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Abstract

Foundation Models are designed to serve as versatile embedding machines, with1

strong zero shot capabilities and superior generalization performance when fine-2

tuned on diverse downstream tasks. While this is largely true for language and3

vision foundation models, we argue that the inherent diversity of time series data4

makes them less suited for building effective foundation models. We demonstrate5

this using forecasting as our downstream task. We show that the zero-shot capabili-6

ties of a time series foundation model are significantly influenced and tied to the7

specific domains it has been pretrained on. Furthermore, when applied to unseen8

real-world time series data, fine-tuned foundation models do not consistently yield9

substantially better results, relative to their increased parameter count and memory10

footprint, than smaller, dedicated models tailored to the specific forecasting task at11

hand.12

1 Introduction13

The emergence of Foundation Models (FMs), large-scale pretrained architectures such as BERT [1]14

in Natural Language Processing (NLP) and Vision Transformers [2] in Computer Vision (CV), has15

fundamentally transformed artificial intelligence. By leveraging massive and diverse datasets during16

pretraining, these models exhibit strong generalization abilities, enabling zero-shot and few-shot17

transfer to a wide range of downstream tasks [3, 4]. This shift has allowed FMs to consistently18

outperform traditional task-specific models trained from scratch for narrowly defined problems [4].19

Inspired by these successes, researchers have recently proposed Time Series Foundation Models20

(TSFMs), large pretrained models designed to capture general-purpose representations across diverse21

temporal data [5]. These models aim to transfer knowledge across forecasting tasks by learning22

temporal patterns at scale, showing promising results in a variety of domains with minimal task-23

specific tuning.24

However, the time series domain poses unique challenges that set it apart from NLP and CV. Time25

series data often exhibits domain-specific structures such as seasonality, trends, irregular sampling,26

and high variability across applications, even within the same broad category [6]. Such characteristics27

introduce distribution shifts that undermine the generalization abilities of TSFMs [7]. In particular,28

our experiments suggest that TSFMs’ zero-shot performance is highly sensitive to the alignment29

between the statistical properties of the pretraining and target domains. When this alignment is weak,30

we observe substantial drops in generalization, even across domains that might appear related.31

While TSFMs often benefit from rapid initial convergence, extended fine-tuning can lead to perfor-32

mance degradation, whereas task-specific models trained from scratch typically yield steady accuracy33

gains under longer training and limited data regimes [8].34
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Motivated by these challenges, we conduct a thorough empirical evaluation of the univariate forecast-35

ing capabilities of TSFMs across diverse tasks. We compare them with traditional models trained from36

scratch to assess whether TSFMs offer practical advantages when fine-tuned on specific, potentially37

domain-shifted datasets.38

Our main contributions are:39

• Evaluating TSFMs in zero-shot mode across both domain-related and domain-shifted fore-40

casting datasets.41

• Comparing the fine-tuning capabilities of TSFMs versus traditional models on forecasting42

tasks to evaluate their adaptability and effectiveness under domain shift and limited data.43

• Proposing a new forecasting dataset consisting of daily electricity usage over two years, on44

which a small dedicated network achieves better results than a fine-tuned TSFM.45

2 Related Work46

Recent TSFMs such as TiReX [9], TimeGPT [10], TimesFM [11], and FEDformer [12] leverage47

large-scale pretraining to enable strong generalization and transfer across forecasting tasks.48

To assess their practical utility, several benchmarking frameworks have emerged. GIFT-eval [13] mea-49

sures cross-domain generalization using standardized protocols, OpenTS [14] offers a reproducible50

suite spanning datasets, horizons, and metrics, while Nixtla’s Arena [15] provides a comprehensive51

evaluation across frequencies and domains. [16] have also pointed out that naive baselines (here, a52

simple auto-regressive model) can achieve competitive performance compared to TSFM on several53

forecasting tasks.54

These efforts report promising performance on public datasets such as Monash [17] and ETT [18].55

However, we had to compare the generalization performance of these foundation models on time56

series ensured to be completely new and not included in these benchmark databases in order to test57

the challenges faced in deployment.58

In contrast, we evaluate TSFMs on a proprietary electricity consumption dataset with realistic and59

complex domain shifts not seen during pretraining. Our setup introduces explicit distributional60

changes, enabling a more rigorous assessment of generalization.61

Contrary to standard benchmarks that primarily focus on evaluating zero-shot capabilities of TSFMs62

on public datasets, we further compare these models to conventional ones trained from scratch. This63

allows us to highlight scenarios where smaller, specialized models achieve comparable performance64

to large pretrained TSFMs, especially under conditions of data scarcity and nonstationarity.65

Through this, we uncover limitations in TSFMs’ robustness and provide new insights into their66

practical effectiveness in real-world forecasting scenarios.67

3 Methodology68

Our evaluation addresses two central questions: (1) Can TSFMs generalize beyond their pretraining69

distributions? (2) Are they practically competitive with lightweight, specialized alternatives?70

We benchmark three leading TSFMs, namely TimesFM [11], TimeGPT [10], and TiReX [9], alongside71

SAMFormer [19], a compact attention-based model operating over the channel dimension. Unlike72

the other models, SAMFormer is trained from scratch in our experiments.73

Synthetic benchmarks. We construct four datasets that reflect recurring structures in TSFM pretrain-74

ing, while ensuring zero data overlap.75

• D1 and D2 are composed of harmonically aligned sine waves with full observability, probing76

the models’ ability to recognize and extrapolate clean periodic signals.77

• D3 and D4 consist of randomly sampled, non-harmonic sine waves, forming complex,78

partially observable cycles. These challenge the models to generalize from incomplete79

patterns.80
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All synthetic sequences contain 2,688 time steps (8 weeks sampled at 30-minute intervals).81

Real-world evaluation. We test TSFMs on Elec_Consumption, a proprietary small dataset capturing82

daily electricity usage of a single home over two years (2023–2024). Unlike the generic, population-83

level datasets typically used during TSFM pretraining, this dataset reflects individual consumption84

behavior, introducing a clear distribution shift. This setting allows us to rigorously evaluate whether85

pretrained models retain strong forecasting performance when faced with personalized, unseen86

patterns, a crucial requirement for real-world deployment in user-specific applications.87

Fine-tuning experiments. We fine-tune TimesFM on Elec_Consumption and compare it to SAM-88

Former trained from scratch. This setup quantifies the trade-off between the computational overhead89

of fine-tuning large pretrained models and the efficiency of smaller models tailored to specific90

domains.91

Together, these evaluations dissect the one-size-fits-all [20, 21] promise of TSFMs, distinguishing92

their theoretical representational capacity (via synthetic benchmarks) from their practical effectiveness93

in real-world deployment. We report Mean Absolute Error (MAE) as the primary metric.94

4 Results95

We begin our experimental evaluation by testing all models in zero-shot mode on both synthetic and96

real-world datasets. Tables 1 and 2 report results on synthetic data using a fixed context length of 51297

across three forecast horizons. Table 3 presents results on the Elec_Consumption dataset.98

Table 1: Zero-shot MAE on D1 and D2 for various forecasting horizons and models. Lower is better.
Datasets D1 D2

Models TimeGPT TiReX TimesFM TimeGPT TiReX TimesFM

Horizons
128 0.89 0.11 0.13 0.80 0.29 0.15
256 1.08 0.21 0.22 1.25 0.72 0.35
512 1.09 0.37 0.34 1.57 1.11 0.72

Table 2: Zero-shot MAE on D3 and D4 for various forecasting horizons and models. Lower is better.
Datasets D3 D4

Models TimeGPT TiReX TimesFM TimeGPT TiReX TimesFM

Horizons
128 1.86 1.1 1.13 1.3 0.78 0.89
256 1.43 0.95 0.98 1.63 1.6 1.62
512 2.29 3.3 3.5 2.31 2.8 2.98

Table 3: Zero-shot MAE on Elec_Consumption for varying context-horizon pairs and models. Lower
is better.

Models Context: 15 Context: 30 Context: 60 Context: 365
Horizon: 7 Horizon: 7 Horizon: 30 Horizon: 365

TimeGPT 6.6 6.52 5.6 6.44
TiReX 6.94 5.71 4.61 5.9
TimesFM 5.07 5.83 4.08 5.3

Among all five experiments, TiReX and TimesFM consistently perform best, particularly on D199

and D2, which exhibit simple and periodic sinusoidal patterns, highlighting their ability to capture100

repetitive temporal structures. In contrast, forecasting on D3 and D4, involving irregular and101

composite sinusoidal signals, is more challenging. Despite this, foundation models still generalize102

reasonably well, likely due to pretraining on structurally similar synthetic patterns. However, on the103

real-world Elec_consumption dataset, even with careful tuning of context and horizon lengths, the104
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models struggle to accurately forecast the future values. This shows the limits of the generalization105

abilities of current state-of-the-art TSFMs for a real-case forecasting scenario.106

This performance contrast is clearly illustrated in Figure 1 and 2 in Appendix A, which show the107

forecasting results of TSFMs on D1, where the model demonstrates strong generalization, and on108

Elec_consumption, where the forecasts deviate more noticeably from the expected values.109

While zero-shot results show that TSFMs perform well on target distributions that resemble their110

pretraining data, their ability to adapt to small, domain-specific datasets produces high errors and low111

prediction ability, as shown in Figure 1. To investigate this, we compare fine-tuned TimesFM with112

SAMFormer trained from scratch on our Elec_consumption dataset. This evaluation tests whether113

TSFMs’ learned representations and inductive biases confer advantages for personalization.114

Fine-tuning and training from scratch were performed using Adam with a learning rate 10−4, weight115

decay 0.01, and batch size 64. The choice of LR follows the default fine-tuning configuration used in116

the public TimesFM examples, ensuring consistency with recommended practice for this foundation117

model. Data were standardized and framed with a sliding window (context = 128, horizon = 128).118

TimesFM was fine-tuned from a fixed pre-trained checkpoint, excluding any significant source of119

randomness. In contrast, SAMFormer was trained from scratch, introducing natural variability in120

the results due to the random weight initialization. To make the evaluation robust, we computed the121

mean and standard deviation over 5 runs with different random seeds. Models were trained for up to122

100 epochs with early stopping (patience = 10). Experiments were conducted on an NVIDIA Tesla123

V100 GPU. Results are shown in Table 4.124

Table 4: MAE for TimesFM and SAMFormer with a context window of 128 and a forecast horizon
of 128.

Models MAE

TimesFM 4.49± 0.00

SAMFormer 4.28± 0.05

As one can note, the results show that SAMFormer, trained entirely from scratch with fewer than125

50K parameters, ultimately outperforms TimesFM on the target forecasting task. While TimesFM126

benefits from large-scale pretraining and contains over 500 million parameters, SAMFormer achieves127

superior accuracy while remaining extremely lightweight and efficient to train on consumer-grade128

GPUs. This contrast highlights a key point: massive pretrained models do not always guarantee129

superior downstream performance, particularly in settings where data distributions differ from the130

pretraining corpus or where the target domain exhibits specific structural regularities that a smaller131

model can exploit more effectively. Moreover, SAMFormer’s compact size reduces both training132

time and inference cost, making it well-suited for rapid experimentation and deployment in resource-133

constrained environments. These findings illustrate that carefully designed, domain-adapted models134

can deliver competitive or even superior performance compared to large foundation models, while135

offering substantial advantages in efficiency, accessibility, and environmental sustainability.136

5 Conclusion137

While TSFMs show strong zero-shot performance on synthetic and structurally similar data, their138

generalization ability is tightly coupled with the distribution seen during pretraining. In real-world139

settings involving domain shifts and limited data, a lightweight model like SAMFormer, with only140

49.5K parameters and no large-scale pretraining, can still achieve better results when trained from141

scratch. This suggests that the “one-size-fits-all” promise of TSFMs may not hold in practice,142

especially under resource constraints or personalization requirements. Our findings advocate for a143

more nuanced deployment strategy: leveraging TSFMs when pretraining-task similarity is high, and144

favoring lightweight, specialized models when personalization, efficiency, or domain mismatch is145

critical.146
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A Additional Forecasting Results215

For completeness, we provide additional forecasting plots obtained from TSFMs. These figures216

complement the results discussed in the main text.217

Figure 1: Forecasting results of TSFMs on D1.

Figure 2: Forecasting results of TSFMs on Elec_consumption.
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