
AutoML from Service Provider’s Perspective: Multi-device,
Multi-tenant Model Selection with GP-EI

Chen Yu Bojan Karlaš Jie Zhong Ce Zhang Ji Liu
Department of
Computer
Science,

University of
Rochester

Deparment of
Computer
Science,

ETH Zurich

Deparment of
Mathematics,
California State

University
Los Angeles

Deparment of
Computer
Science,

ETH Zurich

Department of
Computer
Science,

University of
Rochester

Abstract

AutoML has become a popular service that
is provided by most leading cloud service
providers today. In this paper, we focus on the
AutoML problem from the service provider’s
perspective, motivated by the following prac-
tical consideration: When an AutoML ser-
vice needs to serve multiple users with mul-
tiple devices at the same time, how can we
allocate these devices to users in an efficient
way? We focus on GP-EI, one of the most
popular algorithms for automatic model se-
lection and hyperparameter tuning, used by
systems such as Google Vizer. The technical
contribution of this paper is the first multi-
device, multi-tenant algorithm for GP-EI that
is aware of multiple computation devices and
multiple users sharing the same set of compu-
tation devices. Theoretically, given N users
and M devices, we obtain a regret bound of
O((MIU(T,K) +M)N

2

M), where MIU(T,K)
refers to the maximal incremental uncertainty
up to time T for the covariance matrixK. Em-
pirically, we evaluate our algorithm on two
applications of automatic model selection, and
show that our algorithm significantly outper-
forms the strategy of serving users indepen-
dently. Moreover, when multiple computation
devices are available, we achieve near-linear
speedup when the number of users is much
larger than the number of devices.

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

AlexNet ResNet-18 InceptionV4

Per-user GP-EI Model Selection

Per-user GP-EI Model Selection

Per-user GP-EI Model Selection

Per-user GP-EI Model Selection
Which user should

we serve for the next
round of training?

Per-user GP-EI Model Selection

Figure 1: Multi-device, Multi-tenant Model Selection

1 INTRODUCTION

One of the next frontiers of machine learning research
is its accessibility — How can we make machine learn-
ing systems easy to use such that users do not need
to worry about decisions such as model selection and
hyperparameter tuning as much as today? The in-
dustry’s answer to this question seems to be making
AutoML services available on the cloud, and prominent
examples include Google Cloud AutoML and Microsoft
Cognitive Services. In these services, users are provided
with a single interface for uploading the data, auto-
matically dealing with hyperparameter tuning and/or
model selection, and returning a model directly without
any user intervention as shown in Figure 1. Bayesian
optimization is one of the core techniques that make
AutoML services possible by strategically planning a
series of models and hyperparameter configurations to
tune and try.

From the service provider point of view, resource alloca-
tion is the problem coming together with the emerging
popularity of such a service — When an online Au-
toML service needs to serve multiple users with limited
number of devices, what is the most cost efficient way
of allocating these devices to different users? During
our conversation with multiple cloud service providers,
many of them believe that an effective and cost efficient
resource sharing could be of great practical interests

AutoML from Service Provider’s Perspective: Multi-device, Multi-tenant Model Selection with GP-EI

and is a natural technical question to ask.

In this paper, we focus on GP-EI, one of the most
popular algorithms for AutoML that is used in sys-
tems such as Google Vizier Golovin et al. [2017] and
Spearmint Snoek et al. [2012]. Specifically, we are in-
terested in the scenarios that each user runs her own
GP-EI instance on a different machine learning task,
and there are multiple devices, each of which can only
serve one user at the same time. How to allocate re-
sources? What are the theoretical properties of such an
algorithm?

The result of this paper is the first multi-device, multi-
tenant, cost sensitive GP-EI algorithm that aims at
optimizing for the “global happiness” of all users given
limited resources. In order to analyze its performance,
we introduce a new notation of Maximum Incremen-
tal Uncertainty (MIU) to measure dependence among
all models. Given N users and M devices, the upper
bound of cumulative regret is O((MIU(T,K)+M)N

2

M),
where MIU(T,K) will be specified in Section 5.2.
This bound converges to optimum and is nearly linear
speedup when more devices are employed, which will
be discussed also in Section 5.2.

We evaluate our algorithms on two real-world datasets:
(1) model selection for image classification tasks that
contains 22 datasets (users) and 8 different neural net-
work architectures; and (2) model selection for models
available on Microsoft Azure Machine Learning Stu-
dio that contains 17 datasets and 8 different machine
learning models. We find that, multi-tenant GP-EI
outperforms standard GP-EI serving users randomly
or in a round robin fashion, sometimes by up to 5× in
terms of the time it needs to reach the same “global
happiness” of all users. When multiple devices are
available, it can provide near linear speedups to the
performance of our algorithm.

2 RELATED WORK

Multi-armed bandit problem There are lots of
research on the multi-armed bandit problem. Some
early work such as Lai and Robbins [1985] provided the
lower bound of stochastic multi-armed bandit scenario
and designed an algorithm to attain this lower bound.
Then many research focused on improving constants of
the bound and designing distribution-free-bound algo-
rithms such as upper confidence bound (UCB) [Auer
et al., 2002] and Minimax Optimal Strategy in the
Stochastic case (MOSS) [Audibert and Bubeck, 2009].
UCB is now becoming a very important algorithm in
bandit problem. Lots of algorithms are based on UCB,
such as LUCB [Kalyanakrishnan et al., 2012], GP-UCB
[Srinivas et al., 2012]. The UCB algorithm constructs
the upper confident bound for each arm in every itera-

tion, and chooses the arm with largest bound as the
next arm to observe. UCB is very efficient by effectively
balancing exploration and exploitation, admitting the
regret upper bound O(

√
T |L| log T) [Bubeck et al.,

2012], where T is running time, L is the set of arms.
There also exist some variations of the bandit problem
other than stochastic bandit problem, such as contex-
tual bandit problem [Deshmukh et al., 2017, Langford
and Zhang, 2008] and bandit optimization problem
[Arora et al., 2012, Hazan et al., 2016]. We recommend
readers to refer to the book by [Bubeck et al., 2012].
Regret is a common metric of algorithms above, while
another important metric is the sample complexity
[Gabillon et al., 2012, Kalyanakrishnan et al., 2012].
Recently there are also some research to combine ban-
dit algorithms and Monte Carlo tree methods to find
out an optimal path in a tree with random leaf nodes,
that corresponds to finding the optimal strategy in a
game. Representative algorithms include UCT [Kocsis
et al., 2006], UGapE-MCTS [Kaufmann and Koolen,
2017], and LUCB-micro [Huang et al., 2017].

Expected improvement methods The expected
improvement method dates back to 1970s, when
J. Mockus and Zilinskas [1978] proposed to use the
expected improvement function to decide which arm
to choose in each iteration, that is, the arm is chosen
with the maximal expected improvement. The advan-
tage of this method is that the expected improvement
can be computed analytically [J. Mockus and Zilin-
skas, 1978, Jones et al., 1998]. Recently, Snoek et al.
[2012] extended the idea of expected improvement to
the time sensitive case by evaluating the expected im-
provement per second to make selection. We also adopt
this concept in this paper, namely, EIrate. There are
also some works on analyzing the asymptotically con-
vergence of EI method. Ryzhov [2016] analyzed the
hit number of each non-optimal arm and the work by
Bull [2011] provides the lower and upper bound of
instantaneous regret when values of all arms are in
Reproducing-Kernel Hilbert Space. Expected improve-
ment methods have many application scenarios, see
[Malkomes et al., 2016].

GP-UCB GP-UCB is a type of approaches consider-
ing the correlation among all arms, while the standard
UCB [Auer et al., 2002] does not consider the correla-
tion. GP-UCB chooses the arm with the largest UCB
value in each iteration where the UCB value uses the
correlation information. The proven regret achieves the
rate O(

√
T log T log |L|γT) where T is running time,

L is the set of arms, and γT is the maximum infor-
mation gain at time T . Some variants of GP-UCB
include Branch and Bound algorithm [de Freitas et al.,
2012], EGP algorithm [Rana et al., 2017], distributed

Chen Yu, Bojan Karlaš, Jie Zhong, Ce Zhang, Ji Liu

batch GP-UCB [Daxberger and Low, 2017], MF-GP-
UCB [Kandasamy et al., 2016], BOCA [Kandasamy
et al., 2017], GP-(UCB/EST)-DPP-(MAX/SAMPLE)
[Kathuria et al., 2016], to name a few.

Parallelization bandit algorithms To improve
the efficiency of bandit algorithms, multiple agents
can be employed and they can perform simultaneous
investigation. Zhong et al. [2017] designed an asyn-
chronous parallel bandit algorithm that allows multiple
agents working in parallel without waiting for each
other. Both theoretical analysis and empirical studies
validate that the nearly linear speedup can be achieved.
Kandasamy et al. [2018] designed an asynchronous
version of Thompson sampling algorithm to solve paral-
lelization Bayesian bandit optimization problem. While
they consider the single user scenario, our work extends
the setup to the multi-user case, which leads to our
new notation to reflect the global happiness and needs
some new technique in theoretical analysis.

AutoML Closely related to this work is the emerg-
ing trend of AutoML system and services. Model se-
lection and hyperparameter tuning is the key tech-
nique behind such services. Prominent systems in-
clude Spark TuPAQ [Sparks et al.], Auto-WEKA [Kot-
thoff et al., Thornton et al.], Google Vizier [Golovin
et al.], Spearmint [Snoek et al., 2012], GPyOpt [GPy-
Opt, 2016], and Auto scikit-learn [Feurer et al.] and
prominent online services include Google Cloud Au-
toML and Microsoft Cognitive Services. Most of these
systems focus on a single-tenant setting. Recently, Li
et al. [2018] describes a system for what the authors call
“multi-tenant model selection”. Our paper is motivated
by this multi-tenant setting, however, we focus on a
much more realistic choice of algorithm, GP-EI, that
is actually used by real-world AutoML services.

3 MATHEMATICAL PROBLEM
STATEMENT

In this section, we give the mathematical expression of
the problem. We first introduce the multi-device, multi-
tenant (MDMT) AutoML problem, which is a more
general scenario of single-device, single-tenant (SDST)
AutoML problem. Then in Section 3.1, we propose a
new notion – time sensitive hierarchical bandit (TSHB)
problem to abstract the MDMT AutoML problem. At
last in Section 3.2, we define a new metric to quantify
the goal.

Single-device, single-tenant (SDST) AutoML
AutoML often refers to the single-device, single-tenant
scenario, in which a single user aims finding the best
model (or hyper parameter) for his or her individual

dataset as soon as possible. Here the device is an ab-
stract concept, it can refer to a server, or a CPU, GPU.
The problem is usually formulated into a Bayesian opti-
mization problem or a bandit problem using Gaussian
process to characterize the connection among different
models (or hyper parameters).

Multi-device, multi-tenant (MDMT) AutoML
The MDMTAutoML considers the scenario where there
are multiple devices available and multiple tenants who
seek the best model for each individual dataset (one
tenant corresponds to one dataset). While the objective
of the SDST AutoML is purely from the perspective of
a customer, the objective of MDMT AutoML is from
the service provider, because it is generally impossible
to optimize performance for each single one, given the
limited computing resource. There are two fundamen-
tal challenges: 1) When there are multiple devices are
available, how to coordinate all computing resources
to maximize the efficiency? Simply extending the al-
gorithms in SDST AutoML often let multiple devices
to run the same model on the same dataset, which
apparently wastes the computing resource; 2) To serve
multiple customer, we need to find a global metric to
guide us to specify the most appropriate customer to
serve besides of choosing the most promising the model
for his / her dataset for each time. The overall problem
is how to utilize all devices to achieve a certain global
happiness. Each device is considered to be atomic, that
is, each device can only run one algorithm (model) on
one dataset at the same time.

3.1 Time sensitive hierarchical bandit
(TSHB) problem

To find a systematic solution to the MDMT AutoML
problem, we develop a new notion – time sensitive
hierarchical bandit (TSHB) problem to formulate the
MDMT AutoML problem.

Definition of TSHB problem Now we formally
propose the ime sensitive hierarchical bandit problem to
abstract the multi-device, multi-tenant autoML frame-
work. Suppose that there are N users (or datasets
in autoML framework) and M devices. Each user has
a candidate set of models (or algorithms in autoML
framework) he or she is interested, specifically, Li is the
candidate model set for user i ∈ [N]. Here we consider
a more general situation, that is we do not assume that
Li and Lj are disjoint for i, j ∈ [N]. Denote the set
of all models by L = L1 ∪ L2 ∪ · · · ∪ LN . Running a
model x ∈ L on a device will take c(x) units of time.
One model can only be run on one device at the same
time and one device can only run one model at the
same time. Since one model has been assigned to an
idle device, c(x) units time later, the performance of

AutoML from Service Provider’s Perspective: Multi-device, Multi-tenant Model Selection with GP-EI

model x will be observed, denoted by z(x). For ex-
ample, the performance could be the accuracy of the
model. W.L.O.G., we assume that the larger the value
of z(x), the better. Roughly saying, the overall goal
is to utilize M devices to help N users to find out
each individual optimal model from the corresponding
candidate set as soon as possible. More technically,
the goal (from the perspective of service provider) is
to maximize the cumulative global happiness over all
users. We will define a regret to reflect this metric in
the next subsection.

Remark 1. Here we simply assume c(x) to be known
beforehand. Although it is usually unknown beforehand,
it is easy to estimate an approximate (but high accurate)
value by giving the dataset set size, the computational
hardware parameters, historical data, and other infor-
mation. Therefore, for simplicity in analysis, we just
use estimated value so that we can assume the runtime
of each model to be exactly known beforehand. In our
empirical study, this approximation does not degrade
the performance of our algorithm.

3.2 Regret definition for cumulative global
happiness

To quantify the goal – cumulative global happiness, we
define the corresponding regret. Let us first introduce
some more notations and definitions:

• L(t): the set of models whose performances have
been observed up to time t;

• x∗i : the best model for user i, that is, x∗i :=
arg maxx∈Li

z(x);

• x∗i (t): the best model for user i observed up to time
t, that is,

x∗i (t) := arg max
x∈L(t)∩Li

z(x). (1)

We define the individual regret (or negative individual
happiness) of user i at time t by the gap between the
currently best and the optimal, i.e., z(x∗i)− z(x∗i (t)).

In most AutoML systems, the user experience goes be-
yond the regret at a single time point for a single user.
Instead, the regret is defined by the integration over
time and the sum over all users’ regrets. It is worth
noting that the regret for each user is not the same
as the one in the SDST scenario since even a user is
not served currently, he or she still receives the penalty
(measured by the gap between the optimal model’s per-
formance and the currently best performance). More
formally, the regret at time T is defined by

RegretT =

N∑
i=1

∫ T

0

(
z(x∗i)− z

(
x∗i (t)

))
dt. (2)

Our goal is to utilize all devices to minimize this regret.

Discussion: Why is Multi-Device Important?
Having multiple devices in the pool of computation
resources does not necessarily mean that we need to
have a multi-device GP-EI algorithm to do the schedul-
ing. One naive solution, which is adopted by ease.ml Li
et al. [2018] is to treat all devices as a single device to
do distributed training for each training task. In fact, If
the training process can scale up linearly to all devices
in the computation pool, such a baseline strategy might
not be too bad. However, the availability of resources
provided on a modern cloud is far larger than the cur-
rent limitation of distributed training — Whenever the
scalability becomes sublinear, some resources could be
used to serve other users instead. Given the growth
rate of online machine learning services, we believe the
multi-device setting will only become more important.

4 ALGORITHM
The proposed Multi-device Multi-tenant GP-EI (MM-
GP-EI) algorithm follows a simple philosophy – as long
as there is a device available, select a model to run on
this device. To minimize the regret (or equivalently
maximize the cumulative global happiness), the key is
to select a promising model to run whenever there is
an available device. We use the expected improvement
rate (EIrate) to measure the quality of each model in
the set of models that have not yet been selected before
(selected models include the ones whose performance
have been observed or that are under test currently).
The EIrate value for model x depends on two factors:
the running time of model x and its expected improve-
ment (EI) value (defined as Expected Improvement
Function in Section 4.1)

EIrate(x) := EI(x)/c(x).

This measures the averaged expected improvement.
This concept also appeared in Snoek et al. [2012].

4.1 Expected Improvement Function
Every Bayesian-based optimization algorithm has a
function called acquisition function [Brochu et al., 2010]
that guides the search for the next model to test. In
our algorithm, we will call it expected improvement
function (EI function).

Suppose at time t there is a device free, we first compute
posterior distributions for all models given all current
observation and then use these posterior distributions
to construct EI function for every model.

First, for each model x and any user who has this model
(notice that different users can share the same model),
we use EIi,t(x) to denote expected improvement of user
i’s best performance if model x is observed. Formally,

Chen Yu, Bojan Karlaš, Jie Zhong, Ce Zhang, Ji Liu

we have

EIi,t(x) = E
[

max
{
z(x)− z

(
x∗i (t)

)
, 0
}]
. (3)

Here E means taking expectation of posterior distribu-
tion of z(x) at time t.

Then, we sum this value over all users who have model
x to represent the total expected improvement EIt(x)
if model x is observed. Formally, we have

EIt(x) =

N∑
i=1

1(x ∈ Li)EIi,t(x), (4)

where 1(A) = 1 if A happens, and 1(A) = 0 if A does
not happen. At last, we define the EIrate value of x
at time t as follows:

EIratet(x) =
EIt(x)

c(x)
. (5)

Now, we can choose the model with the max value of
EIrate as the next one to run at time t:

xnext to run at time t = arg max
x∈L\L(t)

EIratet(x). (6)

Algorithm 1 MM-GP-EI Algorithm

Input: µ(x), k(x, x′), c(x), L, {Li}Ni=1 and the total
time budget T .

1: x(i)initial = arg maxx∈Li
µ(x),∀i ∈ [N].

2: Lob =
{
x
(i)
initial

}N
i=1

3: while there is a device available and the elapsed
time t is less than T do

4: Refresh Lob to include all observed models at
present

5: Update posterior mean µt(·), posterior covari-
ance kt(·, ·′) of z(x) given {z(x)}x∈Lob

6: Update x∗i (t) = arg maxx∈Lob∩Li
z(x),∀i ∈ [N]

7: EI(x) =
N∑
i=1

∑
x∈Li\Lob

σt(x)τ
(
µt(x)−z

(
x∗i (t)

)
σt(x)

)
,∀x ∈

L
8: Run xnext = arg max

x∈L\Lob

EI(x)
c(x) on this free device

9: end while
Output: x∗1(T), x∗2(T), · · · , x∗N (T).

4.2 Choosing Prior: Gaussian Process
Next, we must choose a suitable prior of z(x) to es-
timate EI function in (3). Here, we choose Gaussian
Process (GP) as the prior like many other Bayesian
optimization algorithms [Bull, 2011, Srinivas et al.,
2012], mainly because of its convenience of computing
posterior distribution and EI function.

A Gaussian Process GP (µ(x), k(x, x′)) is determined
by its mean function µ(x) and covariance function
k(x, x′). If z(x) has a GP prior GP (µ(x), k(x, x′)),
then after observing models in L(t) at time t, the pos-
terior distribution of z(x) given {z(x)}x∈L(t) is also a
Gaussian Process GP (µt(x), kt(x, x

′)). Here, posterior
mean µt(x) and variance kt(x, x′) can be computed
analytically. We give the formulas in Supplemental
Meterials (Section A).

EI function can also be computed analytically if z(x)
obeys Gaussian Process (whatever prior or posterior).
The following lemma gives the expression.

Lemma 1. Let Φ(x) denote cumulative distribution
function (CDF) of standard normal distribution and
φ(x) denote probability density function (PDF) of stan-
dard normal distribution. Also, let τ(x) = xΦ(x)+φ(x).
Then, if X ∼ N (µ, σ2), and a ∈ R is a constant, we
have

E
[

max
{
X − a, 0

}]
= στ

(µ− a
σ

)
.

This section ends by the detailed description of the
proposed MM-GP-EI algorithm in Algorithm 1.

Discussion: How to Choose Prior Mean µ(x)
and Prior Covariance k(x, x′) Prior mean µ(x)
and prior covariance k(x, x′) are chosen according to
the specific problem. They often characterize some
properties of models in the problem, such as expected
value of models and correlations among different mod-
els. In our multi-device multi-tenant example, the
parameters of Gaussian process can be obtained from
historical experiences and the correlation depends on
two factors: the similarity of algorithms and the similar-
ity of users’ datasets. We following standard AutoML
practice (used in Google Vizier or ease.ml) to construct
the kernel matrix from historical runs.

5 MAIN RESULT
Before we introduce the main theoretical result, let us
propose a new notation Maximum Incremental Uncer-
tainty (MIU), which plays a key role in our theory.

5.1 Maximum Incremental Uncertainty
Suppose that K is the kernel matrix, that is, K :=
[k(x, x′)](x,x′∈L), where k(x, x′) is the kernel function
and L is the set of all models as defined in Section 3.1.
So, K is an |L| × |L| positive semi-definite (covariance)
matrix. Suppose S is a subset of [|L|] := {1, 2, · · · , |L|}.
Let KS be a submatrix of K with columns and rows
indexed by S.

We define the s-MIU score of matrix K (1 ≤ s ≤ |L|)
by

AutoML from Service Provider’s Perspective: Multi-device, Multi-tenant Model Selection with GP-EI

MIUs(K) := max
S′⊂S⊆[L],

|S|=s,|S′|=s−1

{√
det(KS)
det(KS′)

, det(KS′) 6= 0;

0, otherwise,

where we define det(K∅) = 1.

Let us understand the meaning of the notation MIU.
Given |L| Gaussian random variables with covariance
matrix K ∈ R|L|×|L|, det(KS′) denotes the total quan-
tity of uncertainty for all random variables in S′ ⊂ L.
det(KS)/det(KS′) denotes the incremental quantity
of uncertainty by adding one more random variable
into S′ to form S. If the added random variable can
be linearly represented by random variables in S′, the
incremental uncertainty is zero. If the added random
variable is independent to all variables in S, the incre-
mental uncertainty is the variance of the added variable.
Therefore, MIUs(K) measures the largest incremental
quantity of uncertainty from s− 1 random variables to
s random variables in L.
Remark 2. Why do not use Information Gain?
People who are familiar with the concept of information
gain (IG) may ask “IG is a commonly used metric to
measure how much uncertainty reduced after observed
a sample. Why not use it here?” Although IG and
MIU essentially follow the same spirit, the IG metric
is not suitable in our setup. Based on the mathemati-
cal definition of IG (see Lemma 5.3 in Srinivas et al.
[2012]), it requires the observation noise of the sample
to be nonzero to make it valid (otherwise it is infinity),
which makes it inappropriate in the main target sce-
nario in this paper. In our motivating example – cloud
computing platform, the observation noise is usually
considered to be zero, since no people run the same
experiment twice. That motivates us to define a slightly
different metric, (i.e., Maximum Incremental Uncer-
tainty), to fix the non-observation-noise issue.

5.2 Main Theorem
To simplify the analysis and result, we make the follow-
ing assumption commonly used for analyzing EI [Bull,
2011] and GP-UCB [Srinivas et al., 2012].
Assumption 1. Assume that

• there exists a constant R such that: |z(x)− µt(x)| ≤
σt(x)R, for any model x ∈ L and any t ≥ 0;

• σ(x) ≤ 1.

Now we are ready to provide the upper bound for the
regret defined in (2).

Theorem 2. Let MIU(T,K) :=
∑|L(t)|
s=2 MIUs(K).

Under Assumption 1, the regret of the output of Al-
gorithm 1 up to time T admits the following upper
bound

RegretT . (MIU(T,K) +M)
N2

M
c̄.

where c̄ := 1
N

N∑
i=1

c(x∗i) is the average time cost of all

optimal models, and . means “less than equal to” up
to a constant multiplier.

The proof of Theorem 2 can be found in the Supple-
mental Materials. To the best of our knowledge, this is
the first bound for time sensitive regret. We offer the
following general observations:

• (convergence to optimum) If the growth of
MIU(T,K) with respect to T is o(T), then average
regret converges to zero, that is,

1

T
RegretT → 0.

In other words, the service provider will find the optimal
model for each individual user.

• (nearly linear speedup) When more and more
devices are employed, that is, increasing M , then the
regret will decrease roughly by a factor M as long as
M is dominated by MIU(T,K).

Convergence Rate of the Average Regret. We
consider the scenario where M � MIU(T,K) and
|L(t)| increases linearly with respect to T . Then the
growth of MIU(T,K) will dominate the convergence
rate of the average regret. Note that MIU(T,K) is
bounded by

MIU(T,K) ≤
∑

i∈top |L(t)| elements in diag(K)

√
K(i, i).

Discussion: Special Cases. Consider the following
special cases:

• (O(1/T) rate) The convergence rate for 1
TRegretT

achieves O(1/T), if MIU(T,K) is bounded, for exam-
ple, all random variables (models) are linearly combi-
nation of a finite number of hidden Gaussian random
variables.

• (not converge) If all models are independent, then
K is a diagonal matrix, and MIUs(K) is a constant,
which means MIU(T,K) is linearly increased of T . In
such a case, the regret is of order T , which implies no
convergence for the average regret. This is plausible in
that the algorithm gains no information from previous
observations to decide next because of independence.

• (O(1/T (1−α)) rate with α ∈ (0, 1)) This rate can
be achieved if MIU(T,K) grows with the rate O(Tα).

Chen Yu, Bojan Karlaš, Jie Zhong, Ce Zhang, Ji Liu

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

0

100 K

200 K

300 K

C
um

m
ul

at
iv

e
re

gr
et

GP-EI-Random

GP-EI-Round-Robin

GP-EI-MDMT

(a) Azure - 1 device

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

0

1 K

2 K

3 K

C
um

m
ul

at
iv

e
re

gr
et GP-EI-Random

GP-EI-Round-Robin

GP-EI-MDMT

(b) DeepLearning - 1 device

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

10−5

10−4

10−3

10−2

10−1

100

In
st

an
ta

ne
ou

s
re

gr
et GP-EI-Random

GP-EI-Round-Robin
GP-EI-MDMT

5.0x

(c) Azure - 1 device

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

10−4

10−3

10−2

10−1

100

In
st

an
ta

ne
ou

s
re

gr
et

GP-EI-Random

GP-EI-Round-RobinGP-EI-MDMT

(d) DeepLearning - 1 device

Figure 2: Performance of Different Model Selection Algorithms with a Single Computation Device.

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

0

10 K

20 K

30 K

40 K

50 K

60 K

C
um

m
ul

at
iv

e
re

gr
et

1

2

4
8

(a) Azure

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

0

500

1 K

1 K

2 K

2 K

C
um

m
ul

at
iv

e
re

gr
et

1
2
4
8

(b) DeepLearning

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

10−6

10−4

10−2

100

In
st

an
ta

ne
ou

s
re

gr
et

1
2
4
8

(c) Azure

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

10−6

10−5

10−4

10−3

10−2

10−1

100

In
st

an
ta

ne
ou

s
re

gr
et

1

2

4
8

(d) DeepLearning

Figure 3: The Impact of Multiple Devices on Our Approach.

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

0

20 K

40 K

60 K

80 K

100 K

C
um

m
ul

at
iv

e
re

gr
et

GP-EI-Random

GP-EI-Round-Robin

GP-EI-MDMT

(e) Azure - 4 devicess

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

0

500

1 K

2 K

2 K

C
um

m
ul

at
iv

e
re

gr
et GP-EI-RandomGP-EI-Round-Robin

GP-EI-MDMT

(f) DeepLearning - 4 devicess

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

10−6

10−5

10−4

10−3

10−2

10−1

100

In
st

an
ta

ne
ou

s
re

gr
et

GP-EI-Random
GP-EI-Round-Robin

GP-EI-MDMT

(g) Azure - 4 devicess

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

10−6

10−5

10−4

10−3

10−2

10−1

100

In
st

an
ta

ne
ou

s
re

gr
et

GP-EI-Random

GP-EI-Round-Robin

GP-EI-MDMT

(h) DeepLearning - 4 devicess

Figure 4: Performance of Different Model Selection Algorithms with Four Computation Devices.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time

10−5

10−4

10−3

10−2

10−1

100

In
st

an
ta

ne
ou

s
re

gr
et

Cutoff

1 Device248

(a) Synthetic - Multi Device

0 2 4 6 8
Number of devices

0

2

4

6

8

S
p

ee
du

p

(b) Synthetic - Multi Device Speedup

Figure 5: Speedup of using Multiple Devices for Our
Approach on Synthetic Data

6 EXPERIMENTS
We validate the effectiveness of the multi-device, multi-
tenant GP-EI algorithm.

6.1 Data Sets and Protocol

We use two datasets for our experiments, namely (1)
DeepLearning and (2) Azure. Both datasets are
from the ease.ml paper Li et al. [2018] in which the
authors evaluate their single-device, multi-tenant GP-
UCB algorithm. The DeepLearning dataset is col-
lected from 22 users, each runs an image classifica-
tion task. The system needs to select from 8 deep
learning models, including NIN, GoogLeNet, ResNet-
50, AlexNet, BNAlexNet, ResNet-18, VGG-16, and
SqueezeNet. The Azure dataset is collected from 17
users, each runs a Kaggle competition. The system
needs to select from 8 binary classifiers, including Av-
eraged Perceptron, Bayes Point Machine, Boosted De-

AutoML from Service Provider’s Perspective: Multi-device, Multi-tenant Model Selection with GP-EI

cision Tree, Decision Forests, Decision Jungle, Logistic
Regression, Neural Network, and SVM.

Protocol We run all experiments with the following
protocol. In each run we randomly select 8 users which
we will isolate and use to estimate the mean and the
covariance matrix of the prior for the Gaussian process.
We test different model selection algorithms using the
remaining users.

For all model selection strategies, we warm start by
training two fastest models for each user, and then
switching to each specific automatic model selection
algorithm:

• GP-EI-Random: Each user runs their own GP-
EI model selection algorithm; the system chooses
the next user to serve uniformly at random and
trains one model for the selected user;

• GP-EI-Round-Robin: Each user runs their own
GP-EI model selection algorithm; the system picks
the next user to serve in a round robin manner;

• GP-EI-MDMT: Our proposed approach in
which each user runs their own GP-EI model selec-
tion algorithm; the system picks the next user to
serve using the MM-GP-EI algorithm we proposed.

Metrics We measure the performance of a model
selection system in two ways: (1) Cumulative Regret
RegretT and (2) Instantaneous Regret: at time T , we
calculate the average among all users of the difference
between the best possible accuracy for each user and
the current best accuracy the user gets. Intuitively,
this measures the global “unhappiness” among all users
at time T .

6.2 Single device experiments

We validate the hypothesis that, given a single device,
multi-tenant GP-EI outperforms both round robin and
random strategies for picking the next user to serve.

Figure 2 shows the result on both datasets. The col-
ored region around the curve shows the 1σ confidence
interval. On Azure, our approach outperforms both
round robin and random significantly — we reach the
same instantaneous regret up to 5× faster than round
robin. This is because, by prioritizing different users
with respect to their expected improvement, the global
happiness of all users can increase faster than treating
all users equally. On the other hand, for DeepLearn-
ing, we do not observe a significant speedup for our
approach. This is because the first two trials of mod-
els already give a reasonable quality. If we measure
the standard deviation of the accuracy of models for
each user, the average for Azure is 0.12 while for

DeepLearning it is 0.04. This means that, once the
system trains the first two initial models for each user
in Azure, there could be more potential performance
gain still undiscovered among models that have not yet
been sampled.

6.3 Multiple device experiments

We validate the hypothesis that using multiple devices
speeds up our multi-device, multi-tenant model selec-
tion algorithm. Figure 3 shows the result of using
multiple devices for our algorithm. We see that the
more devices we use, the faster the instantaneous regret
drops. In terms of speedup, since DeepLearning has
more users than Azure (14 vs. 9), we see that the
speedup is larger on DeepLearning. The significant
speedup of reaching instantaneous regret of 0.03 for
Azure is most probably due to the small number of
users compared to the number of devices (9 vs. 8).

We now compare our approach against GP-EI-Round-
Robin and GP-EI-Random when there are multiple
devices available. Figure 4 shows the result. We see
that, up to 4 devices (9 users in total), our approach
outperforms round robin significantly on Azure. When
we use 8 devices for Azure, because there are only
9 users, both our approach and round robin achieve
almost the same performance.

We also conduct an experiment using a synthetic
dataset with 50 users and 50 models (Figure 5). We
model the performance as a Gaussian Process and
generate random samples independently for each user.
The Gaussian Process has zero mean and a covariance
matrix derived from the Matérn kernel with ν = 5/2.
Each generated sample is upwards in order to be non-
negative. We run our approach on the same dataset
while varying the number of devices. For each device
count we repeat the experiment 5 times. To quan-
tify speed gains we measure the average time it takes
the instantaneous regret to hit a cutoff point of 0.01.
We can observe that adding more devices makes the
convergence time drop at a near-linear rate.

7 CONCLUSION
In this paper, we introduced a novel multi-device, multi-
tenant algorithm using GP-EI to maximize the “global
happiness” for all users, who share the same set of com-
puting resources. We formulated the “global happiness”
in terms of a cumulative regret and first time provided
a theoretical upper bound for the time sensitive regret
in the GP-EI framework. We evaluated our algorithm
on two real-world datasets, which significantly outper-
forms the standard GP-EI serving users randomly or in
a round robin fashion. Both our theoretical results and
experiments show that our algorithm can provide near
linear speedups when multiple devices are available.

Chen Yu, Bojan Karlaš, Jie Zhong, Ce Zhang, Ji Liu

Acknowledgements

Chen Yu and Ji Liu are in part supported by NSF
CCF1718513, IBM faculty award, and NEC fellowship.
Ce Zhang and the DS3Lab gratefully acknowledge the
support from Mercedes-Benz Research & Development
North America, MeteoSwiss, Oracle Labs, Swiss Data
Science Center, Swisscom, Zurich Insurance, Chinese
Scholarship Council, and the Department of Computer
Science at ETH Zurich.

References

R. Arora, O. Dekel, and A. Tewari. Online bandit
learning against an adaptive adversary: from regret
to policy regret. In Proceedings of the 29th Inter-
national Coference on International Conference on
Machine Learning, pages 1747–1754, 2012.

J.-Y. Audibert and S. Bubeck. Minimax policies for
adversarial and stochastic bandits. In Conference on
Learning Theory, pages 217–226, 2009.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002.

E. Brochu, V. M. Cora, and N. De Freitas. A tuto-
rial on bayesian optimization of expensive cost func-
tions, with application to active user modeling and
hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010.

S. Bubeck, N. Cesa-Bianchi, et al. Regret analysis
of stochastic and nonstochastic multi-armed bandit
problems. Foundations and Trends R© in Machine
Learning, 5(1):1–122, 2012.

A. D. Bull. Convergence rates of efficient global opti-
mization algorithms. Journal of Machine Learning
Research, 12(Oct):2879–2904, 2011.

E. A. Daxberger and B. K. H. Low. Distributed batch
Gaussian process optimization. In D. Precup and
Y. W. Teh, editors, Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages
951–960, International Convention Centre, Sydney,
Australia, 06–11 Aug 2017. PMLR.

N. de Freitas, A. Smola, and M. Zoghi. Regret bounds
for deterministic gaussian process bandits. arXiv
preprint arXiv:1203.2177, 2012.

A. A. Deshmukh, U. Dogan, and C. Scott. Multi-
task learning for contextual bandits. In Advances in
Neural Information Processing Systems, pages 4851–
4859, 2017.

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg,
M. Blum, and F. Hutter. Efficient and Robust Auto-
mated Machine Learning. In NIPS, pages 2962–2970.

V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best
arm identification: A unified approach to fixed bud-
get and fixed confidence. In Advances in Neural
Information Processing Systems, pages 3212–3220,
2012.

D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. E.
Karro, and D. Sculley. Google Vizier: A Service for
Black-Box Optimization. In KDD.

D. Golovin, B. Solnik, S. Moitra, G. Kochanski,
J. Karro, and D. Sculley. Google vizier: A service for
black-box optimization. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 1487–1495.
ACM, 2017.

GPyOpt. {GPyOpt}: A Bayesian
Optimization framework in python.
\url{http://github.com/SheffieldML/GPyOpt},
2016.

E. Hazan et al. Introduction to online convex optimiza-
tion. Foundations and Trends R© in Optimization, 2
(3-4):157–325, 2016.

R. Huang, M. M. Ajallooeian, C. Szepesvári, and
M. Müller. Structured best arm identification with
fixed confidence. In International Conference on
Algorithmic Learning Theory, pages 593–616, 2017.

V. T. J. Mockus and A. Zilinskas. Toward Global
Optimization, volume 2, chapter The application of
Bayesian methods for seeking the extremum, pages
117–128. Elsevier, 1978.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient
global optimization of expensive black-box functions.
Journal of Global optimization, 13(4):455–492, 1998.

S. Kalyanakrishnan, A. Tewari, P. Auer, and P. Stone.
Pac subset selection in stochastic multi-armed ban-
dits. In International Conference on Machine Learn-
ing, volume 12, pages 655–662, 2012.

K. Kandasamy, G. Dasarathy, J. B. Oliva, J. Schnei-
der, and B. Poczos. Gaussian process bandit opti-
misation with multi-fidelity evaluations. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 29, pages 992–1000. Curran
Associates, Inc., 2016.

K. Kandasamy, G. Dasarathy, J. Schneider, and B. Póc-
zos. Multi-fidelity Bayesian optimisation with contin-
uous approximations. In D. Precup and Y. W. Teh,
editors, Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 1799–1808, In-
ternational Convention Centre, Sydney, Australia,
06–11 Aug 2017. PMLR.

AutoML from Service Provider’s Perspective: Multi-device, Multi-tenant Model Selection with GP-EI

K. Kandasamy, A. Krishnamurthy, J. Schneider, and
B. Póczos. Parallelised bayesian optimisation via
thompson sampling. In International Conference on
Artificial Intelligence and Statistics, pages 133–142,
2018.

T. Kathuria, A. Deshpande, and P. Kohli. Batched
gaussian process bandit optimization via determi-
nantal point processes. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems
29, pages 4206–4214. Curran Associates, Inc., 2016.

E. Kaufmann and W. M. Koolen. Monte-carlo tree
search by best arm identification. In Advances in
Neural Information Processing Systems, pages 4904–
4913, 2017.

L. Kocsis, C. Szepesvári, and J. Willemson. Improved
monte-carlo search. Univ. Tartu, Estonia, Tech. Rep,
1, 2006.

L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and
K. Leyton-Brown. Auto-WEKA 2.0: Automatic
model selection and hyperparameter optimization
in WEKA. Journal of Machine Learning Research,
(25):1–5.

T. L. Lai and H. Robbins. Asymptotically efficient
adaptive allocation rules. Advances in applied math-
ematics, 6(1):4–22, 1985.

J. Langford and T. Zhang. The epoch-greedy algorithm
for multi-armed bandits with side information. In
Advances in neural information processing systems,
pages 817–824, 2008.

T. Li, J. Zhong, J. Liu, W. Wu, and C. Zhang. Ease.ml:
Towards multi-tenant resource sharing for machine
learning workloads. The Proceedings of the Very
Large Database Endowment, 2018.

G. Malkomes, C. Schaff, and R. Garnett. Bayesian
optimization for automated model selection. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 2900–2908. Curran As-
sociates, Inc., 2016.

S. Rana, C. Li, S. Gupta, V. Nguyen, and S. Venkatesh.
High dimensional bayesian optimization with elastic
gaussian process. In International Conference on
Machine Learning, pages 2883–2891, 2017.

I. O. Ryzhov. On the convergence rates of expected
improvement methods. Operations Research, 64(6):
1515–1528, 2016.

J. Snoek, H. Larochelle, and R. P. Adams. Practical
bayesian optimization of machine learning algorithms.
In Advances in neural information processing sys-
tems, pages 2951–2959, 2012.

E. R. Sparks, A. Talwalkar, D. Haas, M. J. Franklin,
M. I. Jordan, and T. Kraska. Automating model
search for large scale machine learning. In Proceed-
ings of the Sixth ACM Symposium on Cloud Com-
puting - SoCC ’15, pages 368–380, New York, New
York, USA. ACM Press. ISBN 9781450336512. doi:
10.1145/2806777.2806945.

N. Srinivas, A. Krause, S. M. Kakade, and M.W. Seeger.
Information-theoretic regret bounds for gaussian pro-
cess optimization in the bandit setting. IEEE Trans-
actions on Information Theory, 58(5):3250–3265,
2012.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-
Brown. Auto-WEKA. In Proceedings of the 19th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining - KDD ’13, page
847, New York, New York, USA. ACM Press. ISBN
9781450321747. doi: 10.1145/2487575.2487629.

J. Zhong, Y. Huang, and J. Liu. Asynchronous
parallel empirical variance guided algorithms for
the thresholding bandit problem. arXiv preprint
arXiv:1704.04567, 2017.

Chen Yu, Bojan Karlaš, Jie Zhong, Ce Zhang, Ji Liu

Supplemental Materials

A Gaussian Process and Posterior Formulas

In this section we give the posterior formulas of Gaussian Process. Most formulas in this section come from
Srinivas et al. [2012], but we modify them to fit our settings.

In Section 4.2, we choose the Gaussian Process GP (µ(x), k(x, x′)) as the prior of z(x), and point out that at
any time t, the posterior of z(x) given {z(x)}x∈Lt

is also a Gaussian Process GP (µt(x), kt(x, x
′)). Now we give

the formulas to compute µt(x) and kt(x, x′).

Suppose at time t, the observed models are x(1), x(2), · · · , x(|L(t)|), then we have the following:

µt(x) = vt(x)>K−1t (zt −wt) + µ(x),

kt(x, x
′) = k(x, x′)− vt(x)TK−1t vt(x

′), (7)

where

vt(x) :=
[
k(x(1), x), k(x(2), x), · · · , k(x(|L(t)|), x)

]>
,

Kt :=
[
k(x(i), x(j))

]
i,j∈{1,2,··· ,|L(t)|},

zt :=
[
z(1), z(2), · · · , z(|L(t)|)

]
,

wt :=
[
µ(x(1)), µ(x(2)), · · · , µ(x(|L(t)|))

]
.

In this supplemental material, we give the proof of our main theorem. Before that, let us show Lemma 1.

B Proof of Lemma 1

Proof. First, because τ ′(x) = Φ(x) and τ(−∞) = 0, we have τ(x) =
∫ x
−∞Φ(t)dt. Define Y = X−µ

σ , then
X = σY + µ and Y ∼ N (0, 1). Let S(x) = 1− Φ(x), for any b ∈ R, we have

E
[

max
{

(Y − b), 0
}]

=

∫ +∞

b

(y − b)φ(y)dy

=

∫ +∞

b

(y − b)d
(
− S(y)

)
= −(y − b)S(y)

∣∣∣+∞
b

+

∫ +∞

b

S(y)d(y − b)

=

∫ +∞

b

S(y)dy =

∫ +∞

b

(
1− Φ(y)

)
dy =

∫ +∞

b

Φ(−y)dy

=

∫ −b
−∞

Φ(y)dy

= τ(−b).

Applying this into X, we have

E
[

max
{
X − a, 0

}]
= E

[
max

{
σY + µ− a, 0

}]
= σE

[
max

{
Y − a− µ

σ
, 0
}]

= στ
(µ− a

σ

)
.

AutoML from Service Provider’s Perspective: Multi-device, Multi-tenant Model Selection with GP-EI

C Proof of Theorem 2

We will prove the main theorem by the following steps:

• We will give a bound for EI in Lemma 3;

• Using the bound of EI, we will bound Regret by the sum of variance of posterior distribution. This will be
presented in Lemma 4.

• Using Lemma 5, we will convert the sum of variance into MIU, and then prove the main theorem.

Let t̂(x) denote the time when model x began to be tested. Since every model will just be tested once, this is
well-defined. Define σ̂(x) = σt̂(x)(x). And let x(1)test, x

(2)
test, · · · , x

(p̂(T))
test denote all models that have been tested or

are being tested up to time T by the order of their start-testing time.

It follows from Assumption 1 that we have |z(x)− µ0(x)| ≤ σ0(x)R. So, the reward of all models has a universal
bound CR, which means |z(x)| ≤ CR for every model x.

Lemma 3. Suppose Assumption 1 holds. For each user i, let x be a model belonging to user i. Let
(
z(x) −

z
(
x∗i (t)

))+
= max

{
z(x)− z

(
x∗i (t)

)
, 0
}
. Then for every t ≥ 0, we have

τ(−R)

τ(R)

(
z(x)− z

(
x∗i (t)

))+
≤ EIi,t(x) ≤

(
z(x)− z

(
x∗i (t)

))+
+ (R+ 1)σt(x).

Proof. If σt(x) = 0, then |z(x) − µt(x)| ≤ 0, which means z(x) = µt(x) is a constant for fixed x and t. Then

from (3), we have EIi,t(x) =
(
z(x)− z

(
x∗i (t)

))+
, and the result is trivial.

Suppose σt(x) > 0. From (3) and Lemma 1, we have EIi,t(x) = σt(x)τ
(
µt(x)−z(x∗i (t))

σt(x)

)
. Also, since |z(x)−µt(x)| ≤

Rσt(x), we have ∣∣∣µt(x)− z
(
x∗i (t)

)
σt(x)

−
z(x)− z

(
x∗i (t)

)
σt(x)

∣∣∣ ≤ R, (8)

which implies

µt(x)− z
(
x∗i (t)

)
σt(x)

≤
z(x)− z

(
x∗i (t)

)
σt(x)

+R ≤

(
z(x)− z

(
x∗i (t)

))+
σt(x)

+R.

Also, since τ ′(y) = Φ(y) ∈ [0, 1], τ is non-decreasing, and τ(y) ≤ 1 + y for y ≥ 0. Therefore,

EIi,t(x) = σt(x)τ
(µt(x)− z

(
x∗i (t)

)
σt(x)

)

≤ σt(x)τ

((
z(x)− z

(
x∗i (t)

))+
σt(x)

+R

)

≤ σt(x)

((
z(x)− z

(
x∗i (t)

))+
σt(x)

+R+ 1

)

=
(
z(x)− z

(
x∗i (t)

))+
+ (R+ 1)σt(x),

and the upper bound is proved for the case that σt(x) > 0.

If
(
z(x)− z

(
x∗i (t)

))+
= 0, then the left side of the inequality is 0. From (3), we have EIi,t(x) ≥ 0. Therefore,

the lower bound is trivial.

Chen Yu, Bojan Karlaš, Jie Zhong, Ce Zhang, Ji Liu

Now suppose
(
z(x)− z

(
x∗i (t)

))+
> 0, which means

(
z(x)− z

(
x∗i (t)

))+
= z(x)− z

(
x∗i (t)

)
.

From (8), we have
µt(x)−z

(
x∗i (t)

)
σt(x)

≥ z(x)−z
(
x∗i (t)

)
σt(x)

−R. Also, we have τ(y) = y + τ(−y) ≥ y. Thus

EIi,t(x) = σt(x)τ
(µt(x)− z

(
x∗i (t)

)
σt(x)

)
≥ σt(x)τ

(z(x)− z
(
x∗i (t)

)
σt(x)

−R
)

≥ σt(x)
(z(x)− z

(
x∗i (t)

)
σt(x)

−R
)

= z(x)− z
(
x∗i (t)

)
−Rσt(x).

If z(x)− z
(
x∗i (t)

)
−Rσt(x) ≥ τ(−R)

τ(R)

(
z(x)− z

(
x∗i (t)

))
, we conclude the proof. Otherwise, we have

Rσt(x) >
(

1− τ(−R)

τ(R)

)(
z(x)− z

(
x∗i (t)

))
=
τ(R)− τ(−R)

τ(R)

(
z(x)− z

(
x∗i (t)

))
=

R

τ(R)

(
z(x)− z

(
x∗i (t)

))
,

which implies 1 >
z(x)−z

(
x∗i (t)

)
σt(x)τ(R) . Also, it follows from (8) and the assumption z(x)− z

(
x∗i (t)

)
> 0 that

µt(x)− z
(
x∗i (t)

)
σt(x)

+R ≥
z(x)− z

(
x∗i (t)

)
σt(x)

> 0,

and thus
µt(x)−z

(
x∗i (t)

)
σt(x)

≥ −R. So

EIi,t(x) = σt(x)τ
(µt(x)− z

(
x∗i (t)

)
σt(x)

)
≥ σt(x)τ(−R) ≥ σt(x)τ(−R)

z(x)− z
(
x∗i (t)

)
σt(x)τ(R)

=
τ(−R)

τ(R)

(
z(x)− z

(
x∗i (t)

))
,

which also concludes the proof.

Lemma 4. Under Assumption 1, we have

RegretT ≤
(
τ(R)N(R+ 1)

τ(−R)M

p̂(T)∑
k=1

σ̂(x
(k)
test) + CR +

τ(R)

τ(−R)
NCR

) N∑
i=1

c(x∗i).

Proof. Let x̂j(t) denote the model that device j is testing at time t. For each device j, define a function fj(t) as
follows:

fj(t) =

N∑
i=1

1(x̂j(t) ∈ Li)
max

{
z
(
x̂j(t)

)
− z
(
x∗i
(
t̂(x̂j(t))

))
, 0

}
+ (R+ 1)σ̂(x̂j(t))

c(x̂j(t))
.

For each user i, define a function gi(t) as follows:

gi(t) =

{
0, if the actual optimal model x∗i is being tested
z(x∗i)− z

(
x∗i (t)

)
, otherwise.

AutoML from Service Provider’s Perspective: Multi-device, Multi-tenant Model Selection with GP-EI

First, we will prove that, for any i = 1, 2, · · · , N, j = 1, 2, · · · ,M , and any t ≥ 0, we have

gi(t) ≤
τ(R)

τ(−R)
c(x∗i)fj(t). (9)

At time t, for any device j and any user i, if model x∗i is being tested, then gi(t) = 0. Thus the inequality (9) is
obvious. If the test of model x∗i has been finished, then x∗i (t) = x∗i , we also have gi(t) = 0, which implies (9).

Therefore, we only consider the situation that x∗i has not been tested up to time t yet. Then by Algorithm 1 we
have EIratet̂(x̂j(t))

(x∗i) ≤ EIratet̂(x̂j(t))
(x̂j(t)), or equivalently

EIt̂(x̂j(t))
(x∗i)

c(x∗i)
≤

EIt̂(x̂j(t))
(x̂j(t))

c(x̂j(t))
.

Applying Lemmas 3 and (4), we have

τ(−R)
τ(R)

(
z(x∗i)− z

(
x∗i (t̂(x̂j(t)))

))
c(x∗i)

≤
EIt̂(x̂j(t))

(x∗i)

c(x∗i)

≤
EIt̂(x̂j(t))

(x̂j(t))

c(x̂j(t))

=

N∑
i=1

1(x̂j(t) ∈ Li)
EIi,t̂(x̂j(t))

(x̂j(t))

c(x̂j(t))

≤ fj(t).

Noticing that z(x∗i (t)) is a non-decreasing function of variable t and t̂(x̂j(t)) ≤ t, we have z
(
x∗i (t̂(x̂j(t)))

)
≤ z(x∗i (t)),

then we get (9).

Recall that c(x∗i) is the time required to finish testing the model x∗i , so gi(t) 6= z(x∗i)− z(x∗i (t)) only holds on a
set with measure at most c(x∗i). From Assumption 1, z(x∗i)− z(x∗i (t)) ≤ CR. Therefore, for any j = 1, 2, · · · ,M ,
we have ∫ T

0

(
z(x∗i)− z

(
x∗i (t)

))
dt ≤

∫ T

0

gi(t)dt+ c(x∗i)CR ≤
τ(R)

τ(−R)
c(x∗i)

∫ T

0

fj(t)dt+ c(x∗i)CR,

which implies ∫ T

0

(
z(x∗i)− z

(
x∗i (t)

))
dt ≤ τ(R)c(x∗i)

τ(−R)M

M∑
j=1

∫ T

0

fj(t)dt+ c(x∗i)CR. (10)

Now, we fix j = 1. In fact, f1(t) is a step function, that is, when device 1 is testing a model, f1(t) remains the
same. Let x(1)i , x

(2)
i , x

(3)
i , · · · denote the models tested on device i by order. Let x(pi(T))

i denote the model that is
being tested on device i at time T . Then we have

∫ T

0

f1(t)dt =

p1(T)−1∑
k=1

N∑
i=1

1(x
(k)
1 ∈ Li)

(
max

{
z
(
x
(k)
1

)
− z
(
x∗i
(
t̂(x

(k)
1)
))
, 0

}
+ (R+ 1)σ̂(x

(k)
1)

)

+

∫ T

t̂
(
x
(p1(T))
1

) f1(t)dt

≤
p1(T)∑
k=1

N∑
i=1

1(x
(k)
1 ∈ Li)

(
max

{
z
(
x
(k)
1

)
− z
(
x∗i
(
t̂(x

(k)
1)
))
, 0

}
+ (R+ 1)σ̂(x

(k)
1)

)

=

N∑
i=1

p1(T)∑
k=1

1(x
(k)
1 ∈ Li) max

{
z
(
x
(k)
1

)
− z
(
x∗i
(
t̂(x

(k)
1)
))
, 0

}
+N(R+ 1)

p1(T)∑
k=1

σ̂(x
(k)
1).

(11)

Chen Yu, Bojan Karlaš, Jie Zhong, Ce Zhang, Ji Liu

Let x(1)1,i , x
(2)
1,i , · · · , x

(p1,i(T))
1,i denote the models from user i tested on device 1 by order. Then, we have

p1(T)∑
k=1

1(x
(k)
1 ∈ Li) max

{
z
(
x
(k)
1

)
− z
(
x∗i
(
t̂(x

(k)
1)
))
, 0

}

=

p1,i(T)∑
k=1

max

{
z
(
x
(k)
1,i

)
− z
(
x∗i
(
t̂(x

(k)
1,i)
))
, 0

}

=

p1,i(T)∑
k=1

(
max

{
z
(
x
(k)
1,i

)
, z
(
x∗i
(
t̂(x

(k)
1,i)
))}

− z
(
x∗i
(
t̂(x

(k)
1,i)
)))

.

When x(k+1)
1,i begins to test, x(k)1,i of course has finished testing, so

z
(
x∗i
(
t̂(x

(k+1)
1,i)

))
≥ max

{
z
(
x
(k)
1,i

)
, z
(
x∗i
(
t̂(x

(k)
1,i)
))}

≥ z
(
x∗i
(
t̂(x

(k)
1,i)
))
.

Therefore,

p1(T)∑
k=1

1(x
(k)
1 ∈ Li) max

{
z
(
x
(k)
1

)
− z
(
x∗i
(
t̂(x

(k)
1)
))
, 0

}
≤ max

{
z
(
x
(p1,i(T))
1,i

)
, z
(
x∗i
(
t̂(x

(p1,i(T))
1,i)

))}
− z
(
x∗i
(
t̂(x

(1)
1,i)
))

≤ CR.

(12)

Applying (12) into (11), we get ∫ T

0

f1(t)dt ≤ NCR +N(R+ 1)

p1(T)∑
k=1

σ̂(x
(k)
1).

Similarly, for any j ∈ {1, 2, · · · ,M}, we also have∫ T

0

fi(t)dt ≤ NCR +N(R+ 1)

pi(T)∑
k=1

σ̂(x
(k)
i).

Applying these to (10), we have∫ T

0

(
z(x∗i)− z

(
x∗i (t)

))
dt ≤ τ(R)

τ(−R)
c(x∗i)NCR + c(x∗i)CR +

τ(R)c(x∗i)N(R+ 1)

τ(−R)M

|L(t)|∑
k=1

σ̂(x
(k)
test),

where |L(t)| =
M∑
j=1

pj(T).

Applying this into (2), we get the result:

RegretT ≤
(
τ(R)

τ(−R)
NCR + CR +

τ(R)N(R+ 1)

τ(−R)M

|L(t)|∑
k=1

σ̂(x
(k)
test)

) N∑
i=1

c(x∗i).

Lemma 5. Suppose A is an n× n positive definite matrix, and we divide it into 4 blocks, A =

(
An−1 B
BT a

)
,

here An−1 is an (n− 1)× (n− 1) matrix. Then we have

det(A)

det(An−1)
= a−BTA−1n−1B.

AutoML from Service Provider’s Perspective: Multi-device, Multi-tenant Model Selection with GP-EI

Proof. We have the following

A

(
In−1 −A−1B

0 1

)
=

(
An−1 B
BT a

)(
In−1 −A−1B

0 1

)
=

(
An−1 0
BT a−BTA−1B

)
,

here, In−1 is an (n− 1)× (n− 1) identity matrix. Computing the determinant of both sides of the equality, we
get:

det(A) = det(An−1)(a−BTA−1n−1B).

Proof of Theorem 2. We only have to prove that

|L(t)|∑
s=1

σ̂(x
(s)
test) ≤M + MIU(T,K).

Then, combing with Lemma 4, we complete the proof.

For model x(s)test (s > M), when this model begins to test, there are s − 1 models having finished testing or is
testing. There are M devices, and x(s)test should occupy one device, so at least s− 1− (M − 1) = s−M ≥ 1 models
having finished testing. Suppose these finish-testing models are xf1 , xf2 , · · · , xfs−M

.

Let P denotes the variance matrix of random variable z(xf1), z(xf2), · · · , z(xfs−M
), z
(
x
(s)
test
)
(rows and columns

are arranged by this order). Notice that P is an (s+ 1−M)× (s+ 1−M) matrix.

From (7), we know that the conditional variance is smaller than unconditional variance for a multivariable
Gaussian distribution (or Gaussian process), so we have

σ̂(x
(s)
test) = σ

(
x
(s)
test | x

(1)
test, x

(2)
test, · · · , x

(p̂(T)−1)
test

)
≤ σ

(
x
(s)
test | xf1 , xf2 , · · · , xfs−M

)
. (13)

Let’s rewrite P as
(

P1 B
BT p

)
, where P1 is an (s −M) × (s −M) matrix. Also from (7), we have σ

(
x
(k)
test |

xf1 , xf2 , · · · , xfs−M

)
= p−BTP−11 B. From Lemma 5, we have: p−BTP−11 B = det(P1)

det(P) . From the definition of

MIUs−M+1(K), we have det(P1)
det(P) ≤MIUs−M+1(K). Together with (13), we obtain

σ̂(x
(s)
test) ≤MIUs−M+1(K). (14)

Particularly, because s > M , we have s−M + 1 ≥ 2.

For model x(s)test (s ≤M). Again, because the conditional variance is smaller than unconditional variance for a
multivariable Gaussian distribution(or Gaussian process), we have

σ̂(x
(s)
test) ≤ σ(x

(s)
test) ≤ 1. (15)

From (14) and (15), we conclude that

p̂(T)∑
s=1

σ̂(x
(s)
test) ≤M + MIU(T,K),

which complete the proof as analyzing at the beginning of this proof.

	INTRODUCTION
	RELATED WORK
	MATHEMATICAL PROBLEM STATEMENT
	Time sensitive hierarchical bandit (TSHB) problem
	Regret definition for cumulative global happiness

	ALGORITHM
	Expected Improvement Function
	Choosing Prior: Gaussian Process

	MAIN RESULT
	Maximum Incremental Uncertainty
	Main Theorem

	EXPERIMENTS
	Data Sets and Protocol
	Single device experiments
	Multiple device experiments

	CONCLUSION
	Gaussian Process and Posterior Formulas
	Proof of Lemma 1
	Proof of Theorem 2

