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ABSTRACT

Physics-informed neural networks (PINNs) have emerged as a promising tech-
nique solving partial differential equations (PDEs). However, PINNs face chal-
lenges in resource efficiency (e.g., repeatedly sampling of collocation points) and
achieving fast convergence to accurate solutions. To address these issues, adaptive
sampling methods that focus on collocation points with high residual values have
been proposed, enhancing both resource efficiency and solution accuracy. While
these high residual-based sampling methods have demonstrated exceptional per-
formance in solving certain stiff PDEs, their potential drawbacks, particularly the
relative neglect of points with medium and low residuals, remain under-explored.
In this paper, we investigate the limitations of high residual-based methods con-
cerning learning stability as model complexity increases. We provide a theoreti-
cal analysis demonstrating that high residual-based methods require tighter upper
bound on the learning rate to maintain stability. To overcome this limitation, we
present a novel Langevin dynamics-based PINN (L-PINN) framework for adap-
tive sampling of collocation points, which is designed to improve learning sta-
bility and convergence speed. To validate the effectiveness, we evaluated the L-
PINN framework against existing adaptive sampling approaches for PINNs. Our
results indicate that the L-PINN framework achieves superior relative L? error
performance in solutions while demonstrating faster or comparable convergence
stability. Furthermore, we demonstrated that our framework exhibits robust per-
formance across a range of model complexities, indicating its potential for com-
patibility with larger neural network size in addressing challenging PDEs.

1 INTRODUCTION

Partial differential equations (PDEs) are crucial for describing various physical phenomenon such as
heat transfer (Haghighat et al., 2021} |Cai et al.,|2021b)), flow dynamics (Shi et al., 2021} Jagtap et al.,
2022, |Nazari et al., [2022), propagation dynamics (Pettit & Wilson, 2020} bin Waheed et al., |[2021),
optics and epidemiology (Lin & Chen, 2022, Rodriguez et al., 2023)). Getting accurate and efficient
solutions to PDEs is essential across numerous industries reliant on these descriptions. With ad-
vancements in deep learning, physics-informed neural networks (PINNs) have emerged as a promis-
ing method for solving PDEs. The training process of collocation-based PINNs involves minimizing
total errors, including initial condition (IC), boundary condition (BC), and PDE errors measured at
collocation points (Nabian et al.,[2021, Zeng et al.| 2022| |(Gao & Wang| |2023| |Toloubidokhti et al.,
2024, Lau et al.,[2024)). In particular, IC, BC, and PDE errors are incorporated as soft constraints on
experimental data, ensuring that the predicted solutions satisfy these essential requirements.

This collocation-based learning method enhances the capability of PINNs by reducing the need for
extensive experimental data collection across spatio-temporal ranges, demonstrating success in var-
ious industries as a promising alternative to traditional numerical methods like the finite difference
method and finite element method (Zhu et al.l 2019, [Bar-Sinai et al., [2019] [L1 et al., [2020). How-
ever, collocation-based PINN (hereafter referred to as PINNs) encounter challenges in efficiently
setting collocation points within the constraints of a limited sampling budget, and in achieving fast
convergence to accurate solutions. A key challenge arises from the presence of small regions with
abrupt changes, in contrast to the larger, smoother regions. This issue is particularly evident in stiff
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PDEs, which are often characterized by discontinuities, such as sudden transitions or jumps across
the spatio-temporal domain.

To address these challenges, two main adaptive sampling approaches have been proposed: residual
distribution-based sampling and high residual-based sampling. Residual distribution-based sam-
pling resamples collocation points according to the residual distribution at each iteration, ensuring a
proportional balance of points based on their residuals. In contrast, high residual-based approaches
directly target collocation points with high residuals, replacing those with lower values and often
neglecting low-residual regions. This focus can make it difficult to discern the analytical form of the
residual distribution. Nonetheless, high residual-based methods have recently demonstrated superior
performance. This raises an important question: Should we then focus exclusively on high residual
points in an extreme manner? Addressing this unresolved issue requires a thorough analysis of the
trade-offs and risks involved in different adaptive sampling strategies.

In this paper, we respond to this question by presenting a theoretical analysis that highlights the
importance of balanced adaptive sampling. We propose a novel Langevin dynamics-based PINN
(L-PINN) framework for balanced adaptive sampling of collocation points, ensuring an continu-
ous sampling process. We evaluated our L-PINN framework against existing adaptive sampling
approaches for PINNs, demonstrating consistently reliable relative L? error rates and robust con-
vergence stability. Furthermore, our framework adapts well to varying learning rates, highlighting
its robustness across different training configurations. Notably, our proposed framework performs
effectively across in diverse PDEs, distinguishing itself with enhanced learning stability.

2 BACKGROUND AND RELATED WORK

Physics-informed neural networks. The basic PINN framework (Raissi et al.l 2017) utilizes deep
neural networks as function approximators fy to estimate the solution u of a non-linear PDE. The
PDE formulation can be defined as follows:

up + Npfu] =0, ze€XCRY tel0,T); 2.1)
u(z,0) = h(z), z€X cR% (2.2)
u(z,t) = g(z,t), z€dX CRY te(0,T) (2.3)

where u(z, t) denotes the hidden solution at spatial and temporal coordinates x, ¢, ,.[-] is the non-
linear differential operator, X is the spatial domain, OX is the boundary, and 7" is the time range.
The spatio-temporal domain is Q@ = X x [0, T'], with collocation points x = (x,t) € € and spatial
dimension d. The PDE residuals Ry(x) and loss function on collocation points {xP¢} C € are
calculated as:

3]
Ro(x) = 5. fo(x) + N[ fol(x),x € Q (2.4)
N, de
1 P
Lpde({x2Y;0) = Ewa(Q)lRG(X)Ik o ) Z |Rg(xPde)|* (2.5)
pde ,—1

where U/(€2) is the uniform distribution over {2 and N, qe represents the number of sample points of
PDE loss. Then, in a similar manner, the total loss function £ is defined as:

L({x,};0) = )\pde/:pde({xﬁdeh 0) + )‘icﬂiC({Xivf}3 0) + )‘bcLbC({chh 0) (2.6)

Hyperparameters Apge, Aic, and Ay, control the balance between the PDE, IC, and BC loss terms.
Then, fp is trained to estimate appropriate solution « for PDEs by minimizing the total loss L.

Adaptive sampling based on residual distribution. Classical PINNs commonly used a uniform
distribution sampling strategy for collocation points. To improve this, an adaptive sampling method
based on the PDE residuals was proposed (Nabian et al., [2021)). In this method, the residual-based
distribution for adaptive sampling is calculated by dividing the PDE loss of each collocation point
by the arithmetic average of the total PDE loss, i.e., the n-th collocation point is sampled with

‘Re(x")lkw where Ry (x,,) is the residual at x,, € 2. A more generalized

probability p(x,) = s~~7# 5w
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method, the residual-based adaptive distribution (RAD), was later introduced (Wu et al.l [2023).

RAD incorporates one additional non-negative hyperparameter c represented by p(x) o< % +

c. Specifically, c regulate the degree of uniformity in sampling, allowing for a balance between low
and high residuals. When & dominates ¢, the sampling probability increases proportionally to the
magnitude of the residual favoring high residuals. Conversely, when ¢ dominates k, the influence of
the residual diminishes, leading to uniform sampling. RAD can adjust the importance of low and
high residual points using hyperparameters, depending on the form of the given PDE.

Adaptive sampling focused on high residuals. Alongside the residual distribution-based approach,
another prominent line of research focuses on sampling methods without directly approximating the
underlying distribution. The methods introduced below could be interpreted as special cases of RAD
in extreme k, ¢ settings; however, we aim to characterize them based on whether they involve esti-
mating the sampling distribution. One such approach is the high residual-based adaptive refinement
(RAR) scheme |Lu et al.| 2021a, where the top-M high residual collocation points are added to the
training batches for PINN models. This process continues until the mean PDE residual satisfies a
predefined error tolerance. Although RAR showed remarkable improvement, the number of collo-
cation points could continuously grow without any replacement, leading increased computational
complexity. To address this, a retain-resample-release (R3) sampling method (Daw et al. [2023)
was proposed to enhance sample efficiency by retaining high residual points, uniformly resampling
some points to improve diversity, and releasing collocation points with low residuals. While these
method focus on improving sampling strategies, a different question has arisen regarding whether
the L? physics-informed loss is appropriate for Hamilton-Jacobi-Bellman (HJB) equations (Wang
et al.| [2022a). In response, an adversarial training method has been proposed as an alternative, aim-
ing to optimize the L* norm for solving high-dimensional PDEs. Later, we will describe this in
more detail, during the process of conducting adversarial training to leverage L, partial gradient
information is utilized. As a result, it can be observed that this leads to a sampling technique that
tends to focus on high residual samples.

Unresolved questions in adaptive sampling methods. While adaptive sampling methods show
promising results, several theoretical aspects remain unclear. In particular, there is a lack of theoret-
ical analysis on the balancing effect. Although many studies report success with adaptive sampling,
limited analysis exists on the impact of focusing on high residuals. Specifically, it remains unex-
plained why algorithms that excessively emphasize high residuals exhibit instability during training.

To address these issues, we first investigate the relationship between learning stability and the degree
of emphasis on high residuals with respect to model complexity, and examine how an exclusive focus
on high residuals may lead to performance degradation during PINN model training.

3 ANALYSIS OF THE LEARNING STABILITY

The effect of balancing method. Weighting high residual regions during PINN training signifi-
cantly enhances model accuracy and efficiency by minimizing errors and accelerating convergence
(Lu et al| [2021b} |L1 et al., 2022). Additionally, it ensures stability (Cai et al.| [2021a, [Wang et al.,
2021) and maintains physical consistency (Karniadakis et al., 2021} Wang et al., 2022b| [Tang et al.,
2023). These studies, motivated by the goal of improving model accuracy and efficiency, have
empirically demonstrated the benefits of balancing method. However, there is a notable lack of the-
oretical analysis regarding the concentration of sampling in high residual regions. In this section,
we aim to investigate the impact of sampling concentration through the resulting analysis.

Setup. Consider the partial differential equation defined over the domain 2 = X’ x [0, T]. Assume
that we have N collocation points forming the population P = {x, € Q})_,, sampled from a
uniform distribution ¢/(2).

Assumption 3.1 For analytical simplicity, we assume that the residual error of the PDE at each
collocation point x,, can be expressed as a linear combination of feature-mapped vectors, given an
appropriate feature map ¢ : Q@ — RP. Specifically, we represent the residual error as follows:

D
RO(xn) = %fQ(Xn) +Nz[f0](xn) = a(9)7¢(xn;9) = Zad(9)¢d(xn§9) 3.1
d=1
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We regard the sampling methodology as a weighting of each sample point depending on the residual

Ro(xy) and set k = 2. Thus, we can represent the loss function L(P;6) = 25:1 W |Re(x,)]2.
Assume that we are solving for the solution based on the gradient descent (GD) algorithm. Then,

N
9+t = ' — vy (Z w!, | Ry (xn)|2> (3.2)
n=1
where the weights assigned to each sample point for iteration [ are determined as follows:

_ 2
l (RG‘(X”” ) nefl,...N} (3.3)

w,, X eXp NE

Additionally, w!, is normalized to satisfy > . wl,(x) = 1 and the parameter 8 > 0 preceding
the residual controls the concentration of sampling with respect to the residuals. Note that the
parameters 0l = (971, RPN élD) used to calculate the importance weights do not participate in the
model parameter update process. Furthermore, in contexts where the meaning is clear, we will no
longer explicitly indicate that ¢ is parameterized by 6, i.e., denote ¢(x; 0) as ¢(x).

For iteration [, we focus on two extreme cases of interest: when [ is too large (uniform sampling),
most samples receive uniform weights, resulting in uniform sampling. Conversely, when [ is close
to O (high residual sampling), the effect is dominated by the sample with the highest residual. To
explore this in more depth, consider the following propositions.

Proposition 3.1 (Uniform sampling eigenvalue) When the sampling concentration parameter (3 is
sufficiently large, the maximum eigenvalue of the hessian of the loss function can be approximated
as 2 max(X), where ¥ = Ey 140 [0(%)0(x)T] and Aax(X) is the maximum eigenvalue of 3.

Proposition 3.2 (High residual sampling eigenvalue) When the sampling concentration parame-
ter (3 is sufficiently small, the maximum eigenvalue of the hessian of the loss function can be approx-
imated as 2||¢(x*)||?, where x* = arg maxxecp |Ro(x)]?.

Detailed proof can be found in Appendix[B.1][B.2] It is well known that to ensure the convergence of
GD algorithms, the learning rate 1 must satisfy the following relationship with the largest eigenvalue
Amax Of the hessian of the loss function: 1 < 3 i (Boyd & Vandenberghe, [2004). Therefore, we

consequently aim to examine the relationship of the largest eigenvalue in two extreme cases of 3.
Before proceeding with the main result, we would like to introduce two assumptions.

Assumption 3.2 In high-dimensional feature space,

|p(x)|| follows a heavy-tailed distribution.
More specifically, P(||¢(x)]| > ¢) ~ % for large (, where ~ represents asymptotic equivalence,

9(Q) satisfies ¥t > 0,lim¢_ o0 % = 1 and « > 0 indicates the thickness of the tail.
This assumption is substantiated by both empirical evidence and theoretical insights. The heavy-
tailed nature of feature vectors has been documented in several research results (Mahoney & Martin,
2019, Martin & Mahoney), [2020, Barsbey et al., 2021) and is theoretically supported by extreme
value theory (Beirlant et al., 2006, |Haan & Ferreiral |2006, Resnick, 2007) and random matrix theory
(Pastur & Shcherbinal 2011}, [Taol [2012).

Assumption 3.3 For the residual maximal point X* = arg maxxcp |Ro(X)|?, as the dimension D
increases, it holds that (maxyep ||¢(x)|])* = Amar(E) > (maxyep [|¢(x)]))° — [|o(x*)2.

This assumption can be seen as a weaker form of the concentration of measure phenomenon in high-
dimensional spaces (Dubhashi & Panconesi, 2009, [Vershynin, 2018|, [Nadjahi et al., 2021} |Gupta
et al.| 2023). As dimensionality increases, random vectors concentrate around a typical norm, mak-
ing the maximal norm representative of all vector norms. We assume that the gap between high
residual points and the maximal norm changes slowly relative to Amx (). These assumptions were
experimentally validated, as detailed in Appendix [Al Assuming the number of samples /N scales
with model size D as N = cD, the following theorem can be derived.

Theorem 3.1 Given the heavy-tailed nature of ||¢(x)|| and sufficiently large model complexity D,
we have 2||¢(x*)||? > 2Amax (X). This inequality establishes a tighter upper bound on the learning
rate for ensuring the convergence of the GD algorithm under the high residual sampling method.
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Figure 1: Schematic sampling diagram of (a) R3 (first three figures), (b) L> (last three figures)
where |Rg(x)[¥ = 0.3 x N (x;0, [[1,0.5],[0.5,1]]) + 0.7 x N (x; 5, [[2,—0.3], [-0.3,2]]).

The detailed proof can be found in the Appendix [B.3] This indicates that the stability of the algo-
rithm can vary significantly depending on the sampling method and model complexity. Specifically,
during the actual training process with a weight decay scheme, learning may not progress adequately
until the learning rate is sufficiently reduced, potentially compromising stability. Consequently, in
these two extreme cases, uniform sampling may struggle to find an appropriate solution due to the
complexity of the PDE problems, while high residual sampling may fail due to instability in the
learning process. In this context, the unresolved issues can be summarized as follows.

Limitations of prior works:

1. Imperfectness of sampling algorithms. Most balancing sampling methods have not been
precisely implemented when 3 is at a moderate value. It is important to clarify that a
moderate value of 5 implies the ability to accurately describe the distribution proportional
to the residual value. In particular, there has been insufficient consideration of the trajectory
of samples used by algorithms to effectively update the PINN model, especially in the
context of multi-modal residual landscapes with various scales of peaks.

* RAD (Wu et al.,[2023): The modeling of residual distribution is relatively straightfor-
ward and relies on monte carlo integration (MCI) over the expectation E|Ry(x)|* ~
+ >, IRa(xy)|", which can be dependent on the number of sample points.

* R3 (Daw et al.| 2023): R3 employs a strategy that consistently maintains high resid-
uals, leading to an excessive skew in the distribution of collocation points. More-
over, this approach fails to effectively handle multi-modal landscapes in the long-term,
which, as demonstrated in our previous theoretical analysis, results in a scenario where
the sampling concentration parameter 3 becomes extremely small.

e L*> (Wang et al., [2022a): During the adversarial training, to estimate the in-
ner maximal value sup,cq, |Rq(x)|*, L iteratively utilizes gradient information
signVx|Rg(x)|* in the residual landscape with respect to x, allowing for some de-
gree of access to local modes. However, there is no guarantee that the proportions of
modes with different heights will be maintained.

To facilitate a more intuitive understanding of time evolving sampling methods (R3, L°°),
we have illustrated the working mechanisms in a schematic diagram shown in Figure

2. Scalability with respect to model complexity. Previous studies have primarily assessed
algorithm effectiveness using small-scale model architectures. Consequently, even with rel-
atively small values of 3 (high residual sampling), these algorithms avoided instability dur-
ing training and benefitted from the concentration effect that aids convergence. However,
this limited evaluation raises concerns about their applicability in real-world scenarios. In
this regard, Wang et al., 2024, made a notable contribution by proposing an architecture and
initialization strategy designed to enhance stability across model complexities. In contrast,
this study addresses the issue from the perspective of an adaptive sampling strategy.

4 PROPOSED APPROACH: LANGEVIN PINN (L-PINN)

Similar to other residual distribution-based methodologies, our primary objective is to estimate the
residual-based sampling distribution. However, unlike previous methods that directly model the
distribution using residuals, we employ Langevin dynamics to model the target distribution. An
intuitive visualization of our L-PINN framework is depicted in Figure
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Figure 2: Bidirectional update: (Left) sample update in PDE domain, our L-PINN framework lever-
ages Langevin dynamics to adaptively update collocation points based on PDE residuals at each
iteration while keeping the PINN model fy fixed. (Right) parameter update in parameter space, con-
versely, the PINN model fy minimizes the PDE residuals with the updated collocation points. This
iterative procedure continues to refine the solution until convergence is achieved.

4.1 LANGEVIN DYNAMICS AND STATIONARY DISTRIBURION

The dynamics of the collocation points at the [-th iteration utilized in Langevin PINN (L-PINN) can
be described as follows:

X = x4 TVAR () + 5z m € {1, N} @D

where 7 > 0 is the step size, z,, ~ N(z;0,I) represents the white Gaussian noise, and f3 is
the sampling concentration coefficient. Additionally, the residual exponent k is set to 2. Unlike
other methods that estimate the sampling distribution based on residuals at every iteration, L-PINN
dynamically updates the data points without requiring the estimation of the sampling distribution.
If such Langevin dynamics are allowed to run for a sufficient number of iterations with sufficiently
small step size, we can theoretically obtain the following result for the collocation points.

Theorem 4.1 (Stationary distribution) For fixed fy and concentration parameter 3 > 0, sample
2
population P' asymptotically follows lim;_, o p;(x) = p(x) o exp (%) asl — oo.

The proof of Theorem 4.1 can be found in the Appendix As evident from the above results, the
L-PINN framework can achieve collocation sample population at an arbitrary 8 > 0. This differs
from methods like R3 and RAD, which sample new collocation points multiple times to find high
residuals. The L-PINN conducts successive sampling by using the evolving population as the initial
point for the next update. It can also be compared to L°°, which fully initializes the collocation
points at each iteration and leverages the gradient information as signV |Re(x)|* multiple times to
identify the local mode, ensuring that the directional information of the gradient vectors is preserved.
The detailed operational procedure can be found in Algorithm (T}

Algorithm 1 Single L-PINN Sampling Iteration for Physics-Informed Neural Networks

. Input: initial population P = P° with NV collocation points

1

2: Output: updated population P = P

3: for/=0tol;, — 1do

4 for x;, € P! do

5 Calculate the gradient: Vy|Rq(x})[?> = Vi |2 fo(x}) + Ny [fo(x})] |2
6: Sample white Gaussian noise: z, ~ N'(z!;0,1)

7 Follow the Langevin dynamics: x\;™! < x! + ZV4|Ry(x},)|? + 8/7Z,,
8 end for

9 Update collocation population: P!*1 < {x! 11V
10: end for
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Figure 3: With fixed learning rate = 0.002 and 4 hidden layers, (a) The maximal eigenvalue of
the hessian (steepness) for the loss function, (b) the relative L? error curve.

4.2 PRACTICAL IMPLEMENTATION

In general, achieving successful Langevin sampling requires careful selection of hyperparameters
(step size 7, number of Langevin iterations [, etc.). While running Langevin dynamics for many
iterations with a small step size might allow sampling to be proportional to the actual residual land-
scape, it can significantly slow down the training speed of the PINN model in practical applications.
Thus, we considered the following concepts when setting the hyperparameters, which are crucial for
effectively utilizing Langevin dynamics.

Adjusting step size and Langevin iteration. To increase the computational efficiency, we adopted
a strategy of increasing the step size 7 and reducing the number of Langevin iterations l1,, even at the
cost of some loss in sample quality. We anticipated that the temporal variation of the PINN model,
fo, would exhibit smooth behavior when utilizing adaptive sampling strategies. Consequently, even
with fewer Langevin iterations, minimal changes in the loss landscape suggest that the sample tra-
jectory would resemble that of a fixed landscape.

Normalizing the gradient size. Since L-PINN leverages gradient information from the residual
landscape, the step size 7 needs to be set even smaller for stiff PDEs. Additionally, empirical
observations indicate that the gradient of the residual landscape exhibits substantial variations at the
beginning of training. In contrast, towards the end of training, the residual landscape is characterized
by relatively small gradients. This discrepancy restricts the movement of sample points, thereby
making it challenging to secure reliable quality. To address these challenges, we normalized the
magnitude of all residual gradients at each iteration relative to the largest residual gradient. This
method effectively mitigated the hyperparameter sensitivity inherent to Langevin dynamics.

5 EXPERIMENTS

In this section, we experimentally evaluate the effects of focusing on high residuals, considering
variations in model complexity while keeping the number of collocation points fixed (noting that,
in general, model performance improves as Nq. increases). We compare the performance of our
L-PINN against other adaptive sampling methods, including RAD, R3, L>°, and Random-R which
uniformly resamples all collocation points at each iteration.

Experimental setup. As the default settings, unless otherwise specified, the models utilized a
multilayer perceptron (MLP) with 128 nodes per layer and 4 hidden layers, employing a hyperbolic
tangent activation function in each hidden layer. The Adam optimizer was utilized with the learning
rate of n = 0.001 and a decay factor of 0.9 applied every 5,000 iterations. Training was conducted
with 200,000 iterations, and the number of collocation points was set to Npg. = 1,000. For the
L-PINN configuration, the residual exponent & = 2, the Langevin step size 7 = 0.002, and the
concentration parameter 8 = 0.2.
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Figure 4: Relative L? error (Log scale) for the Allen—Cahn equation: (a) varying layers with
1 = 0.001 (with scheduler), (b)-(d) fixed 4 layers with different learning rates (no scheduler). Each
boxplot is based on 5 random seeds.

5.1 ABLATION STUDIES

First and foremost, we sought to verify how the analytical results regarding stability and model
complexity, presented in Section [3} operate and apply to the functioning of each algorithm. In this
context, we performed the following key ablation studies based on the Allen—Cahn equation using
5 different random seeds. To validate the behaviors discussed in Section[4.2] the sample trajectory
recorded during the actual training process is provided in Appendix [D}

Steepness of the loss landscape. In our stability analysis, we posited that the loss landscape of a
sampling algorithm targeting extremely high residuals, such as R3, L* would exhibit sharp land-
scapes. To validate this, we visualized the maximal eigenvalue of the hessian within the loss across
iterations in Figure [3}(a). The results confirm our hypothesis that sampling methods focused on
extreme high residuals lead to greater steepness. However, as shown in Figure [3}(b), despite the sta-
bility of Random-R, its modest performance suggests that low steepness alone does not ensure better
sample quality or performance, emphasizing the need for concentration of high residual points.

Different number of hidden layers. We employed MLP architectures with hidden layers ranging
from 4 to 10 across all sampling methods, maintaining a learning rate of 0.001 and utilizing a step
scheduler. As illustrated in Figure[d}(a), it can be observed that only L-PINN and RAD demonstrated
stable performance when 10 hidden layers were used. These results indicate that high residual
methods are more susceptible to increasing model complexity, whereas L-PINN remains robust.
Under various settings, the detailed experimental results are presented in Appendix [E]

Varying learning rate n without decaying. We evaluated MLPs with four hidden layers across
learning rates ranging from 0.001 to 0.004 without applying decay. As shown in Figure ] -(b), the
benchmark algorithms demonstrated performance degradation at n = 0.002 compared to = 0.001,
whereas L-PINN showed improvement. At 7 = 0.003, all methods exhibited reduced performance;
however, L-PINN was able to partially mitigate this degradation. Atn = 0.004, none of the methods
produced correct solutions. In particular, we visualized the performance for very low learning rates
in Figure[d(c) and highlighted the range between 7 = 0.002 and 0.003, where all algorithms begin
to exhibit instability in Figure [@(d). From this, we observe that learning does not proceed properly
at very low learning rates, and for layer 4, most algorithms become unstable at a learning rate as low
as approximately 0.0022.
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5.2 ADDITIONAL EXPERIMENTS ON REPRESENTATIVE PDES

The proposed L-PINN framework is further evaluated on representative 1D PDEs derived from
various benchmark problems tackled by several established algorithms, including RAD, R3, L,
Random-R. In these evaluations, we employ the default experimental settings as outlined earlier.
The specific configurations for the PDE parameters and the hyperparameters of the baseline al-
gorithms are detailed in Appendix [} While fine-tuning hyperparameters like Langevin iterations,
concentration parameter, and step size may improve performance, our main goal is to showcase
the robustness of the L-PINN framework to these hyperparameters. Additional results on hyperpa-
rameter sensitivity, computational complexity, PDE dimensionality effects, and compatibility across
architectures are provided in Appendices[G] [H] [} and[J] respectively.

Experimental results. We evaluated the performance of each sampling method on the Burgers’,
Convection, Allen—Cahn, Korteweg—DeVries, and Schrédinger equations across 5 different ran-
dom seeds. The results in Table [T]indicate that L-PINN generally achieves superior or comparable
relative L? errors compared to other models. For the Burgers’ equation, Random-R performed
best, with L-PINN close behind. In the Convection equation, RAD outperformed others, while L>°
failed to converge correctly. For the Allen—Cahn equation, L-PINN achieved the best performance,
followed by L>. Results for layer 10 are shown in Fig. 5] In the Korteweg—DeVries equation,
Random-R ranked first, and L-PINN ranked second, with other methods producing larger errors.
For the Schrédinger equation, L-PINN performed best, followed by Random-R. Overall, L-PINN
and Random-R consistently demonstrated superior performance across PDEs.

Table 1: Relative L? error across PDEs for increasing model complexity with larger hidden layers.

PDEs Burgers’ Convection Allen—Cahn Korteweg—DeVries Schrédinger
Number of layers 8 10 8 10 8 10 8 10 8 10
Random-R 0.01+0.00  0.02+0.00 | 0.30£0.05 0.41£0.10 | 2.5442.30 11.49£19.93 | 1.64+0.63 2.89+1.80 | 0.09£0.00 0.11£0.01
RAD 0.174£0.02  0.274+0.14 | 0.25+0.02 0.28+0.09 | 0.99+0.29  1.36+0.19 | 7.44+1.83 7.97+1.45 | 1.684+0.15 2.89+0.69
R3 0.01+0.00 0.02+0.00 | 0.39+0.24 0.2740.05 | 0.97£0.23 34.47+17.64 | 3.92+2.93 7.02£8.77 | 0.11+0.01  0.15+0.02
L= 0.03+0.01  0.064+0.06 | 73.87+5.07 54.17427.33 | 0.76+0.07 10.95+19.16 | 5.70+1.45 4.44+1.45 | 0.224+0.06  0.1940.03
L-PINN (ours) | 0.01+0.00 0.01+0.00 | 0.34+0.12 0.2740.03 | 0.75+0.11  1.06+0.21 | 2.68+1.74 1.99+0.50 | 0.08+£0.01 0.09+0.01

6 CONCLUSIONS

In this paper, we analyzed the impact of adaptive sampling methods on learning stability when
training PINN models, particularly in relation to model complexity. Our theoretical analysis revealed
that sampling methods overly focused on high residuals could compromise learning stability. To
mitigate this issue, we proposed the Langevin dynamics-based PINN (L-PINN) framework, which
updates collocation points based on Langevin dynamics proportional to PDE residuals. Through
extensive experiments and ablation studies, we demonstrated that high residual-based methods often
failed to converge to correct solutions when increasing hidden layers and learning rate rates, whereas

L-PINN maintained stable convergence.
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Figure 5: Error comparison of the exact solution and the predicted value for the Allen—Cahn equa-
tion at layer 10 across benchmark algorithms.
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APPENDIX

A EMPIRICAL VALIDATION OF ASSUMPTIONS

We begin by discussing the challenges of validation associated with our assumption, which states
that proving a linear combination of the residual function to its feature vector is non-trivial. By
definition, the residual Ry involves transforming the neural network output fj through an operator
within a certain function space. This implies that the features of the function, resulting from the neu-
ral network output combined with an additional operator, are not explicitly defined. Consequently,
we extract the feature vector of the resulting function through local feature vector estimation based
on the linearization of the residual function. Before delving into the main discussion, we first explain
the logic behind how the feature vector ¢ is inferred.

A.1 LOCAL APPROXIMATION OF THE FEATURE VECTOR ¢

Let Ry(x) = £ fo(x) + Ny [fa](x) represent [g( f5)](x). To validate the assumption that a suitable
linearization exists, our goal is to derive a proper linear approximation of [g(fy)](x) at a specific
point x € Q = X x [0,T], given a specific function fy. In this process, we will utilize a Taylor
expansion for [g(fg)](x). It is important to note that since g(fy) represents the behavior in the
function space, understanding how g responds to small perturbations in fy is crucial. This analysis
employs the Fréchet derivative.

To summarize briefly, g(fo) ~ g(f)+Dy(f)(fo— f), which implies that the result can be linearized

around a baseline function f where Dy(f) = lima o W. Since our focus is on the

linearization of [g( fg)](x), it is essential to ensure that f is a function close to fy within the function
space. To achieve this, small noise perturbations are added to the neural network fy. In conclusion,
to approximate the value at a specific point x, we proceed as follows:

[9(f))(x) = [9(f) + Dy (£)(fo = /)I(x) (A.LD)
= [9(NIE) + Dy (£)(fo — NIx) (A.12)
= [9(NI(x) + [Dg(H](x) (fo(x) — f(x)) (A.13)

Here, if fy is assumed to be a well-trained PINN model and perturbation A f is sufficiently small,
we can readily infer the following for the first term:

g(N))(x) =0, VxeQ.

Consequently, the linear approximation of the function [g( fp)](x) can be expressed using the Fréchet
derivative. The aspect that conflicts with our assumption is that, in this context, the Fréchet derivative
can act as a function dependent on x. Therefore, we refer to this as a local approximation.

Approximation of Fréchet derivative. According to the problem formulation of PINN, ¢ is an
operator that takes the function f as input and generates new values through partial derivatives such
as fu, ft, fox, fut, and their combinations. Thus, we can assume g(f) = G(f, fz, fty foxy foty )
Here, G is a multivariate function that combines the derivative terms. Next, considering a scenario
where a slight perturbation A f is applied to f, the Fréchet derivative can be approximated as fol-
lows:

Dg(f) (fo = f) = g(f + Af) = g(f) (A.14)
oG 0G oG

:aifAf_F@Afx_FaiftAft_F... (A.1.6)

%Xk:g]f]iAfk’ fke{f7f’c7ft7fxta"'} (A17)

— a7 (A.1.8)

where a = (3%, 5, 6% .. ) and ¢ = (Af, Afe, Afs,- ).
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Mathematical details. Here, we provide a systematic summary of the considerations underlying
the validity of the employed estimation method.

1. Reliability of the Fréchet derivative D/[f]|: The existence of the Fréchet derivative re-
quires the following sufficient conditions:

* (G must be differentiable.
 f must be sufficiently differentiable with respect to = and ¢.

Both conditions are naturally satisfied in the context of our problem. This ensures that we
can extract a vector that locally approximates the actual feature vector ¢ for each point
x € (2, thereby facilitating a robust estimation process.

2. Condition for the constancy of D[ f]: It is important to note that G is generally a function
of (f, fu, ft,-++), and thus implicitly depends on x. However, when the variables are
not entangled with each other, the partial derivatives can exhibit constant behavior. For
instance:

¢ In our case,

6—?‘: is always 1.

* Partial derivatives in the x-direction such as o 9f B depend on N,

If the output of the differential operator N, entangles the partial derivatives in the z-
direction (i.e, NV [f] is non-linear), the assumption that a acts as a constant may weaken.

Now, to compute the quantity ¢ defined in this manner, we use Af, =~ %Aw + %“”At, and
the other A f, values for the remaining partial derivatives can be computed similarly. Furthermore,
partial derivatives of the neural network f with respect to (z, t) can be approximated using automatic

differentiation.

A.2 HEAVY-TAILED BEHAVIOR OF THE NORM OF FEATURE VECTORS

Initially, we visualized the histogram of the norms of the extracted feature vectors across all feasible
grid points in Figure[6] i.e., the histogram of {|[¢(x)[| : x € @ = X x [0, 7]} for models with 4, 6,
8, and 10 layers, respectively.

From the provided histograms, it is evident that for each PDE, the distribution increasingly exhibits
heavy-tail behavior as the layer depth grows. This tendency is particularly emphasized in the fol-
lowing two aspects:

1. Heavy-tail characteristics resembling Pareto distribution: As the layer depth increases,
the distribution’s tail becomes thicker, consistent with the heavy-tail properties of the Pareto
distribution. In a Pareto distribution, the tail probability follows the form P(X > z) «
x~ %, decaying slowly and exhibiting a high frequency of extreme values. This is reflected
in the histograms, where deeper layers show data concentrated in certain regions while
displaying more frequent extreme values.

2. Increased concentration and frequency of extreme values: As the number of layers in-
creases, the data become densely concentrated within specific ranges (represented on the
y-axis as frequency), while significantly more frequent occurrences of large values (de-
picted on the z-axis as extreme values) are observed. This behavior suggests a progressive
shift towards heavy-tail distributions.

In addition to the previously obtained histograms, we also calculated two statistical esti-
mates—Pareto tail index and Hill estimator—based on the samples to provide a more quantitative
representation.

Pareto tail index. The Pareto tail index, denoted by «, quantifies the heaviness of the tail of a
distribution. For a random variable X with a heavy-tailed distribution, the tail probability follows a
power-law:

P(X >z)~2™% asx— oo,

where o > 0 represents the tail index. Therefore, a smaller value of « corresponds to a thicker
tail, indicating a slower decay of the tail probability and a higher likelihood of extreme events.

14



Under review as a conference paper at ICLR 2025

Histogram of Layer 4 300 Histogram of Layer 6 Histogram of Layer 8 Histogram of Layer 10
500
100 600
250
80 400 500
n 200
3 60 300 400
® 150
3 300
@ a0 100 200
200
20 50 100 100
3 4 6 0% 0.5 1.0 15 000 05 1.0 15 0 2 3
ll9(ll2 x10 lo0al2 x10* ll90xll2 x107 92 x10°
Histogram of Layer 4 Histogram of Layer 6 Histogram of Layer 8 Histogram of Layer 10
175 350 600 700
150 300 500 600
£ 250
5125 400 500
=
I3 200 400
100
$ 300
5 75 150 300
o 20
50 100 0 200
25 50 100 100
%00 o5 10 15 20 25 3 2 4 6 00 0.5 1.0 1.5 0.0 0.5 1.0 15
llo()ll2 x10? lo0al2 x10* llo0x)ll2 x107 912 x10'
Histogram of Layer 4 Histogram of Layer 6 Histogram of Layer 8 Histogram of Layer 10
250 300 500 700
200 250 400 600
500
£ 200 200
§ 150 400
& 150
%’ 100 200 300
100
200
50 100
50 100
0 4 6 [] 0% To 15 20 25 %0 2 3 a4 s 0 1 2 3
llo(x)ll2 x10 lo0al2 x10* llo0)ll2 x10° 912 x10°
Histogram of Layer 4 Histogram of Layer 6 Histogram of Layer 8 Histogram of Layer 10
100 600
200
" 400 500
o 80
£
s o 150 300 400
a
|
o 300
g 100 200
9 200
g 50
100
¥ 20 100
03 2 T %3 2 3 4 5 03 1 2 0 2 4 6
eIl x10t ()1l x10° 60012 x10° 16312 x10°
Histogram of Layer 4 Histogram of Layer 6 400 Histogram of Layer 8 Histogram of Layer 10
" 250 600
200 300 500
5 60
2 150 400
3
8 40 200 300
< 100
7] 200
20 100
50 100
%% o5 10 15 20 075 1 2 2 %00 o5 1o 15 20 0.0 . 1. 15
62 x10 ()12 x10° ()12 x10° 16312 x10°

Figure 6: Each plot represents a (PDE, layer) pair, where the row corresponds to the type of PDE
being solved (e.g., Burgers’, Convection, Allen—Cahn, etc.), and the column indicates the model
size by the number of hidden layers in the PINN (e.g., layer 4, 6, 8, 10). The histograms show the
distributions of the feature vector norms ||¢(x)|| for each pair.

Conversely, a larger value of o corresponds to a thinner tail, where the tail probability decays more
rapidly and extreme events are less likely.

Hill estimator. The Hill estimator is specifically designed to estimate the inverse of the tail
index, £ = é Given a sample of n independent and identically distributed observations
{X1,Xs,..., X, }, sorted in descending order as X(1) > X(2) > -+ > X, the Hill estima-
tor is defined as:
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Figure 7: Two statistical estimates of the norms of the feature vectors.
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Figure 8: Disparity comparison of Ay« () and ¢(x*) with respect to max || (x) |

where k is the number of upper order statistics used for the estimation. It is evident that é  estimates

the reciprocal of the true tail index «. Consequently, a larger value of f & corresponds to a smaller «,
which can be interpreted as indicating a heavier tail.

Figure [7] presents box plots of the estimates across different random seeds for various PDEs. The
Pareto tail index, quantifying tail thickness, decreases with increasing layers, indicating heavier
tails and a higher likelihood of extreme events. Across all PDEs, the index consistently declines
from layer 4 to layer 10, highlighting the growing dominance of extreme values in deeper layers.
Notably, the index values are significantly below 2, a common threshold for heavy-tail behavior.
Even with fewer layers and 1,000 collocation points, feature vector norms exhibit pronounced heavy-
tail distributions. The Hill estimator, measuring the inverse of tail heaviness, complements this,
gradually increasing with layer depth and reinforcing the trend of heavier tails. Its values, exceeding
the 0.5 threshold for heavy tails, become more pronounced with depth.

A.3 EMERGING DISPARITIES WITH INCREASING MODEL COMPLEXITY

In the previous subsection, we conducted an empirical analysis of the distributional characteristics of
feature vector norms. In this subsection, we aim to validate the hypothesis of the norm’s emerging
disparities with increasing model complexity. (Assumption [3]3) For clarity, this relation can be
expressed mathematically as (maxyep [|¢(x)]])° = Amax(2) > (maxyep [|6(x)]))> — lo(x*)|12,
where x* = arg maxycq |Rg(x)|?. Here, due to the dominant scale of max ||¢(x)||, we transformed
the values into a logarithmic scale to investigate the relationship between Apax and ||¢(x*)]].

The Figure [§ illustrates the behavior of a logarithmic metric for various PDEs as the layer count
increases. The x-axis represents the number of layers, shown as 4, 6, 8, and 10, while the y-axis rep-

_ log(max [|¢(x) ) —log [[¢(x") ||
resents a log-based value, denoted as Tog (max [ 6(0) )= 108 e ()

maximum values and scaled terms. Across all PDEs, the y-axis value decreases monotonically as
the number of layers increases. This consistent decline in the log-metric across all PDEs suggests
that as the layer count grows, the denominator in the ratio scales disproportionately compared to the
numerator. This behavior indicates that the underlying system dynamics or representation becomes
increasingly dominated by the factors represented in the denominator.

which captures a ratio involving
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B LEARNING RATE UPPER BOUND VARYING 3

For the sake of simplicity, we will consider the situation at iteration [. Hence, in the forthcoming
proof, we will omit the upper index related to iteration. i.e., denote w!, as w,.

B.1 PROOF OF PROPOSITION 3.1

When the sampling concentration coefficient [ is sufficiently large, the weights w,, are approxi-
mately uniform (w,, ~ %). Thus, the hessian matrix Hy of the loss function with respect to 6 can
be approximated by:

N 1 N
Hy(L) = Hy (Z wnRg(xn)|2> ~ Hy (N > Rg(xn)|2> (B.1.1)
n=1

n=1

Since Ry(x) = 0T¢(x) and Hy (|67 (x,,)[*) = 2¢(x)¢(x)T, the hessian of L satisfies:

1 & 2 I
Hy(L) ~ > Hy (|07¢(xa)[?) = N > p(xn)p(xn)T (B.1.2)

This matrix represents the sample covariance matrix of feature vector ¢(x). Thus, for sufficiently
large N, we can say the maximum eigenvalue of the hessian is approximately 2\ ax(X).

B.2 PROOF OF PROPOSITION 3.2

When the sampling concentration coefficient [ is sufficiently small, for the sample x* with the
largest residual (i.e., X* = arg maxyep |Rg(x)|?), we can consider all other weights to be zero
except for x*. Therefore, the hessian matrix of the loss function can be expressed as follows:

N
Hy(L) = Hy (Z wn|R9(xn)|2> ~ Hy (|Ro(x*)|) (B.2.1)

n=1

The hessian of the loss function can be expressed as 2¢(x*)¢(x*)T, which is rank-1 matrix. Given
that the eigenvalue equation is defined as Av = Av, where A = 2¢(x*)p(x*)T and v = ¢(x*), it
follows that ¢(x*) is the eigenvector and 2||¢(x*)||? is the corresponding eigenvalue. Since A is
rank-1 matrix, the eigenvalue is uniquely determined.

B.3 PROOF OF THEOREM 3.1

We have assumed that the norm of ¢ follows a heavy-tailed distribution (Assumption [3]2). Then,
according to extreme value theory, it is well-established that the maximum value obtained from N
samples scales as N/, i.e., max ||¢(x)|| ~ N/, Given that N = ¢D, where N is proportional
to D due to high-dimensionality and sampling considerations, we approximate:

max |¢(x)|| ~ (¢D)"/* ~ DV (B.3.1)

Subsequently, the matrix ¥ = E[¢(x)¢(x)T] represents the covariance matrix of the feature map-
pings ¢(x). In high-dimensional settings, the eigenvalues of such covariance matrices are known to
follow specific distribution patterns as described by random matrix theory. In particular, the max-
imum eigenvalue of 3, denoted Apay (%), scales as N2/¢~1. Consequently, Apay(X) ~ N2/@~1
Substituting N = cD into the scaling relationship yields:

Amax(E) ~ (eD)¥ =t ~ Dot (B.3.2)

When D is large, the term (max ||¢(x)||)®, which scales as D%/, increases significantly faster than
Amax (X), which scales as D?/“~1, Consequently, as D increases, (maxyep ||¢(X)[])? > Amax(Z).
Finally, combining this fact with Assumption [3| which states (maxxep ||¢(x)[])? — Amax(Z) >
(maxxep [|6(x)|)% — ||¢(x*)||?, we can conclude the proof.
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C STATIONARY DISTRIBUTION OF LANGEVIN DYNAMICS

C.1 PROOF OF THEOREM 4.1

Given the modified Langevin dynamics, for any x!, € P!,

X! = x), + SV [Ro(xt)|” + A7, (LD

The drift and diffusion terms from the modified Langevin dynamics are:
T 2
Ax) = 5Vx[Ro(x)[", (C.1.2)
B(x) = 71 (C.13)

If we denote the probability density of x € 2 at time [ as p;(x), the Fokker-Planck equation describ-
ing the time evolution of the probability density is:

8pl (X)
ol

= =V (AX)pi(x)) + Vx - (B(X)Vxpi(x)) (C.1.4)

where - : 2 x 0 — R represents general dot product between two vectors. i.e., u-v = uTv and Vyx

is the del operator with respect to x. Under mild condition, in the stationary state, 8”3—%") = 0, so,
the limit distribution p(x) = lim;_, -, p;(x) satisfies the below:
0= Vi (5 VxR p(x) ) + 527 (Vi - V() (C.15)
This simplifies to steady state equation:
262V - V(%) = Vi - (p(X)Vx [Ro(x)[*) (C.1.6)

At first, we simplify the (RHS) of Equation (C.1.6). Since Vy [Rg(x)|> = 2R4(x)VxRo(x), using
the product rule, we can simplify as follows:

Vs - (p(X)Vx |R9(x)|2) —V,- (Zp(X)Rg(x)VxRe(x))

—9 (Rg (X)Vxp(x) - VR (%) + p(x)ViRo(X) - ViR (x) + Ro(x)p(x) Vi - vxng(x>)
(C.1.7)

Substituting Equation (C.1.7) into the RHS of the Equation (C.I.6) and dividing by 2, we get:
BQVX : vxp(x) =Ry (X)pr(x) - VxRa (X)

+ p(x) VxR (%) - VxRo(x)
P(X)Ro(x)Vx - Vi Ro(x) (C.1.8)

Now, if we assume the stationary distribution is of the form:

p(x) = Z " exp (c|Ro(x)|?) (C.1.9)
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where Z is the partition function of the stationary distribution and ¢ > 0 is the constant. Then,
calculating the gradient and laplacian of Equation (C.1.9):

Vxp(x) = 2ep(x)Ro(x)VxRo (%), (C.1.10)
Vi - Vip(x) = Vi - (2p(x)Ro(x) VxR (x)) (C.1.1D)
= 2¢Ro(x) Vxp(x) - VxRo(X)
+ 2ep(x) VxR (x) - VxRo(x)
+ 2ep(x)Ro(x)Vx - VxRo(%) (C.1.12)
= 2cRo(x) [2ep(x)Ro(x) VxRo(x)] - VxRo(x)
+ 2ep(x) VxR (X) - VxRo(x)
+ 2ep(x)Ro(x)Vx - VxRo(x) (C.1.13)

=4c p(X)R ( )V Rg( ) vaQ(X)
+ 2ep(x) VxR (X) - Vi Ro(x)
+ 2ep(x)Ro(X) Vi - VyRo(X) (C.1.14)

Substituting these into the Equation (C.1.§)), we get:
4¢? B p(x)R2(X)VxRo(X) - Vi Rg(X)

+ 2¢6%p(x) Vi Ry (X) - ViR (x)
+ 2¢6%p(x)Ro(x)Vyx - Vi Ro(X) (C.1.15)
—Re( ) [2ep(x)Ro(x) VxRo(x)] - VxRo(x)

+p(x)VxRo(x) - VxRo(x) + p(x)Ro(x) Vx - VxRo(x) (C.1.16)
—QCP(X) 5(x)VxRg(x) - ViRo(x)

+ p(x)VxRo(x) - VxRo(x) + p(x)Re(x)Vx - VxRo(x) (C.1.17)

Since this equation holds for all x in the support of p, dividing through by p(x) and simplifying:
(4¢°B + 2¢B8%) R§(x)VxRo(x) - VxRo(x) + 2¢8°Ro(x) Vx - Vi Ro(x)
= (2¢+ 1) R3(X)VxRa(X) - ViRo(x) + Ro(X)Vx - Vi Ro(x) (C.1.18)

By comparing the coefficients of the terms on both sides, we get:
4¢% 6% +2¢4% = 2¢ + 1, (C.1.19)
2e4% =1 (C.1.20)

Thus, we can conclude ¢ = ﬁ and the stationary distribution for the given modified Langevin

dynamics satisfies:
R 2
p(x) o exp (' ;g?' ) (C.121)
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D SAMPLE TRAJECTORIES OF L-PINN AND BENCHMARK ALGORITHMS

We visualized the collocation point trajectories during the training under various adaptive sampling
algorithms. The experimental settings follow the default configurations specified in the main text,
with 4 layers and the number of Langevin iterations set to I;, = 1. The background, shown as a
heatmap using the plasma colormap, represents the residual landscape |Rq(x)|?, where dark purple
indicates low values and bright yellow indicates high values. White points represent the collocation
points used in training. Notably, the loss landscape dynamics remained largely consistent.

D.1 RANDOM-R SAMPLE TRAJECTORY

The figure below represents the sample trajectory of Random-R, where different collocation points
are uniformly sampled at each iteration.
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D.2 RAD SAMPLE TRAJECTORY

This figure presents the RAD sample trajectory over multiple iterations, demonstrating a relatively
stable pattern of sample distribution. As iterations progress, the sample points concentrate around
regions of high residuals, with some diversity maintained throughout. However, despite the overall
stability, the RAD sampling method exhibits a distribution that is not significantly different from
the Random-R approach. The clustering becomes more pronounced in certain areas, but the overall
spread and distribution of samples remain similar, suggesting that RAD does not offer a distinct
advantage over random-R in terms of improving sampling diversity.
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D.3 R3 SAMPLE TRAJECTORY

This figure illustrates the evolution of sample trajectories in the R3 algorithm, showing a clear
concentration of samples in regions with high residuals as the process progresses. While early
iterations exhibit some scattering, the sample points increasingly cluster around specific areas of
the residual landscape, leading to a lack of diversity in later stages. Furthermore, this imbalance
indicates instability in the sampling strategy, as it fails to maintain a continuous, balanced shift in
the sample population across the entire domain. The discontinuous change in the sample population
may result in instability from the perspective of the learning process.
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D.4 L° SAMPLE TRAJECTORY

This figure illustrates the evolution of sample trajectories in the L*° algorithm. As the number of
iterations increases, the samples become overly concentrated in regions with high residuals, leading
to a lack of diversity across the domain, particularly in areas with lower residuals. This imbalance
goes against the goal of maintaining a well-distributed sample set proportional to the residual land-
scape. While some adaptation occurs, the excessive focus on extreme residuals (small 3 case) results
in a skewed distribution, highlighting the need for more balanced and diverse sampling to improve

the algorithm’s performance.
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D.5 L-PINN SAMPLE TRAJECTORY

This figure depicts the sample trajectory of the proposed L-PINN algorithm. As iterations progress,
the sample points are proportionally distributed according to the residual landscape, maintaining
diversity across the domain. Unlike other methods, proposed L-PINN algorithm avoids over-
concentration in regions of high residuals, instead ensuring that sample points are scattered in a
balanced manner. Additionally, the distribution adapts in line with the residual peaks, with an ap-
propriate portion of samples allocated based on the peak heights. This indicates that the L-PINN
algorithm successfully addresses the key objectives of both proportionality and diversity in sample
distribution, improving stability and overall performance.

2000

|teration 5000

o kel

« A3

Iteration 9000

By

- Itratio 130

Iteration 19000

3" g
o5
¥

e

24



Under review as a conference paper at ICLR 2025

E RELATIONSHIP BETWEEN LEARNING RATE AND MODEL COMPLEXITY

E.1 LEARNING CURVE VARIATION WITH INCREASING DEPTH

Here, we aim to visualize and interpret the learning curves for the Allen—Cahn equation observed
during the training process of the models, as reported in Table[T] with detailed experimental settings
provided in Section [5] varying only the depth of the neural networks.
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Figure 9: From top to bottom in the figure, the learning curves correspond to layers 4, 6, 8, and 10
for the Allen—Cahn equation.

Our primary observation is that most algorithms exhibit a slow learning progression until the learn-
ing rate reaches a specific value (which, of course, varies depending on the algorithm). This phe-
nomenon appears to correlate with the degree of high residual concentration in the residual landscape
of each algorithm. Specifically, the relative L? error in the learning curve requires more iterations
to drop below a certain threshold (denoted as 50 in the figure) as the number of layers increases.

From an algorithmic perspective, most methods achieve the 50-threshold of the relative L? error
crossing before iteration 40,000 with a 4 layer network. However, as the number of layers increases,
particularly with 8 and 10 layers, the threshold-crossing iterations are significantly delayed. This
delay is especially pronounced in algorithms such as R3 and L°°, which are highly focused on
regions of extreme high residuals. This observation suggests that these algorithms are more affected
by the increased complexity and residual concentration in deeper networks.

To verify whether this phenomenon depends on overall model complexity, in the following subsec-
tion, we also conducted experiments focusing on increasing the width rather than the depth of the
model.
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E.2 LEARNING CURVE VARIATION WITH INCREASING WIDTH

Simple calculations show that a neural network with 8 hidden layers and 128 nodes per layer has the
same number of parameters as a neural network with 4 hidden layers and a width of 203. However,
comparisons based solely on parameter count are inadequate, as depth introduces issues such as
gradient vanishing.

Therefore, instead of viewing width solely from the perspective of parameter count, we conducted
experiments by progressively doubling the width. The results showed that, similar to depth, in-
creasing width also led to a gradual breakdown in learning stability. Consistent with the rankings
observed in depth experiments, among adaptive sampling techniques, L-PINN reached the relative
L2 error threshold of 50 the fastest. Interestingly, Random-R demonstrated robustness in this setting,
particularly with wide neural networks.
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Figure 10: From top to bottom in the figure, the learning curves correspond to 128, 256, 512, and
1024 nodes per hidden layer, each with 4 layers, for the Allen—Cahn equation.

Through the experimental analyses described above, we argue that the proposed L-PINN demon-
strates superior performance in terms of learning stability, particularly for models with high com-
plexity.
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F SUPPLEMENTARY DETAILS ON EXPERIMENTAL SETUP

F.1 DETAILS OF PARTIAL DIFFERENTIAL EQUATIONS
Burgers': We set (Apde, Aic, Ave) = (1,100, 1) to solve the equation
ou Ou  0.010%u

o Mow T w o
u(z,0) = —sinwx

=0, ze[-1,1], te0,1];

Convection: We set (Apge; Aics Abe) = (1,100, 100) to solve the equation

ou ou
5—1—50%—0, x €0,2n], te0,1];

u(0,1) = u(2m,t);
u(z,0) =sinz

Allen—Cahn: We set (Apde, Aic; Ave) = (1,100, 1) to solve the equation

ou 0%u 3
S = 000015 —5(u—u?) =0, we[-11], telo]

u(—=1,t) = u(l,1);
ug(—1,t) = uz (1,1);

u(z,0) = 2% cos mx

Korteweg—DeVries: We set (Apge, Aic, Ave) = (1,100, 1) to solve the equation

ou ou d3u
— — +0.0025— =0 -1,1 te|0,1];
gt gy T0005E =0 el tel01)

u(=1,t) = u(1,t);
u(x,0) = cosmx

Schrédinger: We set (Apde, Aies Ave) = (1,100, 1) to solve the equation

Oh 0%h 9 T
i% +055— +|aPh =0, zel-55) te[o,ﬂ,

h(=5,1) = h(5,1);
hm<_5a t) = hx(5v t);
h(z,0) = 2sech(x)

F.2 IMPLEMENTATION DETAILS OF BASELINE ALGORITHMS

(F1.1)

(F.1.2)
(F.1.3)

(F.1.4)

(F.1.5)
(F.1.6)

(F.1.7)

(F.1.8)
(F.1.9)

(F.1.10)

(F1.11)

(F.1.12)
(F.1.13)

(F.1.14)

(F.1.15)
(F.1.16)
(F.1.17)

For all PDEs, we conducted experiments by fixing the algorithms’ hyperparameters to the values
specified in the original baseline code. Specifically, for RAD, we set ¢ = k = 1, and for L*>°, we

fixed the number of gradient steps at 20 and step size 0.05.

27



Under review as a conference paper at ICLR 2025

G ADDITIONAL RESULTS WITH VARYING L-PINN HYPERPARAMETERS

G.1 VARIATION OF 8 AND I1, WITH FIXED 7 = 0.002

1. Instability of performance for small /5 values as the layer increases: As the layer depth
increases, small § values lead to unstable performance. For instance, in layer 4, a small
B = 0.001 results in a relatively stable error value of 1.18£0.23 at [y, = 1, whereas in layer
10, the error rises significantly to 8.20 &= 15.63. This pattern suggests that small values of
5 hinder performance stability in deeper layers.

2. Increased instability with higher /;, values: Generally, the performance deteriorates as
I, increases, particularly for small 8 values. For example, in layer 6 with 5 = 0.001,
the relative error increases from 0.58 4= 0.08 at [;, = 1 to 22.73 + 22.08 at [}, = 20. This
indicates that excessive Langevin iterations could lead to performance instability, especially
when the concentration parameter 3 is low.

Layer and concentration parameter 3 ‘ Langevin iteration /1,

Layer 8 | 1 5 10 20
0.001 1.18+0.23 1.63 + 0.40 1.66 + 0.20 6.34 + 2.69
0.05 1.53 £ 0.36 1.41+0.43 1.2740.21 1.25+0.16
Layer 4 0.1 1.08+0.37  0.93+0.09 1.23+0.23 1.06 +0.13
0. 2.50 £ 0.28 2.30 £ 0.34 2.54+0.35 2.51 + 0.36
0.4 2.80 + 0.60 3.14+0.22 3.14+0.49 2.90 +0.44
0.001 0.58+£0.08  10.89+£19.65 10.10+£17.80  22.73 + 22.08
0.05 0.62£0.11 0.64 £0.12 0.65 £ 0.12 0.67£0.15
Layer 6 0.1 0.74 +0.12 0.58 £ 0.08 0.64 +0.07 0.58 + 0.03
0. 1.05+0.27 1.15+0.21 1.16 £ 0.11 1.33+0.13
0.4 1.47+0.10 1.49 + 0.08 148 +0.22 1.58 +0.13
0.001 0.65 + 0.14 1.25+£0.73  10.66+£19.50  22.14+ 2451
0.05 0884034  0.46+0.05 0.59 = 0.10 1.44 +0.81
Layer 8 0.1 0.59 £ 0.14 0.58 + 0.08 0.68 £ 0.35 0.86 + 0.56
0. 1.06 +0.16 1.15+0.21 1.08 + 0.24 0.92+0.11
0.4 1.1240.25 1.09 £ 0.19 1.14+0.17 112 +0.27
0.001 820+£15.63  23.14+20.74  40.14+19.78  41.79 % 20.50
0.05 0.46+£0.17  17.33+£21.03  17.21+£21.02  30.08 £ 24.07
Layer 10 0.1 0.63 +0.20 0.73 £ 0.23 0.70£0.22  10.23 £18.99
0. 0.94 £ 0.18 0.98 £ 0.15 0.83 +0.25 1.02 + 0.30
0.4 0.94+0.15 0.96 + 0.22 0.97 +0.37 1.12+0.33

Table 2: Relative L? error for varying 3 and Iy, across different layers of the Allen—Cahn equation.

As a result, the main takeaway is that small values of 3 are prone to instability as the layer depth
increases and [y, becomes large. Conversely, higher /5 values can ensure stable performance, even
with varying [;, values. In shallow layers, however, lower /3 values can be beneficial, providing a
more precise error at lower [, values.
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G.2 VARIATION OF 7 AND I, WITH FIXED 8 = 0.2

1. Stability across T values: The relative L? error exhibits minor fluctuations across different
values of 7 for each layer suggesting a negligible dependency on 7.

2. Limited impact of /;: While increasing Iy, slightly reduces the variance of L? error in
some cases, the effect is not consistent across layers showing only marginal improvement.

Layer and Langevin step 7 ‘ Langevin iteration [p,

Layer T ‘ 1 5 10 20

0.0001 1.98 £0.35 2.124+0.14 1.66 +0.06 1.74£0.19

0.0005 1.81 +£0.13 1.74 +£0.40 1.77£0.34 1.74£0.35

Layer 4 0.001 2.35£0.37 1.85+£0.25 1.98 +0.18 1.68 +0.24
0.005 1.96 £0.15 2.08£0.18 1.84 +0.22 1.71 +£0.17

0.01 1.93 £0.28 1.92 £0.09 1.48 £0.09 1.79 £0.09

0.0001 0.96 £0.11 0.89 £ 0.06 0.96 £0.11 1.00 £ 0.14

0.0005 0.92+0.13 0.69 +0.34 1.14 £0.23 1.17+£0.25

Layer 6 0.001 0.85 £+ 0.07 1.00 £0.18 0.70 £0.09 0.96 = 0.03
0.005 0.85£0.07 0.82 £0.22 0.97 +0.10 0.78 £ 0.37

0.01 0.90 £ 0.04 0.90 £ 0.06 1.03£0.16 0.93 + 0.06

0.0001 0.62+0.04 0.79+0.11 0.92 £0.10 0.82 £ 0.05

0.0005 0.81 +£0.02 0.85£0.12 0.78 £ 0.07 0.75 £ 0.06

Layer 8 0.001 0.91+£0.13 0.82 +£0.02 0.71 £0.04 0.77+0.10
0.005 0.85 £ 0.07 0.83 £0.04 0.64 = 0.06 0.63 = 0.08

0.01 0.64 +£0.14 0.77£0.17 0.88+0.13 0.81 +=0.09

0.0001 0.41+0.18 0.75 £ 0.08 0.82 £0.02 0.68 £0.12

0.0005 0.82+0.13 0.64 £ 0.04 0.68 +0.07 0.82 + 0.06

Layer 10 0.001 0.91+0.21 0.74 +£0.19 0.87 +£0.25 0.59 £ 0.05
0.005 0.64 £ 0.04 0.53 £0.32 0.67 £ 0.05 0.64 £0.12

0.01 0.56 £ 0.29 0.65£0.13 0.71£0.14 0.61 = 0.09

Table 3: Relative L? error for varying 7 and [y, across different layers of the Allen—Cahn equation.

Overall, the impact of 7 and /1, on both relative L2 error and variance is limited, indicating robustness
of the method across a range of parameters. This robustness simplifies Langevin hyperparameter
tuning, making the approach more practical for real-world applications.
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H EXPERIMENTAL COMPARISON OF THE COMPUTATIONAL COMPLEXITIES

To evaluate computational complexities, we measured the computational costs for training deep
neural networks using each algorithm. Specifically, to validate the scalability of the algorithms,
we conducted experiments to analyze their computational requirements in terms of the number of
collocation points N,¢. and the dimensionality of the PDE.

Based on our observations, the runtime of the sampling algorithms was independent of the specific
PDE. Thus, we utilized equations that allowed for a straightforward extension from 1D to 2D in
dimensionality. More specifically, we experimented with different sizes of collocation points (100,
1,000, 10,000, 50,000, and 100,000) for both 1D and 2D Burgers’ equations.

As part of the detailed experimental process, we calculated the elapsed time over 1,000 epochs. The
measurement was repeated 10 times using 10 different random seeds, and the mean and standard
deviation were computed. For additional clarity, the elapsed time was measured excluding auxiliary
operations such as saving the model or storing data, focusing solely on the computations required to
run the algorithms.

Hardware specification. NVIDIA RTX 4090 GPU with 24GB of memory.

Changes with Nppg. As Nppg increases, the computational cost grows for all methods. However,
the growth rate varies significantly between methods. Gradient-based algorithms such as L-PINN
and L°° show a particularly sharp increase in computational cost as Nppg grows. This is due to the
iteration-intensive nature of their sampling processes. For example, with Nppg = 50,000 in 2D,
the computational cost of L-PINN (I, = 20) reaches 613.96 seconds, whereas simpler methods like
Fixed or Random-R remain below 35 seconds. For Nppg = 100, 000, L-PINN and L°° run out of
memory in the 2D case, highlighting their scalability limitations for very large PDE sample sizes.

Changes with dimensionality (1D vs. 2D). Extending from 1D to 2D consistently increases the
computational cost for all methods. While simple methods like Fixed or Random-R exhibit a rela-
tively modest increase in cost when transitioning from 1D to 2D, gradient-based methods such as
L-PINN and L*° show disproportionately higher computational times in the 2D case. For example,
in the 2D case with Nppg = 1,000, L-PINN (I, = 10) takes 45.74 seconds, compared to only 16.97
seconds in 1D. At Nppg = 10,000, L-PINN (I, = 10) takes 59.32 seconds in 2D versus 20.43
seconds in 1D.

However, despite the overall computational expense of L-PINN for higher [}, values, the case of
l. = 1 demonstrates significantly lower computational costs, making it relatively practical and
scalable. For example, at Nppg = 50,000, L-PINN (Ip, = 1) takes 63.98 seconds in 2D, which
is manageable compared to the prohibitive 324.49 seconds for [, = 10. Similarly, for smaller
Nppg, such as 1,000, L-PINN (Ip = 1) shows competitive runtimes (e.g., 26.62 seconds in 2D).
An additional advantage of using /; = 1 is that it avoids the out of memory issues observed for
higher values of /i, even in large-scale scenarios such as Nppg = 100, 000 in 2D. Furthermore, the
relative Lo error reported in our paper uses /i, = 1 as the baseline, demonstrating its effectiveness in
balancing computational efficiency with accuracy.

Finally, while gradient-based methods like L-PINN exhibit high computational costs due to the
overhead of gradient computation, future work optimizing the gradient operations could signifi-
cantly enhance the scalability and practicality of these methods. Thus, with improved optimization
techniques, L-PINN (/i = 1) remains a promising candidate for solving PDEs efficiently at scale.
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I COMPATIBILITY OF L-PINN WITH HIGH-DIMENSIONAL PROBLEMS

To analyze the compatibility of L-PINN with high-dimensional problems, we first highlight its dis-
tinctions from existing adaptive sampling techniques, such as RAD. While both methods aim to
achieve a balanced residual distribution for sampling, their approaches differ significantly. RAD uti-
lizes Monte Carlo integration (MCI) to estimate E| Ry (x)|¥, whereas L-PINN bypasses this step by
asymptotically converging to the desired distribution. However, this comes at the cost of increased
hyperparameter complexity.

Effect of high dimensionality on PDEs. The difference between L-PINN and MCI-based methods
becomes evident in high-dimensional PDEs with limited collocation points Npg.. For MCI, the
accuracy depends on evenly distributed residual points, which becomes challenging as the spatial
dimension increases. In contrast, L-PINN achieves the desired asymptotic distribution with fewer
collocation points, provided that parameters 7 and I, are properly tuned. For instance, in a 1D
domain divided into P uniform partitions, the probability of a sample falling into a specific partition
is 1/P. However, in higher dimensions, this value decreases exponentially, further complicating
MClI-based approaches.

Experimental results. The limitations of adaptive sampling methods in high-dimensional settings
are evident in the Heat equation experiments. Table [5]and Figure [[T] summarize the results. For
reproducibility, all experiments were conducted using default settings for both L-PINN and baseline
methods. Detailed configurations are described in the main text section [5] and Appendix A
notable observation is that Random-R performed better than other adaptive sampling techniques
in the restricted 2D PDE cases we proposed. Nonetheless, it was observed that the proposed L-
PINN consistently maintained the second-best performance, following Random-R, under default
hyperparameter settings. Additionally, based on the visual results, it can be inferred that gradient-
based algorithms such as L°° and L-PINN captured high-frequency components at ¢ = 0 more
effectively than RAD or R3.

Table 5: Relative L? error comparison of methods for Burgers’ 2D and Heat 2D equations

Meth
PDE ethod

L-PINN RAD R3 L*> Random-R

Burgers’ 2D 0.05+0.00 0.06 = 0.00 0.06 = 0.00 0.05 £+ 0.00 0.05 £ 0.00
Heat 2D 1.03£0.26 2.79+0.10 9.14+1.18 16.93 £ 0.50 0.43 +£0.03
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Figure 11: From top to bottom in the figure: exact solution, predicted solutions for benchmark
algorithms, L-PINN, RAD, R3, L*°, and Random-R for the 2D Heat equation.
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J COMPATIBILITY ISSUES WITH DIFFERENT NEURAL NETWORK
ARCHITECTURES

We aimed to experimentally evaluate the compatibility of the proposed adaptive sampling technique
with architectures beyond MLPs, including self-attention and modified-MLPs (Wang et al., [2023).
Detailed descriptions of each architecture are provided in Table [f] Furthermore, to address the
spectral bias issue commonly found in MLPs, we performed additional experiments incorporating
random Fourier blocks (FB), as detailed in [Tancik et al.l 2020l The FB hyperparameters were set
with a Fourier feature scale of 2 and a Fourier block dimension of 64.

Table 6: Parameter configuration for different architectures

Parameter MLP Self-attention Modified MLP
Activation Tanh Tanh Tanh
Embedding dimension 128 128 128
Number of layers 4 4 4
Multi-head number N/A 4 N/A
Fully connected dimension N/A 256 N/A
Attention dropout N/A 0.1 N/A
Additional encoders U, V' N/A N/A Yes

The results are summarized in Table[7] All algorithms were evaluated using the default settings pro-
vided in the benchmark algorithm papers, and the same applies to our approach, as detailed in the
experimental settings described in the main text. Analyzing the results, we observe that the proposed
L-PINN demonstrates high compatibility in terms of relative L? error. Even in the less favorable
architectures, such as MLP and self-attention, L-PINN achieved the second-best performance. No-
tably, in scenarios incorporating FB, the proposed L-PINN consistently exhibited superior compati-
bility across all cases.

Table 7: Relative L? error comparison for different architectures across sampling methods.

Architecture L-PINN RAD R3 L>® Random-R
MLP 215+0.12 2.65+047 1.84+0.08 2.76+0.26 3.56+0.20
MLP + FB 0.56 £ 0.14 0.69+0.05 0.61+0.04 0.81+0.18 0.94+0.06
Modified MLP 043 +0.10 0.51+£0.05 0.66+0.07 0.554+0.08 0.56+ 0.07
Modified MLP+FB 0.11 +0.04 0.224+0.09 024 +£0.03 0.34+0.01 0.21 &=0.04
Self-attention 213 +£0.13 230+£0.13 225+0.06 1.98+0.03 291 +0.69

Self-attention + FB 1.29 +£0.09 153 £0.03 1524+0.15 133+0.12 1.35=£0.12
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K PSEUDO CODE LISTINGS

In this section, we provide the pseudo code for sampling via Langevin dynamics and the functions
used in the training of the PINN model, specifically PDELoss(-) and Langevin_update(-). A notable
feature is that the automatic partial derivative, originally used to compute the PDE loss, is applied
once more for the Langevin update.

K.1 PDE Loss CALCULATION

def PDELoss (DNN, XTGrid) :

u = DNN. forward (XTGrid)

u_grad = torch.autograd.grad(
outputs=u,
inputs=XTGrid,
grad_outputs=torch.ones (u.shape),
create_graph=True,
allow_unused=True

) [0]

ux, uy, ut = u_grad[:, 0], u_grad[:, 1], u_grad[:, 2]
uxx = torch.autograd.grad/(
outputs=ux,
inputs=XTGrid,
grad_outputs=torch.ones (ux.shape),
create_graph=True,
allow_unused=True

) [01[:, O]

uyy = torch.autograd.grad/(
outputs=uy,
inputs=XTGrid,
grad_outputs=torch.ones (uy.shape),
create_graph=True,
allow_unused=True

) [01[:, 1]

loss = (uxx + uyy - ut) *x 2
return loss

Listing 1: PDE loss function

It can be observed that the PDE loss itself is not significantly different from the approach typically
used in standard PINN models.
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K.2 LANGEVIN UPDATE

def Langevin_update (DNN, XYTGrid, 1_\mathrm{L}=1, tau=2e-3, beta=0.2):
for 1 in range (1_\mathrm{L}) :

loss = PDELoss (DNN, XYTGrid)

XYT_grad = torch.autograd.grad (
outputs=1loss,
inputs=XYTGrid,
grad_outputs=torch.ones (loss.shape),
create_graph=True,
allow_unused=True

) [0]

scaler = torch.sqgrt (torch.sum((XYT_grad + le-16) *x 2, axis=1l)).
reshape (-1, 1)
XYT_grad = XYT_grad / scaler

with torch.no_grad() :
XYTGrid += tau % XYT_grad + beta * torch.sqgrt (2 = tau) =
torch.randn (XYT_Grid.shape)

XYTGrid[:, 0] = torch.clamp (XYTGrid[:, 0], min=0, max=1)
XYTGrid[:, 1] = torch.clamp (XYTGrid[:, 1], min=0, max=1)
XYTGrid[:, 2] = torch.clamp (XYTGrid[:, 2], min=0, max=0.1)

points

return XYTGrid # updated g

Listing 2: Langevin update function

To explain the Langevin update function, additional details from the actual implementation are pro-
vided, with a key feature being the scaling of the Langevin gradient. As mentioned in the main text,
this scaling is employed as a mechanism to ensure the stability of the training process. Furthermore,
to prevent issues related to the feasibility of sample points due to the Langevin gradient update,
we applied a clamp function to enforce the boundary condition. Finally, the collocation points are
updated for [y, iterations using the step size 7, the updated sample population is returned.

K.3 TRAINING PROCESS OF 2D HEAT EQUATION

def Train(DNN, n_iters):

X_1init = torch.zeros(N_pde, 1, dtype=torch.float32).uniform_ (0, 1)

y_init = torch.zeros (N_pde, 1, dtype=torch.float32).uniform_(0, 1)

t_init = torch.zeros (N_pde, 1, dtype=torch.float32).uniform_ (0, 0.1)
(

14
XYTGrid = torch.concatenate ((x_init, y_init, t_init), axis=1)
for i in range(n_iters):
params = list (DNN.parameters())
optimizer = torch.optim.Adam(params, lr=le-3)
XTYGrid = Langevin_update (DNN, XYTGrid)
optimizer.zero_grad()

pdeloss = PDELoss (DNN, XYTGrid)
pdeloss.backward ()
optimizer.step ()

Listing 3: Train function

The training process aligns exactly with the standard procedure for PINN models. First, the data is
updated using Langevin dynamics, and then the updated data is used to compute the loss, followed
by parameter updates.
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