including: Village, Animal, Plant, Album, Film, WrittenWork); Yahoo1
(3 classes including: Society Culture,Health,Education Reference); Yahoo2 (3 classes including:
Computers Internet, Family Relationships, Politics Government). Following de Masson D’Autume
et al. (2019), we randomly sample an equal number of training samples for each category. Concretely,
each category contains 28,000 training samples and 2,000 test samples. We define the task sequence
as follows: AGNews→DBPedia1→DBPedia2→Yahoo1→Yahoo2.

Baselines. For continual TC, we compare the following strong baselines: LwF (Li & Hoiem, 2017),
EWC (Kirkpatrick et al., 2017), Sparse-ER (de Masson D’Autume et al., 2019), ER (Chaudhry
et al., 2019), MBPA (Sprechmann et al., 2018), MBPA++ (de Masson D’Autume et al., 2019), IDBR
(Huang et al., 2021).

• Sparse-ER (de Masson D’Autume et al., 2019): Sparse-ER replays stored samples at sparse
intervals (e.g. 100 steps).

• MBPA (Sprechmann et al., 2018): MBPA uses stored examples for local adaptation without
sparse experience replay. We set the number of neighbors K = 32 and the number of local
adaptation steps L = 30.

• MBPA++ (de Masson D’Autume et al., 2019): MBPA++ adopts Sparse-ER and MBPA to
learn new knowledge and reuse previously acquired knowledge. The original implementation
of MBPA++ utilizes Sparse-ER, which stores 1% of the total training data seen so far.
However, we find that the performance of Sparse-ER degrades significantly when the buffer
size is fixed and limited. Therefore, we adopt ER for MBPA++ instead of Sparse-ER. We
set the number of neighbors K = 32 and the number of local adaptation steps L = 30.

• IDBR (Huang et al., 2021): IDBR is an information disentanglement-based regularization
method for continual text classification. In its original implementation, the buffer stores a
fixed ratio of all training samples seen so far. For a fair comparison, we fix the buffer size as
100 and 500, respectively, in our experiments. We use the same default hyper-parameters as
in the officially released code in https://github.com/GT-SALT/IDBR.
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Table 16: The results of continual TC. All methods use pre-trained bert-based-cased as the backbone.

Buffer Size Method AverACC (↑) FGT (↓) FWT (↑)

0

SEQ 21.19 87.25 27.97
EWC (Kirkpatrick et al., 2017) 24.84 82.50 28.83
LwF (Li & Hoiem, 2017) 36.17 68.39 38.96
BaCE (Ours) 58.75 30.66 44.05

100

Sparse-ER (de Masson D’Autume et al., 2019) 63.71 34.12 51.90
ER 69.58 26.54 53.56
MBPA (Sprechmann et al., 2018) 61.06 29.78 29.04
MBPA++ (de Masson D’Autume et al., 2019) 74.11 17.64 53.28
IDBR (Huang et al., 2021) 80.82 10.55 52.77
BaCE (Ours) 81.56 9.70 54.04

500

Sparse-ER (de Masson D’Autume et al., 2019) 64.16 33.40 52.13
ER 77.44 16.62 52.60
MBPA (Sprechmann et al., 2018) 61.28 30.66 27.37
MBPA++ (de Masson D’Autume et al., 2019) 78.72 12.70 53.73
IDBR (Huang et al., 2021) 83.12 10.43 53.44
BaCE (Ours) 83.53 8.28 54.21

∞ MTL 86.59 / /
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Figure 20: The evolution of average accuracy of continual TC.
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Results. The result of continual TC is summarized in Table. 16 and Fig. 20. The result indicates that
BaCE outperforms not only CIL methods for language PTMs, including MBPA++ and Sparse-ER,
but also task-specific CIL methods, IDBR. Results.

Table 17: The KNNs in Effectnew on text classification datasets.

Label Text

Input Sample Artist Hong 10 Hong 10 ( Birth name : Kim Hong - Yeol Korean : born on 27 December 1984 in South Korea ) is a male
South Korean B - boy ( also known as Breakdancer ). His accomplishments include two Red Bull BC One individual
titles ( 2006 ) & ( 2013 ) and a Battle of the Year crew title ( 2002 ).

KNN-1 Artist Dave Parsons Dave Parsons ( born David Richard Parsons 2 July 1965 Hillingdon London UK ) is a British bass
guitarist.

KNN-2 Artist Porter Wagoner Porter Wayne Wagoner ( August 12 1927 – October 28 2007 ) was a popular American country music
singer known for his flashy Nudie and Manuel suits and blond pompadour. In 1967 he introduced then - obscure
singer Dolly Parton on his long - running television show and they were a well - known vocal duo throughout the
late 1960s and early 1970s. Known as Mr. Grand Ole Opry Wagoner charted 81 singles from 1954 – 1983. He was
elected to the Country Music Hall of Fame in 2002.

KNN-3 OfficeHolder Daylin Leach Daylin Leach ( born June 23 1961 ) is a Democratic member of the Pennsylvania State Senate who
has represented the 17th senatorial district since 2009. He was previously a member of the Pennsylvania House of
Representatives representing the 149th district from 2003 to 2009. On April 2 2013 he announced his candidacy for
the U. S.

KNN-4 Artist Bebo Norman Jeffrey Stephen Bebo Norman ( born May 29 1973 ) is a contemporary Christian musician from
Columbus Georgia USA. His most successful album to date is Myself When I Am Real which included hit songs
Great Light of the World and Falling Down. Other popular songs by Norman include Disappear Nothing Without
You I Will Lift My Eyes and Borrow Mine. He initially gained popularity when touring with another Christian band
Caedmon’s Call. Norman’s fans call themselves Simpletons.

KNN-5 OfficeHolder James Arciero James Arciero is an American state legislator serving in the Massachusetts House of Representatives.

Label Text

Input Sample Plant Ephedra pedunculata Ephedra pedunculata common name Clap - weed vine Mormon tea or Comida de Vı́vora is a
plant species native to southern Texas and to Mexico as far south as Zacatecas. It grows in sandy or rocky slopes
and outcrops. Most species of Ephedra ( called Mormon tea ) are shrubs but Ephedra pedunculata is a trailing or
clambering woody vine up to 7 m ( 23 feet ) long. Bark is gray becoming cracked with age. Leaves are opposite up
to 3 mm ( 0. 12 inches ) long.

KNN-1 Plant Tetragonia decumbens Tetragonia decumbens commonly known as sea spinach is a coastal shrub native to southern
Africa.

KNN-2 Animal Long - whiskered Owlet The Long - whiskered Owlet ( Xenoglaux loweryi ) is a tiny owl that is endemic to a
small area in the Andean mountains in Amazonas and San Martı́n in northern Peru. It is restricted to cloud forests
with dense undergrowth and epiphytes at about 1890 – 2200 meters ( 6200 – 7220 ft ) above sea level. The Long -
whiskered Owlet is mainly brown with a whitish belly and eyebrow. The large eyes are orange - brown.

KNN-3 Plant Acacia salicina Acacia salicina is a thornless species of Acacia tree native to Australia. Common names include
Cooba Native Willow Willow Wattle Broughton WillowSally Wattle and Black Wattle. It is a large shrub or small
evergreen tree growing 3 to 20 m tall. It has a life span of about 10 – 15 years. In the Northern Hemisphere Acacia
salicina flowers primarily from October to January and the seed pods are often visible from April to July.

KNN-4 Village Chipring Chipring is a village and Village Development Committee in Khotang District in the Sagarmatha Zone of
eastern Nepal. At the time of the 1991 Nepal census it had a population of 1331 persons living in 263 individual
households.

KNN-5 Plant Jacqueshuberia pustulata Jacqueshuberia pustulata is a plant species endemic to Venezuela. It is known only from a
single location along a blackwater stream in the State of Amazonas at an elevations of about 115 m. Jacqueshuberia
pustulata is a tree up to 5 m tall. Stipules are compound with up to 20 pairs of leaflet - like lobes each up to 9 mm
long.

KNN Examples in Effectnew. We provide more KNN examples on text classification datasets in
Table 17.

D.3 CONTINUAL NAMED ENTITY RECOGNITION (CONTINUAL NER)

Training Settings. We use bert-base-cased (Devlin et al., 2019; Wolf et al., 2019) as the backbone
model since its popularity. We train each model for 5 epochs and tune the batch size in 8, 16, the
learning rate of the backbone model in 1e-4, 3e-5, 1e-5. The learning rate of the final linear classifier
is set as 1e-3, and the maximum sequence length is set as 256.

Hyper-parameters In Effectnew, we fix the number of neighbors K = 5 and the weight W0 = 0.95.
In Effectold, we fix α = 2 when no buffer is available and α = 1 when a buffer is available.

Datasets. We select five commonly-used NER datasets for continual NER, including CoNLL2003
(Sang & De Meulder, 2003), I2B2 (Murphy et al., 2010), MIT Restaurant (Liu et al., 2013a), MIT
Movie (Liu et al., 2013b), OntoNotes5 (Hovy et al., 2006). Compared with continual TC, continual
NER is a more practical and challenging scenario because the number of classes between tasks and
samples between classes is imbalanced. For example, the number of entities in OntoNotes5 and
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Table 18: The statistics of the NER datasets

Datasets # Entity Types # Train Sentences # Test Sentences Entities

CoNLL2003 4 11.1 2.8 LOCATION, MISC, ORGANISATION, PERSON

MIT Restaurant 7 7.3 1.5 Amenity, Cuisine, Dish, Hours, Price, Rating, Restaurant Name

I2B2 10 3.0 2.8 AGE, HOSPITAL, IDNUM, MEDICALRECORD,
PHONE, PROFESSION, STATE, STREET, USERNAME, ZIP

MIT Movie 12 7.8 1.9 Actor, Award, Character Name, Director, Genre, Opinion, Origin,
Plot, Quote, Relationship, Soundtrack, Year

OntoNotes5 14 21.0 2.9
CARDINAL, DATE, EVENT, FAC, LANGUAGE, LAW,
MONEY, NORP, ORDINAL, PERCENT, PRODUCT, QUANTITY,
TIME, WORK OF ART

CoNLL2003 is 14 and 4. In the training set of OntoNotes5, there are 10922 DATE entities but only
282 LAW entities. We define the task sequence as follows: OntoNotes5→MIT Movie→I2B2→MIT
Restaurant→CoNLL2003. The dataset statistics are summarized in Table 18.

Baselines. For continual NER, we select the following competitive methods: LwF (Li & Hoiem,
2017), EWC (Kirkpatrick et al., 2017), Sparse-ER (de Masson D’Autume et al., 2019), ER (Chaudhry
et al., 2019), MBPA (Sprechmann et al., 2018), MBPA++ (de Masson D’Autume et al., 2019),
ExtendNER (Monaikul et al., 2021), CFNER (Zheng et al., 2022). For LwF, EWC, Sparse-ER, ER,
MBPA, and MBPA++, we use the same setting as in continual IC and continual TC. For task-specific
methods, the introductions are as follows:

• ExtendNER: ExtendNER is a distillation-based method. Specifically, ExtendNER computes
the cross-entropy loss of entity tokens and the Kullback-Leibler Divergence loss of Other-
class tokens. During training, the sum of the cross-entropy loss and KL divergence loss is
minimized jointly. The temperature of the student model is set as 2.

• CFNER: CFNER is built upon ExtendNER. Unlike ExtendNER, CFNER further computes
the causal effects from both entity and Other-class tokens for mitigating the catastrophic
forgetting caused by Other-class tokens. We use the same default hyper-parameters as in the
official released code in https://github.com/zzz47zzz/CFNER.

Results. The result of continual NER is summarized in Table. 19 and Fig. 21. The result indicates
that BaCE consistently outperforms generic methods, including LwF, EWC, Sparse-ER, ER, MBPA,
and MBPA++, as well as task-specific methods, including ExtendNER and CFNER.

Table 19: The results of continual NER. All methods use pre-trained bert-based-cased as the backbone.

Buffer Size Method AverACC (↑) FGT (↓) FWT (↑)

0

SEQ 19.58 60.40 26.20
EWC Kirkpatrick et al. (2017) 22.65 55.96 27.32
LwF Li & Hoiem (2017) 24.82 52.65 30.80
ExtendNER Monaikul et al. (2021) 50.56 21.78 31.44
CFNER Zheng et al. (2022) 54.10 17.07 34.32
BaCE (Ours) 56.54 15.73 41.73

100

Sparse-ER de Masson D’Autume et al. (2019) 29.83 48.14 28.69
ER 46.49 26.70 33.26
MBPA Sprechmann et al. (2018) 38.56 30.64 26.32
MBPA++ de Masson D’Autume et al. (2019) 45.37 23.56 32.10
ExtendNER Monaikul et al. (2021) 51.69 22.94 37.8
CFNER Zheng et al. (2022) 56.16 14.61 34.87
BaCE (Ours) 58.33 10.97 42.37

500

Sparse-ER de Masson D’Autume et al. (2019) 30.81 46.34 46.34
ER 57.17 13.54 36.98
MBPA Sprechmann et al. (2018) 38.98 28.00 26.11
MBPA++ de Masson D’Autume et al. (2019) 53.96 14.50 36.96
ExtendNER Monaikul et al. (2021) 58.06 13.69 42.60
CFNER Zheng et al. (2022) 60.08 12.76 42.24
BaCE (Ours) 62.18 7.78 43.98

∞ MTL 71.62 / /
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Figure 21: The evolution of average accuracy of continual NER.

Table 20: The KNNs in Effectnew on named entity recognition datasets.

Label Word Sentence

Input Sample B-Location Asia Both sides also exchanged views on relevant problems such as the security situation and
economic development in Asia, the unification of Europe, etc.

KNN-1 B-Location Asia Peres said : “China and Israel are at the two ends of Asia , separated by ’ten thousand crags
and torrents .’

KNN-2 B-Location Asia He said in addition : “We who live in western Asia are gazing at the east with a look of hope
and reverence .

KNN-3 I-Location Asia And if you are in South Asia , perhaps you heard the Radio Canada International test transmis-
sions to your part of the world back on the 8th , 9th , and 10th of November .

KNN-4 B-Location Asia Eh you know we’ve got a very strong military force and deterrent force at work in Asia and
particularly on the Korean peninsula .

KNN-5 B-Location Asia Currently , TGS has its sights set mainly on doing research into diseases which are especially
prevalent in Asia , such as liver and stomach cancers .

Label Word Sentence

Input Sample B-Dish pizza would you be able to find a place that has takeout pizza in my area

KNN-1 B-Cuisine pizza are there any good pizza places around here

KNN-2 B-Dish pizza are there any kid friendly pizza parlors around here

KNN-3 B-Dish pizza are there any pizza places that are still open after midnight less than 10 minutes from here

KNN-4 I-Dish pizza are there any pizzerias on long island that 1 slices of pizza

KNN-5 B-Dish pizza can you find a pizza place
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KNN Examples in Effectnew. We provide more KNN examples on named entity recognition
datasets in Table 20.
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