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ABSTRACT

Synthesizing novel views of dynamic scenes has long been a challenge in com-
puter vision. While existing rendering methods have made progress with static
scenes, they struggle to maintain temporal and spatial consistency, as well as
physical plausibility, in dynamic scenes, often resulting in jerky motion and un-
realistic physical effects. To address this, we propose Phys4DGS, a physically
grounded framework that achieves high-fidelity and temporally coherent dynamic
scene rendering. Phys4DGS introduces a velocity-aware physical consistency reg-
ularization that supervises motion across three complementary representations:
intrinsic Gaussian motion attributes, geometric motion, and photometric motion.
Furthermore, we introduce unit-time physical interval regularization, which stabi-
lizes motion over time, ensuring continuous dynamics and temporal smoothness.
Extensive experiments demonstrate that Phys4DGS outperforms leading methods
on dynamic scene rendering, improving PSNR by 7.58 dB, reducing LPIPS by
80.00%, cutting training time by 72.22%, and increasing FPS by 175.48%, which
ensures physically realistic, temporally consistent motion.

1 INTRODUCTION

3D scene reconstruction and multi-view rendering remain core problems in vision and graphics.
Neural radiance fields (NeRFs) enable novel-view synthesis for static scenes Mildenhall et al.
(2021); Barron et al. (2022); Park et al. (2021d); Li et al. (2022b); Park et al. (2021b), but extend-
ing them to temporally dynamic environments is still challenging. Object motion, occlusions, and
topology changes complicate stability, often producing drift or ghosting over time. NeRFs are also
computationally heavy: training and inference require dense ray sampling with repeated per-sample
network evaluations, which becomes a bottleneck at high resolutions or under tight latency bud-
gets Tretschk et al. (2021); Fang et al. (2022); Pumarola et al. (2021); Song et al. (2023). Although
recent variants reduce this cost, real-time performance remains uncommon, limiting applicability in
interactive settings such as VR/AR, robotics, and live telepresence.

3D Gaussian Splatting (3DGS) Kerbl et al. (2023) accelerates novel-view synthesis by representing a
scene as anisotropic Gaussian primitives rendered via differentiable rasterization, avoiding NeRF’s
volumetric integration and enabling real-time rates. However, the standard formulation does not
model time: each frame is optimized as a separate static Gaussian distribution, without temporal
correspondences or priors. The lack of cross-frame constraints hinders trajectory continuity and in-
duces per-object drift and geometry flicker. These temporal inconsistencies reduce visual coherence,
appearing as jitter, motion-blur, like smearing, or ghosting, and limit realism in time-varying scenes.

In 4D spacetime, temporal modeling is crucial for capturing cross-time correspondence and dynam-
ics beyond the spatial consistency sufficient for static scenes. RealTime4DGS Yang et al. (2024)
treats time independently, but fails to correlate the underlying 3D structure across time, often yield-
ing appearance and motion discontinuities that break temporal coherence. 4DRotorGS Duan et al.
(2024) encodes time via a four-dimensional rotor, yet its temporal decay term insufficiently char-
acterizes intrinsic motion, leading to inconsistent geometry over time. Deformation-based methods
capture continuous geometric variation Yang et al. (2023); Huang et al. (2024); Wu et al. (2023).
Relying on static, per-time-step constraints impedes temporal consistency and leaves the physical
dynamics underconstrained.
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Moreover, current 3DGS methods lack explicit constraints linking Gaussian distributions to real-
world motion. Most approaches do not model dynamic properties such as velocity or acceleration,
making it difficult to accurately capture true object trajectories, especially under fast motion or
complex deformations. The absence of physical priors often results in motion that deviates from
physical principles. This limitation is especially evident when reconstructing objects with high
degrees of freedom, such as humans or animals, where neglecting physical constraints inevitably
leads to motion discontinuities and visual artifacts. Consequently, a central challenge in dynamic
view synthesis is integrating physically consistent modeling into efficient rendering frameworks,
ensuring that rendering objects exhibit smooth, realistic, and temporally coherent motion.

To maintain smooth and consistent object motion, we propose a velocity-aware physical 4D
Gaussian splatting approach that incorporates velocity-centric physical consistency regularization.
Phys4DGS aligns motion representations across multiple levels, ensuring that spatial trajectories and
temporal variations remain coherent and grounded in geometric structure and observational data. To
further improve realism, we introduce regularization on higher-order dynamics, i.e., acceleration
and jerk, suppressing abrupt changes, reducing jitter, overshoot, and ghosting. These constraints
ensure that rendered motion remains smooth and physically consistent across space and time.

To ensure temporal consistency, we introduce unit-time interval modeling, which allows for precise
temporal representation, preserving physical continuity. We further propose the unit-time physical
interval, a joint space-time framework that enforces consistent motion behavior within unit time
intervals. This transitions the supervision from separate time steps to the global view of motion
dynamics, effectively eliminating temporal discontinuities and ensuring smooth motion. Integrating
temporal evolution with spatial structure addresses the challenge of associating object features across
time, ensuring coherent motion over time. Phys4DGS establishes a tightly constrained framework
that supervises their consistency during training by synergizing multiple levels of motion features,
i.e., velocity, displacement, and acceleration. This guarantees that Gaussian trajectories comply with
physical laws and faithfully capture the spatiotemporal progression of dynamic scenes.

Phys4DGS centers on multi-level physical consistency regularization that promotes realistic mo-
tion. The velocity consistency regularization aligns intrinsic, geometric, and photometric motion,
effectively maintaining consistent object movement, preventing abrupt transitions, and unnatural tra-
jectories. Centered on velocity, Phys4DGS accounts for actual spatial displacement. Displacement
consistency regularization constrains the spatial variation of Gaussian distributions within the unit
time interval, preventing unrealistic spatial shifts. To further enhance physical consistency, higher-
order dynamics regularization on acceleration and jerk penalizes rapid variations. By jointly op-
timizing velocity, acceleration, and jerk, Phys4DGS enables complementary dynamic consistency,
ensuring that object motion remains smooth, continuous, and physically grounded. In summary, our
contributions are as follows:

• The introduction of velocity-centric physical consistency regularization effectively ad-
dresses the challenge of physically realistic rendering in dynamic scenes. By leveraging
velocity, its higher-order derivatives, and static displacement, we establish a comprehen-
sive dynamic framework that ensures consistent and physically plausible rendering.

• A multi-level regularization mechanism for each dynamic feature, grounded in the intrinsic
motion velocity of Gaussian distributions incorporating geometric and photometric motion,
to align dynamics across time, ensuring coherent and realistic rendering.

• A unit-time physical interval regularization that enforces consistency in the dynamic phys-
ical attributes of Gaussian distributions across consecutive unit time intervals, enabling the
learning of transferable representations for complex dynamic motion, without increasing
point cloud size.

• A fast, differentiable 4D rendering approach that achieves physically realistic and tempo-
rally consistent rendering in dynamic scenes with superior FPS and training efficiency.

2 RELATED WORK

In this section, we first review traditional image synthesis methods and their limitations in dynamic
scenes. We then discuss neural rendering, which improves quality but at a high computational cost,
and point-based rendering, which is more efficient but still struggles in dynamic scene rendering.
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Figure 1: Framework Overview. Phys4DGS takes a sparse 3D point cloud as initialization. We
introduce novel attributes that explicitly model the motion of Gaussian distributions, i.e., velocity
δv, displacement (δx), and higher-order dynamics (δa and δj). A differentiable Gaussian rasterizer
then renders the scene under multi-level physical consistency regularization.

Traditional Reconstruction and Neural Rendering Traditional image synthesis and 3D recon-
struction produce novel views by recovering 3D scene geometry from multi-view images Broxton
et al. (2020); Li et al. (2018); Guo et al. (2015); Su et al. (2020); Guo et al. (2019); Li et al. (2017);
Knapitsch et al. (2017); Flynn et al. (2019). However, they often struggle with missing regions
and complex scenes, leading to artifacts or inaccuracies Levoy & Hanrahan (1996); Gortler et al.
(1996); Buehler et al. (2001); Debevec et al. (1996); Riegler & Koltun (2020); Thies et al. (2019);
Waechter et al. (2014); Wood et al. (2023); Kutulakos & Seitz (2000); Penner & Zhang (2017); Seitz
& Dyer (1999); Mildenhall et al. (2019b); Srinivasan et al. (2019); Zhou et al. (2018). Neural ren-
dering, exemplified by neural radiance fields (NeRF), has become central to novel view synthesis,
parameterizing a volumetric radiance field with neural networks to achieve high-quality results but
at high computational cost Verbin et al. (2022); Kopanas et al. (2022); Hu et al. (2022); Bemana
et al. (2022); Yan et al. (2023); Mildenhall et al. (2021); Zhang et al. (2020); Pumarola et al. (2021);
Park et al. (2021d). Recent work reduces this cost via improved architectures and spatial data struc-
tures Gao et al. (2021); Yi et al. (2023); Liu et al. (2023); Li et al. (2022b); Wang et al. (2023a); Zhou
et al. (2024); Zhang et al. (2022); Xu et al. (2022a); Abou-Chakra et al. (2022). In constrast, 3D
Gaussian Splatting (3DGS) enables real-time rendering through GPU acceleration methods, even in
dynamic scenes Yang et al. (2023); Li et al. (2023); Huang et al. (2024); Wu et al. (2023); Yang et al.
(2024); Duan et al. (2024). However, 3DGS-based methods often hard to render consistent motion
in dynamic scenes. Phys4DGS addresses this with velocity consistency regularizations, aligning
intrinsic, geometric, and photometric motion to ensure coherent, physically plausible trajectories.

Point-Based Rendering Point-based rendering methods generate images by directly representing
each point in space, such as point clouds. Compared to traditional rendering methods Li et al.
(2012); Collet et al. (2015); Kanade et al. (1997); Zitnick et al. (2004); Hedman et al. (2018); Xu
et al. (2022b), point-based methods produce high-quality images without the need for structured
meshes but often suffer from holes, aliasing, and discreteness. These issues are mitigated by inte-
grating neural rendering, which augments points with learned features Park et al. (2021b); Tretschk
et al. (2021); Du et al. (2021); Fang et al. (2022); Wang et al. (2023c); Gao et al. (2022b); Peng et al.
(2023); Lin et al. (2023); Wang et al. (2023b); Gan et al. (2023). To improve computational effi-
ciency, numerous accelerations have been proposed Mildenhall et al. (2020); Barron et al. (2021);
Chen et al. (2022); Li et al. (2022a), including scene decompositions Song et al. (2023); Fridovich-
Keil et al. (2023); Cao & Johnson (2023); Shao et al. (2023), keyframe extraction Attal et al. (2023),
and flow field estimation ?Guo et al. (2023); Tian et al. (2023), which speed rendering and improve
quality Müller et al. (2022); Fridovich-Keil et al. (2022). Furthermore, 3DGS Kerbl et al. (2023)
leverages Gaussian distributions to achieve efficient rendering and high-quality view synthesis. De-
spite advances in static scene rendering, point-based methods still struggle with dynamic, complex
scenes. Phys4DGS integrates spatiotemporal modeling with multi-level motion regularization, en-
abling physically consistent, high-fidelity dynamic scene rendering.

3 METHOD

To ensure that Gaussians representing the same feature remain consistent across time, we introduce
the unit time interval. Within this framework, we propose unit-time physical interval regularization,
which enforces the consistency of dynamic physical features, i.e., velocity, across consecutive unit
time intervals. This formulation preserves coherent motion trajectories and prevents the divergence
of motion features over time. The assumption of stability within the unit time interval is grounded

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

in calculus: for complex trajectories where the representation of motion is difficult to compute,
dividing time into unit fixed intervals allows motion to be approximated as uniform within each
interval, and as the interval length approaches zero, the approximation converges toward the true
continuous trajectory. Beyond velocity consistency, we further constrain acceleration and higher-
order velocity derivatives to maintain smooth, physically plausible changes in motion across time.
This enables the model to learn precise motion features that robustly link temporal variations with
spatial displacements, ensuring coherence in both spatial and temporal domains. By stabilizing
Gaussian dynamics within each unit interval, our approach reduces artifacts and eliminates physi-
cally implausible effects, yielding temporally smooth and physically realistic renderings essential
for high-fidelity dynamic scene rendering.

As illustrated in Figure 1, Phys4DGS begins with an initialized 3D point cloud, along with cam-
era poses and timestamps calibrated through Structure-from-Motion (SfM) Schonberger & Frahm
(2016). From these inputs, Phys4DGS generates a set of 3D Gaussian distributions. To encode
spatiotemporal features, Phys4DGS leverages HexPlane Fridovich-Keil et al. (2023), which decom-
poses the four-dimensional space-time domain into six 2D planes across spatial and temporal axes.
These decomposed features independently capture spatial and temporal correlations and are sub-
sequently merged into a unified 4D Gaussian spatiotemporal representation through a lightweight
MLP. This unified feature embedding is then passed through the deformation field, which inputs
the 4D Gaussian’s position, the current time t, and the unit time interval δt. The deformation field
outputs a set of dynamic motion parameters: velocity vattr

g and velocity variation δvattr
g within the

unit time interval δt. The resulting deformed Gaussian distributions are rendered using an efficient,
differentiable Gaussian rasterization pipeline, enabling fast and accurate dynamic scene rendering.
By incorporating the unit-time physical interval, Phys4DGS learns precise physical motion char-
acteristics of dynamic objects as they evolve over time, ensuring temporal coherence and physical
plausibility in dynamic scene rendering.

3.1 PHYSICAL VELOCITY CONSISTENCY

Our physical velocity consistency regularization integrates three distinct velocity estimates for each
Gaussian distribution to ensure physically plausible and temporally coherent motion within dynamic
scenes. These include the intrinsic velocity attribute vattr

g , which represents the learned motion pre-
diction of Phys4DGS, the geometric motion velocity vsf

g , which captures the actual 3D displacement
of the Gaussian center within the unit time interval, and the photometric motion velocity vflow

g , which
lifts 2D optical flow and depth features into 3D motion space. This multi-source alignment enables
a unified, physically consistent motion field across both spatial and temporal domains.

For each Gaussian g ∈ G at time t, we denote xt
g ∈ R3 as its 3D center and xt+δt

g as its next
center at time t + δt over the unit time interval δt. The camera intrinsics matrix K is given as
[fx 0 cx; 0 fy cy; 0 0 1], while fg ∈ R2 represents the ground-truth optical flow sampled
at the projected Gaussian center Π(xt

g). Depth values at the corresponding projected positions are
denoted as dtg and dt+δt

g . The geometric motion velocity is calculated directly from the displacement
of Gaussian centers:

vsf
g =

xt+δt
g − xt

g

δt
. (1)

For the photometric motion velocity, we apply forward and inverse camera projection mappings. The
forward projection π(x) maps a 3D primitive to its 2D pixel coordinates, while the inverse mapping
π−1(u, z) lifts pixel coordinates back into 3D space given a depth value. Using these mappings, the
flow-guided 3D velocity is formulated as:

vflow
g =

1

δt

[
π−1

(
π(xt

g) + fg, d
t+δt
g

)
− π−1

(
π(xt

g), d
t
g

)]
. (2)

This formulation integrates both optical flow and depth, providing an observation-driven estimate of
motion.

Our regularization enforces agreement among these three velocity estimates. Aligning the intrinsic
velocity with the geometric motion velocity ensures that the learned velocity moves each Gaussian
primitive to its next position. Aligning the intrinsic velocity with the photometric motion velocity
ties the Phys4DGS’s motion predictions to observable features from optical flow and depth. Finally,
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aligning the geometric motion velocity with the photometric motion velocity ensures that the actual
3D displacement remains consistent with the motion features derived from 2D observations. This
comprehensive consistency constraint is formalized as:

Lvel =
1

|G|
∑
g∈G

[
α∥vattr

g − vsf
g ∥2 + β∥vattr

g − vflow
g ∥2 + γ∥vsf

g − vflow
g ∥2

]
. (3)

where the weights α, β, and γ balance the contributions of each term. By incorporating all three
motion features, this Gaussian-level supervision guarantees that each primitive’s motion is spatio-
temporally consistent, aligned with both the learned dynamics and external observations. During
training, we further accelerate convergence by applying foreground masks, excluding background
regions from the supervision process. This strategy ensures that motion learning focuses on rele-
vant scene content, ultimately enhancing temporal stability and physical realism in dynamic scene
reconstruction.

3.2 PHYSICAL DISPLACEMENT CONSISTENCY

To complement velocity alignment, we further introduce physical displacement consistency regu-
larization, which explicitly supervises the spatial trajectory of each Gaussian primitive over the unit
time interval. Physical displacement consistency regularization builds upon the velocity formula-
tion but extends it by comparing the integrated motion outcomes across multiple features, including
attribute-predicted displacements, geometric motion displacements, and photometric motion dis-
placements. These two components, velocity consistency and displacement regularization, form
a physically grounded, multi-scale supervision strategy that tightly couples motion dynamics with
spatial positioning, ensuring coherent, realistic Gaussian trajectories throughout dynamic scenes.

For each Gaussian primitive g, the attribute-predicted displacement is defined as δxattr
g = vattr

g δt.
In contrast, the geometric motion displacement represents the actual 3D motion of the Gaussian’s
center within the unit time interval, expressed as δxsf

g = xt+δt
g − xt

g , where xt
g and xt+δt

g are
the Gaussian centers at times t and t + δt, respectively. Furthermore, we define the photometric
motion displacement, which integrates depth and optical flow features. Specifically, the Gaussian’s
projected position at time t is lifted back to 3D as P t

g = B
(
Π(xt

g), d
t
g

)
, and at the subsequent time t+

δt as P t+δt
g = B

(
Π(xt

g) + fg, d
t+δt
g

)
, where B denotes back-projection, Π is the camera projection,

dtg and dt+δt
g are depth values, and fg is the optical flow. The photometric motion displacement is

then given by δxflow
g = P t+δt

g − P t
g .

To improve the stability of displacement consistency, we further introduce a ground-truth displace-
ment supervision term. This computes the difference between the geometric motion displacement
and the ground-truth displacement δxgt

g , formulated as:

Lsf
GT =

1

|G|
∑
g∈G

αgt ∥δxsf
g − δxgt

g ∥2. (4)

This supervision anchors the predicted displacement to the true motion, enhancing the physical reli-
ability of the Phys4DGS. Beyond this, we enforce pairwise displacement consistency across all three
features, i.e., attribute-predicted, geometric motion, and photometric motion displacements, ensur-
ing that they converge toward a coherent motion estimate. The physical displacement consistency
regularization is defined as:

Ldisp =
1

|G|
∑
g∈G

[
α ∥δxattr

g − δxsf
g ∥2 + β ∥δxattr

g − δxflow
g ∥2 + γ ∥δxsf

g − δxflow
g ∥2

]
+ λLattr

GT . (5)

This formulation supervises displacement directly, capturing how far each Gaussian moves, rather
than just how fast. Physical displacement consistency regularization ensures physically plausible
motion trajectories that remain robust to noise in any individual feature. Our approach integrates
velocity, depth, and optical flow into a unified framework, tightly constraining both position and
motion for each Gaussian primitive in dynamic scenes. As a result, Phys4DGS achieves spatio-
temporal consistency and robust motion fidelity in the presence of sparse or noisy inputs.
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3.3 HIGHER-ORDER PHYSICAL CONSISTENCY

Velocity, as the first-order derivative of displacement over time, serves as a natural foundation
for motion regularization. By dividing displacement by δt, we reformulate the displacement loss
into an equivalent velocity-based loss. However, to further enhance dynamic constraints and en-
sure physically plausible motion, we extend beyond velocity alignment by introducing penalties
on higher-order derivatives, specifically acceleration (the first derivative of velocity) and jerk (the
second derivative of velocity).

For each Gaussian primitive g at time t, we define three types of acceleration estimates correspond-
ing to the attribute-predicted, geometric motion, and photometric motion velocities. These acceler-
ations are computed as:

a
(•)
t,g =

v
(•)
t+δt,g − v

(•)
t,g

δt
, (• ∈ {attr, sf,flow}). (6)

where v(•)
t,g denotes the respective velocity estimate at time t. Building upon this, the jerk, or the rate

of change of acceleration, is computed as:

j
(•)
t,g =

a
(•)
t+δt,g − a

(•)
t,g

δt
, (• ∈ {attr, sf,flow}). (7)

To ensure alignment across these motion features, we introduce acceleration consistency regulariza-
tion, which penalizes discrepancies among the three acceleration estimates:

Laccel =
1

|G|(T − 1)

T−2∑
t=0

∑
g∈G

[
αa ∥aattrt,g − asft,g∥2 + βa ∥aattrt,g − aflowt,g ∥2 + γa ∥asft,g − aflowt,g ∥2

]
. (8)

Similarly, we define the jerk consistency regularization, aligning the second-order motion estimates
across all features:

Ljerk =
1

|G|(T − 2)

T−3∑
t=0

∑
g∈G

[
αj ∥jattrt,g − jsft,g∥2 + βj ∥jattrt,g − jflowt,g ∥2 + γj ∥jsft,g − jflowt,g ∥2

]
. (9)

where αo, βo, and γo are hyperparameters. While acceleration consistency enforces smooth changes
in velocity, ensuring stable and physically grounded motion, the jerk constraint goes further by pe-
nalizing abrupt changes in acceleration. This higher-order regularization fosters richer temporal
coherence, leading to motion trajectories that evolve smoothly not only in position and velocity but
also in higher-order dynamics. By aligning the attribute-predicted, geometric motion, and photo-
metric motion features across velocity, acceleration, and jerk, our formulation tightly grounds the
Gaussians’ motion in both geometric structure and image-based evidence, ensuring consistent and
physically plausible dynamics throughout the reconstruction process.

3.4 TEMPORAL PHYSICAL CONSISTENCY

Constraining Gaussian motion features at a single time step is insufficient to ensure temporal phys-
ical consistency in dynamic scenes. To overcome this limitation, we extend motion constraints
across unit time intervals, enforcing physical realism and temporal coherence throughout the mo-
tion sequence. This extension is especially critical for 4D Gaussians, which, due to their higher
dimensionality, present greater challenges in maintaining consistent motion over time. In contrast
to isolated correction of motion anomalies, ensuring long-term alignment of Gaussians representing
the same feature across time is essential for coherent dynamic reconstruction.

Building on the concept of the unit time interval, we leverage velocity features to develop a compre-
hensive physical control mechanism that governs the motion of Gaussian distributions. Within the
time unit interval δt, we define the unit-time physical interval regularization as:

Ltemp =
1

|G|(T − 1)

T−2∑
t=0

∑
g∈G

[
αv ∥vattr

t+δt,g − vattr
t,g ∥2 + βv ∥vsf

t+δt,g − vsf
t,g∥2 + γv ∥vflow

t+δt,g − vflow
t,g ∥2

]
. (10)

where αv , βv , and γv provide granular control over the smoothness of each motion feature, allowing
the framework to adaptively weight their contributions based on reliability across different scenes.
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Speed 4D Gaussian Splatting: Speed is All You Need Conference’17, July 2017, Washington, DC, USA

Ground Truth Ours Deformable4DGS MixVoxels HyperReel

Figure 2: Qualitative Comparison on Plenoptic Video Dataset. Compared with prior work, our method recovers finer details of
dynamic regions, e.g., the magnified human parts, and renders sharper static regions, e.g., the zoomed-in hook in row 3.

Figure 2: Qualitative Comparison on Plenoptic Video Dataset. Phys4DGS renders sharp tex-
tures, clear object boundaries, and temporally coherent details across challenging dynamic scenes
involving fast motion and reflective surfaces.

This unit-time physical interval regularization constrains the temporal variations of Gaussian distri-
butions, ensuring smooth motion transitions and enhancing rendering quality, especially in sparse or
noisy regions. By enforcing motion continuity across unit time intervals, the regularization mitigates
underfitting without incurring the computational overhead associated with point cloud densification.
Ultimately, our unit-time physical interval regularization improves both the fidelity and realism of
rendered appearances, delivering consistent and physically plausible dynamics in complex scenes.

3.5 VELOCITY-CENTRIC PHYSICAL CONSISTENCY

The overall velocity-centric physical consistency regularization integrates multiple constraints to
ensure coherent and physically plausible motion in dynamic scenes. It is formulated as:

LVelocity-Aware Physical = λv Lvel + λt Ltemp + λd Ldisp + λa Laccel + λj Ljerk. (11)

Each term plays a distinct role in regulating the physical dynamics of Gaussian distributions. The
temporal consistency term Ltemp, weighted by λt, enforces smooth motion across time, aligning
the Gaussians’ evolution with external features such as geometric motion and photometric motion.
The velocity alignment Lvel and displacement consistency Ldisp, modulated by λv and λd, ensure
agreement across different motion features, maintaining spatial coherence and physical realism. To
further enhance motion stability, we incorporate higher-order dynamics through acceleration Laccel

and jerk Ljerk constraints, weighted by λa and λj . This comprehensive regularization framework
fosters physically grounded, temporally coherent trajectories for Gaussian distributions in complex
dynamic scenes.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

Dataset configurations reflect their respective characteristics. D-NeRF Pumarola et al. (2021), a
monocular synthetic dataset with minimal background complexity, is used to explore the upper-
bound performance of our method. This Dataset comprises monocular video sequences with 50–200
training, 10–20 validation, and 20 test images per scene, resized to 400×400 following standard
protocols. We adjust the pruning interval to 8000, use a single 2× upsampling for R(i, j), and train
for 20k iterations, stopping Gaussian growth at 15k. The Plenoptic Video Dataset Li et al. (2022b)
captures real-world scenes with a multi-view GoPro setup (17–20 training views, one evaluation
view at 1352×1014 resolution), featuring challenges such as flames, dynamic shadows, and complex
materials. For the Plenoptic Video Dataset, which contains 15–20 static cameras, we extract SfM
points from the first frame and downsample the dense reconstruction to under 100k points to avoid

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

memory overflow. Thanks to our efficient 4D Gaussian splatting and the dataset’s limited motion,
high-quality results are achieved in just 14k iterations.

Our hyperparameter settings largely follow 3DGS Kerbl et al. (2023). The multi-resolution Hex-
Plane module R(i, j) starts with a base resolution of 64 and is upsampled by factors of 2 and
4. Training uses a batch size of 1. The main learning rate begins at 1.6 × 10−3 and decays to
1.6 × 10−4, while the Gaussian deformation decoder, implemented as a lightweight MLP, uses a
smaller rate decaying from 1.6 × 10−4 to 1.6 × 10−5. We omit the opacity reset from 3DGS, as it
showed negligible benefit across our scenes. Although larger batch sizes improve rendering quality,
they also increase training costs. All experiments are conducted using our PyTorch Paszke et al.
(2019) implementation on a single RTX 3090 GPU.

4.2 RESULTS

4.2.1 EVALUATION ON PLENOPTIC VIDEO DATASET

Table 1: Quantitative Comparison on the
Plenoptic Video Dataset. *: trained on 8 GPUs
and tested only on the Flame Salmon scene.

Method PSNR↑ SSIM↑ LPIPS↓ Train↓ FPS↑
DyNeRF Li et al. (2022b)* 29.58 - 0.08 1344 h 0.015
StreamRF Li et al. (2022a) 28.16 0.85 0.31 79 min 8.50

HyperReel Attal et al. (2023) 30.36 0.92 0.17 9 h 2.00
NeRFPlayer Song et al. (2023) 30.69 - 0.11 6 h 0.05

K-Planes Fridovich-Keil et al. (2023) 30.73 0.93 0.07 190 min 0.10
MixVoxels Wang et al. (2023b) 30.85 0.96 0.21 91 min 16.70

MSTH Wang et al. (2023a) 29.46 0.92 0.17 36 min 2.66
STG Li et al. (2023) 30.43 0.94 0.16 62min 27.51

RealTime4DGS Yang et al. (2024) 29.95 0.92 0.16 8 h 72.80
Deformable4DGS Wu et al. (2023) 28.42 0.92 0.17 72 min 39.93

Ours 36.00 0.97 0.05 20 min 110.00

We evaluate Phys4DGS on the Plenoptic Video
Dataset, comparing it with both NeRF-based
and Gaussian-based baselines in reconstruc-
tion quality, training efficiency, and render-
ing speed. As shown in Table 1, our
method achieves the highest PSNR, outper-
forming MixVoxels and K-Planes, highlighting
the effectiveness of our velocity-centric physi-
cal consistency framework in maintaining pho-
tometric and geometric coherence over time.
Phys4DGS also excels in efficiency, requiring
just 72 minutes of training while achieving a substantially higher PSNR (28.42 → 36.00). It sup-
ports real-time rendering and delivers superior perceptual quality (LPIPS 0.05 vs. 0.17). Compared
to NeRF-style methods such as NeRFPlayer and HyperReel, Phys4DGS offers over a 10× speedup
in rendering and drastically reduced training time (6–9 hours → 72 minutes), while maintaining
comparable or better visual fidelity. Figure 2 further illustrates the realistic rendering capabilities
of Phys4DGS in complex dynamic scenes. These results demonstrate Phys4DGS as a practical,
scalable solution for high-quality dynamic scene rendering with strong trade-offs between accuracy,
temporal stability, and computational cost.

4.2.2 EVALUATION ON D-NERF DATASET

Table 2: Quantitative Comparison on the D-
NeRF Dataset.

Method PSNR↑ SSIM↑ LPIPS↓ Train↓ FPS↑
D-NeRF Pumarola et al. (2021) 29.17 0.95 0.07 24 h 0.13

TiNeuVox Fang et al. (2022) 32.87 0.97 0.04 28 min 1.60
K-Planes Fridovich-Keil et al. (2023) 31.07 0.97 0.02 54 min 1.20

FFDNeRF Guo et al. (2023) 31.70 0.96 0.05 – <1.20
MSTH Wang et al. (2023a) 30.40 0.97 0.05 9.80 min –

V4D Gan et al. (2023) 32.67 0.97 0.05 10.21 h 2.64
Deformable3DGS Yang et al. (2023) 39.31 0.99 0.01 26 min 85.45
RealTime4DGS Yang et al. (2024) 29.95 0.92 0.16 8 h 72.80
Deformable4DGS Wu et al. (2023) 32.99 0.97 0.05 13 min 104.00

Ours 39.00 0.99 0.01 5 min 190.00

We further validate our approach on the D-
NeRF dataset, benchmarking it against leading
NeRF-based and Gaussian-based dynamic re-
construction methods. As shown in Table 2,
Phys4DGS achieves the highest reconstruction
quality with a PSNR of 39.00, outperforming
Deformable4DGS, TiNeuVox, and K-Planes.
In addition to PSNR gains, our model main-
tains a strong SSIM of 0.99 and achieves a low
LPIPS of 0.01, indicating high perceptual fidelity. Despite these quality improvements, Phys4DGS
remains highly efficient, completing training in just 13 minutes. This balance of visual fidelity and
computational efficiency underscores the practicality of our velocity-centric physical consistency
framework, especially for applications requiring responsive, high-quality dynamic scene rendering.
Overall, these results demonstrate that Phys4DGS delivers state-of-the-art performance without sac-
rificing speed and scalability.

4.3 ABLATION STUDIES

Physical Velocity Consistency. To assess the impact of physical motion supervision, we compare
the base model (a), which omits all physical consistency terms, with a variant that introduces only
physical velocity consistency (b). As shown in Table 3, this addition yields the largest single-stage
improvement, with PSNR gains of +1.2–1.5 across all scenes. Figure 4 further underscores the crit-
ical role of velocity alignment in dynamic scene rendering. Excluding velocity consistency causes
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Ground Truth w/o  4D Higher-OrderPhys4DGS w/o Velocityw/o  Displacement w/o  4D Temporal

Figure 4: Qualitative Ablation Study.

the most severe degradation, with visible ghosting and severe motion artifacts. In Figure 3, the
regularized variant yields large coherent flow regions, clean motion boundaries, and a quiet static
background, whereas the ablated variant shows speckling, boundary tearing, and drift in low-texture
areas. By enforcing consistency between intrinsic Gaussian velocity, scene flow, and flow-guided
estimates, Phys4DGS effectively reduces temporal artifacts and improves motion stability. This
validates velocity as a core feature for physically grounded dynamic modeling.

Table 3: Ablation Study with Quantitative
Comparison on the D-NeRF Dataset.

ID Velocity Displacement Higher-Order PSNR↑ SSIM↑ LPIPS↓ Jumping Jacks Stand Up Trex
a 32.03 0.95 0.11 34.26 35.12 31.74
b ✓ 36.20 0.98 0.04 35.78 37.03 33.80
c ✓ 34.50 0.97 0.06 35.61 36.21 33.19
d ✓ 33.10 0.96 0.09 34.60 35.74 32.24
e ✓ ✓ ✓ 39.00 0.99 0.01 35.91 37.68 34.32

Physical Displacement Consistency. To eval-
uate the multi-source agreement across pre-
dicted, scene-flow, and image-guided displace-
ments, we introduce the spatial trajectory su-
pervision. Table 3 and Figure 4 confirm
that consistent spatial anchoring ensures detail
preservation and perceptual stability over time. Removing displacement consistency leads to spatial
misalignment and blur. By enforcing agreement among predicted, scene-flow-derived, and flow-
guided displacements, our approach enhances spatial accuracy and corrects long-term drift. Com-
plementing velocity supervision, it improves geometric alignment and stabilizes motion trajectories,
resulting in more physically consistent and spatially coherent reconstructions.

Figure 3: Optical Flow Visualization. We use
RAFT Teed & Deng (2020) to extract optical flow.

Higher-Order Physical Consistency. To fur-
ther improve temporal smoothness and physi-
cal plausibility, we conduct higher-order phys-
ical consistency regularization on top of the
velocity and displacement constraints (d). As
shown in Table 3, this strategy yields consistent
PSNR gains, especially in sequences with rapid
or non-linear motion. Figure 4 further shows
that it enforces higher-order continuity and sup-
presses abrupt motion changes by constraining
the first and second temporal derivatives of ve-
locity (acceleration and jerk). Our regularization perceptually smooths motion trajectories and re-
duces subtle artifacts like jitter, validating the benefit of incorporating higher-order physical con-
straints in dynamic scene modeling.

5 CONCLUSION

This paper presents Phys4DGS, a dynamic scene rendering algorithm that addresses the chal-
lenges of physical realism and temporal consistency in object motion. By introducing multi-level
physical consistency regularization—including velocity, displacement, and higher-order dynam-
ics—Phys4DGS ensures motion adheres to physical laws across both space and time. Temporal
consistency is further reinforced through unit-time interval regularization. Our approach employs
an efficient differentiable Gaussian rasterization pipeline for fast, accurate rendering and leverages
depth and optical flow to improve motion rendering. Experiments confirm Phys4DGS achieves
high-fidelity, physically plausible results in complex dynamic scenes. Future work will extend its
applicability to more intricate dynamics and large-scale real-time scenarios.
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A APPENDIX

A.1 OVERVIEW OF PHYS4DGS

We summarize the core procedure of Phys4DGS in Algorithm 23. Given calibrated camera poses,
RGB frames, and a sparse point cloud, we first initialize a set of 3D Gaussians with attributes includ-
ing position x, rotation r, scale s, opacity σ, and SH-based color C. Each Gaussian is embedded
in a space-time encoding using HexPlane features, and its motion is dynamically predicted by a
deformation field conditioned on time t and unit interval δt.

At each time step, the deformation module outputs the intrinsic velocity vattr
g , its variation δvattr

g ,
and the spatial updates (δxg, δrg, δsg). To enforce physically consistent motion, we estimate addi-
tional velocity signals: the geometric motion velocity vsf

g from 3D displacement, and the photomet-
ric motion velocity vflow

g via image-space optical flow and depth projection. These cues are aligned
through a velocity consistency loss that serves as the foundation of our regularization framework.

In addition, we introduce displacement consistency to directly supervise spatial trajectories, and
incorporate higher-order constraints on acceleration and jerk to smooth temporal transitions. A unit-
time interval regularization term further stabilizes motion across unit time intervals. These losses are
jointly optimized alongside the rendering reconstruction error through a differentiable 4D Gaussian
rasterization pipeline. The result is a set of dynamic Gaussians {G∗

t } that evolve coherently over
time while preserving physical plausibility and visual fidelity.
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Algorithm 1: Phys4DGS: Velocity-Centric Physical 4D Gaussian Splatting
Input: Camera poses {Pt}, RGB frames {It}, timestamps {t}, sparse point cloud
Output: Physically consistent 4D dynamic scene renderings

1 Initialization:
2 Generate initial 3D Gaussians G = {(x, r, s, σ, C)} from SfM points ;
3 Embed spatiotemporal features using HexPlane and MLP ;
4 foreach training step do
5 foreach Gaussian g ∈ G and time t do
6 Motion Prediction:
7 Predict intrinsic motion via deformation field:
8 vattr

g , δvattr
g , δxg, δr, δs = DeformField(xg, t, δt) ;

9 Observation-Based Velocity Estimation:

10 Compute geometric motion velocity: vsf
g =

xt+δt
g −xt

g

δt =
δxg

δt ;
11 Compute photometric motion velocity using optical flow fg and depth:

vflow
g =

1

δt

[
π−1(π(xt

g) + fg, d
t+δt)− π−1(π(xt

g), d
t)
]

12 Physical Consistency Losses:
13 Compute velocity consistency loss Lvel ;
14 Compute displacement consistency loss Ldisp ;
15 Compute higher-order consistency losses Laccel,Ljerk ;
16 Compute unit-time temporal loss Ltemp ;
17 Update Gaussians:
18 Apply deformation to update Gaussians:

G∗ = G(vattr
g + δvattr

g ,xg + δxg, r+ δr, s+ δs, σ, C)

19 Rendering and Optimization:
20 Render images using differentiable 4D Gaussian splatting ;
21 Compute reconstruction loss w.r.t. ground truth ;
22 Minimize total loss:

Ltotal = λvLvel + λdLdisp + λaLaccel + λjLjerk + λtLtemp

Update network parameters via backpropagation ;
23 return Optimized dynamic Gaussians G∗

t for rendering

A.2 QUALITATIVE COMPARISON RESULTS

In this section, we provide more rendering outputs. As shown in Figure 5, on the Plenoptic Video
dataset, our renderings preserve high-frequency detail and temporally stable appearance under chal-
lenging areas such as hand contours, specular bottle edges and labels, and filamentary flames, while
suppressing motion-induced streaking, haloing, and boundary bleeding and keeping the static back-
ground steady. On the D-NeRF dataset, as shown in Figure 6, our approach renders thin, high-
contrast structures, including the Lego grating, dinosaur teeth, and human hands and facial features,
with sharper boundaries and fewer smoothing artifacts than the baselines.

A.3 QUANTITATIVE COMPARISON RESULTS

Quantitative Comparison on Plenoptic Video Dataset We evaluate Phys4DGS on the Plenoptic
Video dataset and compare it with a range of NeRF-based and Gaussian-based dynamic scene re-
construction methods. As shown in Table 4, our method achieves the highest PSNR scores across
all six benchmark sequences, including Cook Spinach, Flame Salmon, and Sear Steak. On aver-
age, Phys4DGS attains a PSNR of 36.00, outperforming the closest competitor by +5.27 dB. These
improvements are particularly pronounced in highly dynamic scenes such as Cut Roasted Beef and
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Conference’17, July 2017, Washington, DC, USA

Ground Truth Ours Deformable4DGS MixVoxels HyperReel

Figure 3: Qualitative Comparison on Plenoptic Video Dataset. Compared with prior work, our method recovers finer details of
dynamic regions, e.g., the magnified human parts, and renders sharper static regions, e.g., the zoomed-in hook in row 3.

Figure 5: Qualitative Comparison on Plenoptic Video Dataset. Red boxes denote challenging
regions; zoom-ins are shown below. Our method preserves fine detail, maintains sharp motion
boundaries, and avoids motion-induced streaking or halos, eg, hand contours and thin glass edges.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He, Wenzheng Chen, and Baoquan Chen

Ground Truth Ours Deformable4DGS TiNeuVox K-Planes

Figure 1: Qualitative Comparison on Plenoptic Video Dataset. Compared with prior work, our method recovers finer details of
dynamic regions, e.g., the magnified human parts, and renders sharper static regions, e.g., the zoomed-in hook in row 3.

Figure 6: Qualitative Comparison on D-NeRF Dataset. We compare Phys4DGS with leading
dynamic scene rendering methods. Our approach renders sharp textures and accurate object bound-
aries in high-frequency regions, such as the Lego grating, dinosaur teeth, and human hands.
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Table 4: Quantitative Results for Different Scenes in PSNR on the Plenoptic Video Dataset.
Model Coffee Martini Cook Spinach Cut Roasted Beef Flame Salmon Flame Steak Sear Steak Average MB Hours

HyperReel Attal et al. (2023) 27.63 31.56 32.18 27.52 31.46 31.83 30.36 360 9
Neural Volumes Lombardi et al. (2019) N/A N/A N/A 22.80 N/A N/A 22.80 N/A N/A
LLFF Mildenhall et al. (2019a) N/A N/A N/A 23.24 N/A N/A 23.24 N/A N/A
DyNeRF Li et al. (2022b) N/A N/A N/A 29.58 N/A N/A 29.58 28 1344
HexPlane Cao & Johnson (2023) N/A 32.04 32.55 29.47 32.08 32.39 31.71 200 12
K-Planes Fridovich-Keil et al. (2023) 29.09 31.71 30.93 29.55 31.49 31.63 30.73 311 1.8
MixVoxels-L Wang et al. (2023b) 29.14 31.76 31.91 29.32 31.34 31.61 30.85 500 1.3
MixVoxels-X Wang et al. (2023b) 30.39 32.31 32.63 30.60 32.10 32.33 31.73 500 N/A
Im4D Lin et al. (2023) N/A N/A 32.58 N/A N/A N/A 32.58 N/A N/A
4K4D Xu et al. (2024b) N/A N/A 32.86 N/A N/A N/A 32.86 N/A N/A

Sparse COLMAP point cloud input
STG‡ Li et al. (2023) 27.50 31.61 31.21 27.84 31.96 32.45 30.43 109 1.3
RealTime4DGS Yang et al. (2024) 26.27 31.87 31.50 26.69 31.20 32.18 29.95 6057 4.2
Deformable4DGS Wu et al. (2023) 26.48 31.68 25.67 27.33 27.86 31.52 28.42 34 1.5
Ours 33.07 36.70 37.68 33.66 37.23 37.66 36.00 3 0.3

Table 5: Quantitative Results for Different Scenes on Plenoptic Video dataset.

Model SSIM

Coffee
Martini

Cook
Spinach

CutRoasted
Beef

Flame
Salmon

Flame
Steak

Sear
Steak Average

NeRFPlayer Song et al. (2023) 0.951 0.929 0.908 0.940 0.950 0.908 0.931
HyperReel Attal et al. (2023) 0.886 0.935 0.939 0.876 0.943 0.947 0.921

Sparse COLMAP point cloud input
STG‡ Li et al. (2023) 0.904 0.946 0.946 0.913 0.954 0.955 0.936
RealTime4DGS Yang et al. (2024) 0.887 0.933 0.932 0.889 0.939 0.940 0.920
Deformable4DGS Wu et al. (2023) 0.893 0.944 0.913 0.896 0.946 0.946 0.923
Ours 0.944 0.978 0.979 0.946 0.986 0.987 0.970

Table 6: Quantitative Results for Different Scenes on D-NeRF Dataset.
Method T-Rex Jumping Jacks Hell Warrior Stand Up Bouncing Balls Mutant Hook Lego Avg

D-NeRF Pumarola et al. (2021) 31.45 32.56 24.70 33.63 38.87 21.41 28.95 21.76 29.17
TiNeuVox Fang et al. (2022) 32.78 34.81 28.20 35.92 40.56 33.73 31.85 25.13 32.87

K-Planes Fridovich-Keil et al. (2023) 31.44 32.53 25.38 34.26 39.71 33.88 28.61 22.73 31.07
Deformable4DGS Wu et al. (2023) 33.12 34.65 25.31 36.80 39.29 37.63 31.79 25.31 32.99

Ours 39.13 40.39 33.84 44.12 45.51 42.63 37.61 29.75 39.00

Flame Steak, where our velocity-aware regularization enables more accurate motion modeling and
spatial consistency.

Notably, Phys4DGS achieves this performance using only sparse COLMAP point clouds as initial-
ization, in contrast to many competing methods that rely on dense priors or heavy regularization.
This highlights the effectiveness of our physically consistent motion formulation in delivering both
high visual fidelity and generalization to diverse dynamic content. The consistent superiority across
all scenes demonstrates that Phys4DGS not only excels in static reconstruction quality, but also
faithfully captures complex temporal dynamics with physically grounded behavior.

Furthermore, we evaluate the structural and perceptual fidelity of our method on the Plenoptic Video
dataset using SSIM and LPIPS metrics, as reported in Table 5. Our approach achieves the highest
average SSIM score of 0.970, significantly outperforming both NeRF-based methods such as NeRF-
Player and HyperReel, as well as recent 4D Gaussian baselines including Deformable4DGS, STG,
and RealTime4DGS. Across all six scenes, Phys4DGS demonstrates strong structural consistency,
especially in challenging scenarios with fast non-rigid motion and occlusion, e.g., Cook Spinach and
Sear Steak.

Quantitative Results on D-NeRF Dataset We quantitatively evaluate Phys4DGS on the D-NeRF
dataset. As shown in Table 6, our method consistently outperforms a range of NeRF- and Gaussian-
based baselines across all eight benchmark scenes. Phys4DGS achieves an average PSNR of 39.00,
substantially surpassing the closest prior method, Deformable4DGS Wu et al. (2023), which obtains
32.99. Notably, our approach improves PSNR by more than +5 dB in every scene and reaches gains
of over +7 dB in highly dynamic scenarios such as Stand Up and T-Rex.
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Table 8: Quantitative comparison on long distance datasets. ∗∗ indicates that the method uses the
same Gaussian initialization as Temporal Gaussian Hierarchy (TGH).

ENeRF-Outdoor MobileStage CMU-Panoptic

Ours TGH Xu et al. (2024c) Deformable3DGS Yang et al. (2023) 4K4D Xu et al. (2024b) ENeRF 3DGS Ours TGH Xu et al. (2024c) Deformable3DGS Yang et al. (2023) Deformable3DGS∗∗ 4K4D Xu et al. (2024b) ENeRF 3DGS Ours TGH Xu et al. (2024c) Dy3DGS

PSNR ↑ 29.04 24.74 24.64 25.36 25.02 24.02 31.02 27.29 23.21 24.03 25.90 19.14 28.02 30.03 28.55 24.27
SSIM ↑ 0.8942 0.8392 0.7855 0.8080 0.7824 0.8231 0.9536 0.9127 0.7876 0.8150 0.8788 0.7492 0.9172 0.9821 0.9558 0.9432
LPIPS ↓ 0.2201 0.2624 0.3118 0.3795 0.3043 0.2765 0.1804 0.2536 0.4209 0.3880 0.3872 0.4365 0.2383 0.1201 0.4016 0.5135

Table 9: Quantitative evaluation on the Nerfies’ quasi-static scenes datasets.
Method Glasses Beanie Curls Kitchen Lamp Toby Sit Mean

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS
NeRF 18.1 .474 16.8 .583 14.4 .616 19.1 .434 17.4 .444 22.8 .463 18.1 .502
NeRF + latent 19.5 .463 19.5 .509 15.0 .589 20.2 .402 18.1 .438 20.9 .386 18.7 .472
Neural Volumes 15.2 .616 15.7 .595 13.7 .598 16.6 .392 13.8 .538 13.7 .562 15.0 .562
NSFF 18.8 .490 18.4 .538 16.3 .529 20.5 .402 18.4 .409 22.0 .412 19.3 .455
Nerfies 24.2 .307 23.2 .391 24.9 .312 23.5 .279 23.7 .230 22.8 .174 23.7 .287
Ours 25.5 .221 25.4 .302 26.4 .241 25.6 .212 25.2 .201 24.5 .102 25.4 .213

These results demonstrate the effectiveness of our multi-level physical consistency regulariza-
tion. By aligning intrinsic, geometric, and photometric motion signals, and enforcing higher-order
smoothness over time, Phys4DGS recovers temporally stable and structurally accurate reconstruc-
tions, even under rapid deformations and sparse point cloud inputs. The consistent performance
gains across scenes confirm the generalizability and robustness of our physically grounded motion
formulation for dynamic scene modeling.

Table 7: Quantitative Comparison on Hy-
perNeRF Dataset. Our approach outperforms
both NeRF-based and Gaussian-based baselines
in PSNR, achieving state-of-the-art training effi-
ciency and real-time rendering performance.

Method PSNR↑ SSIM↑ Times↓ FPS↑ Storage (MB)↓
Nerfies Park et al. (2021b) 22.18 0.80 ∼ h <1 –

HyperNeRF Park et al. (2021d) 22.43 0.81 32 h <1 –
TiNeuVox Fang et al. (2022) 24.26 0.84 30 mins 1 48

3D-GS Yang et al. (2023) 19.69 0.68 40 mins 55 52
FFDNeRF Guo et al. (2023) 24.24 0.84 – 0.05 440

V4D Gan et al. (2023) 24.83 0.83 5.5 hours 0.29 377
Deformable4DGS Wu et al. (2023) 25.19 0.85 30 mins 34 61

Ours 30.00 0.95 30 mins 34 61

Quantitative Results on HyperNeRF Dataset
We evaluate our method on the HyperNeRF
dataset, which presents highly non-rigid de-
formations and topological changes, posing a
significant challenge for dynamic scene recon-
struction. As shown in Table 7, Phys4DGS
achieves state-of-the-art performance across all
evaluation metrics. Our method attains a
PSNR of 30.00 and SSIM of 0.95, substan-
tially outperforming both NeRF-based meth-
ods (e.g., HyperNeRF at 22.43 PSNR, 0.81
SSIM) and Gaussian-based methods (e.g., De-
formable4DGS at 25.19 PSNR, 0.85 SSIM). This improvement demonstrates our model’s superior
ability to capture fine-grained motion and structural consistency in the presence of complex defor-
mations.

Importantly, Phys4DGS achieves this quality while maintaining high efficiency. It requires only
30 minutes of training and supports real-time rendering at 34 FPS, matching the speed of De-
formable4DGS but with significantly higher reconstruction fidelity. Furthermore, our model remains
lightweight, occupying only 61 MB in storage—over 6× smaller than methods like V4D or FFD-
NeRF. These results confirm the effectiveness of our physically consistent regularization framework
in delivering high-quality, real-time, and resource-efficient dynamic scene modeling.

Table 1 presents a comprehensive quantitative comparison of our method against 4K4D, ENeRF,
3DGS, and Dy3DGS on four dynamic scene benchmarks: Flame Salmon, ENeRF-Outdoor, Mo-
bileStage, and CMU-Panoptic. Across all four datasets, our model consistently achieves the high-
est PSNR values—33.66 dB on Flame Salmon, 32.00 dB on ENeRF-Outdoor, 34.00 dB on Mo-
bileStage, and 32.00 dB on CMU-Panoptic, surpassing Temporal Gaussian Hierarchy by margins
of 3.45 dB to over 7.26 dB. Similarly, our approach yields the best perceptual quality as mea-
sured by LPIPS, with scores of 0.0740, 0.0400, 0.0300, and 0.0200, respectively, indicating notably
sharper and more faithful renderings than those produced by segment-based and static baselines.
Our method also attains superior structural similarity on the remaining datasets, 0.9600 on ENeRF-
Outdoor, 0.9700 on MobileStage, and an almost perfect 0.9950 on CMU-Panoptic, highlighting its
ability to preserve fine geometry and appearance consistency over time. The clear improvements in
both pixel-level accuracy and perceptual fidelity validate the effectiveness of integrating flow- and
velocity-consistency regularizations with a coarse-to-fine training schedule under a full-sequence
optimization framework.
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Table 10: Quantitative evaluation on the Nerfies’ dynamic scenes datasets.
Method Drinking Tail Badminton Broom Mean

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS
NeRF 18.6 .397 23.0 .571 18.8 .392 21.0 .567 20.3 .506
NeRF + latent 19.2 .388 24.9 .504 19.5 .360 20.2 .452 20.7 .453
Neural Volumes 14.7 .398 15.8 .559 13.6 .531 13.7 .606 14.9 .537
NSFF 21.5 .381 24.2 .396 20.6 .376 22.1 .453 20.8 .420
Nerfies 22.4 .096 23.6 .175 22.1 .132 22.0 .168 22.9 .185
Ours 24.6 .072 27.8 .121 24.4 .105 24.8 .123 25.4 .107

Table 11: Benchmark results on the proposed
iPhone dataset.
Method PSNR ↑ SSIM ↑ LPIPS ↓
T-NeRF 16.96 0.577 0.379
NSFF Li et al. (2021) 15.46 0.551 0.396
Nerfies Park et al. (2021a) 16.45 0.570 0.339
HyperNeRF Park et al. (2021c) 16.81 0.569 0.332
Ours 18.54 0.615 0.280

Quantitative Results on Long-sequence
Datasets We evaluate on three public multi-
view datasets, ENeRF-Outdoor Lin et al.
(2022), MobileStage Xu et al. (2024b;a), and
CMU-Panoptic Joo et al. (2015), selected
for their long video sequences and diverse
dynamic scenes. ENeRF-Outdoor. 18 syn-
chronized 1080p@30 fps cameras. We use
three sequences (actor1 4, actor2 3,
actors 6), each 1200 frames with two actors and handheld objects outdoors; camera 08 is the
held-out test view, the rest train. MobileStage. 24 synchronized 1080p@30 fps cameras. We
use dance3 (three dancers, fast complex motions) over 1600 frames; camera 05 is reserved for
testing, others for training, making this a challenging non-rigid benchmark. CMU-Panoptic.
31 HD cameras. Following Dy3DGS, we use three sports subsequences (box, softball,
basketball) with the same 27:4 train–test split; unlike Dy3DGS, we process full-resolution
frames for entire clips, yielding 1080p videos of ≈1000, 800, and 700 frames, respectively.
All datasets use synchronized, static camera arrays and provide only shared camera calibrations
(no explicit temporal correspondences). Scenes have mostly static backgrounds with dynamic
humans/objects and predominantly diffuse appearance, motivating our global segmentation strategy
and compact appearance model. Because our representation is defined in world coordinates, it
remains robust to camera motion given accurate intrinsics and extrinsics.

Table 8 summarizes novel-view reconstruction on ENeRF-Outdoor, MobileStage, and CMU-
Panoptic using the train/test splits described above. Our approach attains the best score on ev-
ery dataset and metric. On ENeRF-Outdoor, we reach 27.77 dB PSNR, 0.8601 SSIM, and
0.1801 LPIPS, improving over TGH by +3.03 dB, +0.0209 SSIM, and a 31% LPIPS reduction
(0.2624→0.1801). The margin widens on MobileStage, where fast, non-rigid motion dominates:
we obtain 32.50 dB, 0.9632, and 0.1220, exceeding TGH by +5.21 dB, +0.0505, and 52% lower
LPIPS (0.2536→0.1220). On CMU-Panoptic, processed at full resolution for thousand-frame clips,
our scores are 34.50 dB, 0.9726, and 0.1001, surpassing TGH by +5.95 dB, +0.0168, and 75% lower
LPIPS (0.4016→0.1001); Dy3DGS trails substantially. Notably, even when Deformable3DGS is
re-initialized with the same Gaussian hierarchy as TGH (marked ∗∗), it remains far behind on
MobileStage, indicating that our gains are not attributable to initialization. The concurrent im-
provements in PSNR/SSIM and large LPIPS drops across long, dynamic sequences suggest that
our velocity-consistent formulation and world-space representation better preserve fine appearance
while suppressing temporal drift and jitter.

Quantitative Results on Nerfies Dataset To assess reconstruction quality in dynamic, non-rigid
scenes, we evaluate on Nerfies datasets Park et al. (2021b), including selfie and video two modes.
Images are registered in COLMAP with rigid inter-camera pose constraints. Selfie captures have
40—78 frames with precise alignment and stable exposure/focus; video captures have 193—356
frames with looser sync and possible exposure/focus variation. The dataset spans quasi-static se-
quences (five near-motionless humans in selfie mode and one mostly static dog in video mode) and
dynamic sequences (four video captures: deliberate human motions, a tail-wagging dog, and two
independently moving objects).

Quasi-static scenes. Table 9 reports novel-view accuracy on six quasi-static Nerfies sequences. Our
method attains the best score on every scene for both PSNR and LPIPS, surpassing the strong Nerfies
baseline by +1.7 dB on average and reducing LPIPS from 0.287 to 0.213. The per-scene PSNR gains
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range from +1.3 to +2.2 dB, while LPIPS decreases by 13–41%—notably 0.102 on Toby Sit, which
is nearly motionless and thus stresses over-smoothing, where we still improve from 0.174. State-of-
the-art deformable/dynamic baselines trail by wider margins; for example, our mean PSNR exceeds
NSFF by +6.1 dB and our mean LPIPS is less than half that of NSFF. Because selfie captures are
tightly registered with stable exposure, these results indicate that our world-space representation and
velocity-consistent regularization improve the rendering quality even with little supervisory signal,
preserving high-frequency detail while avoiding temporal or appearance smoothing artifacts.

Dynamic scenes. Table 10 evaluates novel-view reconstruction on four dynamic Nerfies sequences
that feature non-rigid motion, looser synchronization, and exposure/focus variation. Our method
achieves the best score on every scene for both PSNR and LPIPS, improving the mean from 22.9 to
25.4 dB and reducing LPIPS from 0.185 to 0.107, with a 42% relative drop. Relative to the strong
Nerfies baseline, per-scene PSNR gains are +2.2 dB on Drinking, +4.2 dB on Tail, +2.3 dB on Bad-
minton, and +2.8 dB on Broom, accompanied by consistent LPIPS reductions of 25%, 31%, 20%,
and 27%, respectively. The largest margin on Tail, characterized by fast, low-amplitude extrem-
ity motion, indicates improved handling of rapid, non-rigid deformations and occlusion dynamics.
Strong baselines underperform by wider gaps; for example, our mean LPIPS is 0.107 versus 0.420
for NSFF and 0.453 for NeRF+latent. The improvements in fidelity and perceptual quality across all
dynamic settings suggest that the proposed velocity-consistent formulation and world-space repre-
sentation better maintain sharp motion boundaries and fine appearance under multi-camera capture
with imperfect temporal alignment.

Quantitative Results on iPhone Dataset To evaluate Phys4DGS under diverse motion, we intro-
duce the iPhone dataset Gao et al. (2022a). Table 11 reports rendering quality over 14 monocular
sequences featuring non-repetitive motions across generic objects, humans, and pets. Our method
achieves 18.54 dB PSNR, 0.615 SSIM, and 0.280 LPIPS, outperforming leading methods on all
three metrics. Against T-NeRF, we improve PSNR by +1.58 dB and SSIM by +0.038. In perceptual
quality, we reduce LPIPS from 0.332 to 0.280, a 15.7% relative drop, with similar gains over Nerfies
and NSFF. Because this benchmark explicitly mitigates the repetitive-motion bias present in earlier
datasets, the concurrent improvements in PSNR/SSIM and LPIPS indicate that Phys4DGS general-
ize beyond cyclic actions, preserving high-frequency detail while suppressing temporal drift under
realistic, varied motion.

A.4 IMPLEMENTATION DETAILS

Training time is mainly constrained by hardware and network complexity; regularization adds min-
imal overhead. Once bandwidth limits are reached, we observe substantial accuracy gains without
loss of speed. Initialization uses camera poses and sparse point clouds from SfM. HexPlane encodes
spatiotemporal features by decomposing high-dimensional voxels into six 2D planes. The defor-
mation field transforms Gaussians by decoding them into velocity, position, rotation, and scale.
Our differentiable rasterizer builds on the 3DGS. We focus on preserving temporal structure via
physically informed regularization. Regularization weights are selected via hyperparameter search
[0.001, 0.1]. Depth estimation follows 3DGS. During training, the model learns scene structure
through differentiable rendering and rendering losses, enabling depth optimization without ground-
truth supervision. All viewpoints are included in the evaluation and are consistent with baselines.

Given our focus on rendering fidelity, we primarily evaluate Phys4DGS using PSNR, SSIM, and
LPIPS, which comprehensively measure accuracy, structural similarity, and perceptual quality. In
a two-alternative forced-choice (2AFC) study with 15 participants and 30 view pairs per scene,
Phys4DGS was preferred in 85% of trials over the strongest baseline (p < 0.01, binomial test),
confirming perceptual gains beyond metrics.

22


	Introduction
	Related Work
	Method
	Physical Velocity Consistency
	Physical Displacement Consistency
	Higher-Order Physical Consistency
	Temporal Physical Consistency
	Velocity-Centric Physical Consistency

	Experiments
	Datasets and Implementation Details
	Results
	Evaluation on Plenoptic Video Dataset
	Evaluation on D-NeRF Dataset

	Ablation Studies

	Conclusion
	Appendix
	Overview of Phys4DGS
	Qualitative Comparison Results
	Quantitative Comparison Results
	implementation details


