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Abstract

Estimating causal effects from spatiotemporal observational data is essential in
public health, environmental science, and policy evaluation, where randomized
experiments are often infeasible. Existing approaches, however, either rely on
strong structural assumptions or fail to handle key challenges such as interference,
spatial confounding, temporal carryover, and time-varying confounding—where
covariates are influenced by past treatments and, in turn, affect future ones. We
introduce the GST-UNet (G-computation Spatio-Temporal UNet), a theoretically
grounded neural framework that combines a U-Net-based spatiotemporal encoder
with regression-based iterative G-computation to estimate location-specific po-
tential outcomes under complex intervention sequences. GST-UNet explicitly
adjusts for time-varying confounders and captures non-linear spatial and temporal
dependencies, enabling valid causal inference from a single observed trajectory in
data-scarce settings. We validate its effectiveness in synthetic experiments and in
a real-world analysis of wildfire smoke exposure and respiratory hospitalizations
during the 2018 California Camp Fire. Together, these results position GST-UNet
as a principled and ready-to-use framework for spatiotemporal causal inference,
advancing reliable estimation in policy-relevant and scientific domains.

1 Introduction

Environmental hazards, public health interventions, and socio-economic policies often require
understanding complex cause-and-effect relationships across space and time [30, 34, 41]. For
instance, evaluating the health impacts of air quality regulations requires assessing how interventions
influence both immediate outcomes and downstream effects across regions. Such applications demand
robust tools for estimating causal effects from observational spatiotemporal data.

However, causal inference in spatiotemporal settings poses unique challenges. Outcomes are influ-
enced not only by local covariates and interventions but also by those of neighboring regions (spatial
confounding and interference). Effects may persist and accumulate over time (temporal carryover),
and covariates often evolve in response to past interventions while simultaneously affecting future
ones (time-varying confounding). For example, air quality regulations are often implemented in
reaction to recent pollution levels and hospitalizations, which themselves shape future exposures
and health outcomes—creating feedback loops that violate standard independence assumptions.
These complexities induce bias in naive estimators and are especially challenging in single-trajectory
settings, where replication across units or time is infeasible.
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Existing approaches offer limited solutions: classical methods rely on rigid structural assumptions
or user-defined exposure mappings, while recent neural models emphasize predictive accuracy over
causal identification. Many assume independent time series or model only spatial correlations,
leaving a gap in methods that can jointly address interference, temporal dependencies, and evolving
confounding within a principled causal framework (see Section 2).

To bridge this gap, we introduce GST-UNet (G-computation Spatio-Temporal UNet), a theoretically
grounded neural framework for estimating location-specific potential outcomes in spatiotemporal
settings with time-varying confounding. GST-UNet builds on formal identification and consistency
results derived under a representation-based time-invariance assumption, showing how causal effects
can be recovered from a single observed trajectory. We then instantiate this theory in a practical
neural architecture: a U-Net encoder with ConvLSTM and attention modules coupled to an iterative
G-computation procedure that performs recursive causal adjustment over time. To ensure stable
estimation over long horizons, we design a curriculum-based training strategy that gradually refines
recursive pseudo-outcomes, enabling effective learning even in data-scarce regimes. Unlike existing
approaches, GST-UNet requires no user-specified structural models and can be directly deployed in
real-world spatiotemporal applications.

Our contributions are threefold: (1) We develop the first unified framework that couples theoretical
identification and consistency guarantees with an end-to-end neural implementation for spatiotemporal
causal inference; (2) We demonstrate through controlled simulations that GST-UNet robustly handles
interference, temporal carryover, and time-varying confounding; and (3) We illustrate its practical
value via a real-world analysis of wildfire smoke exposure and respiratory hospitalizations during the
2018 California Camp Fire.

In summary, GST-UNet provides a principled and ready-to-use framework for causal inference
from spatiotemporal data, combining formal guarantees with a flexible neural implementation. By
abstracting away model-specific assumptions, GST-UNet makes spatiotemporal causal estimation
both accessible and reliable for applied scientific and policy domains.

2 Related Work

We summarize the most relevant prior work here, with a more detailed discussion in Appendix A.

Classical Spatiotemporal Causal Inference. Early approaches (e.g., spatial econometrics [2],
difference-in-differences [20], synthetic controls [4]) rely on strong assumptions such as parallel
trends and no interference. More recent methods incorporate time-varying confounding using inverse
propensity weighting (IPW) and marginal structural models [31, 49], but cannot address interference
unless via user-specified exposure mappings or hyper-local assumptions [11, 44, 48]. As noted by
Zhou et al. [49], the literature remains sparse, particularly in settings with rich feedback dynamics.

Machine Learning for Spatiotemporal Modeling. Deep learning models for prediction–e.g.,
CNNs and RNNs [40, 47], graph-based methods [25, 46], and video transformers [6, 27]–capture
complex spatial-temporal patterns but do not incorporate causal adjustments, and thus cannot estimate
counterfactuals or adjust for time-varying confounders.

Time Series Causal Inference. Causal methods for longitudinal data include marginal structural
models [36], iterative G-computation [35], and recent ML-based extensions using recurrent networks,
transformers, or meta-learners [7, 16, 18, 24, 28, 39]. However, these assume access to independent
time series (e.g. across patients) and cannot model cross-unit interactions in spatiotemporal settings.

Neural-Based Spatiotemporal Causal Inference. Tec et al. [42] propose a UNet-based model
that adjusts for non-local spatial confounding but focuses on static exposures and does not address
interference or time-varying effects. Most similar to our work, [1] presents a climate-focused model
that shares certain architectural similarities but emphasizes prediction rather than causal adjustment,
leaving causal identification under time-varying confounding largely unaddressed.

Positioning of Our Work. Our work bridges these threads by uniting a theoretically grounded
G-computation framework with a neural architecture for spatiotemporal data. Unlike prior time-series
methods that assume independent units or spatial models that overlook confounding feedback, GST-
UNet is the first end-to-end approach that (i) establishes identification and consistency under explicit
assumptions for a single spatiotemporal trajectory, and (ii) implements this theory in a practical
neural model capable of handling interference, spatial confounding, and time-varying dynamics.
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Figure 1: Observational data (left) versus interventional data (right) for a horizon τ = 2 across multi-
ple locations (s, s′). Under the intervention (right), treatments are set independently of confounders,
and the full history is not observed for the entire horizon.

3 Problem Formulation

Spatiotemporal Data. We model observed data as random variables on a discrete spatial domain
represented by an NX ×NY lattice: S = {(i, j) | i ∈ [NX ], j ∈ [NY ]}, where [N ] = {1, . . . , N}
denotes the index set. Time is indexed by t ∈ [T ]. At each spatial location s = (i, j) at time t, we
observe a tuple (Xs,t, As,t, Ys,t), where As,t ∈ {0, 1} represents a binary treatment (or intervention),
Ys,t ∈ R is a continuous outcome of interest, and Xs,t ∈ RdX is a vector of time-varying covariates
(e.g. local weather conditions, pollution levels, or socioeconomic indicators). Additionally, each
location s is associated with static features Vs ∈ Rdv (e.g. geographical characteristics and socioe-
conomic indicators). While we focus on binary interventions for clarity, the methods generalize
to more complex treatments. Conceptually, the each variable forms a 3D spatiotemporal tensor
of size T ×NX ×NY , though in practice, observations may be incomplete. Missing data can be
accommodated using masking techniques during downstream modeling.

To streamline notation, we use boldface symbols for random variables defined over the entire spatial
domain. For U ∈ {X,A, Y }, let Ut denote its value at time t, and let Ut:t+τ = (Ut, . . . ,Ut+τ )
denote its value over a time interval. For a specific location s, we write Us,t:t+τ = (Us,t, . . . , Us,t+τ ).
The history up to time t is denoted by H1:t = (X1:t,A1:t−1,Y1:t,V) for the entire spatial domain
and Hs,1:t = (Xs,1:t, As,1:t−1, Ys,1:t, Vs) for a specific location s. Specific instantiations of these
random variables are denoted using lowercase letters (e.g., u ∈ {x, a, y, h}).

Quantities of Interest. Our primary goal is to estimate location-specific Conditional Average
Potential Outcomes (CAPOs) for a sequence of future spatiotemporal interventions, conditioned
on observed history. Our approach builds on Rubin’s potential outcomes framework [35, 36, 38],
which we extend to accommodate spatiotemporal settings. More concretely, we consider a future
time horizon of length τ ≥ 1 and a predetermined interventional sequence at:t+τ−1 applied across
the spatial domain starting at time t. Our goal is to estimate the potential outcomes at time t + τ ,
denoted as Yt+τ [at:t+τ−1]. In particular, we aim to compute:

E[Yt+τ [at:t+τ−1] | H1:t = h1:t] (1)

which represents the CAPOs at time t+ τ under the given treatment sequence. Given two different
interventional sequences at:t+τ and a′t:t+τ , a related secondary goal is to estimate the location
specific Conditional Average Treatment Effect (CATE), given by:

E[Yt+τ [at:t+τ−1]−Yt+τ [a
′
t:t+τ−1] | H1:t = h1:t]

Although we focus primarily on CAPOs, CATEs and other effect measures can be derived similarly.

Prefix Data in a Single Spatiotemporal Chain. The conditional expectations defining the CAPOs
in Eq. (1) cannot be directly estimated from a single observed spatiotemporal realization, since the
empirical averages would contain only one sample of each future outcome Yt+τ [at:t+τ−1]. To obtain
a workable regression-based estimator, we therefore reorganize the single observed trajectory into
overlapping "prefixes" of varying lengths. For each t ∈ {1, . . . , T − τ}, we define

Pτ
t =

(
X1:t+τ ,A1:t+τ ,Y1:t+τ ,V

)
,

which represents the observed history up to time t + τ along with all covariates, treatments, and
outcomes. When T ≫ τ , this construction yields T − τ segments that partially overlap in time,
providing additional training samples in this intrinsically data-scarce, single-chain setting.
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However, these prefixes are not independent: successive segments share overlapping histories, so
standard i.i.d. assumptions do not apply. In the next section, we introduce conditions under which
these prefixes can be treated as conditionally exchangeable given an appropriate learned embedding.
This enables regression-based estimation of CAPOs by pooling information across time without
violating the dependence structure of the original process.

4 Identification and Estimation of CAPOs in Spatiotemporal Settings

Identification of CAPOs from observational data relies on standard causal inference assumptions. In
our setting, these must be complemented by additional structure to handle the fact that we observe
only a single spatiotemporal trajectory. Building on the prefix construction introduced above, we
impose conditions that render these overlapping segments conditionally exchangeable, enabling
principled pooling of information across time.
Assumption 1 (Causal Inference Assumptions). We assume: (Consistency) Yt+τ = Yt+τ [at:t+τ−1]
whenever the observed sequence of treatments At:t+τ−1 satisfies At:t+τ−1 = at:t+τ−1; (Positivity)
P (As,t = as,t | H1:t = h1:t) > 0 for any as,t ∈ {0, 1} and feasible realization of history h1:t;
(Sequential Unconfoundedness) Yt+1:T [at+1:T ] ⊥ At | H1:t, ∀at+1:T ∈ {0, 1}T−t, i.e. at each
time step t, the treatment assignment is independent of future potential outcomes.

Assumption 2 (Representation-Based Time Invariance). There exists a function (or embedding)
ϕ : H×A → Z ⊆ Rh that maps (H1:t,At) to a finite-dimensional representation such that once
we condition on z = ϕ(H1:t,At), the distribution (Xt+1,Yt+1) does not explicitly depend on t.
Formally, for any t, t′ ∈ {1, . . . , T} and z ∈ Z , we have:

p(Xt+1,Yt+1 | ϕ(H1:t,At) = z) = p(Xt′+1,Yt′+1 | ϕ(H1:t′ ,At′) = z).

Assumption 1 is a standard set of requirements in longitudinal causal inference settings (e.g., [7, 18,
24, 28, 35, 36]). Assumption 2 is specific to the single-time series setting, where pooling information
across time is essential to enable estimation. We note that the single time-series setting frequently
arises in causal inference, where assumptions such as stationarity or strict time homogeneity enable
consistent estimation [8, 31, 49]. In contrast, our representation-based time invariance is weaker:
rather than requiring Xt,Yt themselves to have a time-invariant distribution, we only assume that,
once the history is summarized by ϕ(H1:t,At), the transition to (Xt+1,Yt+1) follows a single
shared mechanism. This approach aligns with modern time-series causal inference that learn time-
invariant latent embeddings to pool information across time steps [18, 24, 26], thus leveraging more
data for a single, stable representation rather than time-dependent parameters.

Under Assumption 2, conditioning on ϕ(H1:t,At) removes explicit dependence on t, such that

EP[Yt+τ | ϕ(H1:t,At)]

represents a shared conditional expectation across all prefix segments. In this view, t indexes the
segment’s position rather than a distinct distribution. Pooling over t thus yields T − τ approximately
exchangeable segments from a single trajectory, enabling regression-based estimation of future
outcomes from embedded histories.

4.1 Identification via Representation-Based G-Computation

Given Pτ
t , we next show how to identify CAPOs from observational data. For horizons τ ≥ 2,

future covariates and outcomes (i.e. Xt+1:t+τ−1,Yt+1:t+τ−1) can influence subsequent treatments,
inducing time-varying confounding [13]. Such feedback violates standard “condition-on-history”
adjustments and leads to biased estimates. Figure 1 illustrates these dependencies by contrasting
observational data (left) and hypothetical interventions (right) for τ = 2. By contrast, when τ = 1,
conditioning on H1:t is sufficient under standard assumptions, as no future confounders intervene
between At and Yt+1. Formally, the following naive identification fails to hold for τ > 1:

E[Yt+τ [at:t+τ−1] | H1:t = h1:t] ̸= E[Yt+τ | H1:t = h1:t,At:t+τ−1 = at:t+τ−1] (2)

To correct this bias, we adapt regression-based iterative G-computation [3, 35] to the spatiotemporal
setting, yielding a principled adjustment procedure for evolving confounders and valid CAPO
estimation. We formalize this connection in the following result:
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Theorem 1 (Identification with G-Computation). Assume that Assumption 1 and Assumption 2 hold.
Further, let Ha

1:t+k := (X1:t+k, [A1:t−1,at:t+k−1],Y1:t+k) denote the history where observed
treatments from time t onward are replaced by at:t+k−1. Define recursively:

Qτ (H1:t+τ−1,At+τ−1) = EP[Yt+τ | ϕ(H1:t+τ−1,At+τ−1)]

Qτ−1(H1:t+τ−2,At+τ−2) = EP[Qτ (H
a
1:t+τ−1,at+τ−1) | ϕ(H1:t+τ−2,At+τ−2)]

. . .

Q1(H1:t,At) = EP[Q2(H
a
1:t+1,at+1) | ϕ(H1:t,At)]

Then E[Yt+τ [at:t+τ−1] | H1:t = h1:t] = Q1(h1:t,at).

We provide a proof of Theorem 1 in Appendix B. This result naturally motivates a recursive regression
approach for spatiotemporal CAPO estimation, fitting each Qk(·) in reverse order and substituting
interventional treatments where required.

4.2 Estimation via Iterative G-Computation

While Theorem 1 motivates a recursive regression algorithm for each Qk (k = 1, . . . , τ ),
only Qτ can be directly estimated from the prefix data. At the next step, Qτ−1 depends on
Qτ

(
Ha

1:t+τ−1,at+τ−1

)
—where the observed treatments At:t+τ−1 are replaced by at:t+τ−1—but

such substituted outcomes are not observed in the prefix data. Therefore, for k < τ , we propose
a procedure where we generate pseudo-outcomes by predicting with the previously learned Q̂k+1.
Going forward, we use F̂ to denote any quantity F estimated from data. Formally, let ϕ ∈ Φ be an
embedding satisfying Assumption 2, and let Q be our function class for Qk. We learn the sequence
Q̂τ , . . . , Q̂1 from prefix data {Pτ

t : t = 1, . . . , T − τ}, via:

1. Initialization. Fit Q̂τ to predict Yt+τ from the prefix embedding ϕ(H1:t+τ−1,At+τ−1).
2. Backward recursion. For k = τ − 1, . . . , 1:

(a) Substitute interventions. For each prefix Pτ
t , replace At+k by the interventional at+k to

form the modified history Ha
1:t+k.

(b) Generate pseudo-outcomes. Let Ỹt+k+1 = Q̂k+1

(
Ha

1:t+k,at+k

)
, where Q̂k+1 was learned

in the previous step. These Ỹt+k+1 act as surrogates for Yt+k+1 in the prefix data.
(c) Fit Q̂k. Regress Ỹt+k+1 on the current embedding ϕ

(
H1:t+k−1, At+k−1

)
to learn Q̂k ∈ Q.

3. Final step. Given a new history h1:t and an interventional path at:t+τ−1, we predict

ÊP[Yt+τ [at:t+τ−1] | ϕ(H1:t,at) = ϕ(h1:t,at)] = Q̂1

(
h1:t, at

)
.

The iterative regression procedure yields consistent CAPO estimates provided each stage Qk is
estimated consistently from data [22]. Informally, if the learned embedding ϕ̂ converges to the true
time-invariant representation ϕ, and small perturbations in ϕ or Q̂k lead to proportionally small
changes in predictions, then the overall recursive estimator remains consistent. These regularity
conditions—formalized through uniform stochastic equicontinuity—are detailed in Appendix C.
Formally, we state the following theorem:
Theorem 2 (Consistency of Iterative G-Computation in Spatiotemporal Settings). Assume Assump-
tions 1 and 2 and that (a) the learned embedding ϕ̂ is L2-consistent for ϕ, and (b) each regression
head Q̂k consistently estimates Qk and is uniformly well-behaved on Imϕ (intuitively, small input
perturbations induce small output changes).1 Let Zk := (H1:t+k,At+k) denote the history–action
pair at step k. Then ∥∥Q̂1(Z0; ϕ̂)−Q1(Z0;ϕ)

∥∥
2
= op(1),

so the recursive estimator Q̂1 of the CAPO is probabilistically consistent.

We provide a proof of Theorem 2 in Appendix C. In the following section, we instantiate this
procedure in our GST-UNet architecture, illustrating how to incorporate spatial dependencies and
interference into ϕ and each Qk, and implement a streamlined, end-to-end training strategy that
unifies history embeddings and outcome predictions.

1We formalize “well-behaved” via uniform stochastic equicontinuity and continuity in Appendix C.
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Figure 2: Overview of the GST-UNet architecture. The spatiotemporal learning module (left) is a
U-Net augmented with a ConvLSTM layer and attention gates. Its final feature map is passed to a set
of G-heads (right), where each G-head Qk implements iterative G-computation (see Algorithm 1).

5 GST-UNet Implementation

The theoretical results above establish how CAPOs can be identified and consistently estimated
from a single spatiotemporal trajectory. We now provide a concrete neural implementation of this
procedure. GST-UNet instantiates the iterative G-computation framework with a spatiotemporal
deep architecture that embeds strong inductive biases—locality, translation invariance, and temporal
smoothness—well suited to data-scarce settings. While alternative backbones could be employed,
our U-Net with ConvLSTM and attention offers a natural choice for learning stable, history-invariant
representations that satisfy Assumption 2. We now describe the architecture and the training procedure
that realizes the GST-UNet (Algorithm 1).

5.1 Model Architecture

The GST-UNet consists of two main components:

1. Spatiotemporal Learning Module: a U-Net-based network augmented with ConvLSTM and
attention gates for spatiotemporal processing.

2. Neural Causal Module: τ G-computation heads, each mapping the spatiotemporal features to
the final outcome predictions in the iterative procedure.

We illustrate the GST-UNet architecture in Figure 2 and describe its main components below.

Spatiotemporal Learning Module. (1) Spatial Module. While our framework is agnostic to the
choice of spatiotemporal learning module, we adopt a U-Net with ConvLSTM and attention due to
its strong performance in data-scarce regimes. To efficiently process high-dimensional spatial data,
we employ U-Net [37], a fully convolutional architecture originally developed for biomedical image
segmentation. It employs an encoder-decoder design with skip connections: the encoder progressively
downsamples the spatial grid through convolution and pooling, while the decoder upsamples it back
to the original resolution, merging encoder features at each scale. (2) Temporal Module. U-Net has
limitations in capturing temporal information. To address this, we integrate a Convolutional Long
Short-Term Memory (ConvLSTM) layer [40] to the U-Net encoder. This module captures temporal
dependencies by maintaining a hidden state across time steps while aggregating spatial information
through convolutions. After computing the final ConvLSTM state, we append static (time-invariant)
covariates V as additional feature channels, ensuring the subsequent U-Net encoder-decoder has
direct access to both temporal dynamics and static location-specific information. In the decoder,
we incorporate attention gates [29] to selectively highlight relevant spatial regions, refining skip
connections and emphasizing critical global or local patterns. The embedding module ultimately
produces a dh-dimensional feature map of size NX×NY , capturing essential spatiotemporal context—
including interference, spatial confounding, and static covariates—for downstream G-computation.

Neural Causal Module. We attach τ G-computation heads to the U-Net’s final feature maps, corre-
sponding to the Qk estimators in the iterative procedure (see Section 4.2). Each head can be a small
convolutional module or a simple feed-forward network, depending on how much spatial structure
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Algorithm 1 GST-UNet Training and Inference

1: Input: Horizon τ , prefixes {Pτ
t }T−τ

t=1 , interventions at:t+τ−1, curriculum α
(e)
k , total epochs E.

2: Initialize: parameters θ (U-Net embedding + G-heads).
3: for e = 1 . . . E do
4: for k = τ . . . 1 do
5: (Supervision) For each prefix i, predict outcomes Ŷ (i)

t+k = Qk

(
ϕ(H

(i)
1:t+k−1,A

(i)
t+k−1); θ

)
.

6: (Generation (detached)) For each prefix i, generate pseudo-outcomes:

Ỹ
(i)
t+k =

{
Qk

(
ϕ
(
(Ha

1:t+k−1)
(i), a

(i)
t+k−1

)
; θ
)
, k < τ,

Y
(i)
t+τ , k = τ.

where the observed At:t+k−2’s were replaced with at:t+k−2 in the history.
7: (Loss aggregation) Compute the MSE loss L(θ; e) = 1

τ

∑τ
k=1 α

(e)
k

∑
i

(
Ŷ

(i)
t+k − Ỹ

(i)
t+k+1

)2
.

8: (Backward pass) Update θ by backpropagation.
9: (Inference) Given a h1:t, return Q1(ϕ(h1:t,at); θ̂).

remains to be captured. The information flow at the G-computation heads proceeds as follows: each
head Qk (k = 1, . . . , τ ) receives the dh × NX × NY U-Net embedding ϕ̂

(
H1:t+k−1,At+k−1

)
(encompassing spatiotemporal and static context) and outputs an NX ×NY prediction for that time
step. We refer to this as the supervision step, since Qτ compares its predictions to the real observed
outcomes Yt+τ , anchoring the model in genuine data, while each Qk<τ compares its predictions to
pseudo-outcomes Ỹt+k+1 provided by Q̂k+1. These pseudo-outcomes arise in a subsequent gener-
ation step, wherein Qk+1 processes the intervened history ϕ̂

(
Ha

1:t+k,at+k

)
in a detached forward

pass (so Q̂k+1 is not updated by Qk’s loss), thereby creating surrogate targets for Qk. This procedure
realizes the iterative G-computation logic from Section 4.2, enabling GST-UNet to estimate future
outcomes under various counterfactual treatments. By separating the spatiotemporal embedding from
the G-heads, we maintain a common representation for all prefix data (see Assumption 2) and flexibly
capture interference and spatial confounding. Each G-head enforces the proper temporal adjustments
to yield bias-free counterfactual inference.

5.2 Training and Inference

While each G-head Qk could be trained sequentially–from Qτ down to Q1–by passing pseudo-
outcomes backward through time, this creates a conflict when all heads share the same U-Net
embedding ϕ. Specifically, each Qk may push ϕ toward optimizing its own objective, resulting in
misaligned training signals and unstable learning.

Joint Loss and Multi-Task Training. To address this issue, we employ a joint (or multi-task)
training approach [9, 15] by aggregating the loss terms from all G-heads into a single objective, then
backpropagating once per batch. Concretely, for each head Qk, let Ỹt+k+1 be the real outcomes if
k = τ or pseudo-outcomes (generated by Q̂k+1) if k < τ . Our head-specific loss is a mean squared
error (MSE) over all prefix samples:

Lk(θ) =

T−τ∑
i=1

[
Qk

(
ϕ(H

(i)
1:t+k−1,A

(i)
t+k−1); θ

)
− Ỹ

(i)
t+k+1

]2
,

where θ encompasses all model parameters (the shared U-Net embedding ϕ and the G-heads Qk).

Let α(e)
k denote a head-weight for epoch e. We then form the overall training objective at epoch e by

L(θ; e) =
1

τ

τ∑
k=1

α
(e)
k Lk(θ). (3)

By summing the losses and performing a single backward pass, we learn a common embedding ϕ̂
that balances the needs of all G-heads, rather than fitting each head separately.

Curriculum Training. A naive implementation of Eq. (3)–where each G-head is given equal weight–
can be suboptimal: early in training, Qτ (which sees real data) is inaccurate, and the pseudo-outcomes
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generated for Qk<τ are effectively noise. Consequently, Q1, . . . , Qτ−1 may overfit to poor targets
before Qτ has converged, leading to suboptimal solutions. To mitigate this, we employ a curriculum
training approach [5], gradually increasing the loss weight of earlier heads as Qτ improves.

While many curricula are possible, we adopt a simple scheme controlled by a single hyperparameter
ec (the “curriculum period”) so we can readily tune it. Let p(e) = min{τ, ⌈e/ec⌉}, which indexes a
“phase” based on the current epoch e. We then define

α
(e)
k =

{
1/p(e), if k ∈ {τ, τ − 1, . . . , τ − p(e) + 1},
0, otherwise.

Hence, during epochs 1 ≤ e ≤ ec (phase p(e) = 1), only Qτ is active with α
(e)
τ = 1; in the next

interval ec < e ≤ 2ec (phase p(e) = 2), Qτ and Qτ−1 each have weight 1/2, and so on until all
heads are active with uniform weight 1/τ . For e > τec, training continues with α

(e)
k = 1/τ for

all heads. This schedule ensures Qτ becomes reasonably accurate before earlier heads rely on its
pseudo-outcomes. The hyperparameter ec controls the pacing, helping prevent early training noise.

We also adopt standard neural network practices, including mini-batch optimization and early
stopping, to stabilize training and mitigate overfitting. At inference time, given a new history h1:t and
an interventional sequence at:t+τ−1, we compute Q̂1(ϕ(h1:t,at); θ) as our target CAPO estimate.
We sketch the overall training and inference procedure in Algorithm 1.

6 Experiments

We evaluate the proposed GST-UNet framework through two applications. First, we simulate
synthetic data that incorporates key spatiotemporal causal inference challenges: interference, spatial
confounding, temporal carryover, and time-varying confounding. Using this synthetic data generation
process (DGP), we compare the GST-UNet algorithm against several baselines. Next, we demonstrate
the utility of GST-UNet on a real-world dataset analyzing the impact of wildfire smoke on respiratory
hospitalizations during the 2018 California Camp Fire.

Additional details–including exact simulation parameters, model architecture and execution se-
tups, hyperparameter selection strategies, and validation procedures–can be found in Appendix D.
Replication code is available at https://github.com/moprescu/GSTUNet.

6.1 Synthetic Data

We generate T = 200 time steps of a 64 × 64 (NX × NY ) grid of observational data using the
following data generating process (DGP):

Xt = α0 + α1Xt−1 + α2At−1 + α3(KX ∗Xt−1) + ϵX ,

At ∼ Bern
(
σ
(
β1

(
β0 +

1
L

L−1∑
l=0

KA ∗Xt−l

)))
,

Yt = γ0 + γ1
(
KY A ∗At−1

)
+ γ2

1
L

L∑
l=1

(
KY X ∗Xt−l

)
+ γ3Yt−1 + ϵY ,

where dX = 1, “∗” denotes a 3×3 spatial convolution over the NX ×NY grid, and ϵX , ϵY ∼ N (0, 1)
are i.i.d. noise. Each kernel KX ,KA,KY A,KY X encodes a local advection–diffusion process that
mimics wind-driven pollutant transport, with interventions At injecting additional emissions that
propagate through the same kernel. This physically realistic setup produces interference, spatial
confounding, and temporal carryover—the three challenges GST-UNet is designed to address.
Each equation is evaluated at every spatial location, so Xt, At, and Yt are NX ×NY matrices. Here,
Xt acts as a time-varying confounder: its past influences both At and Yt, while current interventions
At affect future Xt+1. For example, At may represent regulatory actions, Xt air quality, and Yt

health outcomes—capturing feedback from policy to exposure to outcome, and back to future policy.

We vary β1 to control time-varying confounding: when β1 = 0, Xt does not affect At, eliminating
confounding; larger values increase its strength. For each β1, we generate 50 test trajectories from
random initial states, fix their histories, and simulate 100 τ -step counterfactual futures to estimate true
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Table 1: RMSE ± SD across test trajectories. Bold indicates lowest error per column; color shows
improvement (RMSE decrease or increase) over best baseline (excluding ablations).

τ Model β1 = 0.0 β1 = 0.5 β1 = 1.0 β1 = 1.5 β1 = 2.0

5

UNet+ 0.28 ± 0.00 0.36 ± 0.00 0.54 ± 0.01 0.71 ± 0.01 0.81 ± 0.01
STCINet 0.29 ± 0.00 0.38 ± 0.01 0.62 ± 0.01 0.80 ± 0.01 0.90 ± 0.01
IPWUNet 0.60 ± 0.01 0.58 ± 0.01 0.58 ± 0.01 0.59 ± 0.01 0.59 ± 0.01
GST-UNet w/o Attention 0.50 ± 0.00 0.46 ± 0.00 0.51 ± 0.00 0.45 ± 0.01 0.47 ± 0.01
GST-UNet w/o Curriculum 0.69 ± 0.00 0.64 ± 0.00 0.63 ± 0.00 0.61 ± 0.01 0.61 ± 0.01
GST-UNet 0.33 ± 0.00 0.35 ± 0.00 0.40 ± 0.00 0.44 ± 0.00 0.40 ± 0.01

(+17.9%) (-2.7%) (-21.6%) (-25.4%) (-32.2%)

10

UNet+ 0.28 ± 0.00 0.61 ± 0.00 1.18 ± 0.00 1.45 ± 0.00 1.71 ± 0.01
STCINet 0.31 ± 0.00 0.68 ± 0.00 1.25 ± 0.00 1.47 ± 0.01 1.60 ± 0.01
IPWUNet 0.78 ± 0.01 0.80 ± 0.01 0.96 ± 0.01 1.19 ± 0.02 1.08 ± 0.01
GST-UNet w/o Attention 0.42 ± 0.00 0.60 ± 0.00 0.61 ± 0.00 0.79 ± 0.01 1.07 ± 0.01
GST-UNet w/o Curriculum 0.62 ± 0.00 0.88 ± 0.00 1.02 ± 0.00 1.08 ± 0.01 1.12 ± 0.01
GST-UNet 0.38 ± 0.00 0.55 ± 0.00 0.68 ± 0.00 0.73 ± 0.01 0.85 ± 0.01

(+35.7%) (-9.8%) (-29.2%) (-38.7%) (-21.3%)

CAPOs, with τ ∈ {5, 10}. We compare GST-UNet against three baselines: (i) UNet+, which uses a
U-Net + ConvLSTM + Attention backbone with At as an input channel but performs no iterative
adjustment; (ii) STCINet [1], which estimates direct and indirect effects without modeling time-
varying confounding; and (iii) IPWUNet, an inverse-propensity-weighting variant that reweights
pseudo-outcomes using a UNet-style propensity estimator but cannot correct for spatial interference
(details in Appendix D). We also test ablations of GST-UNet without curriculum or attention. Table 1
shows that when β1 = 0, UNet+ performs best—G-computation is unnecessary and adds noise. As
β1 increases, UNet+ and STCINet degrade sharply, while GST-UNet remains stable. IPWUNet shows
some benefit but is biased even at β1 = 0 due to uncorrected interference. GST-UNet consistently
outperforms all baselines, demonstrating the value of iterative G-computation. Curriculum training
substantially improves performance across horizons, while attention yields modest gains—consistent
with our predominantly local dynamics. Additional ablation analyses, including neighbor aggregation
experiments, are reported in Appendix D.

6.2 Impact of Wildfires on Respiratory Health

Wildfire smoke has been linked to short-term respiratory harms [10, 12, 23, 33, 34], with older adults
especially vulnerable [14]. At the time this work was conducted (January 2025), a series of 14
destructive wildfires affected the Los Angeles metropolitan area and San Diego County in California,
underscoring the urgency of understanding the health impacts of such events. In this study, we focus
on a previous large-scale episode: the 2018 California wildfire season [45], which included the Carr
Fire (July–August) and the Camp Fire (November) and significantly worsened air quality.

We use daily, county-level data from Letellier et al. [23] (see Appendix D.2), including PM2.5, respi-
ratory/cardiovascular hospitalizations, and weather variables (temperature, precipitation, humidity,
radiation, wind), along with population estimates from the California Department of Finance. Each
of the weather variables can be a time-varying confounder: weather conditions affect future smoke
levels and health outcomes, while also being influenced by prior smoke levels.

We focus on weeks 20–48 (May 18–Dec 2, 2018), covering the Carr and Camp fires. Following
standard practice, we label a county as “treated” on days with mean PM2.5 > 10µg/m3 and
use raw hospitalization counts (rather than per-10,000 incidence, which can be unstable for small
counties). We interpolate daily county-level data (treatment, outcome, five covariates) onto a 40× 44
latitude–longitude grid, discarding cells outside California, yielding a spatiotemporal tensor of size
203× 7× 40× 44. Interpolation ensures each grid cell approximates the region it overlaps (area-
weighted), enabling the model to capture spatial gradients in PM2.5, weather, and hospitalizations.
We train GST-UNet with horizon τ = 10, using the Carr Fire period (June–July) for validation, and
generate counterfactual predictions for the Camp Fire peak, November 8–17. See Appendix D.2 for
preprocessing and masking details.
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Figure 3: (Left) Daily PM2.5 levels across California from May to December 2018, with red lines
marking major wildfires. (Center) Counties exposed to average PM2.5 > 10 µg/m3 during the Camp
Fire (red), origin county in dark red. (Right) Factual minus CAPO-predicted daily respiratory
admissions during peak Camp Fire. Hashed areas indicate small-population counties (< 30,000).

Figure 3 (left) shows the rise in PM2.5 during the mid-late 2018 wildfire season; (center) highlights
counties with daily PM2.5 > 10, µg/m3. Using GST-UNet, we estimate daily CAPOs had the Camp
Fire not occurred (i.e., setting PM2.5 ≤ 10, µg/m3 statewide). Figure 3 (right) compares these to
factual daily incidence (hospitalizations per 10,000 residents). To reduce small-sample variability,
we exclude counties with population below 30,000 (vs. >70,000 for others), marking them with
hatching (see Appendix D.2). Over November8–17, GST-UNet predicts approximately 4,650 excess
respiratory hospitalizations (465/day) attributable to the Camp Fire, with the highest incidence
near the fire source. This aligns with a 95% bootstrap confidence interval of [1888, 6535]. UNet+
yields a lower mean and higher uncertainty (3,981; [−899, 5202]), STCINet produces highly variable
near-zero estimates (88; [−3077, 3281]), and IPWUNet gives implausibly high, near-constant values
(∼20,500), reflecting limitations of weighting under rare-event support. These results underscore GST-
UNet’s improved stability and accuracy in counterfactual estimation. Our findings are qualitatively
consistent with Letellier et al. [23], who report 259 excess daily cases averaged over a longer, lower-
intensity window (Nov 8-Dec 5). Overall, the GST-UNet captures spatiotemporal variation in smoke
exposure and health outcomes, illustrating its promise for real-world causal inference in domains
such as environmental health and policy.

7 Conclusion

We presented GST-UNet, a neural framework for spatiotemporal causal inference that combines
U-Net–based representation learning with iterative G-computation to adjust for time-varying con-
founders. GST-UNet addresses key challenges such as interference, spatial confounding, temporal
carryover, and time-varying feedback. We establish theoretical identification and consistency guar-
antees, validate performance in synthetic settings with controlled confounding, and demonstrate
practical utility in estimating the impact of wildfire smoke exposure during the 2018 Camp Fire.
Together, these results position GST-UNet as a ready-to-use tool for practitioners, offering reliable,
interpretable causal estimates in complex spatiotemporal environments. We discuss limitations and
broader impacts in Appendix E.
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Table 2: Key differences between prior neural G-computation methods and GST-UNet.
Aspect Prior Neural G-Computation GST-UNet (ours)

Data structure Many independent temporal trajectories
(e.g., patient sequences); no inter-unit
interactions such as spatial dependence.

Single spatiotemporal chain where out-
comes, covariates, and treatments evolve
jointly across a lattice; strong spatial cou-
pling and interference.

Encoder RNN/Transformer over time only. ConvLSTM-UNet encoder aggregates
neighbour covariates/treatments before
G-heads, capturing interference and spa-
tial confounding.

Training Standard end-to-end due to i.i.d trajec-
tories; stability arises from large data
rather than curriculum or spatial priors.

Curriculum-stabilized multi-head train-
ing for accurate pseudo-outcome genera-
tion under limited samples.

Theory Classical G-formula under i.i.d. trajecto-
ries; no single-chain guarantees.

Identification (Theorem 1) and consis-
tency (Theorem 3) under representation-
based time-invariance for a single chain.

A Extended Literature Review

Classical Spatiotemporal Causal Inference. Early spatiotemporal causal inference methods–
including spatial econometrics [2], difference-in-differences [20], and synthetic controls [4]–provide
useful frameworks for estimating treatment effects across regions but rely on strong assumptions
such as parallel trends or stable treatment assignment. These approaches struggle with interference,
nonlinear dependencies, and time-varying confounders, limiting their applicability in complex settings.
More recent approaches for spatiotemporal causal inference handle time-varying confounding through
inverse propensity weighting (IPW), typically by extending marginal structural models to the spatial
or spatiotemporal domain. For instance, Papadogeorgou et al. [31] and Zhou et al. [49] employ IPW-
style adjustments to estimate regional average treatment effects across space and time. However, these
approaches cannot accommodate interference unless strong assumptions are made–e.g., defining
a user-specified exposure mapping or restricting attention to hyper–local interactions (see also
[11, 31, 44, 48]). Such simplifications may be ill-suited for real-world systems with rich spatial
dependencies. Moreover, even recent advances in this space remain limited; as noted by Zhou et al.
[49], the literature on spatiotemporal causal inference remains sparse, especially in settings with
feedback loops or time-varying confounding.

Machine Learning for Spatiotemporal Modeling. Spatiotemporal predictive modeling has seen
rapid progress with the rise of deep learning. Convolutional and recurrent neural networks are widely
used for forecasting spatially indexed time series (e.g., weather or traffic) [40, 47], while graph-based
methods (e.g., Graph WaveNet [46], Diffusion Convolutional RNN [25]) capture non-Euclidean
spatial dependencies. Vision transformer variants, including Video Swin Transformers [27] and
TimeSformer [6], extend attention-based models to spatiotemporal video data. These architectures
can learn complex non-local interactions over space and time. However, such models are typically
optimized for prediction tasks and do not include causal adjustments. Without mechanisms like
propensity modeling or G-computation, they remain ill-equipped to estimate counterfactual outcomes
or adjust for time-varying confounding. Some recent work integrates spatial representations for causal
inference–e.g., Tec et al. [42] incorporate non-local confounders using a UNet-based model–but these
methods do not explicitly model dependencies over time or adjust for time-varying confounders.

Time-Series Causal Inference. In the longitudinal domain, time-series causal inference has devel-
oped tools for handling temporal confounding using models such as marginal structural models [36],
IPW-style estimation [26], and iterative G-computation [35]. Recent ML-based extensions include
recurrent networks [7, 24, 39], Transformers [18, 28] and meta-learners [16]. However, all these meth-
ods assume access to independent time series–e.g., across units or patients–which allows for pooling
across trajectories. These methods do not consider spatial dependencies, interference, or scenarios
with a single observed spatiotemporal realization. As such, while they may handle time-varying
confounding, they do not generalize to our setting. Table 2 summarizes the key methodological
differences between GST-UNet and prior neural G-computation frameworks.
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Neural-Based Spatiotemporal Causal Inference. There has been limited work on neural models
that explicitly address spatiotemporal causal inference. Tec et al. [42] use a U-Net backbone to learn
spatial representations for causal inference in air pollution studies but do not address time-varying
confounding or feedback loops. Ali et al. [1] present a U-Net–based architecture for predicting
direct and indirect effects in climate contexts, but primarily focus on forecasting rather than causal
identification. While these works highlight growing interest in neural approaches to causal inference
in spatiotemporal domains, none incorporate an iterative adjustment procedure like G-computation
that handles time-varying confounders, leaving identification in these settings largely unaddressed.

Our Contribution. GST-UNet bridges these gaps by combining flexible spatiotemporal neural
architectures with a theoretically grounded iterative G-computation framework. This allows valid
estimation of potential outcomes in the presence of interference, spatial confounding, and time-varying
confounding–without requiring practitioners to specify structural models or exposure mappings. To
our knowledge, this is the first end-to-end framework to implement G-computation for causal inference
over a single spatiotemporal trajectory. We integrate spatiotemporal processing via U-Nets and
ConvLSTMs with a principled multi-head neural causal module, and we design a curriculum-based
training strategy to stabilize learning of recursive pseudo-outcomes. Together, these components yield
a ready-to-use tool for practitioners, with consistent identification guarantees and robust empirical
performance. By abstracting away the modeling choices typically required in structural spatiotemporal
methods, GST-UNet makes spatiotemporal causal estimation more accessible, interpretable, and
reliable for real-world applications.

B Proof of Theorem 1

We aim to show that under Assumption 1 and Assumption 2, the CAPOs in Equation (1) can be
identified recursively from a single time series via a sequence of conditional expectations.

Step 1: Recursive decomposition for the intractable expectation We first demonstrate the
recursive decomposition of the intractable expectation in the CAPO definition (Equation (1)). While
this expectation is theoretically well-defined, it cannot be directly estimated in practice due to the
limited availability of data. Specifically, we only observe a single time series, meaning we have just
one sample of the history at time t+ τ for each t. Nevertheless, as we will show, we can convert these
expectations into expectations over prefix-based segments that allow us to estimate these quantities
from the data.

Starting from E[Yt+τ [at:t+τ−1] | H1:t = h1:t], we have:
E[Yt+τ [at:t+τ−1] | H1:t = h1:t]

= E[Yt+τ [at:t+τ−1] | H1:t = h1:t,At = at]
(Sequential ignorability and positivity (Assumption 1))

= E
[
E[Yt+τ [at:t+τ−1] | Ha

1:t+1] | H1:t = h1:t,At = at
]

(Law of total probability)

= E
[
E[Yt+τ [at:t+τ−1] | Ha

1:t+1,At+1 = at+1] | H1:t = h1:t,At = at
]

(Sequential ignorability and positivity)

= E
[
E
[
E[Yt+τ [at:t+τ−1] | Ha

1:t+2]
∣∣ Ha

1:t+1,At+1 = at+1

] ∣∣∣ H1:t = h1:t,At = at

]
(Law of total probability)

= E
[
E
[
E[Yt+τ [at:t+τ−1] | Ha

1:t+2,At+2 = at+2]
∣∣ Ha

1:t+1,At+1 = at+1

] ∣∣∣ H1:t = h1:t,At = at

]
(Sequential ignorability and positivity)

. . .

= E
[
. . .E

[
E[Yt+τ [at:t+τ−1] | Ha

1:t+τ−1,At+τ−1 = at+τ−1]∣∣ Ha
1:t+τ−2,At+τ−2 = at+τ−2

]∣∣ . . .∣∣∣ H1:t = h1:t,At = at

]
(Sequential ignorability and positivity)

= E
[
. . .E

[
E[Yt+τ | Ha

1:t+τ−1,At+τ−1 = at+τ−1]
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∣∣ Ha
1:t+τ−2,At+τ−2 = at+τ−2

]∣∣ . . .∣∣∣ H1:t = h1:t,At = at

]
(Consistency)

Thus, if we had multiple spatiotemporal time-series samples, we could directly estimate this nested
expression from data, since the right-hand side depends solely on observed quantities, ensuring
identifiability.

Step 2: From intractable to prefix-based expectations We now show how to estimate the nested
expectations using the prefix data. First, by Assumption 2, we can rewrite the inner-most expectation
as

E[Yt+τ | Ha
1:t+τ−1,At+τ−1 = at+τ−1] = EP[Yt+τ | ϕ(Ha

1:t+τ−1,at+τ−1)]

= Qτ (H
a
1:t+τ−1,at+τ−1). (Definition of Qτ )

Thus, by using Assumption 1, we can write this expectation over the prefix data which we have many
samples of. Now consider the next nested expectation:

E[Qτ (H
a
1:t+τ−1,at+τ−1) | Ha

1:t+τ−2 = ha
1:t+τ−2,At+τ−2 = at+τ−2]

=

∫
Qτ (h

a
1:t+τ−1,at+τ−1)p(xt+τ−1, yt+τ−1 | ha

t+τ−2,at+τ−2)d(xt+τ−1, yt+τ−1)

=

∫
P

Qτ (h
a
1:t+τ−1,at+τ−1)p(xt+τ−1, yt+τ−1 | ϕ(ha

t+τ−2,at+τ−2))d(xt+τ−1, yt+τ−1)

(Assumption 2)
= EP [Qτ (H

a
1:t+τ−1,at+τ−1) | ϕ(Ha

1:t+τ−2,At+τ−2) = ϕ(ha
1:t+τ−2,at+τ−2)]

= Qτ−1(h
a
1:t+τ−2,at+τ−2)

Tracing this argument recursively through the nested expectation in Step 1, we obtain:

E[Yt+τ [at:t+τ−1] | H1:t = h1:t] = Q1(h1:t,at),

as desired. Thus, Q1 – which can be estimated from the prefix data – recovers the CAPOs, under our
assumptions, even from a single chain.

C Consistency of the Iterative G-Computation Estimator

In this section, we state the conditions under which the iterative G-computation procedure in Sec-
tion 4.2 yields a consistent estimator, and show that our implementation of the Qk estimators satisfies
these conditions.

Notation: We denote the L2 norm of a function f as ∥f∥2 := EP [f(X)2]1/2, where the expectation
is over the probability distribution P . The notation f̂n represents the estimated value of a parameter
or function learned on n data points, where f is the true value. For a sequence of random variables
{Zn}n≥1 we write Zn = op(1) if Pr(|Zn| > ε) → 0 for every ε > 0, i.e. Zn

p−→ 0.

To begin, we introduce the following stochastic equicontinuity condition from [43]:
Definition 1 (Stochastic equicontinuity [43, Def. 1.5.7]). Let (Z, d) be a semi-metric space and
{f̂n}n≥1 ⊂ ℓ∞(Z) a sequence of random functions. It is uniformly stochastically equi-continuous if,
for every ϵ > 0, η > 0, there exists a δ > 0 such that

lim sup
n→∞

P
(

sup
d(z,z′)≤δ

∣∣f̂n(z)− f̂n(z
′)
∣∣ > ϵ

)
< η.

Stochastic equicontinuity ensures that, with high probability, each estimator changes only slightly
when its input is perturbed by a small amount. It is strictly weaker than global Lipschitz continuity –
any family that is Lipschitz on a bounded domain with constants bounded in probability automatically
satisfies Definition 1. We impose this condition in Theorem 3 so that the op(1) error in the learned
embedding propagates to only op(1) errors in the G-heads, making the recursive estimator consistent.
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Theorem 3 (Consistency under Uniform Stochastic Equicontinuity). Suppose the conditions of
Theorem 1 hold, and let ϕ̂ be a learned embedding. Define Zk := (H1:t+k,At+k), and recursively
define the learned estimators Q̂k(Zk−1; ϕ̂) := ÊP[Q̂k+1(Zk; ϕ̂) | ϕ̂(Zk)] for k = 1, . . . , τ , with
terminal condition Q̂τ+1(Zτ ; ϕ̂) = Y t+τ . Assume that {Q̂k}τk=1 are obtained via the iterative
G-computation algorithm. If:

(i) ∥ϕ̂− ϕ∥2 = op(1);
(ii) ∥Q̂k

(
Zk−1;ϕ

)
−Qk

(
Zk−1;ϕ)

)
∥2 = op(1) for all k;

(iii) for every k the random maps z 7→ Q̂k(h, a; z) are stochastically equicontinuous on Imϕ
(Definition 1), and Qk(·) is uniformly continuous there,

then ∥∥∥Q̂1

(
Z0; ϕ̂

)
−Q1

(
Z0;ϕ

)∥∥∥
2
= op(1).

Thus the recursive G-computation estimator is (probabilistically) consistent.

Proof. We proceed by reverse induction on k, starting from k = τ and working backward to k = 1.
For each k, we aim to show:

∥Q̂k(Zk−1; ϕ̂)−Qk(Zk−1;ϕ)∥2 = op(1).

Base case (k = τ ). By definition, Q̂τ+1(Zτ ; ϕ̂) = Y t+τ , which is observed. Thus,

Q̂τ (Zτ−1; ϕ̂) = ÊP[Y
t+τ | ϕ̂(Zτ )] and Qτ (Zτ−1;ϕ) = E[Y t+τ | ϕ(Zτ )].

We decompose the difference:∥∥∥Q̂τ (Zτ−1; ϕ̂)−Qτ (Zτ−1;ϕ)
∥∥∥
2
≤
∥∥∥Q̂τ (Zτ−1; ϕ̂)− Q̂τ (Zτ−1;ϕ)

∥∥∥
2︸ ︷︷ ︸

Λ1

+
∥∥∥Q̂τ (Zτ−1;ϕ)−Qτ (Zτ−1;ϕ)

∥∥∥
2︸ ︷︷ ︸

Λ2

.

Term Λ2 is op(1) by assumption (ii). Term Λ1 converges to zero in probability due to (i) ∥ϕ̂− ϕ∥2 =

op(1) and (iii) stochastic equicontinuity of Q̂τ . Therefore,∥∥∥Q̂τ (Zτ−1; ϕ̂)−Qτ (Zτ−1;ϕ)
∥∥∥
2
= op(1).

Inductive step. Suppose for some k + 1 ≤ τ that∥∥∥Q̂k+1(Zk; ϕ̂)−Qk+1(Zk;ϕ)
∥∥∥
2
= op(1).

We now consider

Q̂k(Zk−1; ϕ̂) = ÊP[Q̂k+1(Zk; ϕ̂) | ϕ̂(Zk)], Qk(Zk−1;ϕ) = E[Qk+1(Zk;ϕ) | ϕ(Zk)].

Again, decompose:∥∥∥Q̂k(Zk−1; ϕ̂)−Qk(Zk−1;ϕ)
∥∥∥
2
≤
∥∥∥Q̂k(Zk−1; ϕ̂)− Q̂k(Zk−1;ϕ)

∥∥∥
2

+
∥∥∥Q̂k(Zk−1;ϕ)−Qk(Zk−1;ϕ)

∥∥∥
2
.

The second term is op(1) by assumption (ii). The first term is also op(1) because ϕ̂ → ϕ in L2 and
the stochastic equicontinuity of Q̂k ensures that perturbations in ϕ yield small changes in predictions
uniformly over Imϕ. Thus,

∥Q̂k(Zk−1; ϕ̂)−Qk(Zk−1;ϕ)∥2 = op(1).

By induction, the result holds for all k = τ, τ − 1, . . . , 1, and in particular:

∥Q̂1(Z0; ϕ̂)−Q1(Z0;ϕ)∥2 = op(1).

Thus, the proof is now complete.
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Example 1 (Feed-forward or convolutional heads). Suppose each G-computation head Qk(·; z) is
implemented as a depth-d neural network

Ψ(z) = Wdσd−1

(
· · ·σ1(W1z)

)
,

where the activations σℓ are Lipschitz continuous (e.g., ReLU, Leaky ReLU, SoftPlus, Tanh, Sigmoid,
or ArcTan). If each layer weight satisfies a spectral norm bound ∥Wℓ∥2 ≤ ρℓ < ∞, then Ψ is
globally Lipschitz on Rh with constant L =

∏
ℓ ρℓ, and thus uniformly continuous on any compact

subset. This implies the stochastic equicontinuity condition in Definition 1.

In practice, norm control can be enforced via weight decay, spectral normalization, or weight clipping
during training. Similarly, the encoder output ϕ̂(H,A) can be bounded—e.g., through normalization
or clipping—so its image lies in a compact subset of Rh. Together, these ensure the continuity and
equicontinuity conditions required by Theorem 3.

The same argument applies to convolutional networks, since 2-D convolutions are linear operators
whose induced matrix representations also admit spectral norm bounds controlled via spectral
normalization.

D Experimental Details

In this appendix, we provide further information on the simulation experiments (Section 6.1) and the
real-world wildfire application (Section 6.2), including exact parameter settings, model architecture
and execution details, hyperparameter selection strategies, and validation procedures. All code
for generating, preprocessing, and analyzing both the synthetic and real-world datasets—and for
training and evaluating GST-UNet—is available at https://github.com/moprescu/GSTUNet,
with step-by-step replication instructions in the repository’s README.md.

For both applications, GST-UNet employs a U-Net backbone with a single ConvLSTM layer (hidden
dimension 32) and a contracting-expanding path of channel sizes 16 → 32 → 64 → 128 → 256.
The G-computation heads are implemented as shallow feed-forward neural networks that operate on
the U-Net feature maps at each grid cell for G-computation. In practice, to ensure stable ConvLSTM
training and reduce computational overhead, we truncate the input history to a fixed length. All
neural networks are implemented via the nn module in PyTorch [32]. Experiments were conducted
on an NVIDIA A100 (Ampere) GPU using the Perlmutter system at the National Energy Research
Scientific Computing Center (NERSC). The synthetic experiments required roughly 55 minutes per
hyperparameter set, while the wildfire experiment completed in about 5 minutes.

D.1 Synthetic Experiments

Data Simulation Process. For our primary simulation experiments, we generate T = 200 time steps
on a 64× 64 grid. The simulation parameters in the generating equations

Xt = α0 + α1Xt−1 + α2At−1 + α3(KX ∗Xt−1) + ϵX ,

At ∼ Bern
(
σ
(
β1

(
β0 +

1
L

L−1∑
l=0

KA ∗Xt−l

)))
,

Yt = γ0 + γ1
(
KY A ∗At−1

)
+ γ2

1
L

L∑
l=1

(
KY X ∗Xt−l

)
+ γ3Yt−1 + ϵY ,

are given by:

• Xt:

α0 = 0.5, α1 = 0.5, α2 = −2.0, α3 = 0.2, KX =

(
0 0.45 0

0.15 0 0.35
0 0.05 0

)
.

where KX influences how X diffuses across neighboring cells, with an asymmetry due to
advection.
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Figure 4: Samples from the DGP at t = 100, comparing feature X100 (left), intervention A100

(center), and outcome Y101 (right) for varying β1 ∈ {0.0, 1.0, 2.0}.

Table 3: Hyperparameters and their ranges. We boldface the values that provided the best validation
performance.

Hyperparameter Model(s) Value Range
Batch size All models {2, 4, 8}
Learning rate All models {10−4, 5× 10−4, 10−3}
Scheduler patience All models {3, 5, 10}
Early stopping patience All models {5, 10}
Curriculum period GST-UNet {1, 3, 5, 7}
Curriculum learning rate GST-UNet {10−4, 5× 10−4, 10−3}
UNet output dim dh GST-UNet {8, 16, 32}
G-head hidden size GST-UNet {8, 16}
G-head layers GST-UNet {1, 2, 3}

• At:

β0 = −1.0, β1 ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, KA =
1

16

(
1.0 1.0 1.0
1.0 8.0 1.0
1.0 1.0 1.0

)
.

• Yt:
γ0 = 2.0, γ1 = 1.5, γ2 = 0.5, γ3 = 0.5

KY X =
1

16

(
1.0 1.0 1.0
1.0 8.0 1.0
1.0 1.0 1.0

)
, KY A =

1

16

(
1.0 1.0 1.0
1.0 8.0 1.0
1.0 1.0 1.0

)
.

We use L = 5 temporal lags for X and Y, a seed of 42 for reproducibility. The parameter values
were chosen such that the simulation remains stable (i.e., the process does not diverge). See Figure 4
for representative t = 100 snapshots of X100, A100, and Y101 under varying β1.

For each β1, we first generate a factual dataset of length T = 200 (i.e., {(Xt,At,Yt)}200t=1). We then
create ntest = 50 test histories of length lH = 10. For each test history, we simulate 100 trajectories
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Table 4: Ablation on spatial kernel size (τ = 5). Removing neighbor aggregation (1 × 1 kernel)
degrades performance, confirming the need to model spatial spill-overs.

Kernel size β1=0.0 0.5 1.0 1.5 2.0

3× 3 0.33 ± 0.004 0.35 ± 0.004 0.40 ± 0.005 0.44 ± 0.004 0.40 ± 0.005
1× 1 0.53 ± 0.004 0.55 ± 0.005 0.54 ± 0.005 0.60 ± 0.007 0.64 ± 0.006

Table 5: Effect of increasing T on RMSE for β1 = 2.0. GST-UNet improves with more data, while
baselines remain biased.

Model T=100 T=200 T=400 T=600 T=800
UNet+ 0.78 0.81 0.82 0.95 0.87
STCINet 0.80 0.90 1.04 1.02 0.91
GST-UNet 0.69 0.40 0.32 0.32 0.36

under a randomly chosen (yet fixed over the test data) counterfactual intervention of length τ = 10,
and average the outcomes at each step to approximate the true CAPOs. This procedure yields a final
test set of shape ntest × (lH + τ + 1)× 64× 64, i.e., 50× 21× 64× 64.

Neural Architectures. The GST-UNet comprises a single ConvLSTM layer (hidden dimension 32),
followed by a U-Net with channel sizes 16→32→64→128→256. Its G-computation heads are
shallow feed-forward networks operating on the final U-Net feature maps at each grid cell; both the
U-Net’s output dimension (dh) and the G-head architecture (number of layers, hidden size) are treated
as hyperparameters. The UNet+ baseline uses the same ConvLSTM+U-Net backbone as GST-UNet
but outputs a single channel (dh = 1), omitting any G-computation. For direct comparison, we also
implement STCINet [1] with an identical ConvLSTM+U-Net backbone, and retaining their original
Latent Factor Model (LFM) details.

IPWUNet Baseline. We adapt the Inverse Propensity Weighting (IPW) estimator from [49] to the
spatiotemporal setting. Given estimated propensities π̂(al | H1:l), the estimator is defined as:

Ŷ IPW
t+τ =

(
t+τ∏
l=t

I[Al = al]

π̂(al | H1:l)

)
, CAPO = E[Ŷ IPW

t+τ | H1:t = h1:t].

We implement the IPWUNet baseline by reusing the UNet+ architecture (U-Net + ConvLSTM +
Attention) for both propensity estimation and outcome prediction. Specifically, we first train the
propensity model with a binary cross-entropy loss to estimate π̂(At | Ht) at each time t. We then
freeze this model and use the estimated weights to train a second instance of the same architecture with
a weighted MSE loss, where pseudo-outcomes are reweighted by the estimated inverse propensities
along the counterfactual treatment path. While this allows partial adjustment for time-varying
confounding, the method does not correct for spatial interference and is sensitive to small propensity
values, which can lead to high variance.

Training Details. We randomly initialize all model parameters (GST-UNet and baselines) with
Xavier uniform weights [17]. We use the Adam optimizer [21] with an initial learning rate, halving it
whenever the validation loss plateaus for a specified scheduler patience. To mitigate overfitting, we
adopt early stopping when the validation loss fails to improve for a specified early stopping patience
epochs. Validation uses 40 of the 190 training prefixes, and the total training is capped at 100 epochs.
We tune the following hyperparameters: (i) batch size, learning rate, scheduler patience, and early
stopping patience (common to all models); (ii) for GST-UNet, the curriculum period and learning rate
for curriculum phases, the U-Net output dimension dh, and the number and width of hidden layers
in the feed-forward G-heads. Table 3 lists the hyperparameter ranges considered, with the values
yielding the best validation performance in bold.

Evaluation Procedure. We evaluate each model by averaging the root mean square error (RMSE) of
the estimated CAPOs against ground truth across 50 test trajectories. Table 1 in the main text reports
RMSE ± standard deviation for horizon lengths τ ∈ {5, 10} and β1 ∈ {0, 0.5, 1.0, 1.5, 2.0}.

Effect of Varying T . We ran additional simulations varying the trajectory length T ∈
{100, 200, 400, 600, 800} and β1 = 2.0 while keeping the grid size fixed (dx = dy = 64). Re-
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Figure 5: (Left) Daily respiratory illness incidence (cases per 10,000). (Center) Weekly aggregated
incidence. (Right) Average daily PM2.5 during the Camp Fire.
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Figure 6: An example of county-level (left) vs. grid-interpolated (right) PM2.5 levels on November 18
(during the Camp Fire). The grid interpolation produces a 40× 44 lattice of area-weighted estimates
aligned with our spatiotemporal framework.

sults are shown Appendix D.1. GST-UNet consistently improves with more data, while the baselines
remain biased—even as T increases. This highlights the importance of adjusting for time-varying
confounding: without it, there is a persistent asymptotic bias.

Effect of Neighbor Aggregation. To evaluate the importance of spatial spill-over modeling, we
ablate the convolutional kernel used in the ConvLSTM encoder. Table 4 compares GST-UNet
with a standard 3× 3 kernel against a variant that removes neighbor aggregation by using a 1× 1
kernel. Across all levels of confounding strength (β1), performance deteriorates markedly when
neighbor information is excluded, with RMSE increasing by 30–40%. This confirms that explicitly
aggregating information from nearby locations is essential for capturing spatial interference and
achieving unbiased counterfactual estimates.

D.2 Wildfire Application

Data Preprocessing and Interpolation We analyze daily, county-level data from Letellier et al.
[23] that include PM2.5 (particulate matter < 2.5µm), hospitalization counts for respiratory and
cardiovascular conditions, and weather variables (temperature, precipitation, humidity, radiation,
wind), plus population estimates from the California Department of Finance. Our study period spans
weeks 20–48 (May 18–December 2, 2018), covering both the Carr and Camp fires. As illustrated in
Figure 5, daily and weekly aggregated respiratory illness rates rise around these events, while PM2.5
levels also surge during the Camp Fire.

To align with our spatiotemporal framework, we use geopandas [19] to interpolate county-level
covariates, PM2.5, and hospitalizations onto a latitude–longitude grid from 32◦N to 42◦N latitude
and -125◦ to -114◦ longitude, at a resolution of 0.25◦. Each grid cell’s values are an area-weighted
average of the counties it intersects, yielding a 40× 44 spatial lattice. We mask out non-California
cells by setting them to zero, thus obtaining a consistent dataset for further analysis. As an example,
Figure 6 illustrates how the raw county-level data compare to the interpolated grid for PM2.5 on
November 18.
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Table 6: Estimated county-level increases in respiratory ED visits attributable to the wildfire event,
with 95% bootstrap confidence intervals. Population is reported in units of 10,000. Counties marked
with * have smaller populations, which may lead to greater uncertainty.

County Mean 2.5% 97.5% Population (×104) Interval Width / Population

Tehama 37 -126 158 6.4 44.4
Butte 168 30 325 23.0 12.8
Glenn* -52 -262 39 2.8 107.6
Colusa* 13 -158 107 2.1 124.0
Sutter -18 -170 70 9.6 24.9
Napa 81 -41 192 13.9 16.8
Lake 103 -66 203 6.4 41.8
Solano 38 -79 173 44.6 5.6
Sacramento 202 -107 484 153.9 3.8

Model Training and Validation We train GST-UNet with prediction horizon τ = 10 days. The loss
function is MSE with two key modifications: (1) we mask grid cells outside California’s boundaries
to exclude them from loss computation, and (2) we apply cell-specific weights proportional to the
number of cells per county to prevent bias towards geographically larger counties. For validation
and hyperparameter tuning, we use data from the first 50 days of the wildfire season. The GST-UNet
hyperparameters are: batch size = 4, learning rate = 5 × 10−4, scheduler patience = 5, early
stopping patience = 10, curriculum period = 5, curriculum learning rate = 5× 10−4, UNet output
dimension dh = 16, G-head hidden layer size = 8, and G-head layers = 1. Using this configuration,
we generate counterfactual predictions for the Camp Fire peak period (November 8–17) by iteratively
applying the trained model with increasing history lengths. We note that counties with populations
below 20,000–30,000 can yield unreliable incidence rate estimates, given baseline daily rates of
approximately 4 cases per 10,000 individuals. In Figure 3, we denote these high-uncertainty counties
with hatched markings.

Model Training and Validation Model Training and Validation We train GST-UNet, UNet+,
STCINet, and IPWUNet with a prediction horizon of τ = 10 days using a shared set of hyperpa-
rameters: batch size = 4, learning rate = 5× 10−4, scheduler patience = 5, early stopping patience
= 10, and curriculum period = 5 (with curriculum learning rate = 5× 10−4). For GST-UNet, we
additionally set the U-Net output dimension to dh = 16, the G-head hidden layer size to 8, and the
number of G-head layers to 1. The loss function is mean squared error (MSE) with two adjustments:
(1) we mask grid cells outside California to exclude them from the loss, and (2) we apply cell-specific
weights proportional to the number of grid cells per county to avoid bias toward geographically larger
counties. Hyperparameter tuning is performed using the first 50 days of the wildfire season. We then
generate counterfactual predictions for the Camp Fire peak period (November 8–17) by iteratively
applying each model with increasing history lengths.

Bootstrap Confidence Intervals We compute 95% bootstrap confidence intervals for all models
using n = 40 bootstrap samples, balancing statistical rigor with computational load. Counties
with populations below 20,000–30,000 tend to yield unstable incidence rate estimates, driven by
low baseline daily counts (approximately 4 cases per 10,000), and are excluded from the analysis.
These counties are indicated with hatching in Figure 3, a choice further supported by the bootstrap
results. In Table 6, we report bootstrap intervals for the counties closest to the Camp Fire. Glenn and
Colusa exhibit disproportionately wide intervals–reflecting the uncertainty introduced by their small
population sizes–and this further justifies their exclusion from the final analysis.

E Limitations and Broader Impacts

Limitations While GST-UNet demonstrates strong empirical performance and theoretical ground-
ing, several limitations should be acknowledged. First, our method relies on standard causal iden-
tification assumptions, including no unobserved confounding (Assumption 1), which is inherently
untestable and may not hold in all real-world settings. Second, our framework assumes the existence
of a time-invariant representation of the spatiotemporal process (Assumption 2)–a useful but idealized
condition that may be violated in domains with highly non-stationary or regime-shifting dynamics.
Finally, GST-UNet is designed for gridded spatiotemporal data and assumes a regular spatial lattice;
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while this is common in environmental and health applications, adapting the framework to irregular
spatial structures (e.g., graphs or administrative boundaries) is an important direction for future work.

Broader Impacts This work advances machine learning by introducing a spatiotemporal causal
inference framework for estimating treatment effects in complex real-world settings. The GST-UNet
has broad applications in public health, environmental science, and social policy, where understanding
interventions supports evidence-based decisions. For example, it can inform pollution control, wildfire
response, or health resource allocation. However, like all observational methods, GST-UNet depends
on the quality and completeness of the data, as well as the assumptions stated in this work. We
caution against uncritical use in high-stakes settings, as violations of model assumptions or data
biases can lead to misleading conclusions. We encourage responsible deployment–especially in
contexts affecting vulnerable populations–and recommend pairing our method with domain expertise,
sensitivity checks, and uncertainty quantification.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction state that the paper introduces GST-UNet,
a neural framework for estimating causal effects in spatiotemporal settings with time-
varying confounding. They accurately summarize the paper’s three core contributions: the
development of the framework with theoretical guarantees, empirical validation in synthetic
settings, and a real-world application to wildfire smoke exposure. The claims align with
both the theoretical results and empirical findings presented in the main text.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We present the limitations of our work in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We present two theorems, Theorem 1 and Theorem 3 which cover the identifi-
cation and consistency guarantees of our estimator. The (complete and correct) proofs are
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included in Appendix B and Appendix C, respectively. The assumptions are incorporated in
Assumption 1, Assumption 2, as well as the text of the theorems.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 6 and Appendix D provide the information necessary (including data
generation processes, model choices, training and validation procedures, hyperparameter
choices, etc.) to reproduce the main experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
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Justification: We provide the replication data and code at https://github.com/
moprescu/GSTUNet, along with instructions for reproducibility (see README.md docu-
ment).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 6 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard deviation for the synthetic experiments in Table 1 and
boostrap CIs for the real-world case study in Section 6.2
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

26

https://github.com/moprescu/GSTUNet
https://github.com/moprescu/GSTUNet
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the ethics guidelines at https://neurips.cc/public/
EthicsGuidelines and confirm that our work adheres to them.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
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mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The models and datasets used in this work do not pose significant risks for
misuse. GST-UNet is a causal inference framework for scientific and policy applications
using structured spatiotemporal data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets and code used in this work are publicly available and appropriately
cited (e.g., Letellier et al. [23] for wildfire data). License and usage terms are respected as
per the original sources.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release code and simulation scripts to reproduce all experiments, along
with documentation and usage instructions (see Appendix D). All assets are anonymized for
review and available at the provided URL.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used solely for writing assistance and code debugging; they were
not involved in the development or implementation of the core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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