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Abstract— In this paper, we present a semi-
supervised deep learning approach to accurately recover
high-resolution (HR) CT images from low-resolution (LR)
counterparts. Specifically, with the generative adversarial
network (GAN) as the building block, we enforce the
cycle-consistency in terms of the Wasserstein distance
to establish a nonlinear end-to-end mapping from noisy
LR input images to denoised and deblurred HR outputs.
We also include the joint constraints in the loss function
to facilitate structural preservation. In this process,
we incorporate deep convolutional neural network (CNN),
residual learning, and network in network techniques
for feature extraction and restoration. In contrast to the
current trend of increasing network depth and complexity
to boost the imaging performance, we apply a parallel
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1 × 1 CNN to compress the output of the hidden layer and
optimize the number of layers and the number of filters for
each convolutional layer. The quantitative and qualitative
evaluative results demonstrate that our proposed model
is accurate, efficient and robust for super-resolution (SR)
image restoration from noisy LR input images. In particular,
we validate our composite SR networks on three large-scale
CT datasets, and obtain promising results as compared to
the other state-of-the-art methods.

Index Terms— Computed tomography (CT), super-
resolution, noise reduction, deep learning, adversarial
learning, residual learning.

I. INTRODUCTION

X -RAY computed tomography (CT) is one of the
most popular medical imaging methods for screen-

ing, diagnosis, and image-guided intervention [1]. Potentially,
high-resolution (HR) CT (HRCT) imaging may enhance
the fidelity of radiomic features as well. Therefore,
super-resolution (SR) methods in the CT field are receiving
a major attention [2]. The image resolution of a CT imaging
system is constrained by x-ray focal spot size, detector element
pitch, reconstruction algorithms, and other factors. While
physiological and pathological units in human bodies are on an
order of 10 microns, the in-plane and through-plane resolution
of clinical CT systems are on an order of submillimeter
or 1 mm [2]. Even though the modern CT imaging and visu-
alization software can generate any small voxels, the intrinsic
resolution is still far lower than what is ideal in important
applications such as early tumor characterization and coronary
artery analysis [3]. Consequently, producing HRCT images at
a minimum radiation dose level is highly desirable in the
CT field.

In general, there are two strategies for improving CT image
resolution: (1) hardware-oriented and (2) computational. First,
more sophisticated hardware components can be used, includ-
ing an x-ray tube with a fine focal spot size, detector ele-
ments of small pitch, and better mechanical precision for
CT scanning. These hardware-oriented methods are generally
expensive, increase CT system costs and radiation dose, and
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compromise imaging speeds. Especially, it is well known
that high radiation dosage in a patient could induce genetic
damages and cancerous diseases [4]–[6]. As a result, the sec-
ond type of methods for resolution improvement [7]–[11]
is more attractive, which is to obtain HRCT images from
LRCT images. This computational deblurring job is a
major challenge, representing a seriously ill-posed inverse
problem [2], [12]. Our neural network approach proposed
in this paper is computational, utilizing advanced network
architectures. More details are as follows.

To improve the signal-to-noise ratio and image resolution,
various algorithms were proposed. These algorithms can be
broadly categorized into the following classes: (1) Model-
based reconstruction methods [13]–[17]: These techniques
explicitly model the image degradation process and regularize
the reconstruction according to the characteristics of projection
data. These algorithms promise an optimal image quality under
the assumption that model-based priors can be effectively
imposed; and (2) Learning-based (before deep learning) SR
methods [18]–[20]: These methods learn a nonlinear mapping
from a training dataset consisting of paired LR and HR images
to recover missing high-frequency details. Especially, sparse
representation-based approaches have attracted an increasing
interest since it exhibits strong robustness in preserving image
features, suppressing noise and artifacts. Dong et al. [20]
applied adaptive sparse domain selection and adaptive reg-
ularization to obtain excellent SR results in terms of both
visual perceptions and PSNR. Zhang et al. [19] proposed a
patch-based technique for SR enhancements of 4D-CT images.
These results demonstrate that learning-based SR methods can
greatly enhance overall image quality but outcomes may still
lose image subtleties and yield blocky appearance.

Recently, deep learning (DL) has been instrumental for com-
puter vision tasks [21], [22]. Hierarchical features and repre-
sentations derived from a convolutional neural network (CNN)
are leveraged to enhance the discriminative capacity of visual
quality, thus people have started developing SR models for
natural images [23]–[27]. The key to the success of DL-based
methods is its independence from explicit imaging models
and backup by big domain-specific data. The image quality is
optimized by learning features in an end-to-end manner. More
importantly, once a CNN-based SR model is trained, achieving
SR is a purely feed-forward propagation, which demands a
very low computational overhead.

In the medical imaging field, DL is an emerging approach
which has exhibited a great potential [28]–[30]. For several
imaging modalities, DL-based SR methods were success-
fully developed [31]–[38]. Chen et al. [31] proposed a deep
densely connected super-resolution network to reconstruct
HR brain magnetic resonance (MR) images. More recently,
Yu et al. [32] developed two advanced CNN-based models
with a skip connection to promote high-frequency textures
which are then fused with up-sampled images to produce
SR images.

Very recently, adversarial learning [39], [40] has become
increasingly popular, which enables CNNs to learn feature
representations from complex data distributions, with unprece-
dented successes. Adversarial learning is performed based on a

generative adversarial network (GAN), defined as a mini-max
game in which two competing players are a generator G and a
discriminator D. In the game, G is trained to learn a mapping
from source images x in a source domain X to target images y
in the target domain Y . On the other hand, D distinguishes the
generated images ŷ and the target images y with a binary label.
Once well trained, GAN is able to model a high-dimensional
distribution of target images. Wolterink et al. [41] proposed
an unsupervised conditional GAN to optimize the nonlinear
mapping, successfully enhancing the overall image quality.
Also, Mardani et al. [38] adopted a Compressed Sensing (CS)
based MRI reconstruction method into the GAN-based net-
work termed GANCS to reconstruct high-quality MR images.
Also, in order to ensure data consistency in the learned
manifold domain, a least-square penalty was applied to the
training process.

However, there are still several major limitations in the
DL-based SR imaging. First, existing supervised DL-based
algorithms cannot address blind SR tasks without LR-HR
pairs. In clinical practice, a limited number of LR and HR CT
image pairs makes the supervised learning methods impracti-
cal since it is infeasible to ask patients to take multiple CT
scans with additional radiation doses for paired CT images.
Thus, it is essential to resort to semi-supervised learning. Sec-
ond, utilizing the adversarial strategy can push the generator to
learn an inter-domain mapping and produce compelling target
images [42] but there is a potential risk that the network may
yield features that are not exhibited in target images due to the
degeneracy of the mapping. Since the optimal G is capable of
translating X to Ŷ distributed identically to y, the GAN net-
work cannot ensure that the noisy input x and predicted output
ŷ are paired in a meaningful way - there exist many mappings
G that may yield the same distribution over Ŷ . Consequently,
the mapping is highly under-constrained. Furthermore, it is
undesirable to optimize the adversarial objective in isolation:
the model collapse problem may occur to map all inputs x
to the same output image ŷ [40], [43], [44]. To address this
issue, Cycle-consistent GANs (cycleGAN) was designed to
improve the performance of generic GAN, and utilized for
SR imaging [27]. Third, other limitations of GANs were also
pointed out in [45]–[48]. How to steer a GAN learning process
is not easy since G may collapse into a narrow distribution
which cannot represent diverse samples from a real data
distribution. Also, there is no interpretable metric for training
progress. Fourth, as the number of layers increases, deep
neural networks can derive a hierarchy of increasingly more
complex and more abstract features. Frequently, to improve
the SR imaging capability of a network, complex networks are
often tried with hundreds of millions of parameters. However,
given the associated computational overheads, they are hard
to use in real-world applications. Fifth, local feature parts in
the CT image have different scales. This feature hierarchy
can provide more information to reconstruct images, but most
DL-based methods [24], [25] neglect to use hierarchical fea-
tures. Finally, the L2 distance between ŷ and y is commonly
used for the loss function to guide the training process of the
network. However, the output optimized by the L2 norm may
suffer from over-smoothing as discussed in [49], [50], since
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the L2 distance means to maximize the peak signal-to-noise
rate (PSNR) [23].

Motivated by the aforementioned drawbacks, in this study
we made major efforts in the following aspects. First,
we present a novel residual CNN-based network in
the CycleGAN framework to preserve high-resolution
anatomical details with no task-specific regularization. Spe-
cially, we utilize the cycle-consistency constraint to enforce
a strong across-domain consistency between X and Y .
Second, to address the training problem of GANs [40], [46],
we use the Wasserstein distance or “Earth Moving” dis-
tance (EM distance) instead of the Jensen-Shannon (JS) diver-
gence. Third, inspired by the recent work [51], we optimize
the network according to several fundamental designing prin-
ciples to alleviate computational overheads [52]–[54], which
also helps prevent the network from over-fitting. Fourth,
we cascade multiple layers to learn highly interpretable and
disentangled hierarchical features. Moreover, we enable the
information flow across skip-connected layers to prevent gra-
dient vanishing [52]. Finally, we employ the L1 norm instead
of L2 norm to refine deblurring, and we propose to use a
jointly constrained total variation-based regularization as well,
which leverages the prior information to reduce noise with a
minimal loss in spatial resolution or anatomical information.
Extensive experiments with three real datasets demonstrate
that our proposed composite network can achieve an excellent
CT SR imaging performance comparable to or better than that
of the state-of-the-art methods [23]–[26], [55].

II. METHODS

Let us first review the SR problems in the medical imaging
field. Then, we introduce the proposed adversarial nets frame-
work and also present our SR imaging network architecture.
Finally, we describe the optimization process.

A. Problem Statement
Let x ∈ X be an input LR image and a matrix y ∈ Y an

output HR image, the conventional formulation of the ill-posed
linear SR problem [18] can be formulated as

x = S H y + ε, (1)

where S H denote the down-sampling and blurring system
matrices, and ε the noise and other factors. Note that in
practice, both the system matrix and not-modeled factors can
be non-linear, instead of being linear (i.e., neither scalable nor
additive).

Our goal is to computationally improve noisy LRCT images
obtained under a low-dose CT (LDCT) protocol to HRCT
images. The main challenges in recovering HRCT images can
be listed as follows. First, LRCT images contain different or
more complex spatial variations, correlations and statistical
properties than natural images, which limit the SR imaging
performance of the traditional methods. Second, the noise
in raw projection data is introduced to the image domain
during the reconstruction process, resulting in unique noise
and artifact patterns. This creates difficulties for algorithms to
produce high image quality results. Finally, since the sampling

and degradation operations are coupled and ill-posed, SR tasks
cannot be performed beyond a marginal degree using the
traditional methods, which cannot effectively restore some
fine features and suffer from the risk of producing a blurry
appearance and new artifacts. To address these limitations,
here we develop an advanced neural network by compos-
ing a number of non-linear SR functional blocks for SR
CT (SRCT) imaging along with the residual module to
learn high-frequency details. Then, we perform adversarial
learning in a cyclic manner to generate perceptually and
quantitatively superior SRCT images.

B. Deep Cycle-Consistent Adversarial SRCT Model
1) Cycle-Consistent Adversarial Model: Current DL-based

algorithms use feed-forward CNNs to learn non-linear map-
pings parametrized by θθθ , which can be written as:

ŷ = Gθ (x). (2)

In order to obtain a decent ŷ, a suitable loss function must be
specified to encourage Gθ to generate a SR image based on
the training samples so that

θ̂ = arg min
θ

∑

i

L( ŷi (θ), yi ), (3)

where (xi , yi ) are paired LRCT and HRCT images for train-
ing. To address the limitations mentioned in II-A, our cyclic
SRCT model is shown in Fig. 1. The proposed model includes
two generative mappings G : X → Y (G) and F : Y → X (F)
given training samples xi ∈ X and yi ∈ Y . The two mappings
G and F are jointly trained to produce synthesized images
in a way that confuse the adversarial discriminators DY and
DX respectively, which intend to identify whether the output
of each generative mapping is real or artificial. i.e., given an
LRCT image x, G attempts to generate a synthesized image ŷ
highly similar to a real image y so as to fool DY . In a similar
way, DX attempts to discriminate between a reconstructed x̂
from F and a real x. The key idea is that the generators
and discriminators are jointly/alternatively trained to improve
their performance metrics synergistically. Thus, we have the
following optimization problem:

min
G,F

max
DY ,DX

LGAN(G, DY ) + LGAN(F, DX ). (4)

To enforce the mappings between the source and target
domains and regularize the training procedure, our proposed
network combines four types of loss functions: adversar-
ial loss (adv); cycle-consistency loss (cyc); identity loss
(idt); joint sparsifying transform loss (jst).

2) Adversarial Loss: For marginal matching [39],
we employ adversarial losses to urge the generated images
to obey the empirical distributions in the source and target
domains. To improve the training quality, we apply the
Wasserstein distance with gradient penalty [56] instead of
the negative log-likelihood used in [39]. Thus, we have the
adversarial objective with respect to G :
min

G
max

DY
LWGAN(DY , G) = Ex[D(G(x))] − Ey[D(y)]

+ λE ỹ[(‖∇ ỹ D( ỹ)‖2 − 1)2], (5)
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Fig. 1. Proposed GAN framework for SR CT imaging. Our approach uses two generators G and F, and the corresponding adversarial discriminators
DX and DY respectively, where X denotes a LR CT image and Y is the HR CT counterpart. To regularize the training and deblurring processes,
we utilize the generator-adversarial loss (adv), cycle-consistency loss (cyc), identity loss (idt), and joint sparsifying transform loss (jst) synergistically.
In the supervised/semi-supervised mode, we also apply a supervision loss (sup) on G and F. For brevity, we denote G : X → Y and F : Y → X as G
and F respectively. * denotes that the loss is only trained in the supervised fashion.

where E(·) denotes the expectation operator; the first two terms
are in terms of the Wasserstein estimation, and the third term
penalizes the deviation of the gradient norm of its input relative
to one, ỹyy is uniformly sampled along straight lines for pairs
of G(x) and y, and λ is a regularization parameter. A similar
adversarial loss minF maxDX LWGAN(DX , F) is defined for
marginal matching in the reverse direction.

3) Cycle Consistency Loss: Adversarial training is for
marginal matching [39], [40]. However, in these earlier
studies [43], [57], it was found that using adversarial losses
alone cannot ensure the learned function can transform a
source input successfully to a target output. To promote the
consistency between F(G(x)) and x, the cycle-consistency
loss can be express as:

LCYC(G, F) = Ex [‖F (G(x)) − x‖1]

+Ey
[
‖G (F(y)) − y‖1

]
, (6)

where ‖ · ‖1 denotes the L1 norm. Since the cycle consistency
loss encourages F(G(x)) ≈ x and G(F(y)) ≈ y, they
are referred to as forward cycle consistency and backward
cycle consistency respectively. The domain adaptation map-
ping refers to the cycle-reconstruction mapping. In effect,
it imposes shared-latent space constraints to encourage the
source content to be preserved during the cycle-reconstruction
mapping. In other words, the cycle consistency enforces
latent codes deviating from the prior distribution in the
cycle-reconstruction mapping. Additionally, the cycle con-
sistency can help prevent the degeneracy in adversarial
learning [58].

4) Identity Loss: Since an HR image should be a refined
version of the LR counterpart, it is necessary to use the identity
loss to regularize the training procedure [43], [44]. Compared
with the L2 loss, the L1 loss does not over-penalize large
differences or tolerate small errors between estimated and
target images. Thus, the L1 loss is preferred to alleviate the
limitations of the L2 loss in this context. Additionally, the L1
loss enjoys the same fast convergence speed as that of the L2
loss. The L1 loss is formulated as follows:

LIDT(G, F) = Ey
[
‖G ( y) − y‖1

]
+ Ex [‖F (x) − x‖1] . (7)

We follow the same training baseline as in [44]; i.e., in the
bi-directional mapping, the size of G(y) (or F(x)) is the same
as that of y (or x).

5) Joint Sparsifying Transform Loss: The total variation (TV)
has demonstrated the state-of-the-art performance in promot-
ing image sparsity and reducing noise in piecewise-constant
images [59], [60]. To express image sparsity, we formulate
a nonlinear TV-based loss with the joint constraints as
follows:

LJST(G) = τ‖G(x)‖TV + (1 − τ )‖y − G(x)‖TV, (8)

where τ is a scaling factor. Intuitively, the above constrained
minimization combines two components: the first compo-
nent is used for sparsifying reconstructed images and alle-
viating conspicuous artifacts, and the second helps preserve
anatomical characteristics by minimizing the difference image
y − G(x). Essentially, these two components require a joint
minimization under the bidirectional constraints. In this paper,
the control parameter τ was set to 0.5. In the case of τ = 1,
the LJST(G) is regarded as the conventional TV loss.

6) Overall Objective Function: In the training process, our
proposed network is fine-tuned in an end-to-end manner to
minimize the following overall objective function:

LGAN−CIRCLE = LWGAN(DY , G) + LWGAN(DX , F)

+ λ1LCYC(G, F) + λ2LIDT(G, F)

+ λ3LJST(G), (9)

where λ1, λ2, and λ3 are parameters for balancing among
different penalties. We call this modified cycleGAN as the
GAN-CIRCLE as summarized in the title of this paper.

7) Supervised Learning With GAN-CIRCLE: In the case
where we have access to paired dataset, we can render SRCT
problems to train our model in a supervised fashion. Given
the training paired data from the true joint, i.e., (x, y) ∼
Pdata(X, Y ), we can define a supervision loss as follows:

LSUP(G, F)=E(x,y)[‖G(x)− y‖1] + E(x,y)[‖(F(y)−x‖1].
(10)
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Fig. 2. Visual comparison of SRCT Case 1 from the Tibia dataset. The restored bony structures are shown in the red and yellow boxes in Fig. 3.
The display window is [−900, 2000] HU.

C. Network Architecture
Although more layers and larger model size usually result

in the performance gain, for real application we designed
a lightweight model to validate the effectiveness of GAN-
CIRCLE. The full architecture and details of GAN-CIRCLE
are provided in the supplementary material.

III. EXPERIMENTS AND RESULTS

We discuss our experiments in this section. We first
introduce the datasets we utilize and then describe the imple-
mentation details and parameter settings in our proposed
methods. We also compare our proposed algorithms with the
state-of-the-art SR methods quantitatively and qualitatively.
We further evaluate our results in reference to the state-of-the-
art, and demonstrate the robustness of our methods in the real
SR scenarios. Then, we present the detailed diagnostic quality
assessments from expert radiologists. Next, we progressively
modify some of key elements to investigate the best trade-off
between performance and speed, and evaluate the relations

between performance and parameters. Finally, we further
illustrate the effect of the filter size, of the number of layers,
and of the training patch size with respect to the training
and testing datasets. Note that we use the default parameters
of all the evaluated methods. The source code is released
at https://github.com/charlesyou999648/GAN-CIRCLE.

A. Training Datasets
In this study, we used two high-quality sets of training

images to demonstrate the fidelity and robustness of the
proposed GAN-CIRCLE. As shown in Figs. 2 - 5, these
two datasets are of very different characteristics. Note the
descriptions of detailed data preprocessing are provided in
the supplementary material.

1) Tibia Dataset: This micro-CT image dataset reflects
twenty-five fresh-frozen cadaveric ankle specimens which
were removed at mid-tibia from 17 body donors (mean
age at death ± SD: 79.6 ± 13.2 Y; 9 female). After the
soft tissue were removed and the tibia was dislocated from
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Fig. 3. Zoomed regions of interest (ROIs) marked by the red rectangle in Fig. 2. The restored image with GAN-CIRCLE reveals subtle structures
better than the other variations of the proposed neural network, especially in the marked regions. The display window is [−900, 2000] HU.

the ankle joint, each specimen was scanned on a Siemens
microCAT II (Preclinical Solutions, Knoxville, TN, USA)
in the cone beam imaging geometry. The micro-CT para-
meters are briefly summarized as follows: a tube voltage
100 kV, a tube current 200 mAs, 720 projections over a range
of 220 degrees, an exposure time of 1.0 sec per projection, and
the filter backprojection (FBP) method was utilized to produce
28.8 µm isotropic voxels. Since CT images are not isotropic in
each direction, for convenience of our previous analysis [61],
we convert micro-CT images to 150 µm using a windowed
sync interpolation method. In this study, the micro-CT images
we utilized as HR images were prepared at 150 µm voxel size,
as the target for SR imaging based of the corresponding LR
images at 300 µm voxel size. The full description is in [61].
We target 1X resolution improvement.

2) Abdominal Dataset: This clinical dataset is authorized by
Mayo Clinic for 2016 NIH-AAPM-Mayo Clinic Low Dose
CT Grand Challenge. The dataset contains 5, 936 full dose
CT images from 10 patients with the reconstruction interval
and slice thickness of 0.8 mm and 1.0 mm respectively.

The original CT images were generated by multidetector row
CT (MDCT) with the image size of 512×512. The projection
data is from 2, 304 views per scan. The HR images, with voxel
size 0.74 × 0.74 × 0.80 mm3, were reconstructed using the
FBP method from all 2, 304 projection views. More detailed
information of the dataset is given in [62].

B. Performance Comparison

In this study, we compared the proposed GAN-CIRCLE
with the state-of-the-art methods: adjusted anchored neigh-
borhood regression A+++ [55], FSRCNN [24], ESPCN [26],
LapSRN [25], and SRGAN [23]. For clarity, we categorized
the methods into the following classes: the interpolation-based,
dictionary-based, PSNR-oriented, and GAN-based methods.
Especially, we trained the publicly available FSRCNN,
ESPCN, LapSRN, and SRGAN with our paired LR and HR
images. To demonstrate the effectiveness of the DL-based
methods, we first denoised the input LR images and then
super-resolved the denoised CT image using the typical
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Fig. 4. Absolute difference images relative to the original HR image from the Tibia dataset. The display window is [0, 900] HU.

method A+++. BM3D [63] is one of the classic image domain
denoising algorithms, which is efficient and powerful. Thus,
we preprocessed the noisy LRCT images with BMD3, and
then super-solved the denoised images by A+++.

We evaluated three variations of the proposed method:
(1) G-Forward (G-Fwd), which is the forward generator
of GAN-CIRCLE, (2) G-Adversarial (G-Adv), which uses
the adversarial learning strategy, and (3) the full-fledged
GAN-CIRCLE. To emphasize the effectiveness of the
GAN-CIRCLE structure, we first trained the three models
using the supervised learning strategy, and then trained
our proposed GAN-CIRCLE in the semi-supervised sce-
nario (GAN-CIRCLEs), and finally implement GAN-CIRCLE
in the unsupervised manner (GAN-CIRCLEu). In the
semi-supervised settings, two datasets were created separately
by randomly splitting the dataset into the paired and unpaired
dataset with respect to three variants: 100%, 50%, and 0%
paired. To better evaluate the performance of each method,
we use the same size of the dataset for training and testing.

We validated the SR performance in terms of three
widely-used image quality metrics: Peak signal-to-noise ratio
(PSNR), Structural Similarity (SSIM) [64], and Information
Fidelity Criterion (IFC) [65]. Through extensive experiments,
we compared all the above-mentioned methods on the two

benchmark datasets described in Section III-A. Due to the
space limit, we present network architecture details, and the
implementation details are presented in the supplementary
material.

C. Experimental Results With the Tibia Dataset
We evaluated the proposed algorithms against the state-of-

the-art algorithms on the tibia dataset. We present typical
results in Fig. 2. It can be seen that our proposed
GAN-CIRCLE recovers more fine subtle details and captures
more anatomical information in Fig. 3. It is worth mentioning
that Fig. 2 shows that there are severe distortions of the
original images but SRGAN generates compelling results in
Figs. 5-8, which indicate VGG network is a task-specific
network which can generate images with excellent image
quality. We argue that the possible reason is that the VGG
network [66] is a pre-trained CNN-based network based on
natural images with structural characteristic correlated with
the content of medical images [67]. Fig. 3 shows that the
proposed GAN-CIRCLEs can predict images with sharper
boundaries and richer textures than GAN-CIRCLEu which
learns additional anatomical information from the unpaired
samples. The difference images are shown in the Figs. 4.
The difference images were generated by subtracting the
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Fig. 5. Visual comparison of SRCT Case 2 from the abdominal dataset. The display window is [−160, 240] HU. The restored anatomical features
are shown in the red and yellow boxes. (Zoomed for visual clarity).

generated image from the reference image. We compared
our method with adjusted anchored neighborhood regres-
sion A+++ [55], FSRCNN [24], ESPCN [26], LapSRN [25],
SRGAN [23], G-Forward (G-Fwd), G-Adversarial (G-Adv).
The quantitative results are in Table I. The results demonstrate
that the G-Forward achieves the highest scores using the
evaluation metrics, PSNR and SSIM, which outperforms all
other methods. However, it has been pointed out in [68], [69]
that high PSNR and SSIM values cannot guarantee a visu-
ally favorable result. Non-GAN based methods (FSRCNN,

ESPCN, LapSRN) may fail to recover some fine structure
for diagnostic evaluation, such as shown by zoomed boxes
in Fig. 3. Quantitatively, GAN-CIRCLE achieves the sec-
ond best values in terms of SSIM and IFC. It has been
pointed out in [70] that IFC value is correlated well with the
human perception of SR images. Our GAN-CIRCLEs obtained
comparable results qualitatively and quantitatively. Table I
shows that the proposed semi-supervised method performs
similarly compared to the fully supervised methods on
the tibia dataset. In general, our proposed GAN-CIRCLE
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TABLE I
QUANTITATIVE EVALUATION OF STATE-OF-THE-ART SR ALGORITHMS. RED AND BLUE

INDICATE THE BEST AND THE SECOND BEST PERFORMANCE, RESPECTIVELY

TABLE II
STATISTICAL PROPERTIES OF THE IMAGES IN FIGS. 2, 5, 7, AND 8. RED AND BLUE INDICATE

THE BEST AND THE SECOND BEST PERFORMANCE, RESPECTIVELY

can generate more pleasant results with sharper image
contents.

D. Experimental Results on the Abdominal Dataset
We further compared the above-mentioned algorithms on

the abdominal benchmark dataset. A similar trend can be
observed on this dataset. Our proposed GAN-CIRCLE can
preserve better anatomical informations and more clearly
visualize the portal vein as shown in Fig. 5. These results
demonstrate that PSNR-oriented methods (FSRCNN, ESPCN,
LapSRN) can significantly suppress the noise and artifacts.
However, it suffers from low image quality as judged by the
human observer since it assumes that the impact of noise is
independent of local image features, while the sensitivity of
the Human Visual System (HVS) to noise depends on local
contrast, intensity and structural variations. Fig. 5 displays the
LRCT images processed by GAN-based methods (SRGAN, G-
Adv, GAN-CIRCLE, GAN-CIRCLEs , and GAN-CIRCLEu)
with improved structural identification. It can also observed
that the GAN-based models also introduce strong noise into
results. For example, there exist tiny artifacts on the results
of GAN-CIRCLEu . As the SR results shown in Fig. 5,
our proposed approaches (GAN-CIRCLE, GAN-CIRCLEs )
are capable of retaining high-frequency details to reconstruct
more realistic images with relatively lower noise compared
with the other GAN-based methods (G-Adv, SRGAN). In the
Figs. 6, we showed the difference images by subtracting the
generated image from the reference image. We compared

our method with adjusted anchored neighborhood regres-
sion A+++ [55], FSRCNN [24], ESPCN [26], LapSRN [25],
SRGAN [23], G-Forward (G-Fwd), G-Adversarial (G-Adv).
Table I show that G-Fwd achieves the best performance
in PSNR. Our proposed methods GAN-CIRCLE and GAN-
CIRCLEs both obtain the pleasing results in terms of SSIM
and IFC. In other words, the results show that the proposed
GAN-CIRCLE and GAN-CIRCLEs generate more visually
pleasant results with sharper edges on the abdominal dataset
than the competing state-of-the-art methods.

E. Super-Resolving Clinical Images
We analyzed the performance of the SR methods in the

simulated SRCT scenarios in Sections III-C and III-D. These
experimental results show that the DL-based methods are
very effective in addressing the ill-posed SRCT problems
with two significant features. First, SRCT aims at recovering
a HRCT image from a LRCT images under a low-dose
protocol. Second, most DL-based methods assume the paired
LRCT images and HRCT images are matched, an assump-
tion which is likely to be violated in clinical practice.
In other words, the above-evaluated datasets were simulated,
and thus the fully supervised algorithms can easily cope
with SRCT tasks, with exactly matched training samples.
Our further goal is to derive the semi-supervised scheme
to handle unmatched/unpaired data with a relative lack of
matched/paired data to address real SRCT tasks. In this
subsection, we demonstrate a strong capability of the proposed
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Fig. 6. Absolute difference images relative to the original HR image from the abdominal dataset. The display window is [100, 280] HU.

methods in the real applications using a small amount of
mismatched paired LRCT and HRCT images as well as a
high flexibility of adapting to various noise distributions.

1) Practical SRCT Implementation Details: We first obtained
3 LRCT and HRCT image pairs using a deceased mouse on
the same scanner with two scanning protocols. The micro-CT
parameters are as follows: X-ray source circular scanning,
60 kVp, 134 mAs, 720 projections over a range of 360 degrees,
exposure 50 ms per projection, and the micro-CT images
were reconstructed using the Feldkamp-Davis-Kress (FDK)
algorithm [71] in practice: HRCT image size 1450 × 1450,
600 slices at 24 µm isotropic voxel size, and the LRCT image
size 725 × 725, 300 slices at 48 µm isotropic voxel size.
Then, we compared with the state-of-the-art super-resolution
methods. Since the real data are unmatched, we accordingly
evaluated our proposed GAN-CIRCLEs and GAN-CIRCLEu

networks for 1X resolution improvement.
2) Comparison With the State-of-the-Art Methods: The quan-

titative results were summarized for all the involved methods
in Table I. The PSNR-oriented approaches, such as FSRCNN,
ESPCN, LapSRN, and our G-Fwd, yield higher PSNR and
SSIM values than the GAN-based methods. It is not surprising
that the PSNR-oriented methods obtained favorable PSNR
values since their goal is to minimize per-pixel distance to

the ground truth. However, our GAN-CIRCLEs and GAN-
CIRCLEu achieved the highest IFC among all the SR meth-
ods. Our method GAN-CIRCLEs obtained the second best
results in term of SSIM. The visual comparisons are given in
Figs. 7 and 8. To demonstrate the robustness of our methods,
we examined anatomical features in the lung regions and
the bone structures of the mice, as shown in Figs. 7 and 8
respectively. It is observed that the GAN-based approaches
performed favorably over the PSNR-oriented methods in term
of perceptual quality as illustrated in Figs. 7 and 8. Fig. 7 con-
firms that the PSNR-oriented methods produced blurry results
especially in the lung regions, while the GAN-based methods
restored anatomical contents satisfactorily. In Fig. 8, it is
notable that our methods GAN-CIRCLEs and GAN-CIRCLEu

performed better than the other methods in terms of recovering
structural information and preserving edges. These SR results
demonstrate that our proposed methods can provide better
visualization of bone and lung microarchitecture with sharp
edge and rich texture.

F. Diagnostic Quality Assessment
We invited three board-certified radiologists with mean

clinical CT experience of 12.3 years to perform independent
qualitative image analysis on 10 sets of images from two
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Fig. 9. The test convergence curve of GAN-CIRCLE on the Tibia dataset. (a) The influence of different filter sizes, (b) The influence of different
layers, (c) The influence of different training patch sizes, and (d) Average PSNR results over GAN-CIRCLE on the Tibia dataset with respect to the
parameters λ1, λ2, λ3. Note that the parameter λ = 0 (λ = ∞) indicates that the SR model was only optimized with respect to the corresponding
loss.

TABLE III
DIAGNOSTIC QUALITY ASSESSMENT IN TERMS OF SUBJECTIVE QUALITY SCORES FOR DIFFERENT ALGORITHMS (MEAN±STDS).

RED AND BLUE INDICATE THE BEST AND THE SECOND BEST PERFORMANCE, RESPECTIVELY

2) Number of Layers: Recent studies reported in [72], [73]
suggest that training a network could benefit from increasing
the network depth moderately. Here we evaluated different
network depths by adjusting the number of non-linear mapping
layers in the feature extraction network to 6, 9, 12, 15 layers
respectively in the case of the Tibia dataset. Note that all the
other settings remained the same as that in Supplementary
Material Section I-B, and our proposed GAN-CIRCLE used
the twelve-layer network. It can be seen in Fig. 9b that the
twelve-layer network is superior to the six-layer and nine-layer
networks, respectively. Furthermore, it is found that deeper
networks cannot always do better. Specifically, the perfor-
mance of the fifteen-layer network did not outperform the
twelve-layer network. The observation that “deeper” does
not mean “better” was also reported in [74], [75]. Therefore,
we have selected the twelve-layer networks in this study.

3) Training Patch Size: In general, the benefit of training a
CNN-based network with patches is two-fold. First, a properly
truncated receptive field can reduce the complexity of the
network while still capturing the richness of local anatomical
information [66], [76], [77]. Second, the use of patches sig-
nificantly increases the number of training samples [41], [77].
Here we respectively experimented with patch sizes 48 × 48,
64×64, 80×80, and 96×96 respectively on the Tibia dataset.
The results are shown in Fig. 9c. It is observed that large
training patch sizes do not show any improvement in term
of the average PSNR. As a trade-off, we used the patch size
64 × 64 in our investigation.

IV. DISCUSSIONS

SR imaging promises multiple benefits in medical appli-
cations; i.e., depicting bony details, lung structures, and
implanted stents, and potentially enhancing radiomics analysis.

As a result, X-ray computed tomography can provide com-
pelling practical benefit in biological evaluation.

High resolution micro-CT is well-suited for bone imaging.
Osteoporosis, characterized by reduced bone density and struc-
tural degeneration of bone, greatly diminishes bone strength
and increases the risk of fracture [78]. Histologic studies have
convincingly demonstrated that bone micro-structural prop-
erties are strong determinants of bone strength and fracture
risk [79]–[81]. Modern whole-body CT technologies, bene-
fitted with high spatial resolution, ultra-high speed scanning,
relatively-low dose radiation, and large scan length, allows
quantitative characterization of bone micro-structure [61].
However, the state-of-the-art CT imaging technologies only
allow the spatial resolution comparable or slightly higher
than human trabecular bone thickness (100 − 200 µm6 [82])
leading to fuzzy representations of individual trabecular bone
micro-structure with significant partial volume effects that
add significant errors in measurements and interpretations.
The spatial resolution improvements in bone micro-structural
representation will largely reduce such errors and improve
the generalizability of bone micro-structural measures from
multi-vendor CT scanners by homogenizing spatial resolution.

Besides revealing micro-architecture, CT scans of the
abdomen and pelvis are diagnostic imaging tests used to help
detect diseases of the small bowel and colon, kidney stone, and
other internal organs, and are often used to determine the cause
of unexplained symptoms. With rising concerns over increased
lifetime risk of cancer by radiation dose associated with
CT, several studies have assessed manipulation of scanning
parameters and newer technologic developments as well as the
adoption of advanced reconstruction techniques for radiation
dose reduction [83]–[85]. However, in practice, the physical
constraints of system hardware components and radiation dose
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considerations constrain the imaging performance, and com-
putational means are necessary to optimize image resolution.
For the same reason, high-quality/high-dose CT images are not
often available, which means that there are often not enough
paired data to train a hierarchical deep generative model.

Our results have suggested an interesting topic on how
to utilize unpaired data so that the imaging performance
could be improved. In this regard, the use of the adversarial
learning as the regularization term for SR imaging is a new
mechanism to capture anatomical information. In this work,
we have confirmed the following expected performance order:
GAN-CIRCLE > GAN-CIRCLEs > GAN-CIRCLEu , and
even in the unsupervised context we still have decent deblur-
ring effects. Our proposed semi-supervised learning method
has achieved the compelling results with abdominal and mouse
datasets. Specifically, as listed in Tables I, II, and III, the pro-
posed semi-supervised methods achieved promising quanti-
tative results. However, it should be noted that the existing
GAN-based methods introduce additional noise to the results,
as seen in Section III-C and III-D. To cope with this limitation,
we have incorporated the cycle-consistency so that the network
can learn a complex deterministic mapping to improve image
quality. The enforcement of identity and supervision allows the
model to master more latent structural information to improve
image resolution. Also, we have used the Wasserstein distance
to stabilize the GAN training process. Moreover, typical prior
studies used complex inference to learn a hierarchy of latent
variables for HR imaging, which is hard to be utilized in
medical applications. Thus, we have designed an efficient
CNN-based network with skip-connection and network in
network techniques. In the feature extraction network, we have
optimized the network structures and reduced the computa-
tional complexity by applying a small amount of filters in
each Conv layer and utilizing the ensemble learning model.
Both local and global features are cascaded through skip con-
nections before being fed into the restoration/reconstruction
network.

Although our model has achieved compelling results, there
still exist some limitations. First, the proposed GAN-CIRCLE
requires much longer training time than other standard
GAN-based methods, which generally requires 1-2 days.
Future work in this aspect should consider more principled
ways of designing more efficient architectures that allow for
learning more complex structural features with less complex
networks at less computational cost and lower model com-
plexity. Second, although our proposed model can generate
more plausible details and better anatomical details, all subtle
structures may not be always faithfully recovered. It has
been also observed that the recent literature [86] mentions
that the Wasserstein distance may yield the biased sample
gradients, is subject to the risk of incorrect minimum, and
not well suitable for stochastic gradient descent searching.
In the future, experiments with the variants of GANs are
highly recommended. Finally, we notice that the network with
the adversarial training can generate more realistic images.
However, the restored images cannot be uniformly consis-
tent to the original high-resolution images. Also, the recent
literature [87]demonstrates that CycleGAN model learn to

hide reconstruction details in imperceptible noise (high-
frequency signal). This could theoretically be avoided by
strictly enforcing the latent space assumption with added
losses. It is also mentioned that the cycle-consistency loss may
make the CycleGAN network vulnerable to adversarial attacks.
Increasing the domain entropy with additional hidden variables
is recommended. To make further progress, we may also
undertake efforts to add more constraints such as the sinogram
consistence and the low-dimensional manifold constraint to
decipher the relationship between noise, blurry appearances
of images and the ground truth, and even develop an adaptive
and/or task-specific loss function.

V. CONCLUSIONS

In this paper, we have established a cycle Wasserstein
regression adversarial training framework for CT SR imag-
ing. Aided by unpaired data, our approach learns complex
structured features more effectively with a limited amount of
paired data. At a low computational cost, the proposed network
G-Forward can achieve the significant SR gain. In general,
the proposed GAN-CIRCLE has produced promising results
in terms of preserving anatomical information and suppressing
image noise in a purely supervised and semi-supervised learn-
ing fashion. Visual evaluations by the expert radiologists con-
firm that our proposed GAN-CIRCLE networks have brought
superior diagnostic quality, which is consistent with systematic
quantitative evaluations in terms of traditional image quality
measures.
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