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ABSTRACT

Regret matching (RM)—and its modern variants—is a foundational online algo-
rithm that has been at the heart of many AI breakthrough results in solving bench-
mark zero-sum games, such as poker. Yet, surprisingly little is known so far in
theory about its convergence beyond two-player zero-sum games. For example,
whether regret matching converges to Nash equilibria in potential games has been
an open problem for two decades. Even beyond games, one could try to use
RM variants for general constrained optimization problems. Recent empirical ev-
idence suggests that they—particularly regret matching+ (RM+)—attain strong
performance on benchmark constrained optimization problems, outperforming
traditional gradient descent-type algorithms.
We show that alternating RM+ converges to an ϵ-KKT point after Oϵ(1/ϵ

4) itera-
tions, establishing for the first time that it is a sound and fast first-order optimizer.
Our argument relates the KKT gap to the accumulated regret, two quantities that
are entirely disparate in general but interact in an intriguing way in our setting, so
much so that when regrets are bounded, our complexity bound improves all the
way to Oϵ(1/ϵ

2). From a technical standpoint, while RM+ does not have the usual
one-step improvement property in general, we show that it does in a certain region
that the algorithm will quickly reach and remain in thereafter. In sharp contrast,
our second main result establishes a lower bound: RM, with or without alternation,
can take an exponential number of iterations to reach a crude approximate solution
even in two-player potential games. This represents the first worst-case separation
between RM and RM+. Our lower bound shows that convergence to coarse cor-
related equilibria in potential games is exponentially faster than convergence to
Nash equilibria.

1 INTRODUCTION

Regret matching is a foundational online algorithm for minimizing regret. It was famously intro-
duced by Hart & Mas-Colell (2000), although its conception can be traced much further back to
the seminal approachability framework of Blackwell (1956), which lay the groundwork for online
learning and regret minimization. As the name suggests, regret matching prescribes playing each ac-
tion with probability proportional to the (nonnegative) regret accumulated by that action. Its appeal
lies in its simplicity and scalability, being both parameter free and scale invariant.

Regret matching—and modern versions thereof—has been at the forefront of equilibrium computa-
tion in massive two-player zero-sum games. A notable variant with strong empirical performance
is regret matching+, introduced by Tammelin (2014); the only difference is that it truncates all neg-
ative coordinates of the regret vector to zero in every iteration. Even so, this variant is typically
far superior than its predecessor, and was a central component in AI poker breakthroughs (Bowling
et al., 2015; Brown & Sandholm, 2017; 2019b; Moravčı́k et al., 2017) and a more recent superhuman
agent for dark chess (Zhang & Sandholm, 2025).

As such, the regret matching family of algorithms has rightfully been the subject of intense study in
contemporary research. Much of this focus has been confined to two-player zero-sum games, where
minimizing regret translates to convergence—of the average strategies—to minimax (equivalently,
Nash) equilibria (Freund & Schapire, 1999). More broadly, in general-sum games, no-regret algo-
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rithms guarantee convergence to the set of coarse correlated equilibria (Moulin & Vial, 1978)—a
more permissive concept than Nash equilibria.

In this paper, we examine the convergence of regret matching and its variants in the seminal class
of potential games, and, more broadly, nonconvex optimization constrained over a product of sim-
plices. Surprisingly little is known about this question even though it was identified early on as an
important open question in this space (Kleinberg et al., 2009; Marden et al., 2007). Recent empir-
ical evidence brings this question to the fore again: Tewolde et al. (2025) showed that the regret
matching family—and especially regret matching+—attains strong performance on a benchmark
suite of constrained optimization problems, significantly outperforming gradient descent-type algo-
rithms. Yet, there is no theory to suggest that regret matching will even asymptotically converge to
approximate KKT points in constrained optimization, which are tantamount to Nash equilibria when
dealing specifically with potential games. We fill this gap in this paper.

1.1 OUR RESULTS

We analyze the convergence of regret matching (RM) and regret matching (RM+) in the general class
of (nonconvex) optimization problems constrained over a product of probability simplices. This
encompasses as a special case Nash equilibria in potential games when the objective is multilinear;
more broadly, to have a unifying treatment of both settings, we think of each probability simplex as
being controlled by a single player who is observing the corresponding part of the gradient.

We mostly focus on the alternating version of RM+, whereby players update their strategies one after
the other, akin to coordinate descent. Our main result for RM+ is summarized below.
Theorem 1.1. Alternating RM+ converges to an ϵ-KKT point of any optimization problem over a
product of simplices after Oϵ(1/ϵ

4) iterations.

This theorem confirms that RM+ is a sound and efficient first-order optimizer, lending further cre-
dence to the empirical results of Tewolde et al. (2025). We hope that Theorem 1.1 will help cement
RM+ in the optimization arsenal going forward.

Our argument proceeds by parameterizing the rate of convergence of RM+ as a function of the
accumulated regret, so much so that if the regret with respect to each individual simplex remains
bounded, the rate is improved all the way to T−1/2.
Theorem 1.2. Suppose that the regret of RM+ on each individual simplex grows as at most Tα for
some α ∈ [0, 1/2]. Then RM+ converges to an ϵ-KKT point after Oϵ(1/ϵ

2/1−α) iterations.

RM+ always guarantees regret growing as
√
T , so Theorem 1.1 is implied by Theorem 1.2. What

makes the latter theorem surprising is that, in general, regret is a fundamentally disparate property
compared to KKT gap: as we point out in Proposition 3.2, a sequence can incur zero regret while
having an Ω(1) KKT gap in each iteration. Even so, Theorem 1.2 directly relates the KKT gap in
terms of the regret. In particular, the non-asymptotic rate of Theorem 1.1 is a consequence of the
fact that RM+ has the no-regret property! In the special case of potential games, regret is known to
bound the rate of convergence to coarse correlated equilibria; Theorem 1.2 shows for the first time
that regret can also dictate the rate of convergence to Nash equilibria.

On a similar vein, a further important consequence of Theorem 1.2 is that, in symmetric potential
games, simultaneous RM+ converges under a symmetric initialization.
Corollary 1.3. Simultaneous RM+ converges to an ϵ-Nash equilibrium of any symmetric potential
game. Furthermore, if convergence to CCE happens at a rate of T−(1−α), for some α ∈ [0, 1/2], the
rate of convergence to Nash equilibria is no slower than T− 1−α

2 .

From a technical standpoint, the key challenge is that RM+ does not have a one-step improvement
property: even if one initializes RM+ close to a KKT point, RM+ can still grossly overshoot. And,
of course, it is a parameter-free algorithm, so the usual treatment of gradient descent-type algo-
rithms that relies on appropriately tuning the learning rate falls short. In this context, our starting
observation is that, at least when the utility function is linear, RM+ is bound to improve the utility,
although the improvement is inversely proportional to the norm of the regret vector (Lemma 3.3).
This key property already suffices to show that alternating RM+ will converge to Nash equilibria in
potential games. For the more challenging setting where the objective is not multilinear, we first

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000 100000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

KK
T 

ga
p

Regret matching

0 50 100 150 200 250
Iteration

Regret matching +

Figure 1: Illustration of our main results: RM+ always converges fast to a KKT point while RM can
take exponential time even in two-player identical-interest games, constructed in Section 4.

show that one-step improvement holds conditional on the norm of the regret vector being sufficiently
large (Lemma 3.7). To conclude the argument, we combine this property with the crucial insight
that the ℓ2 norm of the regret vector is monotonically increasing proportionally to the KKT gap
(Lemma 3.8). This means that RM+ will never get stuck in a cycle: the regret vector would quickly
grow in norm, at which point the one-step improvement promised by Lemma 3.7 kicks in.

Does RM share the same convergence properties as RM+? As a reminder, the only difference is that
RM refrains from truncating negative regrets to zero. Even so, we find that this seemingly innocuous
difference gives rise to an exponential gap in the performance of RM vis-à-vis RM+, manifested even
in two-player identical-interest games—a special case of potential games (Figure 1).
Theorem 1.4. There is a two-player m × m identical-interest game where RM, with or without
alternation, requires mΩ(m) iterations to converge to an m−Θ(1)-approximate Nash equilibrium.

This is the first worst-case separation—let alone an exponential one—between RM and RM+. Indeed,
in zero-sum games, it is known that RM and RM+ both attain a rate no faster than T−1/2 (Farina et al.,
2023), even though RM+ typically performs much better in practice. Theorem 1.4 provides further
justification for opting for RM+ instead of RM, albeit in a fundamentally different setting.

The basic flaw of RM that underpins Theorem 1.4 is that, even with a linear utility, it is not guar-
anteed to improve the utility even when it has a large best-response gap; specifically, as we show
in Lemma 3.6, the improvement is conditional on a good-enough action having nonnegative re-
gret. But herein lies the problem: it could take many iterations before the regret resurfaces to being
positive. What happens in the construction behind Theorem 1.4 is that it takes longer and longer—
exponentially so—for the regret of the unique good-enough action to be positive; before then, RM is
entirely stalled without making any progress. At the same time, RM is bound to converge to the set
of coarse correlated equilibria (CCE) at a rate of T−1/2, simply because it always has the no-regret
property. This leads to the following interesting consequence.
Corollary 1.5. There is a class of potential games in which RM converges to an ϵ-CCE in Oϵ(1/ϵ

2)
rounds but it takes exponentially many rounds to converge to an approximate Nash equilibrium.

We defer further discussion on related work in Appendix A.

2 PRELIMINARIES

Normal-form games Our first key focus in this paper is on potential games, which we repre-
sent in the usual normal form. Here, we have n players, each of whom is to select an action
ai from a finite set Ai, with mi := |Ai| and m = max1≤i≤n mi. Under a joint action profile
(a1, . . . , an) ∈ A1 × · · · × An, each player i ∈ [n] receives a payoff given by a utility function
ui : (a1, . . . , an) 7→ R with range bounded by 1. A player i ∈ [n] can randomize by specifying a
mixed strategy xi ∈ ∆(Ai) := {xi ∈ RAi

≥0 :
∑

ai∈Ai
xi[ai] = 1}. Player i strives to maximize

its expected utility, given by ui(x1, . . . ,xn) :=
∑

(a1,...,an)
ui(a1, . . . , an)

∏n
i′=1 xi′ [ai′ ]. A key
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fact is that the expected utility is multilinear, in that ui(x1, . . . ,xn) = ⟨xi,ui(x−i)⟩ for some
utility vector ui(x−i) ∈ RAi that does not depend on xi; here and throughout, we use the short-
hand notation x−i = (x1, . . . ,xi−1,xi+1, . . . ,xn), while ⟨·, ·⟩ denotes the inner product. Further,
BRGapi(ui) := maxx′

i∈∆(Ai)⟨x′
i − xi,ui⟩.

The predominant solution concept in game theory is the Nash equilibrium (Nash, 1950).
Definition 2.1. A strategy profile (x1, . . . ,xn) ∈ ∆(A1)× · · · ×∆(An) is an ϵ-Nash equilibrium
if for any player i ∈ [n] and unilateral deviation x′

i ∈ ∆(Ai), ui(x
′
i,x−i) ≤ ui(xi,x−i) + ϵ.

A standard relaxation of the Nash equilibrium is the coarse correlated equilibrium (Definition B.1),
which can be attained by no-regret algorithms (Proposition B.2). While finding a Nash equilibrium
is hard even in two-player general-sum games (Daskalakis et al., 2008; Chen et al., 2009), our focus
is on potential games—equivalently, congestion games (Monderer & Shapley, 1996).

Potential games This is a seminal class that goes back to the work of Rosenthal (1973). The
defining property is the admission of a global, player-independent function—the potential—whose
difference reflects the benefit of any unilateral deviation.
Definition 2.2 (Potential game). An n-player game is a potential game if there exists a function
Φ : ∆(A1) × · · · × ∆(An) → R such that for any player i ∈ [n] and strategies xi,x

′
i ∈ ∆(Ai),

Φ(x′
i,x−i)− Φ(xi,x−i) = ui(x

′
i,x−i)− ui(xi,x−i).

A special case of a potential game worth noting is an identical-interest game, which means that
u1(x1, . . . ,xn) = · · · = un(x1, . . . ,xn) for all x1, . . . ,xn; in the presence of only two players,
this simplifies to u1(x1,x2) = ⟨x1Ax2⟩ = u2(x1,x2) for a common payoff matrix A ∈ RA1×A2 .

A (mixed) Nash equilibrium in potential games is amenable to (projected) gradient descent, but is
likely hard to compute when the precision ϵ > 0 is exponentially small (Babichenko & Rubinstein,
2021). Our focus will be on algorithms whose complexity is polynomial in 1/ϵ.

Constrained optimization More broadly, beyond potential games, we are interested in computing
Karush-Kuhn-Tucker (KKT) points of a function u : X → R, where X := ∆(A1) × · · · ×∆(An).
We assume that u, which is to be maximized, is differentiable over an open set X̂ ⊃ X and L-
smooth, meaning that ∥∇u(x) − ∇u(x′)∥2 ≤ L∥x − x′∥2 for all x,x′ ∈ X ; ∥x∥2 :=

√
⟨x,x⟩

denotes the (Euclidean) ℓ2 norm. We make the normalization assumption |⟨xi−x′
i,∇xiu(x)⟩| ≤ 1

for all i ∈ [n] and xi,x
′
i ∈ ∆(Ai). The goal is to minimize KKT gap, which we measure by

KKTGap : X ∋ x 7→ max
x′∈X

⟨x′ − x,∇u(x)⟩ =
n∑

i=1

BRGapi(∇xiu(x)). (1)

A point with small KKT gap per (1) is also referred to as an approximate first-order stationary
point, which is an approximate fixed point of the (constrained) gradient descent mapping x 7→
ΠX (x+ η∇u(x)), where η ≤ 1/L and ΠX (·) is (Euclidean) projection mapping. A potential game
can be seen as the special case in which u is multilinear.1 One class of problems that fits in this
framework are imperfect-recall games; we point to Tewolde et al. (2025) and the references therein.

Online learning and regret matching Moving on, we now introduce RM and RM+ within the
framework of online learning. Here, a learner interacts with an environment over a sequence of T
rounds. In each round t ∈ [T ], the learner first elects a mixed strategy x ∈ ∆(A). The environment
in turn specifies a linear utility function u(t) : x 7→ ⟨x,u(t)⟩ for some utility vector u(t) ∈ RA; u(t)

has a range bounded by 1. In the full-feedback setting, u(t) is revealed to the learner at the end of
the round. The performance of the learner in this online environment is evaluated through regret,

Reg(T ) := max
x′∈∆(A)

T∑
t=1

⟨x′ − x(t),u(t)⟩. (2)

Two algorithms for minimizing regret on the simplex are regret matching (RM) and regret matching+
(RM+), formally defined in Algorithms 1 and 2. They both prescribe playing an action with prob-
ability proportional to the nonnegative regret accumulated by that action. Their only difference is

1We caution that if we use the KKT gap per (1) in the special case of potential games we get the sum of the
players’ deviation benefits, while the approximation in the Nash equilibrium is defined with respect to the max.
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that RM+ always truncates the regret to 0 (Line 11); in that line, 1 denotes the all-ones vector, whose
dimension is omitted as it is clear from the context, and [·]+ := max(0, ·) is the nonnegative part.

Proposition 2.3 (Zinkevich et al., 2007; Farina et al., 2021). For any sequence of utilities (u(t))Tt=1,
both RM and RM+ guarantee that the ℓ2 norm of [r(T )]+ is at most

√
mT .

In particular, for both RM and RM+, Reg(T ) ≤ ∥[r(T )]+∥∞ ≤ ∥[r(T )]+∥2 ≤
√
mT .

Algorithm 1: Regret matching (RM)

1 Initialize cumulative regrets r(0) ← 0;
2 Initialize strategy x(0) ∈ ∆(A);
3 for t = 1, . . . , T do
4 Set θ(t) ← [r(t−1)]+;
5 if θ(t) ̸= 0 then
6 Compute x(t) ← θ(t)

/∥θ(t)∥1;
7 else
8 x(t) ← x(t−1);
9 Output strategy x(t) ∈ ∆(A) ;

10 Observe utility u(t) ∈ RA;
11 r(t) ← r(t−1) + u(t) − ⟨x(t),u(t)⟩1;

Algorithm 2: Regret matching+ (RM+)

1 Initialize cumulative regrets r(0) := 0;
2 Initialize strategy x(1) ∈ ∆(A);
3 for t = 1, . . . , T do
4 Set θ(t) ← r(t−1);
5 if θ(t) ̸= 0 then
6 Compute x(t) ← θ(t)

/∥θ(t)∥1;
7 else
8 x(t) ← x(t−1);
9 Output strategy x(t) ∈ ∆(A) ;

10 Observe utility u(t) ∈ RA;
11 r(t) ← [r(t−1)+u(t)−⟨x(t),u(t)⟩1]+;

Simultaneous and alternating updates We are interested in the convergence of RM and RM+

when used by all players; in the constrained optimization setting, we think of having one player
acting on each simplex, in direct correspondence with potential games. In this setting, the sequence
of utilities (u

(t)
i )Tt=1 given as input to player i ∈ [n] is determined by the strategies of the other

players. If the updates are simultaneous, we have u
(t)
i = ∇xi

u(x(t)) for each player i ∈ [n]. In the
alternating setting, we first fix a precision ϵ > 0. We go through the players in a round-robin fashion
i = 1, . . . , n. For each i ∈ [n], we first compute u

(t)
i = ∇xiu(x

(t+1)
i′<i ,x

(t)
i′≥i). If the best-response

gap is already at most ϵ, we refrain from updating that player. That is, x(t+1)
i := x

(t)
i ; this is a lazy

version of the update. Otherwise, the player updates its strategy to x
(t+1)
i using u

(t)
i . Alternation

speeds up performance, at least in zero-sum games (Tammelin, 2014), and has been the subject of
much recent research (Wibisono et al., 2022; Cevher et al., 2023).

3 CONVERGENCE OF REGRET MATCHING+

In this section, we analyze the convergence of RM+ in potential games (Section 3.1), and more
broadly, constrained optimization (Section 3.2). A central theme in our analysis of RM and RM+ is a
recurring connection between regret and convergence to KKT points.

Before we proceed, it is worth highlighting that, in general, the no-regret property is fundamentally
different from convergence to KKT points in nonconvex problems. To begin with, we point out that
when the underlying function to be maximized, u, is concave, then the no-regret property does imply
convergence to a global optimum, from Jensen’s inequality.
Proposition 3.1 (Under concavity, no-regret implies convergence). Let u be a smooth con-
cave function. If an online algorithm observes the sequence of utilities (∇u(x(t)))Tt=1, then
1
T

∑T
t=1 u(x

(t)) ≥ maxx∈X u(x)− 1
T Reg

(T ), where Reg(T ) is the regret of the algorithm.

Thus, if the algorithm has vanishing average regret, u(x(t)))→ maxx∈X u(x). But beyond concave
problems, no-regret algorithms do not necessarily guarantee convergence even to a KKT point.
Proposition 3.2. For any T ∈ N with T = 0 mod 4, there exists a polynomial function u in [0, 1]
and a sequence of points (x(t))Tt=1 such that

• the regret of the sequence with respect to (∇u(x(t)))Tt=1 is zero, while

5
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Figure 2: The example corresponding to Proposition 3.2, demonstrating that having zero regret, let
alone sublinear, has no implications concerning convergence in terms of KKT gap.

• every point in the sequence has an Ω(1) KKT gap with respect to the function u.

This is based on the 4-cycle 0.6 → 0.7 → 0.4 → 0.3 → 0.6. If the gradients observed at those
points are 0.6 7→ 2, 0.7 7→ −1, 0.4 7→ −2, 0.3 7→ 1, it follows that i)

∑T
t=1∇u(x(t)) = 0 and

ii)
∑T

t=1 x
(t)∇u(x(t)) = 0, which in turn implies that this sequence incurs zero regret. But, by

construction, the gradients at those interior points have a large magnitude, which in turn implies that
the KKT gap is large. (That the average is a local minimum is coincidental.) A polynomial consistent
with the above gradients is 90x−298.3̄x2+416.6̄x3−208.3̄x4, leading to Proposition 3.2; we note
that the above sequence of iterates is not realizable through an algorithm such as gradient descent.

3.1 POTENTIAL GAMES

We first analyze convergence in potential games. A key property, which paves the way for The-
orem 3.4, is that, for a fixed utility vector, RM+ has a one-step improvement property; the lemma
below takes the perspective of a single, arbitrary player in the game.
Lemma 3.3 (One-step improvement for RM+). For any r ∈ RA

≥0 and u ∈ RA, we define x :=
r/∥r∥1; if r = 0, x ∈ ∆(A) can be arbitrary. If r′ := [r + u− ⟨x,u⟩1]+ ̸= 0 and x′ := r′

/∥r′∥1,

⟨x′ − x,u⟩ ≥ 1

∥r′∥1

(
max
a∈A

u[a]− ⟨x,u⟩
)2

=
1

∥r′∥1
BRGap(u)2. (3)

If r′ = 0, then ⟨x,u⟩ = ⟨x′,u⟩ ≥ maxa∈A u[a].

The left-hand side of (3) reflects the improvement in utility obtained by updating x to x′.
maxa∈A u[a] − ⟨x,u⟩ is the best-response gap of x with respect to u. Lemma 3.3 implies that
the utility is monotonically increasing—unless the current strategy is already a best response to u.
Furthermore, so long as the regret vector is small enough, the improvement is bound to be substan-
tial, being proportional to the squared best-response gap. It is worth noting that Lemma 3.3 holds
no matter the initial regret vector r, subject to r ∈ R≥0; this invariance always holds for RM+ (by
definition of the algorithm in Line 11), but that is not so for RM (cf. Lemma 3.6).

The proof of Lemma 3.3 proceeds by expressing (3) in terms of the regret vectors, and appears
in Appendix C.1. Furthermore, as we point out in Lemma C.4, Lemma 3.3 is in a certain sense tight.

Convergence in potential games We now employ Lemma 3.3 to show that alternating RM+

quickly converges to approximate Nash equilibria in potential games. Using the fact that the
game admits a potential function (per Definition 2.2), we have that for any round t ∈ [T ],
Φ(x

(t+1)
1 , . . . ,x

(t+1)
n ) − Φ(x

(t)
1 , . . . ,x

(t)
n ) ≥

∑n
i=1

1

∥r(t)
i ∥1

BRGapi(u
(t)
i )21{BRGapi(u

(t)
i ) > ϵ},

where we used Lemma 3.3 together with the assumption that only players with more than ϵ best-
response gap update their strategies. The telescopic summation over t = 1, . . . , T yields

Φrange ≥
T∑

t=1

n∑
i=1

1

∥r(t)i ∥1
BRGapi(u

(t)
i )21{BRGapi(u

(t)
i ) > ϵ}, (4)

6
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where Φrange denotes the range of the potential function. If in every round t ∈ [T ] there is a player
i ∈ [n] such that BRGapi(u

(t)
i ) > ϵ, we have Φrange ≥

∑T
t=1

1
m

√
t
ϵ2 ≥ 1

mϵ2
√
T , where we used

that ∥r(t)i ∥1 ≤
√
m∥r(t)i ∥2 ≤ m

√
T (Proposition 2.3). We thus arrive at the following result.

Theorem 3.4. In any potential game, alternating RM+ requires at most 1 + (mΦrange)
2
/ϵ4 rounds to

converge to an ϵ-Nash equilibrium. More broadly, if ∥r(t)i ∥1 ≤ C(n,m)tα for all i ∈ [n] and some
α ∈ [0, 1/2], it requires 1 + (C(n,m)Φrange)

β
/ϵ2β rounds, where β := 1/1−α.

This provides a convergence rate of T−1/4 to Nash equilibria. Notwithstanding Proposition 3.2, an
intriguing aspect of Theorem 3.4 is that it connects convergence to Nash equilibria to the regret.
In particular, if RM+ did not have the no-regret property, meaning that ∥r(t)i ∥1 = Ω(t), we could
only prove an exponential bound since

∑T
t=1

1/t = Θ(log T ). At the other end of the spectrum,
when each player accumulates constant regret, Theorem 3.4 implies an improved convergence rate
of T−1/2. It is an open question whether RM+ can experience Ω(

√
T ) regret in potential games.

Faster rate using discounting Next, we refine Theorem 3.4 through the use of discounted RM+,
which means that the regret vector is multiplied by a discount factor α(t) ∈ (0, 1] in each round;
we spell out DRM+ in Algorithm 3. This class of algorithms was introduced by Brown & Sand-
holm (2019a), who showed that discounting drastically improves empirical performance in zero-
sum games. Our next result shows that DRM+ with geometric discounting, α(t) = 1 − γ for some
γ > 0, attains a rate of T−1/2 to Nash equilibria in potential games; the basic reason is that DRM+

maintains the norm of the regret vector bounded by
√

m/γ (Lemma C.2 and Corollary C.3), while
still enjoying the one-step improvement property of Lemma 3.3.

Corollary 3.5. In any potential game, alternating DRM+ with discount factor 1− γ < 1 requires at
most 1 + mΦrange/ϵ2√γ rounds to converge to an ϵ-Nash equilibrium.

Regret matching Before we switch gears to the more general constrained optimization setting, it
is instructive to examine the behavior of RM. It turns out that one can adjust Lemma 3.3, but with a
crucial caveat: the one-step improvement property is now only conditional, as specified below.

Lemma 3.6. For any r ∈ RA
≥0 and u ∈ RA, we define x := θ/∥θ∥1, where θ := max(r,0); if θ =

0, x ∈ ∆(A) can be arbitrary. If r′ := r+u−⟨x,u⟩1 and x′ := θ′
/∥θ′∥1, where θ′ = max(r′,0) ̸=

0, we have ⟨x′ − x,u⟩ ≥ 1
∥θ′∥1

∥θ′ − θ∥22 ≥ 1
∥θ′∥1

(maxa∈A u[a]− ⟨x,u⟩)2 1 {r[a] ≥ 0}, where
a ∈ argmaxa′∈A u[a′]. If θ′ = 0, then ⟨x,u⟩ = ⟨x′,u⟩ ≥ maxa∈A u[a].

We see that RM’s one-step improvement is conditional on the regret accumulated thus far by a best-
response action to be nonnegative. This is not an artifact of our analysis; it alludes to a fundamental
discrepancy between RM and RM+ that will be formally established later on (Theorem 4.4). The
main issue with RM can be seen as follows. If we consider a utility vector u = (1, 0) and the initial
regret vector is, say, (−R,R), it will take RM many iterations—proportionally to the magnitude of
R > 0—to finally change strategies, although this will eventually happen with a stationary utility.

3.2 NONLINEAR OPTIMIZATION AND SIMULTANEOUS UPDATES

We now treat the more general setting where we are maximizing an L-smooth function u.

Single simplex We begin with the special case of a single probability simplex, X = ∆(A). Our
first goal is to adapt Lemma 3.3. The key challenge is that RM+ does not have a one-step improve-
ment, unlike algorithms such as gradient descent (for a small enough learning rate), even if one
initializes RM+ close to a KKT point. But we observe that if the norm of the regret vector is large
enough—having small regrets is an obstacle here, in contrast to Section 3.1—we are guaranteed a
one-step improvement in terms of the value of the function (Lemma 3.7).

To do so, we will use the basic quadratic bound, which yields u(x′) ≥ u(x) + ⟨∇u(x),x′ − x⟩ −
L
2 ∥x − x′∥22; we think of x′ as the updated strategy starting from x. Using a slight refinement
of Lemma 3.3, we first have the lower bound ⟨x′ − x,∇u(x)⟩ ≥ 1

∥r′∥1
∥r − r′∥22 (Lemma C.5).
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Also, we observe that ∥x− x′∥1 ≤ ∥r − r′∥1
(

1
∥r∥1

+ 1
∥r′∥1

)
(Lemma C.6). We are now ready to

establish a conditional one-step improvement when the regret vector has a sufficiently large norm.

Lemma 3.7. Let u be an L-smooth function over ∆(A). For any r ∈ RA
≥0 with r ̸= 0, we

define x := r/∥r∥1. Further, let r′ := [r + ∇u(x) − ⟨x,∇u(x)⟩1]+ ̸= 0 and x′ := r′
/∥r′∥1. If

∥r′∥2 ≥ max{2m, 9mL}, then u(x′)− u(x) ≥ 1
2∥r′∥1

(
maxx⋆∈∆(A)⟨x⋆ − x,∇u(x)⟩

)2
.

Lemma 3.7 only shows a one-step improvement so long as the norm of the regret vector is large
enough. But how can we guarantee that? It would seem possible that RM+ ends up cycling in
perpetuity under a regret vector with small norm. The following lemma shows that cannot happen.

Lemma 3.8. For any t, RM+ guarantees ∥r(t)∥22 ≥ ∥r(t−1)∥22+∥[g(t)]+∥22, where g(t) := ∇u(x)−
⟨∇u(x),x(t)⟩1 is the instantaneous regret at round t.

In particular, ∥r(t)∥22 ≥ ∥r(t−1)∥22+∥[g(t)]+∥22 ≥ ∥r(t−1)∥22+KKTGap(x(t))2 since ∥[g(t)]+∥22 ≥
KKTGap(x(t))2. Not only is the ℓ2 norm of the regret vector nondecreasing, but the increase is at
least KKTGap(x(t))2 at each round t ∈ [T ]. Combining with Lemma 3.7 yields the following.

Theorem 3.9. Let u be an L-smooth function in ∆(A) ⊂ Rm with range urange and R :=
max{2m, 9mL}. RM+ requires at most 1 + (m(2urange+R2))2/ϵ4 rounds to reach an ϵ-KKT point.

Simultaneous updates in symmetric potential games We now use Theorem 3.9 to prove conver-
gence of simultaneous RM+ in symmetric potential games; our earlier result in Theorem 3.4 shows
convergence for arbitrary potential games but for the alternating version. The symmetry assump-
tion here means that A1 = A1 = · · · = An and u1(x−1) = u2(x−2) = · · · = un(x−n) when
x1 = x2 = · · · = xn. It is further assumed that all players initialize from the same strategy, so
that the previous property implies that, inductively, it will be the case that x(t)

1 = x
(t)
2 = · · · = x

(t)
n

for all t under simultaneous updates because players observe exactly the same utilities. A simple
example of this is a two-player game with a common, symmetric payoff matrix A = A⊤. Then
u1(x2) = Ax2 and u2(x1) = Ax1, so the previous assumption is satisfied.

Corollary 3.10. In any symmetric potential game, simultaneous RM+ converges to an ϵ-Nash equi-
librium after Oϵ(1/ϵ

4) rounds. In particular, if convergence to the set of CCE happens at a rate of
T−α, for some α ∈ [0, 1/2], the rate of convergence to Nash equilibria is at least T− 1−α

2 .

Multiple simplices We now have the necessary tools to analyze the general case where we maxi-
mize u over a product of simplices. Similarly to Theorem 3.4, we run alternating RM+, thinking of
every individual simplex as being controlled by a single player; this is akin to coordinate descent.

Theorem 3.11. Let u be an L-smooth function in ∆(A1)×· · ·×∆(An) with range urange and R :=√∑n
i=1 max{2mi, 9miL}2. Alternating RM+ requires at most 1 + (mn2(2urange+R2))2/ϵ4 rounds to

reach an ϵ-KKT point of u.

4 EXPONENTIAL LOWER BOUNDS FOR REGRET MATCHING

In stark contrast, we show that RM, with or without alternation, can take exponentially many rounds
to reach an approximate Nash equilibrium even in two-player identical-interest games. The under-
lying class of games is based on the one considered by Panageas et al. (2023), who treated fictitious
play. Specifically, for m = 4, 6, . . . and k ∈ N we define the matrix Am,k per the recursion

Rm×m ∋ Am,k :=


k + 1 0 · · · 0 0
0 k + 4
... Am−2,k+4

...
0 0

k + 2 0 · · · 0 k + 3

 , where A2,k :=

[
k + 1 0
k + 2 k + 3

]
.
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(An illustrative example appears in Appendix C.2.) For any even dimension m, we define A :=
Am,0, with maximum entry 2m− 1. Further, we define, for 1 ≤ a1 ≤ m+ 1 and 1 ≤ a2 ≤ m+ 1,

B[a1, a2] :=


A[a1, a2] if a1 ≤ m and a2 ≤ m;

1/2 if (a1 = m+ 1 and a2 = 1) or (a1 = 1 and a2 = m+ 1);

0 otherwise.
(5)

The action sets of the two players are A1 = [m + 1] = A2. We assume that RM is initialized to
the pure strategy (m + 1,m + 1). We recall that one round includes one update from each player,
which for now is assumed to be made in a simultaneous fashion. For a payoff k ∈ N, we denote by
a1(k), a2(k) ∈ [m] the row and column index, respectively, corresponding to k in the matrix A.

We begin by stating a basic invariance concerning the behavior of RMwhen executed on the game (5).
Property 4.1. After the first round both players play the first action. Thereupon, either the players
play with probability 1 (a1(k), a2(k)), or, when k is odd, only Player 1 (respectively, Player 2 when
k is even) mixes between a1(k) and a1(k + 1) (respectively, a2(k) and a2(k + 1)). If a row or a
column stops being played, it will never be played henceforth. An action profile (a1(k+1), a2(k+1))
is played with positive probability only if (a1(k), a2(k)) was played at some previous round.

We prove this property inductively in Appendix C.2. We take it for granted in what follows.

In accordance with Property 4.1, for k ≥ 2, we define tk to be the first round in which the action
profile corresponding to payoff k is played with positive probability and tk the last round before
the action profile corresponding to payoff k + 1 is played with positive probability. We then define
Tk := tk − tk + 1 to be the number of rounds corresponding to the period [tk, tk].

We also define A1(k) := {a1(k′) : 2m− 1 ≥ k′ ≥ k} and A2(k) := {a2(k′) : 2m− 1 ≥ k′ ≥ k}.
These are the rows and columns, respectively, that will be played after stop playing the action profile
corresponding to k. The next crucial lemma shows that before an action becomes desirable, it will
have accumulated very negative regret in the previous rounds.

Lemma 4.2. For any even k ≥ 4, let r(tk−2)
1 [a1] be the regret of Player 1 with respect to any action

a1 ∈ A1(k). Then r
(tk−2)
1 [a1] ≤ −

∑k−2
l=2 (l − 1)Tl. Similarly, for any odd k ≥ 5, if r(tk−2)

2 [a2] is

the regret of Player 2 with respect to any action a2 ∈ A2(k), r
(tk−2)
2 [a2] ≤ −

∑k−2
l=2 (l − 1)Tl.

At the same time, when an action has very negative regret, it will take a long time before that action
gets played with positive probability, as formalized below.

Lemma 4.3. For any even k ≥ 4, Tk ≥ − 1
2r

(tk−1)
2 [a2(k + 1)]. Similarly, for every odd k ≥ 5,

Tk ≥ − 1
2r

(tk−1)
1 [a1(k + 1)].

By Lemmas 4.2 and 4.3, it follows that Tk ≥
∑k−1

l=2
l−1
2 Tl for any k ≥ 4. By the inductive basis,

we know that T3 ≥ 1. As a result, Tk ≥ k−2
2 Tk−1 ≥ k−2

2
k−3
2 . . . 2

2T3 ≥ (k−2)!
2k−3 for all k ≥ 4.

Moreover, it takes as least T2m−2 rounds to converge to an NE with approximation gap at most
1/2m+2 (Lemma C.10). We thus arrive at the following exponential lower bound.

Theorem 4.4. Simultaneous RM requires mΩ(m) rounds to converge to a 1
2m+2 -Nash equilibrium.

The same reasoning applies to alternating RM; unlike Section 3, here we update each player even if
the best-response gap is arbitrarily small, although this does not qualitatively affect the lower bound.

Corollary 4.5. Alternating RM requires mΩ(m) rounds to converge to a 1
2m+2 -Nash equilibrium.

5 FUTURE RESEARCH

Our paper sheds new light on the convergence properties of regret matching(+) in constrained op-
timization problems, and potential games in particular. We showed that alternating RM+ is a sound
and fast first-order optimizer, while, on the flip side, RM can be exponentially slow even in poten-
tial games. Several interesting questions remain open. Does simultaneous RM+ always achieve fast
convergence? And does RM asymptotically converge even under alternating updates?

9
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A FURTHER RELATED WORK

Much of the existing research on regret matching revolves around zero-sum games. Many variants
have been proposed over the years to speed up its convergence (Xu et al., 2024b; Cai et al., 2025;
Chakrabarti et al., 2024; Meng et al., 2025; Farina et al., 2021; Tammelin, 2014; Brown & Sandholm,
2019a). Some notable variations that have considerably improved performance are predictive RM
and RM+ (Farina et al., 2021), which rely on predicting the next utility, and discounted RM and
RM+ (Brown & Sandholm, 2019a; Zhang et al., 2024; Xu et al., 2024a), where one dynamically
discounts the accumulated regret; in a similar vein, our work shows that a discounted variant of
RM+ achieves a better convergence upper bound than RM+ in our setting (Corollary 3.5). It must be
stressed that the focus of all that prior work was on zero-sum games. Constrained optimization is a
fundamentally different problem. For one, in zero-sum games, it is only the average strategy of RM
and RM+ that converges, not the last iterate (Farina et al., 2023).

The recent paper of Tewolde et al. (2025) demonstrated that the regret matching family is a
formidable first-order optimizer in constrained optimization problems. In particular, their focus was
on (single-player) imperfect-recall problems, which are tantamount to general polynomial optimiza-
tion problems over a product of simplices. Interestingly, many of the trends observed in zero-sum
games are actually reversed in constrained optimization. For example, the predictive versions of
RM and RM+ generally performed worse than their non-predictive counterparts. One trend that did
persist was the superiority of RM+ over RM. It is also worth mentioning an earlier work by Ma &
Gerber (2014) that also reported fast empirical convergence in a certain class of congestion games.
Yet, there was hitherto no theoretical understanding of those algorithms in this setting. The main
precursors of our work are the paper of Hart & Mas-Colell (2003), which established asymptotic
convergence in discrete time but for a somewhat artificial variant of regret matching, and the paper
of Marden et al. (2007), which analyzed asymptotically a certain variant of regret matching that
aggressively discounts the regrets.

An interesting result that sheds light on RM and RM+ is by Farina et al. (2021), who showed that RM
can be obtained by running follow the regularized leader (FTRL) in a certain lifted space, whereas
RM+ can be obtained through mirror descent (MD) in the same space; this is despite the fact that, un-
like FTRL and MD, RM and RM+ are both parameter free. On a related note, Cai et al. (2024) showed
that only forgetful algorithms—closer to MD than to FTRL—can attain fast last-iterate convergence.
Our exponential separation of RM and RM+ echoes their finding, although in a different setting and
class of algorithms.

B FURTHER BACKGROUND

Coarse correlated equilibria For completeness, we provide the definition of a coarse correlated
equilibrium (Moulin & Vial, 1978), which is a relaxation of correlated equilibria (Aumann, 1974).
The key connection that relates to our results is that if all players in a normal-form game have
sublinear regret, the average correlated distribution of play converges to the set of coarse correlated
equilibria. In particular, the rate of convergence is driven by the maximum of the players’ regrets
(Proposition B.2).

Definition B.1 (Coarse correlated equilibrium). Consider an n-player game in normal form. A
correlated distribution µ ∈ ∆(A1 × · · · × An) is an ϵ-coarse correlated equilibrium (CCE) if for
any player i ∈ [n] and deviation a′i ∈ Ai,

E
(a1,...,an)∼µ

ui(a1, . . . , an) ≥ E
(a1,...,an)∼µ

ui(a
′
i, a−i)− ϵ.

Proposition B.2. If each player i ∈ [n] observes the sequence of utilities (ui(x
(t)
−i))

T
t=1, the average

correlated distribution of play is an ϵ-CCE with ϵ ≤ 1
T max1≤i≤n Reg

(T )
i , where Reg(T )

i is the regret
of the ith player.

This connection holds for simultaneous updates; it is unclear if and how it can be extended under
alternating updates.
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Discounting Next, we spell out regret matching+ with discounting (DRM+; Algorithm 3). The
only difference from RM+ is that the regret vector is multiplied by a discounting coefficient α(t) ∈
(0, 1] in every round t ∈ [T ] (Line 12); the special case where α(t) = 1 for all t ∈ [T ] is RM+.

Algorithm 3: Regret matching+ with discounting (DRM+)

1 Input: discounting coefficients (α(1), . . . , α(T )) ∈ (0, 1]T ;
2 Initialize cumulative regrets r(0) := 0;
3 Initialize strategy x(1) ∈ ∆(A);
4 for t = 1, . . . , T do
5 Set θ(t) ← r(t−1);
6 if θ(t) ̸= 0 then
7 Compute x(t) ← θ(t)

/∥θ(t)∥1;
8 else
9 x(t) ← x(t−1);

10 Output strategy x(t) ∈ ∆(A) ;
11 Observe utility u(t) ∈ RA;
12 r(t) ← α(t)[r(t−1) + u(t) − ⟨x(t),u(t)⟩1]+;

C OMITTED PROOFS

This section provides the proofs missing from the main body. We begin by stating a simple lemma
that bounds the regret of RM+, implying Proposition 2.3; we will then adapt it to account for dis-
counting per Algorithm 3.

Lemma C.1 (Regret vector upper bound). For any time t ∈ [T ], RM+ guarantees ∥r(t)∥22 ≤
∥r(t−1)∥22 + ∥g(t)∥22, where g(t) := u(t) − ⟨x(t),u(t)⟩ is the instantaneous regret at time t.

Proof. By definition of RM+, ⟨r(t−1), g(t)⟩ = ⟨x(t), g(t)⟩ = 0 since x(t) ∝ r(t−1). Thus,

∥r(t)∥22 = ∥[r(t−1) + g(t)]+∥22 ≤ ∥r(t−1) + g(t)∥22 = ∥r(t−1)∥22 + ∥g(t)∥22,

by orthogonality.

As a result, the telescopic summation yields ∥r(T )∥22 ≤
∑T

t=1 ∥g(t)∥22 ≤ mT since ∥g(t)∥∞ ≤ 1
(by the assumption that the range of the utilities is bounded by 1). A similar proof works for RM.
We now adapt Lemma C.1 for DRM+.

Lemma C.2. For any time t ∈ [T ], DRM+ guarantees ∥r(t)∥22 ≤ (α(t))2(∥r(t−1)∥22 + ∥g(t)∥22).

Proof. As before, ⟨r(t−1), g(t)⟩ = ⟨x(t), g(t)⟩ = 0 since x(t) ∝ r(t−1). Thus,

∥r(t)∥22 = (α(t))2∥[r(t−1) + g(t)]+∥22 ≤ (α(t))2∥r(t−1) + g(t)∥22 ≤ (α(t))2(∥r(t−1)∥22 + ∥g(t)∥22).

A direct consequence is the following bound on the regret vector.

Corollary C.3. For any time t ∈ [T ], DRM+ guarantees

∥r(t)∥22 ≤ (α(t))2∥g(t)∥22 + (α(t)α(t−1))2∥g(t−1)∥22 + · · ·+

(
t∏

τ=1

α(τ)

)2

∥g(1)∥22.

In particular, if α(t) = 1− γ for some constant γ ∈ (0, 1), it follows that ∥r(T )∥2 ≤
√

m/γ.
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C.1 PROOFS FROM SECTION 3

We continue with the proofs from Section 3. We first establish that RM+ enjoys a one-step improve-
ment property when the utility is linear.

Lemma 3.3 (One-step improvement for RM+). For any r ∈ RA
≥0 and u ∈ RA, we define x :=

r/∥r∥1; if r = 0, x ∈ ∆(A) can be arbitrary. If r′ := [r + u− ⟨x,u⟩1]+ ̸= 0 and x′ := r′
/∥r′∥1,

⟨x′ − x,u⟩ ≥ 1

∥r′∥1

(
max
a∈A

u[a]− ⟨x,u⟩
)2

=
1

∥r′∥1
BRGap(u)2. (3)

If r′ = 0, then ⟨x,u⟩ = ⟨x′,u⟩ ≥ maxa∈A u[a].

Proof. First, if r′ = 0, it follows that r + u − ⟨x,u⟩1 ≤ 0, where the inequality is to be taken
coordinate-wise. Since r ≥ 0, we have ⟨x,u⟩ ≥ u[a] for all a ∈ A, as claimed.

We now assume r′ ̸= 0. If r = 0, we have r′ = [u − ⟨x,u⟩1]+. (3) can then be equivalently
expressed as ∑

a∈A
r′[a](u[a]− ⟨x,u⟩) ≥

(
max
a∈A

u[a]− ⟨x,u⟩
)2

,

which holds since r′ = [u− ⟨x,u⟩1]+. So we can assume r ̸= 0. We define δ := r′ − r. (3) can
be expressed as∑

a∈A(r[a] + δ[a])u[a]∑
a′∈A(r[a

′] + δ[a′])
≥
∑

a∈A r[a]u[a]∑
a′∈A r[a′]

+
(maxa∈A u[a]− ⟨x,u⟩)2∑

a′∈A(r[a
′] + δ[a′])

.

Equivalently, ∑
a′∈A

r[a′]
∑
a∈A

(r[a] + δ[a])u[a] ≥
∑
a∈A

r[a]
∑
a′∈A

(r[a′] + δ[a′])u[a]

+
∑
a′∈A

r[a′]

(
max
a∈A

u[a]− ⟨x,u⟩
)2

.

This in turn equivalent to∑
a′∈A

r[a′]
∑
a∈A

δ[a]u[a] ≥
∑
a∈A

r[a]
∑
a′∈A

δ[a′]u[a] +
∑
a′∈A

r[a′]

(
max
a∈A

u[a]− ⟨x,u⟩
)2

=
∑
a′∈A

δ[a′]
∑
a∈A

r[a]⟨x,u⟩+
∑
a′∈A

r[a′]

(
max
a∈A

u[a]− ⟨x,u⟩
)2

.

Rearranging,∑
a′∈A

r[a′]
∑
a∈A

δ[a](u[a]− ⟨x,u⟩) ≥
∑
a′∈A

r[a′]

(
max
a∈A

u[a]− ⟨x,u⟩
)2

.

Now, for any a ∈ A such that u[a] − ⟨x,u⟩ ≥ 0, it follows that δ[a] = u[a] − ⟨x,u⟩ ≥ 0; on the
other hand, for a ∈ A such that u[a]−⟨x,u⟩ < 0, we have δ[a] ≤ 0. That is, δ[a](u[a]−⟨x,u⟩) ≥
0, and the claim follows.

We will now show that Lemma 3.3 is, in a certain sense, tight. We consider a simple linear maxi-
mization over the simplex. If the regret vector of RM+ can be initialized arbitrarily, as is the premise
in Lemma 3.3, we make the following observation.

Lemma C.4. Consider a utility vector u ∈ RA and some initial regret vector RA
≥0 ∋ r(1) ̸= 0.

If x(1) = r(1)
/∥r(1)∥1 and ϵ = maxa∈A u[a] − ⟨x(1),u⟩ is the initial best-response gap, it takes at

least ∥r(1)∥1/2ϵ iterations for RM+ to reach a point x(t) with best-response gap at most ϵ/2.
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Indeed, we consider the two-dimensional problem in which u = (1− ϵ, 1) and r = (∥r(1)∥1, 0). To
incur a best-response gap of at most ϵ/2, the player needs to allot a probability mass of at least 1/2
to the second action. In the meantime, the decrement of the first coordinate of r(t) will be at most ϵ
while the increment of the second coordinate of r(t) will be at most ϵ. But it must be the case that the
second coordinate of r is at least as large as the first coordinate of r, leading to Lemma C.4. Given
that ⟨x(t) − x(1),u⟩ ≤ ϵ, this matches the bound obtained for this problem through Lemma 3.3 in
the regime where ∥r∥1 is at least as large as 1/ϵ (so that the norm of r(t) is within a constant factor
of r(1), by Lemma C.1).

Unlike RM+, RM only has a conditional one-step improvement because the regret vector can have
negative coordinates.
Lemma 3.6. For any r ∈ RA

≥0 and u ∈ RA, we define x := θ/∥θ∥1, where θ := max(r,0); if θ =

0, x ∈ ∆(A) can be arbitrary. If r′ := r+u−⟨x,u⟩1 and x′ := θ′
/∥θ′∥1, where θ′ = max(r′,0) ̸=

0, we have ⟨x′ − x,u⟩ ≥ 1
∥θ′∥1

∥θ′ − θ∥22 ≥ 1
∥θ′∥1

(maxa∈A u[a]− ⟨x,u⟩)2 1 {r[a] ≥ 0}, where
a ∈ argmaxa′∈A u[a′]. If θ′ = 0, then ⟨x,u⟩ = ⟨x′,u⟩ ≥ maxa∈A u[a].

Proof. We define δ := θ′ − θ. Following the proof of Lemma 3.3, it suffices to show that∑
a′∈A

θ[a′]
∑
a∈A

δ[a](u[a]− ⟨x,u⟩) ≥
∑
a′∈A

θ[a′]

(
max
a∈A

u[a]− ⟨x,u⟩
)2

1 {r[a] ≥ 0} . (6)

For an action a ∈ A, we consider the following cases.

• If u[a]− ⟨x,u⟩ ≥ 0,

– if r[a] ≥ 0, we have δ[a] = u[a]− ⟨x,u⟩.
– If r[a] < 0, it follows that δ[a] ≥ 0; in particular, δ[a] = 0 if r′[a] ≤ 0 and δ[a] > 0

otherwise. As a result, δ[a](u[a]− ⟨x,u⟩) ≥ 0.

• If u[a]− ⟨x,u⟩ < 0,

– if r[a] ≤ 0, we have δ[a] = 0 since θ[a] = 0 = θ′[a].
– if r[a] > 0, it follows that δ[a] < 0. Again, we have δ[a](u[a]− ⟨x,u⟩) ≥ 0.

Combining those items, (6) follows.

We next state a direct refinement of Lemma 3.3 that we rely on in the more general setting of
constrained optimization.
Lemma C.5 (Refinement of Lemma 3.3). Under the preconditions of Lemma 3.3,

⟨x′ − x,u⟩ ≥ 1

∥r′∥1
∥r − r′∥22. (7)

In particular, (7) implies (3) since ∥r − r′∥22 ≥ (maxa∈A u[a]− ⟨x,u⟩)2, by definition of r′. The
proof of Lemma C.5 is identical to that of Lemma 3.3.

The next elementary lemma shows that, so long as the norm of the regret vector is not too small,
closeness in regrets implies closeness in strategies.
Lemma C.6. For RA

≥0 ∋ r, r′ ̸= 0, let x := r/∥r∥1 and x′ := r′
/∥r′∥1. Then

∥x− x′∥1 ≤ ∥r − r′∥1
(

1

∥r∥1
+

1

∥r′∥1

)
.

Proof. The term x[a]− x′[a] can be expressed, for any a ∈ A, as
r[a]∑

a′∈A r[a′]
− r′[a]∑

a′∈A r′[a′]
=

∑
a′∈A(r[a]r

′[a′]− r′[a]r[a′])

∥r∥1∥r′∥1

=

∑
a′∈A(r[a](r

′[a′]− r[a′]) + r[a′](r[a]− r′[a]))

∥r∥1∥r′∥1
,

and the claim follows.
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Combining Lemmas C.5 and C.6, we now formally show that RM+ improves the value of the under-
lying function when the norm of the regret vector is not too small.
Lemma 3.7. Let u be an L-smooth function over ∆(A). For any r ∈ RA

≥0 with r ̸= 0, we
define x := r/∥r∥1. Further, let r′ := [r + ∇u(x) − ⟨x,∇u(x)⟩1]+ ̸= 0 and x′ := r′

/∥r′∥1. If
∥r′∥2 ≥ max{2m, 9mL}, then u(x′)− u(x) ≥ 1

2∥r′∥1

(
maxx⋆∈∆(A)⟨x⋆ − x,∇u(x)⟩

)2
.

Proof. Using the quadratic bound for u, we have

u(x′)− u(x) ≥ ⟨∇u(x),x′ − x⟩ − L

2
∥x− x′∥22

≥ 1

∥r′∥1
∥r − r′∥22 −

L

2
∥r − r′∥21

(
1

∥r∥1
+

1

∥r′∥1

)2

(8)

≥ 1

∥r′∥1
∥r − r′∥22 −

9mL

2∥r′∥21
∥r − r′∥22 (9)

≥ 1

2∥r′∥1
∥r − r′∥22, (10)

where (8) uses the one-step improvement property (Lemma C.5) applied for u := ∇u(x) together
with Lemma C.6; (9) follows from the fact that ∥r∥1 ≥ ∥r′∥1−m ≥ 1

2∥r
′∥1 since ∥r′∥1 ≥ ∥r′∥2 ≥

2m and the |⟨x− x′,∇u(x)⟩| ≤ 1 for all x′ ∈ ∆(A) (per our normalization assumption); and (10)
follows from the assumption that ∥r′∥1 ≥ 9mL.

To make use of Lemma 3.7, we next establish that the ℓ2 norm of the regret vector is nondecreasing.

Lemma 3.8. For any t, RM+ guarantees ∥r(t)∥22 ≥ ∥r(t−1)∥22+∥[g(t)]+∥22, where g(t) := ∇u(x)−
⟨∇u(x),x(t)⟩1 is the instantaneous regret at round t.

Proof. We have r(t) − r(t−1) = max(g(t),−r(t−1)) (element-wise), so

∥r(t) − r(t−1)∥2 = ∥max(g(t),−r(t−1))∥2 ≥ ∥[g(t)]+∥2.

Further, ⟨r(t−1), r(t) − r(t−1)⟩ = ⟨r(t−1),max(g(t),−r(t−1))⟩ ≥ ⟨r(t−1), g(t)⟩ = 0, where we
used the fact that rt ≥ 0, element-wise. Therefore,

∥r(t)∥22 = ∥r(t) − r(t−1) + r(t−1)∥22 = ∥r(t) − r(t−1)∥22 + ∥r(t−1)∥22 + 2⟨r(t−1), r(t) − r(t−1)⟩
≥ ∥r(t−1)∥22 + ∥[g(t)]+∥22,

as claimed.

Armed with Lemmas 3.7 and 3.8, we can now prove Theorem 3.9.
Theorem 3.9. Let u be an L-smooth function in ∆(A) ⊂ Rm with range urange and R :=
max{2m, 9mL}. RM+ requires at most 1 + (m(2urange+R2))2/ϵ4 rounds to reach an ϵ-KKT point.

Proof. Let tc ∈ [T ] be the largest t such that ∥r(t)∥2 < max{2m, 9mL} = R. By Lemma 3.8,

∥r(t)∥22 ≥ ∥r(t−1)∥22 + ∥[g(t)]+∥22 ≥ ∥r(t−1)∥22 + KKTGap(x(t))2;

so,
tc∑
t=1

KKTGap(x(t))2 ≤
tc∑
t=1

(∥r(t)∥22 − ∥r(t−1)∥22) = ∥r(tc)∥22 ≤ R2. (11)

Further, for any t ≥ tc + 1, we have ∥r(t)∥2 ≥ R since the ℓ2 norm of the regret vector is nonde-
creasing (Lemma 3.8) and ∥r(tc+1)∥2 ≥ R. Thus, by Lemma 3.7,

T∑
t=tc+1

1

2∥r(t)∥1
KKTGap(x(t))2 ≤ u(x(T+1))− u(x(tc+1)) ≤ urange. (12)
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Combining (11) and (12), together with the fact that ∥r(t)∥1 ≤ m
√
t,

T∑
t=1

1

m
√
t
KKTGap(x(t))2 ≤ 2urange +R2.

Theorem 3.11. Let u be an L-smooth function in ∆(A1)×· · ·×∆(An) with range urange and R :=√∑n
i=1 max{2mi, 9miL}2. Alternating RM+ requires at most 1 + (mn2(2urange+R2))2/ϵ4 rounds to

reach an ϵ-KKT point of u.

Proof. Following the previous argument in Theorem 3.9,

T∑
t=1

n∑
i=1

1

∥r(t)i ∥1
BRGapi(u

(t)
i )21{BRGapi(u

(t)
i ) > ϵ} ≤ 2urange +

n∑
i=1

max{2mi, 9miL}2.

Since ∥r(t)i ∥1 ≤ m
√
t for all i ∈ [n] and t ∈ [T ], it will take at most 1 + (m(2urange+R2))2/ϵ4 rounds

to converge to a point in which all players have at most an ϵ best-response gap, which in turn implies
that the KKT gap is at most nϵ. Rescaling ϵ concludes the proof.

C.2 PROOFS FROM SECTION 4

We conclude with the proofs from Section 4. Below, we provide an illustrative example of the matrix
B, defined earlier in (5), for m = 6. The plots in Figure 1 are obtained by running simultaneous RM
(left) and alternating RM+ (right) on this exact game.

1 0 0 0 0 0 0.5

0 5 0 0 0 4 0

0 0 9 0 8 0 0

0 0 10 11 0 0 0

0 6 0 0 7 0 0

2 0 0 0 0 3 0

0.5 0 0 0 0 0 0




Our main goal is to prove the following invariance.

Property 4.1. After the first round both players play the first action. Thereupon, either the players
play with probability 1 (a1(k), a2(k)), or, when k is odd, only Player 1 (respectively, Player 2 when
k is even) mixes between a1(k) and a1(k + 1) (respectively, a2(k) and a2(k + 1)). If a row or a
column stops being played, it will never be played henceforth. An action profile (a1(k+1), a2(k+1))
is played with positive probability only if (a1(k), a2(k)) was played at some previous round.

It is possible to check the claim for k = 1, 2, 3, 4 by executing RM for a number of rounds. In
particular, we find that T3 ≥ 5 and T4 ≥ 20. We proceed by induction in k. Suppose that it holds
for all payoffs 1, . . . , κ. We will show that it holds for κ+ 1.

Lemma C.7. For any even κ + 2 ≥ k ≥ 4, let r(tk−2)
1 [a1] be the regret of Player 1 with respect

to any action a1 ∈ A1(k). Then r
(tk−2)
1 [a1] ≤ −

∑k−2
l=2 (l − 1)Tl. Similarly, for any odd κ + 2 ≥

k ≥ 5, if r(tk−2)
2 [a2] is the regret of Player 2 with respect to any action a2 ∈ A2(k), r

(tk−2)
2 [a2] ≤

−
∑k−2

l=2 (l − 1)Tl.
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Proof. Let a1 ∈ A1(k) and l ∈ [k−2] for an even k. Playing a1 ∈ A1(k) during [tl, tl] gives Player
1 a utility of 0; this follows from the fact that for any column a2 ∈ {a2(1), a2(3), . . . , a2(k− 3)} =
{a2(1), a2(2), a2(3), . . . , a2(k − 3), a2(k − 2)}, it holds that A[a1(k), a2] = 0, by construction of
A. At the same time, Player 1 actually got a utility of at least l − 1 for each round in [tl, tl]. This
means that every time Player 1 updates its regret vector within the time period [tl, tl], the regret of
a1 decreases by at least l − 1. The same reasoning applies for Player 2 when k is odd.

Lemma C.8. For any even κ ≥ k ≥ 4, Tk ≥ − 1
2r

(tk−1)
2 [a2(k + 1)]. Similarly, for every odd

κ ≥ k ≥ 5, Tk ≥ − 1
2r

(tk−1)
1 [a1(k + 1)].

Proof. Tk is at least as large as the number of rounds it takes for a2(k + 1) to have nonnegative
regret. But in every round in [tk, tk] the regret of a2(k) can increase additively by at most 2. The
same reasoning applies when k is odd.

The following upper bound on the regret is crude, but will suffice for our purposes.

Lemma C.9 (Regret upper bound). For any even κ ≥ k ≥ 4, ∥[r(tk)1 ]+∥∞ ≤ 2∥[r(tk−2)
1 ]+∥∞ +

2 ≤ 5
32

k/2 since ∥r(t2)1 ∥∞ ≤ 4
3 . Similarly, for any odd k ≥ 5, ∥[r(tk)2 ]+∥∞ ≤

max{2∥[r(tk−2)
2 ]+∥∞, 2} ≤ 5

32
(k−1)/2 since ∥r(t3)2 ∥∞ ≤ 4

3 .

Proof. The fact that ∥r(t2)1 ∥∞, ∥r(t3)2 ∥∞ ≤ 4
3 can be shown as part of the basis of the induction. We

make the argument for an even k. From round tk until Player 1 plays a1(k) with probability 1, the
regret of a1(k) increases by k− (kx

(t)
1 [a1(k)] + (k− 1)x

(t)
1 [a1(k− 2)]) = x

(t)
1 [a1(k− 2)] and the

regret of a1(k−2) increases by k−1−(kx(t)
1 [a1(k)]+(k−1)x(t)

1 [a1(k−2)]) = −1+x
(t)
1 [a1(k−2)];

that is, it decreases by 1 − x
(t)
1 [a1(k − 2)]. Let t′ be the first round for which r(t

′)[a1(k)] ≥
r(t

′)[a1(k−2)]. It holds that r(t
′)[a1(k)] ≤ ∥[r

(tk−2)
1 ]+∥∞+1 since the regret of a1(k) is increasing

by at most 1 in each round and r(t
′)[a1(k − 2)] ≤ ∥[r(tk−2)

1 ]+∥∞. From then onward, the regret of
a1(k) is increasing by at most 1/2 while the regret of a1(k− 2) is decreasing by at least 1/2. Thus,
it will take at most ⌈2|r(t′)[a1(k − 2)]|⌉ ≤ 2|r(t′)[a1(k − 2)]| + 1 ≤ 2∥[r(tk−2)

1 ]+∥∞ + 1 rounds
for the regret of a1(k − 2) to be nonpositive. During that time, the regret of a1(k) can increase by
at most ∥[r(tk−2)

1 ]+∥∞ + 1.

Proof of Property 4.1. If κ is odd, it suffices to prove that in every round Player 1 mixes between
a1(κ) and a1(κ + 1), Player 2 plays a2(κ) = a2(κ + 1) with probability 1. Similarly, if κ is even
it suffices to prove that in every round Player 2 mixes between a2(κ) and a2(κ+ 1), Player 1 plays
a1(κ) = a1(κ + 1) with probability 1. Let us analyze the case where κ is even; the odd case is
similar. When Player 2 starts mixing more and more to a2(κ+1), it makes the row a1(κ+2) more
attractive for Player 2. By Lemmas C.7 and C.8,

r
(tκ)
1 [a1(κ+ 2)] ≤ −κ− 1

2
Tκ −

κ− 2

2
Tκ−1 ≤ −

(κ− 1)!

2κ−2
T4 −

(κ− 2)!

2κ−3
T3. (13)

At the same time, Lemma C.9 implies that Player 2 is mixing between a2(κ) and a2(κ + 1) for at
most 3∥[r(tκ−1)

2 ]+∥∞ + 2 ≤ 5 · 2(κ−1)/2 + 2 rounds. To see this, we observe that it takes at most
⌈∥[r(tκ−1)

2 ]+∥∞⌉ rounds for the action a2(κ + 1) to be played with at least the same probability as
a2(κ), which in turn holds because the regret of a2(κ+ 1) increases by x

(t)
2 [a2(κ)] while the regret

of a2(κ) decreases by 1 − x
(t)
2 [a2(κ)]. From then on, the regret of a2(κ) decreases by at least 1/2

in each round, so it takes at most ⌈2∥[r(tκ−1)
2 ]+∥∞⌉ rounds for it to be nonpositive. We now claim

that, by (13), action a1(κ+ 2) is never played during those rounds. The reason is that since T3 ≥ 5
and T4 ≥ 20 (by our inductive basis),

r
(tκ)
1 [a1(κ+ 2)] ≤ −20(κ− 1)!

2κ−2
− 5

(κ− 2)!

2κ−3
.
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and in each round the regret of a1(κ+ 2) can only decrease additively by 2. Since

1

2

(
20

(κ− 1)!

2κ−2
+ 5

(κ− 2)!

2κ−3

)
> 5 · 2(κ−1)/2 + 2 ∀κ ≥ 4,

the inductive step follows.

The next lemma shows that, under the invariance of Property 4.1, the only way to reach an ap-
proximate Nash equilibrium is to start playing the actions corresponding to 2m − 1, which is the
maximum payoff in the matrix.
Lemma C.10. Consider any strategy profile (x1,x2) such that Player 1 only assigns positive prob-
ability to actions in {a1(k), a1(k + 1)} and Player 2 only assigns positive probability to actions in
{a2(k), a2(k+1)}, where k+1 < 2m−1. Then either Player 1 or Player 2 has a deviation benefit
of at least 1/k+2− γ for any γ > 0.

Proof. By construction of the game, either a1(k) = a1(k+1) or a2(k) = a2(k+1). We can assume
that a1(k) = a1(k+1); the argument when a2(k) = a2(k+1) is symmetric. Let p be the probability
Player 2 places at a2(k+ 1) and 1− p at a2(k). Suppose that the deviation benefit of each player is
at most ϵ. The utility of Player 2 under the current strategy profile is k(1− p) + (k + 1)p = k + p,
while deviating to a2(k + 1) gives k + 1. So, p > 1 − ϵ. Given that k + 1 < 2m − 1, Player 1
can deviate to a1(k + 2) to obtain a utility of p(k + 2) ≤ k + p + ϵ. Combining with the fact that
p ≥ 1− ϵ, this implies ϵ ≥ 1/k+2.
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