
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

L-PINN: A LANGEVIN DYNAMICS APPROACH WITH
BALANCED SAMPLING TO IMPROVE LEARNING STA-
BILITY IN PHYSICS-INFORMED NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Physics-informed neural networks (PINNs) have emerged as a promising tech-
nique solving partial differential equations (PDEs). However, PINNs face chal-
lenges in resource efficiency (e.g., repeatedly sampling of collocation points) and
achieving fast convergence to accurate solutions. To address these issues, adaptive
sampling methods that focus on collocation points with high residual values have
been proposed, enhancing both resource efficiency and solution accuracy. While
these high residual-based sampling methods have demonstrated exceptional per-
formance in solving certain stiff PDEs, their potential drawbacks, particularly the
relative neglect of points with medium and low residuals, remain under-explored.
In this paper, we investigate the limitations of high residual-based methods con-
cerning learning stability as model complexity increases. We provide a theoreti-
cal analysis demonstrating that high residual-based methods require tighter upper
bound on the learning rate to maintain stability. To overcome this limitation, we
present a novel Langevin dynamics-based PINN (L-PINN) framework for adap-
tive sampling of collocation points, which is designed to improve learning sta-
bility and convergence speed. To validate the effectiveness, we evaluated the L-
PINN framework against existing adaptive sampling approaches for PINNs. Our
results indicate that the L-PINN framework achieves superior relative L2 error
performance in solutions while demonstrating faster or comparable convergence
stability. Furthermore, we demonstrated that our framework exhibits robust per-
formance across a range of model complexities, indicating its potential for com-
patibility with larger neural network size in addressing challenging PDEs.

1 INTRODUCTION

Partial differential equations (PDEs) are crucial for describing various physical phenomenon such as
heat transfer (Haghighat et al., 2021, Cai et al., 2021b), flow dynamics (Shi et al., 2021, Jagtap et al.,
2022, Nazari et al., 2022), propagation dynamics (Pettit & Wilson, 2020, bin Waheed et al., 2021),
optics and epidemiology (Lin & Chen, 2022, Rodrı́guez et al., 2023). Getting accurate and efficient
solutions to PDEs is essential across numerous industries reliant on these descriptions. With ad-
vancements in deep learning, physics-informed neural networks (PINNs) have emerged as a promis-
ing method for solving PDEs. The training process of collocation-based PINNs involves minimizing
total errors, including initial condition (IC), boundary condition (BC), and PDE errors measured at
collocation points (Nabian et al., 2021, Zeng et al., 2022, Gao & Wang, 2023, Toloubidokhti et al.,
2024, Lau et al., 2024). In particular, IC, BC, and PDE errors are incorporated as soft constraints on
experimental data, ensuring that the predicted solutions satisfy these essential requirements.

This collocation-based learning method enhances the capability of PINNs by reducing the need for
extensive experimental data collection across spatio-temporal ranges, demonstrating success in var-
ious industries as a promising alternative to traditional numerical methods like the finite difference
method and finite element method (Zhu et al., 2019, Bar-Sinai et al., 2019, Li et al., 2020). How-
ever, collocation-based PINN (hereafter referred to as PINNs) encounter challenges in efficiently
setting collocation points within the constraints of a limited sampling budget, and in achieving fast
convergence to accurate solutions. A key challenge arises from the presence of small regions with
abrupt changes, in contrast to the larger, smoother regions. This issue is particularly evident in stiff

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

PDEs, which are often characterized by discontinuities, such as sudden transitions or jumps across
the spatio-temporal domain.

To address these challenges, two main adaptive sampling approaches have been proposed: residual
distribution-based sampling and high residual-based sampling. Residual distribution-based sam-
pling resamples collocation points according to the residual distribution at each iteration, ensuring a
proportional balance of points based on their residuals. In contrast, high residual-based approaches
directly target collocation points with high residuals, replacing those with lower values and often
neglecting low-residual regions. This focus can make it difficult to discern the analytical form of the
residual distribution. Nonetheless, high residual-based methods have recently demonstrated superior
performance. This raises an important question: Should we then focus exclusively on high residual
points in an extreme manner? Addressing this unresolved issue requires a thorough analysis of the
trade-offs and risks involved in different adaptive sampling strategies.

In this paper, we respond to this question by presenting a theoretical analysis that highlights the
importance of balanced adaptive sampling. We propose a novel Langevin dynamics-based PINN
(L-PINN) framework for balanced adaptive sampling of collocation points, ensuring an continu-
ous sampling process. We evaluated our L-PINN framework against existing adaptive sampling
approaches for PINNs, demonstrating consistently reliable relative L2 error rates and robust con-
vergence stability. Furthermore, our framework adapts well to varying learning rates, highlighting
its robustness across different training configurations. Notably, our proposed framework performs
effectively across in diverse PDEs, distinguishing itself with enhanced learning stability.

2 BACKGROUND AND RELATED WORK

Physics-informed neural networks. The basic PINN framework (Raissi et al., 2017) utilizes deep
neural networks as function approximators fθ to estimate the solution u of a non-linear PDE. The
PDE formulation can be defined as follows:

ut +Nx[u] = 0, x ∈ X ⊂ Rd, t ∈ [0, T]; (2.1)

u(x, 0) = h(x), x ∈ X ⊂ Rd; (2.2)

u(x, t) = g(x, t), x ∈ ∂X ⊂ Rd, t ∈ [0, T] (2.3)

where u(x, t) denotes the hidden solution at spatial and temporal coordinates x, t, Nx[·] is the non-
linear differential operator, X is the spatial domain, ∂X is the boundary, and T is the time range.
The spatio-temporal domain is Ω = X × [0, T], with collocation points x = (x, t) ∈ Ω and spatial
dimension d. The PDE residuals Rθ(x) and loss function on collocation points {xpde

n } ⊂ Ω are
calculated as:

Rθ(x) =
∂

∂t
fθ(x) +Nx[fθ](x),x ∈ Ω (2.4)

Lpde({xpde
n }; θ) = Ex∼U(Ω)|Rθ(x)|k ≈

1

Npde

Npde∑
n=1

|Rθ(x
pde
n)|k (2.5)

where U(Ω) is the uniform distribution over Ω and Npde represents the number of sample points of
PDE loss. Then, in a similar manner, the total loss function L is defined as:

L({xn}; θ) = λpdeLpde({xpde
n }; θ) + λicLic({xic

n}; θ) + λbcLbc({xbc
n }; θ) (2.6)

Hyperparameters λpde, λic, and λbc control the balance between the PDE, IC, and BC loss terms.
Then, fθ is trained to estimate appropriate solution u for PDEs by minimizing the total loss L.

Adaptive sampling based on residual distribution. Classical PINNs commonly used a uniform
distribution sampling strategy for collocation points. To improve this, an adaptive sampling method
based on the PDE residuals was proposed (Nabian et al., 2021). In this method, the residual-based
distribution for adaptive sampling is calculated by dividing the PDE loss of each collocation point
by the arithmetic average of the total PDE loss, i.e., the n-th collocation point is sampled with
probability p(xn) = |Rθ(xn)|k∑

m |Rθ(xm)|k where Rθ(xn) is the residual at xn ∈ Ω. A more generalized

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

method, the residual-based adaptive distribution (RAD), was later introduced (Wu et al., 2023).
RAD incorporates one additional non-negative hyperparameter c represented by p(x) ∝ |Rθ(x)|k

E|Rθ(x)|k +

c. Specifically, c regulate the degree of uniformity in sampling, allowing for a balance between low
and high residuals. When k dominates c, the sampling probability increases proportionally to the
magnitude of the residual favoring high residuals. Conversely, when c dominates k, the influence of
the residual diminishes, leading to uniform sampling. RAD can adjust the importance of low and
high residual points using hyperparameters, depending on the form of the given PDE.

Adaptive sampling focused on high residuals. Alongside the residual distribution-based approach,
another prominent line of research focuses on sampling methods without directly approximating the
underlying distribution. The methods introduced below could be interpreted as special cases of RAD
in extreme k, c settings; however, we aim to characterize them based on whether they involve esti-
mating the sampling distribution. One such approach is the high residual-based adaptive refinement
(RAR) scheme Lu et al., 2021a, where the top-M high residual collocation points are added to the
training batches for PINN models. This process continues until the mean PDE residual satisfies a
predefined error tolerance. Although RAR showed remarkable improvement, the number of collo-
cation points could continuously grow without any replacement, leading increased computational
complexity. To address this, a retain-resample-release (R3) sampling method (Daw et al., 2023)
was proposed to enhance sample efficiency by retaining high residual points, uniformly resampling
some points to improve diversity, and releasing collocation points with low residuals. While these
method focus on improving sampling strategies, a different question has arisen regarding whether
the L2 physics-informed loss is appropriate for Hamilton-Jacobi-Bellman (HJB) equations (Wang
et al., 2022a). In response, an adversarial training method has been proposed as an alternative, aim-
ing to optimize the L∞ norm for solving high-dimensional PDEs. Later, we will describe this in
more detail, during the process of conducting adversarial training to leverage L∞, partial gradient
information is utilized. As a result, it can be observed that this leads to a sampling technique that
tends to focus on high residual samples.

Unresolved questions in adaptive sampling methods. While adaptive sampling methods show
promising results, several theoretical aspects remain unclear. In particular, there is a lack of theoret-
ical analysis on the balancing effect. Although many studies report success with adaptive sampling,
limited analysis exists on the impact of focusing on high residuals. Specifically, it remains unex-
plained why algorithms that excessively emphasize high residuals exhibit instability during training.

To address these issues, we first investigate the relationship between learning stability and the degree
of emphasis on high residuals with respect to model complexity, and examine how an exclusive focus
on high residuals may lead to performance degradation during PINN model training.

3 ANALYSIS OF THE LEARNING STABILITY

The effect of balancing method. Weighting high residual regions during PINN training signifi-
cantly enhances model accuracy and efficiency by minimizing errors and accelerating convergence
(Lu et al., 2021b, Li et al., 2022). Additionally, it ensures stability (Cai et al., 2021a, Wang et al.,
2021) and maintains physical consistency (Karniadakis et al., 2021, Wang et al., 2022b, Tang et al.,
2023). These studies, motivated by the goal of improving model accuracy and efficiency, have
empirically demonstrated the benefits of balancing method. However, there is a notable lack of the-
oretical analysis regarding the concentration of sampling in high residual regions. In this section,
we aim to investigate the impact of sampling concentration through the resulting analysis.

Setup. Consider the partial differential equation defined over the domain Ω = X × [0, T]. Assume
that we have N collocation points forming the population P = {xn ∈ Ω}Nn=1, sampled from a
uniform distribution U(Ω).

Assumption 3.1 For analytical simplicity, we assume that the residual error of the PDE at each
collocation point xn can be expressed as a linear combination of feature-mapped vectors, given an
appropriate feature map ϕ : Ω→ RD. Specifically, we represent the residual error as follows:

Rθ(xn) =
∂

∂t
fθ(xn) +Nx[fθ](xn) = a(θ)⊺ϕ(xn; θ) =

D∑
d=1

ad(θ)ϕd(xn; θ) (3.1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We regard the sampling methodology as a weighting of each sample point depending on the residual
Rθ(xn) and set k = 2. Thus, we can represent the loss function L(P; θ) = ∑N

n=1 wn|Rθ(xn)|2.
Assume that we are solving for the solution based on the gradient descent (GD) algorithm. Then,

θl+1 = θl − η∇θ

(
N∑

n=1

wl
n|Rθl(xn)|2

)
(3.2)

where the weights assigned to each sample point for iteration l are determined as follows:

wl
n ∝ exp

(|Rθ̃l(xn)|2
2β2

)
, n ∈ {1, ..., N} (3.3)

Additionally, wl
n is normalized to satisfy

∑
x∈P wl

n(x) = 1 and the parameter β > 0 preceding
the residual controls the concentration of sampling with respect to the residuals. Note that the
parameters θ̃l = (θ̃l1, . . . , θ̃

l
D) used to calculate the importance weights do not participate in the

model parameter update process. Furthermore, in contexts where the meaning is clear, we will no
longer explicitly indicate that ϕ is parameterized by θ, i.e., denote ϕ(x; θ) as ϕ(x).

For iteration l, we focus on two extreme cases of interest: when β is too large (uniform sampling),
most samples receive uniform weights, resulting in uniform sampling. Conversely, when β is close
to 0 (high residual sampling), the effect is dominated by the sample with the highest residual. To
explore this in more depth, consider the following propositions.

Proposition 3.1 (Uniform sampling eigenvalue) When the sampling concentration parameter β is
sufficiently large, the maximum eigenvalue of the hessian of the loss function can be approximated
as 2λmax(Σ), where Σ = Ex∼U(Ω)[ϕ(x)ϕ(x)

⊺] and λmax(Σ) is the maximum eigenvalue of Σ.

Proposition 3.2 (High residual sampling eigenvalue) When the sampling concentration parame-
ter β is sufficiently small, the maximum eigenvalue of the hessian of the loss function can be approx-
imated as 2∥ϕ(x∗)∥2, where x∗ = argmaxx∈P |Rθ(x)|2.

Detailed proof can be found in Appendix B.1, B.2. It is well known that to ensure the convergence of
GD algorithms, the learning rate η must satisfy the following relationship with the largest eigenvalue
λmax of the hessian of the loss function: η < 2

λmax
(Boyd & Vandenberghe, 2004). Therefore, we

consequently aim to examine the relationship of the largest eigenvalue in two extreme cases of β.
Before proceeding with the main result, we would like to introduce two assumptions.

Assumption 3.2 In high-dimensional feature space, ||ϕ(x)|| follows a heavy-tailed distribution.
More specifically, P(∥ϕ(x)∥ > ζ) ∼ g(ζ)

ζα for large ζ, where ∼ represents asymptotic equivalence,

g(ζ) satisfies ∀t > 0, limζ→∞
g(tζ)
g(ζ) = 1 and α > 0 indicates the thickness of the tail.

This assumption is substantiated by both empirical evidence and theoretical insights. The heavy-
tailed nature of feature vectors has been documented in several research results (Mahoney & Martin,
2019, Martin & Mahoney, 2020, Barsbey et al., 2021) and is theoretically supported by extreme
value theory (Beirlant et al., 2006, Haan & Ferreira, 2006, Resnick, 2007) and random matrix theory
(Pastur & Shcherbina, 2011, Tao, 2012).

Assumption 3.3 For the residual maximal point x∗ = argmaxx∈P |Rθ(x)|2, as the dimension D

increases, it holds that (maxx∈P ∥ϕ(x)∥)2 − λmax(Σ)≫ (maxx∈P ∥ϕ(x)∥)2 − ∥ϕ(x∗)∥2.

This assumption can be seen as a weaker form of the concentration of measure phenomenon in high-
dimensional spaces (Dubhashi & Panconesi, 2009, Vershynin, 2018, Nadjahi et al., 2021, Gupta
et al., 2023). As dimensionality increases, random vectors concentrate around a typical norm, mak-
ing the maximal norm representative of all vector norms. We assume that the gap between high
residual points and the maximal norm changes slowly relative to λmax(Σ). These assumptions were
experimentally validated, as detailed in Appendix A. Assuming the number of samples N scales
with model size D as N = cD, the following theorem can be derived.

Theorem 3.1 Given the heavy-tailed nature of ||ϕ(x)|| and sufficiently large model complexity D,
we have 2∥ϕ(x∗)∥2 ≫ 2λmax(Σ). This inequality establishes a tighter upper bound on the learning
rate for ensuring the convergence of the GD algorithm under the high residual sampling method.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

-4 -2 0 2 4 6 8
-4

-2

0

2

4

6

8 Mode 1: 54 (37.5%)
Mode 2: 90 (62.5%)

Iteration 0

-4 -2 0 2 4 6 8
-4

-2

0

2

4

6

8 Mode 1: 118 (26.0%)
Mode 2: 336 (74.0%)

Iteration L/2

-4 -2 0 2 4 6 8
-4

-2

0

2

4

6

8 Mode 1: 0 (0.0%)
Mode 2: 497 (100.0%)

Iteration L

-4 -2 0 2 4 6 8
-4

-2

0

2

4

6

8 Mode 1: 54 (37.5%)
Mode 2: 90 (62.5%)

Iteration 0

-4 -2 0 2 4 6 8
-4

-2

0

2

4

6

8 Mode 1: 134 (44.7%)
Mode 2: 166 (55.3%)

Iteration L/2

-4 -2 0 2 4 6 8
-4

-2

0

2

4

6

8 Mode 1: 173 (34.6%)
Mode 2: 327 (65.4%)

Iteration L

Figure 1: Schematic sampling diagram of (a) R3 (first three figures), (b) L∞ (last three figures)
where |Rθ(x)|k = 0.3×N

(
x;0,

[
[1, 0.5], [0.5, 1]

])
+ 0.7×N

(
x;5,

[
[2,−0.3], [−0.3, 2]

])
.

The detailed proof can be found in the Appendix B.3. This indicates that the stability of the algo-
rithm can vary significantly depending on the sampling method and model complexity. Specifically,
during the actual training process with a weight decay scheme, learning may not progress adequately
until the learning rate is sufficiently reduced, potentially compromising stability. Consequently, in
these two extreme cases, uniform sampling may struggle to find an appropriate solution due to the
complexity of the PDE problems, while high residual sampling may fail due to instability in the
learning process. In this context, the unresolved issues can be summarized as follows.

Limitations of prior works:

1. Imperfectness of sampling algorithms. Most balancing sampling methods have not been
precisely implemented when β is at a moderate value. It is important to clarify that a
moderate value of β implies the ability to accurately describe the distribution proportional
to the residual value. In particular, there has been insufficient consideration of the trajectory
of samples used by algorithms to effectively update the PINN model, especially in the
context of multi-modal residual landscapes with various scales of peaks.

• RAD (Wu et al., 2023): The modeling of residual distribution is relatively straightfor-
ward and relies on monte carlo integration (MCI) over the expectation E|Rθ(x)|k ≈
1
N

∑
n |Rθ(xn)|k, which can be dependent on the number of sample points.

• R3 (Daw et al., 2023): R3 employs a strategy that consistently maintains high resid-
uals, leading to an excessive skew in the distribution of collocation points. More-
over, this approach fails to effectively handle multi-modal landscapes in the long-term,
which, as demonstrated in our previous theoretical analysis, results in a scenario where
the sampling concentration parameter β becomes extremely small.

• L∞ (Wang et al., 2022a): During the adversarial training, to estimate the in-
ner maximal value supx∈Ω |Rθ(x)|k, L∞ iteratively utilizes gradient information
sign∇x|Rθ(x)|k in the residual landscape with respect to x, allowing for some de-
gree of access to local modes. However, there is no guarantee that the proportions of
modes with different heights will be maintained.

To facilitate a more intuitive understanding of time evolving sampling methods (R3, L∞),
we have illustrated the working mechanisms in a schematic diagram shown in Figure 1.

2. Scalability with respect to model complexity. Previous studies have primarily assessed
algorithm effectiveness using small-scale model architectures. Consequently, even with rel-
atively small values of β (high residual sampling), these algorithms avoided instability dur-
ing training and benefitted from the concentration effect that aids convergence. However,
this limited evaluation raises concerns about their applicability in real-world scenarios. In
this regard, Wang et al., 2024 made a notable contribution by proposing an architecture and
initialization strategy designed to enhance stability across model complexities. In contrast,
this study addresses the issue from the perspective of an adaptive sampling strategy.

4 PROPOSED APPROACH: LANGEVIN PINN (L-PINN)

Similar to other residual distribution-based methodologies, our primary objective is to estimate the
residual-based sampling distribution. However, unlike previous methods that directly model the
distribution using residuals, we employ Langevin dynamics to model the target distribution. An
intuitive visualization of our L-PINN framework is depicted in Figure 2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

∇𝜃 ℛ∙ 𝐱new
2

∇x ℛ𝜃new ∙
2

𝜃old
𝜃new𝐱old

∝ ∇𝐱 ℛ𝜃new 𝐱old
2

𝐱new
𝐳 ∼ 𝒩(𝟎, 𝐈)

Langevin Dynamics in

PDE Domain Ω
Gradient Descent in

Parameter Space Θ

∝ −∇𝜃 ℛ𝜃old 𝐱new
2

Figure 2: Bidirectional update: (Left) sample update in PDE domain, our L-PINN framework lever-
ages Langevin dynamics to adaptively update collocation points based on PDE residuals at each
iteration while keeping the PINN model fθ fixed. (Right) parameter update in parameter space, con-
versely, the PINN model fθ minimizes the PDE residuals with the updated collocation points. This
iterative procedure continues to refine the solution until convergence is achieved.

4.1 LANGEVIN DYNAMICS AND STATIONARY DISTRIBURION

The dynamics of the collocation points at the l-th iteration utilized in Langevin PINN (L-PINN) can
be described as follows:

xl+1
n = xl

n +
τ

2
∇x|Rθ(x

l
n)|2 + β

√
τzln, n ∈ {1, ..., N} (4.1)

where τ > 0 is the step size, zln ∼ N (zln;0, I) represents the white Gaussian noise, and β is
the sampling concentration coefficient. Additionally, the residual exponent k is set to 2. Unlike
other methods that estimate the sampling distribution based on residuals at every iteration, L-PINN
dynamically updates the data points without requiring the estimation of the sampling distribution.
If such Langevin dynamics are allowed to run for a sufficient number of iterations with sufficiently
small step size, we can theoretically obtain the following result for the collocation points.

Theorem 4.1 (Stationary distribution) For fixed fθ and concentration parameter β > 0, sample
population P l asymptotically follows liml→∞ pl(x) = p(x) ∝ exp

(
|Rθ(x)|2

2β2

)
as l→∞.

The proof of Theorem 4.1 can be found in the Appendix C.1. As evident from the above results, the
L-PINN framework can achieve collocation sample population at an arbitrary β > 0. This differs
from methods like R3 and RAD, which sample new collocation points multiple times to find high
residuals. The L-PINN conducts successive sampling by using the evolving population as the initial
point for the next update. It can also be compared to L∞, which fully initializes the collocation
points at each iteration and leverages the gradient information as sign∇x|Rθ(x)|k multiple times to
identify the local mode, ensuring that the directional information of the gradient vectors is preserved.
The detailed operational procedure can be found in Algorithm 1.

Algorithm 1 Single L-PINN Sampling Iteration for Physics-Informed Neural Networks

1: Input: initial population P = P0 with N collocation points
2: Output: updated population P = P lL

3: for l = 0 to lL − 1 do
4: for xl

n ∈ P l do
5: Calculate the gradient: ∇x|Rθ(x

l
n)|2 = ∇x

∣∣ ∂
∂tfθ(x

l
n) +Nx[fθ(x

l
n)]
∣∣2

6: Sample white Gaussian noise: zln ∼ N (zln;0, I)
7: Follow the Langevin dynamics: xl+1

n ← xl
n + τ

2∇x|Rθ(x
l
n)|2 + β

√
τzln

8: end for
9: Update collocation population: P l+1 ← {xl+1

n }Nn=1
10: end for

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0
20

00
0
40

00
0
60

00
0
80

00
0

10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

20
00

00

Number of iterations

 (a)

5000

10000

15000

20000

25000

St
ee

pn
es

s

0
20

00
0
40

00
0
60

00
0
80

00
0

10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

20
00

00

Number of iterations

 (b)

0

20

40

60

80

Re
la

tiv
e

L2
 e

rro
r [

%
]

L-PINN (Ours) RAD (Wu et al., 2023) R3 (Daw et al., 2023) L (Wang et al., 2022) Random-R

Figure 3: With fixed learning rate η = 0.002 and 4 hidden layers, (a) The maximal eigenvalue of
the hessian (steepness) for the loss function, (b) the relative L2 error curve.

4.2 PRACTICAL IMPLEMENTATION

In general, achieving successful Langevin sampling requires careful selection of hyperparameters
(step size τ , number of Langevin iterations lL, etc.). While running Langevin dynamics for many
iterations with a small step size might allow sampling to be proportional to the actual residual land-
scape, it can significantly slow down the training speed of the PINN model in practical applications.
Thus, we considered the following concepts when setting the hyperparameters, which are crucial for
effectively utilizing Langevin dynamics.

Adjusting step size and Langevin iteration. To increase the computational efficiency, we adopted
a strategy of increasing the step size τ and reducing the number of Langevin iterations lL, even at the
cost of some loss in sample quality. We anticipated that the temporal variation of the PINN model,
fθ, would exhibit smooth behavior when utilizing adaptive sampling strategies. Consequently, even
with fewer Langevin iterations, minimal changes in the loss landscape suggest that the sample tra-
jectory would resemble that of a fixed landscape.

Normalizing the gradient size. Since L-PINN leverages gradient information from the residual
landscape, the step size τ needs to be set even smaller for stiff PDEs. Additionally, empirical
observations indicate that the gradient of the residual landscape exhibits substantial variations at the
beginning of training. In contrast, towards the end of training, the residual landscape is characterized
by relatively small gradients. This discrepancy restricts the movement of sample points, thereby
making it challenging to secure reliable quality. To address these challenges, we normalized the
magnitude of all residual gradients at each iteration relative to the largest residual gradient. This
method effectively mitigated the hyperparameter sensitivity inherent to Langevin dynamics.

5 EXPERIMENTS

In this section, we experimentally evaluate the effects of focusing on high residuals, considering
variations in model complexity while keeping the number of collocation points fixed (noting that,
in general, model performance improves as Npde increases). We compare the performance of our
L-PINN against other adaptive sampling methods, including RAD, R3, L∞, and Random-R which
uniformly resamples all collocation points at each iteration.

Experimental setup. As the default settings, unless otherwise specified, the models utilized a
multilayer perceptron (MLP) with 128 nodes per layer and 4 hidden layers, employing a hyperbolic
tangent activation function in each hidden layer. The Adam optimizer was utilized with the learning
rate of η = 0.001 and a decay factor of 0.9 applied every 5,000 iterations. Training was conducted
with 200,000 iterations, and the number of collocation points was set to Npde = 1, 000. For the
L-PINN configuration, the residual exponent k = 2, the Langevin step size τ = 0.002, and the
concentration parameter β = 0.2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 6 8 10
Number of hidden layers

0.5

1

2

5

10

20

50

100

Re
la

tiv
e

L2
 e

rro
r [

%
] (

Lo
g

sc
al

e)

(a)

0.001 0.002 0.003 0.004
Learning rate

0.5

1

2

5

10

20

50

100

Re
la

tiv
e

L2
 e

rro
r [

%
] (

Lo
g

sc
al

e)

(b)

0.00005 0.0001 0.0005 0.00075
Learning rate

0.5

1

2

5

10

20

50

100

Re
la

tiv
e

L2
 e

rro
r [

%
] (

Lo
g

sc
al

e)

(c)

0.0022 0.0024 0.0026 0.0028
Learning rate

0.5

1

2

5

10

20

50

100

Re
la

tiv
e

L2
 e

rro
r [

%
] (

Lo
g

sc
al

e)

(d)

L-PINN (Ours) R3 (Daw et al., 2023) RAD (Wu et al., 2023) L (Wang et al., 2022) Random-R

Figure 4: Relative L2 error (Log scale) for the Allen−Cahn equation: (a) varying layers with
η = 0.001 (with scheduler), (b)-(d) fixed 4 layers with different learning rates (no scheduler). Each
boxplot is based on 5 random seeds.

5.1 ABLATION STUDIES

First and foremost, we sought to verify how the analytical results regarding stability and model
complexity, presented in Section 3, operate and apply to the functioning of each algorithm. In this
context, we performed the following key ablation studies based on the Allen−Cahn equation using
5 different random seeds. To validate the behaviors discussed in Section 4.2, the sample trajectory
recorded during the actual training process is provided in Appendix D.

Steepness of the loss landscape. In our stability analysis, we posited that the loss landscape of a
sampling algorithm targeting extremely high residuals, such as R3, L∞ would exhibit sharp land-
scapes. To validate this, we visualized the maximal eigenvalue of the hessian within the loss across
iterations in Figure 3-(a). The results confirm our hypothesis that sampling methods focused on
extreme high residuals lead to greater steepness. However, as shown in Figure 3-(b), despite the sta-
bility of Random-R, its modest performance suggests that low steepness alone does not ensure better
sample quality or performance, emphasizing the need for concentration of high residual points.

Different number of hidden layers. We employed MLP architectures with hidden layers ranging
from 4 to 10 across all sampling methods, maintaining a learning rate of 0.001 and utilizing a step
scheduler. As illustrated in Figure 4-(a), it can be observed that only L-PINN and RAD demonstrated
stable performance when 10 hidden layers were used. These results indicate that high residual
methods are more susceptible to increasing model complexity, whereas L-PINN remains robust.
Under various settings, the detailed experimental results are presented in Appendix E.

Varying learning rate η without decaying. We evaluated MLPs with four hidden layers across
learning rates ranging from 0.001 to 0.004 without applying decay. As shown in Figure 4 -(b), the
benchmark algorithms demonstrated performance degradation at η = 0.002 compared to η = 0.001,
whereas L-PINN showed improvement. At η = 0.003, all methods exhibited reduced performance;
however, L-PINN was able to partially mitigate this degradation. At η = 0.004, none of the methods
produced correct solutions. In particular, we visualized the performance for very low learning rates
in Figure 4-(c) and highlighted the range between η = 0.002 and 0.003, where all algorithms begin
to exhibit instability in Figure 4-(d). From this, we observe that learning does not proceed properly
at very low learning rates, and for layer 4, most algorithms become unstable at a learning rate as low
as approximately 0.0022.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.2 ADDITIONAL EXPERIMENTS ON REPRESENTATIVE PDES

The proposed L-PINN framework is further evaluated on representative 1D PDEs derived from
various benchmark problems tackled by several established algorithms, including RAD, R3, L∞,
Random-R. In these evaluations, we employ the default experimental settings as outlined earlier.
The specific configurations for the PDE parameters and the hyperparameters of the baseline al-
gorithms are detailed in Appendix F. While fine-tuning hyperparameters like Langevin iterations,
concentration parameter, and step size may improve performance, our main goal is to showcase
the robustness of the L-PINN framework to these hyperparameters. Additional results on hyperpa-
rameter sensitivity, computational complexity, PDE dimensionality effects, and compatibility across
architectures are provided in Appendices G, H, I, and J, respectively.

Experimental results. We evaluated the performance of each sampling method on the Burgers′,
Convection, Allen−Cahn, Korteweg−DeVries, and Schrödinger equations across 5 different ran-
dom seeds. The results in Table 1 indicate that L-PINN generally achieves superior or comparable
relative L2 errors compared to other models. For the Burgers′ equation, Random-R performed
best, with L-PINN close behind. In the Convection equation, RAD outperformed others, while L∞

failed to converge correctly. For the Allen−Cahn equation, L-PINN achieved the best performance,
followed by L∞. Results for layer 10 are shown in Fig. 5. In the Korteweg−DeVries equation,
Random-R ranked first, and L-PINN ranked second, with other methods producing larger errors.
For the Schrödinger equation, L-PINN performed best, followed by Random-R. Overall, L-PINN
and Random-R consistently demonstrated superior performance across PDEs.

Table 1: Relative L2 error across PDEs for increasing model complexity with larger hidden layers.

PDEs Burgers′ Convection Allen−Cahn Korteweg−DeVries Schrödinger

Number of layers 8 10 8 10 8 10 8 10 8 10

Random-R 0.01±0.00 0.02±0.00 0.30±0.05 0.41±0.10 2.54±2.30 11.49±19.93 1.64±0.63 2.89±1.80 0.09±0.00 0.11±0.01

RAD 0.17±0.02 0.27±0.14 0.25±0.02 0.28±0.09 0.99±0.29 1.36±0.19 7.44±1.83 7.97±1.45 1.68±0.15 2.89±0.69

R3 0.01±0.00 0.02±0.00 0.39±0.24 0.27±0.05 0.97±0.23 34.47±17.64 3.92±2.93 7.02±8.77 0.11±0.01 0.15±0.02

L∞ 0.03±0.01 0.06±0.06 73.87±5.07 54.17±27.33 0.76±0.07 10.95±19.16 5.70±1.45 4.44±1.45 0.22±0.06 0.19±0.03

L-PINN (ours) 0.01±0.00 0.01±0.00 0.34±0.12 0.27±0.03 0.75±0.11 1.06±0.21 2.68±1.74 1.99±0.50 0.08±0.01 0.09±0.01

6 CONCLUSIONS

In this paper, we analyzed the impact of adaptive sampling methods on learning stability when
training PINN models, particularly in relation to model complexity. Our theoretical analysis revealed
that sampling methods overly focused on high residuals could compromise learning stability. To
mitigate this issue, we proposed the Langevin dynamics-based PINN (L-PINN) framework, which
updates collocation points based on Langevin dynamics proportional to PDE residuals. Through
extensive experiments and ablation studies, we demonstrated that high residual-based methods often
failed to converge to correct solutions when increasing hidden layers and learning rate rates, whereas
L-PINN maintained stable convergence.

0 1
t

u

Exact solution

-1

-0.6

-0.2

0.2

0.6

1

x

0 1
t

|u - u|

L-PINN

-1

-0.6

-0.2

0.2

0.6

1

x

0 1
t

|u - u|

RAD

-1

-0.6

-0.2

0.2

0.6

1

x

0 1
t

|u - u|

R3

-1

-0.6

-0.2

0.2

0.6

1

x

0 1
t

|u - u|

L

-1

-0.6

-0.2

0.2

0.6

1

x

1 0 1

0.00

0.25

0.50

0.75

1.00

1.25

Figure 5: Error comparison of the exact solution and the predicted value for the Allen−Cahn equa-
tion at layer 10 across benchmark algorithms.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven dis-
cretizations for partial differential equations. Proceedings of the National Academy of Sciences,
116(31):15344–15349, 2019.

Melih Barsbey, Milad Sefidgaran, Murat A Erdogdu, Gael Richard, and Umut Simsekli. Heavy tails
in sgd and compressibility of overparametrized neural networks. Advances in neural information
processing systems, 34:29364–29378, 2021.

Jan Beirlant, Yuri Goegebeur, Johan Segers, and Jozef L Teugels. Statistics of extremes: theory and
applications. John Wiley & Sons, 2006.

Umair bin Waheed, Ehsan Haghighat, Tariq Alkhalifah, Chao Song, and Qi Hao. Pinneik: Eikonal
solution using physics-informed neural networks. Computers & Geosciences, 155:104833, 2021.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Shenglin Cai, Zhenyu Wang, Florian Fuest, Younjung Jeon, Clark Gray, and George Em Karni-
adakis. BC-PINN: an adaptive physics informed neural network based on biased multiobjective
coevolutionary algorithm. Neural Computing and Applications, 33(4):12901–12918, 2021a.

Shengze Cai, Zhicheng Wang, Sifan Wang, Paris Perdikaris, and George Em Karniadakis. Physics-
informed neural networks for heat transfer problems. Journal of Heat Transfer, 143(6):060801,
2021b.

Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Mitigating propagation failures
in physics-informed neural networks using retain-resample-release (r3) sampling. International
Conference on Machine Learning, 202, 2023.

Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of ran-
domized algorithms. Cambridge University Press, 2009.

Wenhan Gao and Chunmei Wang. Active learning based sampling for high-dimensional nonlinear
partial differential equations. Journal of Computational Physics, 475:111848, 2023.

Shivam Gupta, Jasper CH Lee, and Eric Price. High-dimensional location estimation via norm
concentration for subgamma vectors. In International Conference on Machine Learning, pp.
12132–12164. PMLR, 2023.

Laurens Haan and Ana Ferreira. Extreme value theory: an introduction, volume 3. Springer, 2006.

Ehsan Haghighat, Maziar Raissi, Adrian Moure, Hector Gomez, and Ruben Juanes. A physics-
informed deep learning framework for inversion and surrogate modeling in solid mechanics.
Computer Methods in Applied Mechanics and Engineering, 379:113741, 2021.

Ameya D Jagtap, Zhiping Mao, Nikolaus Adams, and George Em Karniadakis. Physics-informed
neural networks for inverse problems in supersonic flows. Journal of Computational Physics,
466:111402, 2022.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Gregory Kang Ruey Lau, Apivich Hemachandra, See-Kiong Ng, and Bryan Kian Hsiang Low. PIN-
NACLE: PINN adaptive collocation and experimental points selection. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=GzNaCp6Vcg.

Wensheng Li, Chao Zhang, Chuncheng Wang, Hanting Guan, and Dacheng Tao. Revisiting pinns:
Generative adversarial physics-informed neural networks and point-weighting method. arXiv
preprint arXiv:2205.08754, 2022.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations, arxiv. arXiv preprint arXiv:2010.08895, 2020.

10

https://openreview.net/forum?id=GzNaCp6Vcg
https://openreview.net/forum?id=GzNaCp6Vcg

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Shuning Lin and Yong Chen. A two-stage physics-informed neural network method based on con-
served quantities and applications in localized wave solutions. Journal of Computational Physics,
457:111053, 2022.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DeepXDE: A deep learning library
for solving differential equations. SIAM review, 63(1):208–228, 2021a.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Enhancing pinns for solving pdes
via adaptive collocation point movement and adaptive loss weighting. Nonlinear Dynamics, 105
(4):3439–3450, 2021b.

Michael Mahoney and Charles Martin. Traditional and heavy tailed self regularization in neural
network models. In International Conference on Machine Learning, pp. 4284–4293. PMLR,
2019.

Charles H Martin and Michael W Mahoney. Heavy-tailed universality predicts trends in test accu-
racies for very large pre-trained deep neural networks. In Proceedings of the 2020 SIAM Interna-
tional Conference on Data Mining, pp. 505–513. SIAM, 2020.

Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Efficient training of physics-
informed neural networks via importance sampling. Computer-Aided Civil and Infrastructure
Engineering, 36(8):962–977, 2021.

Kimia Nadjahi, Alain Durmus, Pierre E Jacob, Roland Badeau, and Umut Simsekli. Fast approx-
imation of the sliced-wasserstein distance using concentration of random projections. Advances
in Neural Information Processing Systems, 34:12411–12424, 2021.

Luis Fernando Nazari, Eduardo Camponogara, and Laio Oriel Seman. Physics-informed neural
networks for modeling water flows in a river channel. IEEE Transactions on Artificial Intelligence,
5(3):1001–1015, 2022.

Leonid Andreevich Pastur and Mariya Shcherbina. Eigenvalue distribution of large random matri-
ces. Number 171. American Mathematical Soc., 2011.

Chris L Pettit and D Keith Wilson. A physics-informed neural network for sound propagation
in the atmospheric boundary layer. In Proceedings of Meetings on Acoustics, volume 42. AIP
Publishing, 2020.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learn-
ing (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561, 2017.

Sidney I Resnick. Heavy-tail phenomena: probabilistic and statistical modeling, volume 10.
Springer Science & Business Media, 2007.

Alexander Rodrı́guez, Jiaming Cui, Naren Ramakrishnan, Bijaya Adhikari, and B Aditya Prakash.
Einns: epidemiologically-informed neural networks. In Proceedings of the AAAI conference on
artificial intelligence, volume 37, pp. 14453–14460, 2023.

Rongye Shi, Zhaobin Mo, and Xuan Di. Physics-informed deep learning for traffic state estima-
tion: A hybrid paradigm informed by second-order traffic models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 540–547, 2021.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537–7547, 2020.

Kejun Tang, Xiaoliang Wan, and Chao Yang. DAS-PINNs: A deep adaptive sampling method for
solving high-dimensional partial differential equations. Journal of Computational Physics, 476:
111868, 2023.

Terence Tao. Topics in random matrix theory, volume 132. American Mathematical Soc., 2012.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Maryam Toloubidokhti, Yubo Ye, Ryan Missel, Xiajun Jiang, Nilesh Kumar, Ruby Shrestha, and
Linwei Wang. DATS: Difficulty-aware task sampler for meta-learning physics-informed neural
networks. In The Twelfth International Conference on Learning Representations, 2024.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Chuwei Wang, Shanda Li, Di He, and Liwei Wang. Is L2 physics informed loss always suitable for
training physics informed neural network? Advances in Neural Information Processing Systems,
35:8278–8290, 2022a.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric par-
tial differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605,
2021.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022b.

Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An expert’s guide to training
physics-informed neural networks, 2023. URL https://arxiv.org/abs/2308.08468.

Sifan Wang, Bowen Li, Yuhan Chen, and Paris Perdikaris. Piratenets: Physics-informed deep learn-
ing with residual adaptive networks. arXiv preprint arXiv:2402.00326, 2024.

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, 2023.

Shaojie Zeng, Zong Zhang, and Qingsong Zou. Adaptive deep neural networks methods for high-
dimensional partial differential equations. Journal of Computational Physics, 463:111232, 2022.

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. Journal of Computational Physics, 394:56–81, 2019.

12

https://arxiv.org/abs/2308.08468

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A EMPIRICAL VALIDATION OF ASSUMPTIONS

We begin by discussing the challenges of validation associated with our assumption, which states
that proving a linear combination of the residual function to its feature vector is non-trivial. By
definition, the residual Rθ involves transforming the neural network output fθ through an operator
within a certain function space. This implies that the features of the function, resulting from the neu-
ral network output combined with an additional operator, are not explicitly defined. Consequently,
we extract the feature vector of the resulting function through local feature vector estimation based
on the linearization of the residual function. Before delving into the main discussion, we first explain
the logic behind how the feature vector ϕ is inferred.

A.1 LOCAL APPROXIMATION OF THE FEATURE VECTOR ϕ

LetRθ(x) =
∂
∂tfθ(x) +Nx[fθ](x) represent [g(fθ)](x). To validate the assumption that a suitable

linearization exists, our goal is to derive a proper linear approximation of [g(fθ)](x) at a specific
point x ∈ Ω = X × [0, T], given a specific function fθ. In this process, we will utilize a Taylor
expansion for [g(fθ)](x). It is important to note that since g(fθ) represents the behavior in the
function space, understanding how g responds to small perturbations in fθ is crucial. This analysis
employs the Fréchet derivative.

To summarize briefly, g(fθ) ≈ g(f)+Dg(f)(fθ−f), which implies that the result can be linearized
around a baseline function f where Dg(f) = lim∆f→0

||g(f+∆f)−g(f)||
||∆f || . Since our focus is on the

linearization of [g(fθ)](x), it is essential to ensure that f is a function close to fθ within the function
space. To achieve this, small noise perturbations are added to the neural network fθ. In conclusion,
to approximate the value at a specific point x, we proceed as follows:

[g(fθ)](x) ≈ [g(f) +Dg(f)(fθ − f)](x) (A.1.1)
= [g(f)](x) + [Dg(f)(fθ − f)](x) (A.1.2)

= [g(f)](x) + [Dg(f)](x)
(
fθ(x)− f(x)

)
(A.1.3)

Here, if fθ is assumed to be a well-trained PINN model and perturbation ∆f is sufficiently small,
we can readily infer the following for the first term:

[g(f)](x) ≈ 0, ∀x ∈ Ω.

Consequently, the linear approximation of the function [g(fθ)](x) can be expressed using the Fréchet
derivative. The aspect that conflicts with our assumption is that, in this context, the Fréchet derivative
can act as a function dependent on x. Therefore, we refer to this as a local approximation.

Approximation of Fréchet derivative. According to the problem formulation of PINN, g is an
operator that takes the function f as input and generates new values through partial derivatives such
as fx, ft, fxx, fxt, and their combinations. Thus, we can assume g(f) = G(f, fx, ft, fxx, fxt, · · ·).
Here, G is a multivariate function that combines the derivative terms. Next, considering a scenario
where a slight perturbation ∆f is applied to f , the Fréchet derivative can be approximated as fol-
lows:

Dg(f) (fθ − f) ≈ g(f +∆f)− g(f) (A.1.4)
= G (f +∆f, fx +∆fx, ft +∆ft, · · ·)−G(f, fx, ft, · · ·) (A.1.5)

=
∂G

∂f
∆f +

∂G

∂fx
∆fx +

∂G

∂ft
∆ft + · · · (A.1.6)

≈
∑
k

∂G

∂fk
∆fk, fk ∈ {f, fx, ft, fxt, · · · } (A.1.7)

=: a⊺ϕ (A.1.8)

where a =
(
∂G
∂f ,

∂G
∂fx

, ∂G
∂ft

, · · ·
)

and ϕ = (∆f,∆fx,∆ft, · · ·).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Mathematical details. Here, we provide a systematic summary of the considerations underlying
the validity of the employed estimation method.

1. Reliability of the Fréchet derivative Dg[f]: The existence of the Fréchet derivative re-
quires the following sufficient conditions:

• G must be differentiable.
• f must be sufficiently differentiable with respect to x and t.

Both conditions are naturally satisfied in the context of our problem. This ensures that we
can extract a vector that locally approximates the actual feature vector ϕ for each point
x ∈ Ω, thereby facilitating a robust estimation process.

2. Condition for the constancy of Dg[f]: It is important to note that G is generally a function
of (f, fx, ft, · · ·), and thus implicitly depends on x. However, when the variables are
not entangled with each other, the partial derivatives can exhibit constant behavior. For
instance:

• In our case, ∂G
∂ft

is always 1.

• Partial derivatives in the x-direction such as ∂G
∂f ,

∂G
∂fx

, ∂G
∂fxx

depend on Nx.

If the output of the differential operator Nx entangles the partial derivatives in the x-
direction (i.e, Nx[f] is non-linear), the assumption that a acts as a constant may weaken.

Now, to compute the quantity ϕ defined in this manner, we use ∆fx ≈ ∂fx
∂x ∆x + ∂fx

∂t ∆t, and
the other ∆f◦ values for the remaining partial derivatives can be computed similarly. Furthermore,
partial derivatives of the neural network f with respect to (x, t) can be approximated using automatic
differentiation.

A.2 HEAVY-TAILED BEHAVIOR OF THE NORM OF FEATURE VECTORS

Initially, we visualized the histogram of the norms of the extracted feature vectors across all feasible
grid points in Figure 6, i.e., the histogram of {∥ϕ(x)∥ : x ∈ Ω = X × [0, T]} for models with 4, 6,
8, and 10 layers, respectively.

From the provided histograms, it is evident that for each PDE, the distribution increasingly exhibits
heavy-tail behavior as the layer depth grows. This tendency is particularly emphasized in the fol-
lowing two aspects:

1. Heavy-tail characteristics resembling Pareto distribution: As the layer depth increases,
the distribution’s tail becomes thicker, consistent with the heavy-tail properties of the Pareto
distribution. In a Pareto distribution, the tail probability follows the form P(X > x) ∝
x−α, decaying slowly and exhibiting a high frequency of extreme values. This is reflected
in the histograms, where deeper layers show data concentrated in certain regions while
displaying more frequent extreme values.

2. Increased concentration and frequency of extreme values: As the number of layers in-
creases, the data become densely concentrated within specific ranges (represented on the
y-axis as frequency), while significantly more frequent occurrences of large values (de-
picted on the x-axis as extreme values) are observed. This behavior suggests a progressive
shift towards heavy-tail distributions.

In addition to the previously obtained histograms, we also calculated two statistical esti-
mates—Pareto tail index and Hill estimator—based on the samples to provide a more quantitative
representation.

Pareto tail index. The Pareto tail index, denoted by α, quantifies the heaviness of the tail of a
distribution. For a random variable X with a heavy-tailed distribution, the tail probability follows a
power-law:

P(X > x) ∼ x−α, as x→∞,

where α > 0 represents the tail index. Therefore, a smaller value of α corresponds to a thicker
tail, indicating a slower decay of the tail probability and a higher likelihood of extreme events.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 2 4 6
(x) 2 ×101

0

20

40

60

80

100

Bu
rg

er
s'

Histogram of Layer 4

0.0 0.5 1.0 1.5
(x) 2 ×104

0

50

100

150

200

250

300
Histogram of Layer 6

0.0 0.5 1.0 1.5
(x) 2 ×107

0

100

200

300

400

500

Histogram of Layer 8

0 1 2 3
(x) 2 ×109

0

100

200

300

400

500

600

Histogram of Layer 10

0.0 0.5 1.0 1.5 2.0 2.5
(x) 2 ×102

0

25

50

75

100

125

150

175

Co
nv

ec
ti

on

Histogram of Layer 4

0 2 4 6
(x) 2 ×104

0

50

100

150

200

250

300

350
Histogram of Layer 6

0.0 0.5 1.0 1.5
(x) 2 ×107

0

100

200

300

400

500

600
Histogram of Layer 8

0.0 0.5 1.0 1.5
(x) 2 ×1010

0

100

200

300

400

500

600

700
Histogram of Layer 10

0 2 4 6 8
(x) 2 ×101

0

50

100

150

200

250

Al
le

n-
Ca

hn

Histogram of Layer 4

0.0 0.5 1.0 1.5 2.0 2.5
(x) 2 ×104

0

50

100

150

200

250

300
Histogram of Layer 6

0 1 2 3 4 5
(x) 2 ×106

0

100

200

300

400

500
Histogram of Layer 8

0 1 2 3
(x) 2 ×109

0

100

200

300

400

500

600

700
Histogram of Layer 10

0 1 2 3 4
(x) 2 ×101

0

20

40

60

80

100

Ko
rt

ew
eg

D
e

Vr
ie

s

Histogram of Layer 4

0 1 2 3 4 5
(x) 2 ×103

0

50

100

150

200

Histogram of Layer 6

0 1 2
(x) 2 ×106

0

100

200

300

400

Histogram of Layer 8

0 2 4 6
(x) 2 ×108

0

100

200

300

400

500

600
Histogram of Layer 10

0.0 0.5 1.0 1.5 2.0
(x) 2 ×101

0

20

40

60

80

Sc
hr

od
in

ge
r

Histogram of Layer 4

0 1 2 3 4
(x) 2 ×103

0

50

100

150

200

250
Histogram of Layer 6

0.0 0.5 1.0 1.5 2.0
(x) 2 ×106

0

100

200

300

400 Histogram of Layer 8

0.0 0.5 1.0 1.5
(x) 2 ×109

0

100

200

300

400

500

600
Histogram of Layer 10

Figure 6: Each plot represents a (PDE, layer) pair, where the row corresponds to the type of PDE
being solved (e.g., Burgers′, Convection, Allen−Cahn, etc.), and the column indicates the model
size by the number of hidden layers in the PINN (e.g., layer 4, 6, 8, 10). The histograms show the
distributions of the feature vector norms ∥ϕ(x)∥ for each pair.

Conversely, a larger value of α corresponds to a thinner tail, where the tail probability decays more
rapidly and extreme events are less likely.

Hill estimator. The Hill estimator is specifically designed to estimate the inverse of the tail
index, ξ = 1

α . Given a sample of n independent and identically distributed observations
{X1, X2, . . . , Xn}, sorted in descending order as X(1) ≥ X(2) ≥ · · · ≥ X(n), the Hill estima-
tor is defined as:

ξ̂k =
1

k

k∑
i=1

log
X(i)

X(k+1)
,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Layer 4 Layer 6 Layer 8 Layer 10

0.10

0.12

0.14

0.16

0.18

0.20

Pa
re

to
 t

ai
l i

nd
ex

Burgers'

Layer 4 Layer 6 Layer 8 Layer 10

0.08

0.10

0.12

0.14

0.16
Convection

Layer 4 Layer 6 Layer 8 Layer 10

0.08

0.10

0.12

0.14

0.16

0.18
Allen-Cahn

Layer 4 Layer 6 Layer 8 Layer 10

0.08

0.10

0.12

0.14

0.16

0.18

Korteweg De Vries

Layer 4 Layer 6 Layer 8 Layer 10

0.12

0.14

0.16

0.18

0.20

0.22

Non-Linear Shrodinger

Layer 4 Layer 6 Layer 8 Layer 10

0.5

0.6

0.7

0.8

0.9

1.0

1.1

H
ill

 e
st

im
at

or

Layer 4 Layer 6 Layer 8 Layer 10
0.6

0.7

0.8

0.9

1.0

1.1

1.2

Layer 4 Layer 6 Layer 8 Layer 10

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Layer 4 Layer 6 Layer 8 Layer 10

0.5

0.6

0.7

0.8

0.9

Layer 4 Layer 6 Layer 8 Layer 10
0.3

0.4

0.5

0.6

0.7

Figure 7: Two statistical estimates of the norms of the feature vectors.

Layer 4 Layer 6 Layer 8 Layer 10

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

lo
g(

m
ax

(x
)

)
lo

g(
(x

*)
)

lo
g(

m
ax

(x
)

)
1 2l

og
(

m
ax

(
))

Burgers'

Layer 4 Layer 6 Layer 8 Layer 10
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Convection

Layer 4 Layer 6 Layer 8 Layer 10
0.4

0.6

0.8

1.0

1.2

1.4

1.6

Allen-Cahn

Layer 4 Layer 6 Layer 8 Layer 10

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Korteweg-DeVries

Layer 4 Layer 6 Layer 8 Layer 10

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Schrodinger

Figure 8: Disparity comparison of λmax(Σ) and ϕ(x∗) with respect to max ∥ϕ(x)∥.

where k is the number of upper order statistics used for the estimation. It is evident that ξ̂k estimates
the reciprocal of the true tail index α. Consequently, a larger value of ξ̂k corresponds to a smaller α,
which can be interpreted as indicating a heavier tail.

Figure 7 presents box plots of the estimates across different random seeds for various PDEs. The
Pareto tail index, quantifying tail thickness, decreases with increasing layers, indicating heavier
tails and a higher likelihood of extreme events. Across all PDEs, the index consistently declines
from layer 4 to layer 10, highlighting the growing dominance of extreme values in deeper layers.
Notably, the index values are significantly below 2, a common threshold for heavy-tail behavior.
Even with fewer layers and 1,000 collocation points, feature vector norms exhibit pronounced heavy-
tail distributions. The Hill estimator, measuring the inverse of tail heaviness, complements this,
gradually increasing with layer depth and reinforcing the trend of heavier tails. Its values, exceeding
the 0.5 threshold for heavy tails, become more pronounced with depth.

A.3 EMERGING DISPARITIES WITH INCREASING MODEL COMPLEXITY

In the previous subsection, we conducted an empirical analysis of the distributional characteristics of
feature vector norms. In this subsection, we aim to validate the hypothesis of the norm’s emerging
disparities with increasing model complexity. (Assumption 3.3) For clarity, this relation can be
expressed mathematically as (maxx∈P ∥ϕ(x)∥)2 − λmax(Σ) ≫ (maxx∈P ∥ϕ(x)∥)2 − ∥ϕ(x∗)∥2,
where x∗ = argmaxx∈Ω |Rθ(x)|2. Here, due to the dominant scale of max ∥ϕ(x)∥, we transformed
the values into a logarithmic scale to investigate the relationship between λmax and ∥ϕ(x∗)∥.
The Figure 8 illustrates the behavior of a logarithmic metric for various PDEs as the layer count
increases. The x-axis represents the number of layers, shown as 4, 6, 8, and 10, while the y-axis rep-
resents a log-based value, denoted as log(max ∥ϕ(x)∥)−log ∥ϕ(x∗)∥

log(max ∥ϕ(x)∥)− 1
2 log λmax(Σ)

, which captures a ratio involving
maximum values and scaled terms. Across all PDEs, the y-axis value decreases monotonically as
the number of layers increases. This consistent decline in the log-metric across all PDEs suggests
that as the layer count grows, the denominator in the ratio scales disproportionately compared to the
numerator. This behavior indicates that the underlying system dynamics or representation becomes
increasingly dominated by the factors represented in the denominator.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B LEARNING RATE UPPER BOUND VARYING β

For the sake of simplicity, we will consider the situation at iteration l. Hence, in the forthcoming
proof, we will omit the upper index related to iteration. i.e., denote wl

n as wn.

B.1 PROOF OF PROPOSITION 3.1

When the sampling concentration coefficient β is sufficiently large, the weights wn are approxi-
mately uniform (wn ≈ 1

N). Thus, the hessian matrix Hθ of the loss function with respect to θ can
be approximated by:

Hθ(L) = Hθ

(
N∑

n=1

wn|Rθ(xn)|2
)
≈ Hθ

(
1

N

N∑
n=1

|Rθ(xn)|2
)

(B.1.1)

SinceRθ(x) = θ⊺ϕ(x) and Hθ

(
|θ⊺ϕ(xn)|2

)
= 2ϕ(x)ϕ(x)⊺, the hessian of L satisfies:

Hθ(L) ≈
1

N

N∑
n=1

Hθ

(
|θ⊺ϕ(xn)|2

)
=

2

N

N∑
n=1

ϕ(xn)ϕ(xn)
⊺ (B.1.2)

This matrix represents the sample covariance matrix of feature vector ϕ(x). Thus, for sufficiently
large N , we can say the maximum eigenvalue of the hessian is approximately 2λmax(Σ).

B.2 PROOF OF PROPOSITION 3.2

When the sampling concentration coefficient β is sufficiently small, for the sample x∗ with the
largest residual (i.e., x∗ = argmaxx∈P |Rθ(x)|2), we can consider all other weights to be zero
except for x∗. Therefore, the hessian matrix of the loss function can be expressed as follows:

Hθ(L) = Hθ

(
N∑

n=1

wn|Rθ(xn)|2
)
≈ Hθ

(
|Rθ(x

∗)|2
)

(B.2.1)

The hessian of the loss function can be expressed as 2ϕ(x∗)ϕ(x∗)⊺, which is rank-1 matrix. Given
that the eigenvalue equation is defined as Av = λv, where A = 2ϕ(x∗)ϕ(x∗)⊺ and v = ϕ(x∗), it
follows that ϕ(x∗) is the eigenvector and 2∥ϕ(x∗)∥2 is the corresponding eigenvalue. Since A is
rank-1 matrix, the eigenvalue is uniquely determined.

B.3 PROOF OF THEOREM 3.1

We have assumed that the norm of ϕ follows a heavy-tailed distribution (Assumption 3.2). Then,
according to extreme value theory, it is well-established that the maximum value obtained from N
samples scales as N1/α, i.e., max ||ϕ(x)|| ∼ N1/α. Given that N = cD, where N is proportional
to D due to high-dimensionality and sampling considerations, we approximate:

max ∥ϕ(x)∥ ∼ (cD)1/α ∼ D1/α (B.3.1)

Subsequently, the matrix Σ = E[ϕ(x)ϕ(x)⊺] represents the covariance matrix of the feature map-
pings ϕ(x). In high-dimensional settings, the eigenvalues of such covariance matrices are known to
follow specific distribution patterns as described by random matrix theory. In particular, the max-
imum eigenvalue of Σ, denoted λmax(Σ), scales as N2/α−1. Consequently, λmax(Σ) ∼ N2/α−1.
Substituting N = cD into the scaling relationship yields:

λmax(Σ) ∼ (cD)2/α−1 ∼ D2/α−1 (B.3.2)

When D is large, the term (max ∥ϕ(x)∥)2, which scales as D2/α, increases significantly faster than
λmax(Σ), which scales as D2/α−1. Consequently, as D increases, (maxx∈P ∥ϕ(x)∥)2 ≫ λmax(Σ).
Finally, combining this fact with Assumption 3, which states (maxx∈P ∥ϕ(x)∥)2 − λmax(Σ) ≫
(maxx∈P ∥ϕ(x)∥)2 − ∥ϕ(x∗)∥2, we can conclude the proof.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C STATIONARY DISTRIBUTION OF LANGEVIN DYNAMICS

C.1 PROOF OF THEOREM 4.1

Given the modified Langevin dynamics, for any xl
n ∈ P l,

xl+1
n = xl

n +
τ

2
∇x

∣∣Rθ(x
l
n)
∣∣2 + β

√
τzln (C.1.1)

The drift and diffusion terms from the modified Langevin dynamics are:

A(x) =
τ

2
∇x |Rθ(x)|2 , (C.1.2)

B(x) = β2τI (C.1.3)

If we denote the probability density of x ∈ Ω at time l as pl(x), the Fokker-Planck equation describ-
ing the time evolution of the probability density is:

∂pl(x)

∂l
= −∇x · (A(x)pl(x)) +∇x · (B(x)∇xpl(x)) (C.1.4)

where · : Ω×Ω→ R represents general dot product between two vectors. i.e., u · v = u⊺v and∇x

is the del operator with respect to x. Under mild condition, in the stationary state, ∂pl(x)
∂l = 0, so,

the limit distribution p(x) = liml→∞ pl(x) satisfies the below:

0 = −∇x ·
(τ
2
∇x |Rθ(x)|2 p(x)

)
+ β2τ (∇x · ∇xp(x)) (C.1.5)

This simplifies to steady state equation:

2β2∇x · ∇xp(x) = ∇x ·
(
p(x)∇x |Rθ(x)|2

)
(C.1.6)

At first, we simplify the (RHS) of Equation (C.1.6). Since∇x |Rθ(x)|2 = 2Rθ(x)∇xRθ(x), using
the product rule, we can simplify as follows:

∇x ·
(
p(x)∇x |Rθ(x)|2

)
= ∇x ·

(
2p(x)Rθ(x)∇xRθ(x)

)
= 2
(
Rθ(x)∇xp(x) · ∇xRθ(x) + p(x)∇xRθ(x) · ∇xRθ(x) +Rθ(x)p(x)∇x · ∇xRθ(x)

)
(C.1.7)

Substituting Equation (C.1.7) into the RHS of the Equation (C.1.6) and dividing by 2, we get:

β2∇x · ∇xp(x) = Rθ(x)∇xp(x) · ∇xRθ(x)

+ p(x)∇xRθ(x) · ∇xRθ(x)

+ p(x)Rθ(x)∇x · ∇xRθ(x) (C.1.8)

Now, if we assume the stationary distribution is of the form:

p(x) = Z−1 exp
(
c|Rθ(x)|2

)
(C.1.9)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where Z is the partition function of the stationary distribution and c > 0 is the constant. Then,
calculating the gradient and laplacian of Equation (C.1.9):

∇xp(x) = 2cp(x)Rθ(x)∇xRθ(x), (C.1.10)
∇x · ∇xp(x) = ∇x · (2cp(x)Rθ(x)∇xRθ(x)) (C.1.11)

= 2cRθ(x)∇xp(x) · ∇xRθ(x)

+ 2cp(x)∇xRθ(x) · ∇xRθ(x)

+ 2cp(x)Rθ(x)∇x · ∇xRθ(x) (C.1.12)
= 2cRθ(x) [2cp(x)Rθ(x)∇xRθ(x)] · ∇xRθ(x)

+ 2cp(x)∇xRθ(x) · ∇xRθ(x)

+ 2cp(x)Rθ(x)∇x · ∇xRθ(x) (C.1.13)

= 4c2p(x)R2
θ(x)∇xRθ(x) · ∇xRθ(x)

+ 2cp(x)∇xRθ(x) · ∇xRθ(x)

+ 2cp(x)Rθ(x)∇x · ∇xRθ(x) (C.1.14)

Substituting these into the Equation (C.1.8), we get:

4c2β2p(x)R2
θ(x)∇xRθ(x) · ∇xRθ(x)

+ 2cβ2p(x)∇xRθ(x) · ∇xRθ(x)

+ 2cβ2p(x)Rθ(x)∇x · ∇xRθ(x) (C.1.15)
= Rθ(x) [2cp(x)Rθ(x)∇xRθ(x)] · ∇xRθ(x)

+ p(x)∇xRθ(x) · ∇xRθ(x) + p(x)Rθ(x)∇x · ∇xRθ(x) (C.1.16)

= 2cp(x)R2
θ(x)∇xRθ(x) · ∇xRθ(x)

+ p(x)∇xRθ(x) · ∇xRθ(x) + p(x)Rθ(x)∇x · ∇xRθ(x) (C.1.17)

Since this equation holds for all x in the support of p, dividing through by p(x) and simplifying:(
4c2β2 + 2cβ2

)
R2

θ(x)∇xRθ(x) · ∇xRθ(x) + 2cβ2Rθ(x)∇x · ∇xRθ(x)

= (2c+ 1)R2
θ(x)∇xRθ(x) · ∇xRθ(x) +Rθ(x)∇x · ∇xRθ(x) (C.1.18)

By comparing the coefficients of the terms on both sides, we get:

4c2β2 + 2cβ2 = 2c+ 1, (C.1.19)

2cβ2 = 1 (C.1.20)

Thus, we can conclude c = 1
2β2 , and the stationary distribution for the given modified Langevin

dynamics satisfies:

p(x) ∝ exp

(|Rθ(x)|2
2β2

)
(C.1.21)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D SAMPLE TRAJECTORIES OF L-PINN AND BENCHMARK ALGORITHMS

We visualized the collocation point trajectories during the training under various adaptive sampling
algorithms. The experimental settings follow the default configurations specified in the main text,
with 4 layers and the number of Langevin iterations set to lL = 1. The background, shown as a
heatmap using the plasma colormap, represents the residual landscape |Rθ(x)|2, where dark purple
indicates low values and bright yellow indicates high values. White points represent the collocation
points used in training. Notably, the loss landscape dynamics remained largely consistent.

D.1 RANDOM-R SAMPLE TRAJECTORY

The figure below represents the sample trajectory of Random-R, where different collocation points
are uniformly sampled at each iteration.

0.0 0.5 1.0

t

−1

0

1

x

Iteration 1000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 2000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 3000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 4000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 5000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 6000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 7000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 8000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 9000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 10000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 11000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 12000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 13000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 14000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 15000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 16000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 17000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 18000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 19000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 20000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 21000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 22000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 23000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 24000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 25000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 26000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 27000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 28000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 29000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 30000

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.2 RAD SAMPLE TRAJECTORY

This figure presents the RAD sample trajectory over multiple iterations, demonstrating a relatively
stable pattern of sample distribution. As iterations progress, the sample points concentrate around
regions of high residuals, with some diversity maintained throughout. However, despite the overall
stability, the RAD sampling method exhibits a distribution that is not significantly different from
the Random-R approach. The clustering becomes more pronounced in certain areas, but the overall
spread and distribution of samples remain similar, suggesting that RAD does not offer a distinct
advantage over random-R in terms of improving sampling diversity.

0.0 0.5 1.0

t

−1

0

1

x

Iteration 1000

0.0 0.5 1.0

t

−1

0

1

x
Iteration 2000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 3000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 4000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 5000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 6000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 7000

0.0 0.5 1.0

t

−1

0

1

x
Iteration 8000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 9000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 10000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 11000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 12000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 13000

0.0 0.5 1.0

t

−1

0

1

x
Iteration 14000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 15000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 16000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 17000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 18000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 19000

0.0 0.5 1.0

t

−1

0

1

x
Iteration 20000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 21000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 22000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 23000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 24000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 25000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 26000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 27000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 28000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 29000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 30000

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D.3 R3 SAMPLE TRAJECTORY

This figure illustrates the evolution of sample trajectories in the R3 algorithm, showing a clear
concentration of samples in regions with high residuals as the process progresses. While early
iterations exhibit some scattering, the sample points increasingly cluster around specific areas of
the residual landscape, leading to a lack of diversity in later stages. Furthermore, this imbalance
indicates instability in the sampling strategy, as it fails to maintain a continuous, balanced shift in
the sample population across the entire domain. The discontinuous change in the sample population
may result in instability from the perspective of the learning process.

0.0 0.5 1.0

t

−1

0

1

x

Iteration 1000

0.0 0.5 1.0

t

−1

0

1

x
Iteration 2000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 3000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 4000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 5000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 6000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 7000

0.0 0.5 1.0

t

−1

0

1

x
Iteration 8000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 9000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 10000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 11000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 12000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 13000

0.0 0.5 1.0

t

−1

0

1

x
Iteration 14000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 15000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 16000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 17000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 18000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 19000

0.0 0.5 1.0

t

−1

0

1

x
Iteration 20000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 21000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 22000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 23000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 24000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 25000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 26000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 27000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 28000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 29000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 30000

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D.4 L∞ SAMPLE TRAJECTORY

This figure illustrates the evolution of sample trajectories in the L∞ algorithm. As the number of
iterations increases, the samples become overly concentrated in regions with high residuals, leading
to a lack of diversity across the domain, particularly in areas with lower residuals. This imbalance
goes against the goal of maintaining a well-distributed sample set proportional to the residual land-
scape. While some adaptation occurs, the excessive focus on extreme residuals (small β case) results
in a skewed distribution, highlighting the need for more balanced and diverse sampling to improve
the algorithm’s performance.

0.0 0.5 1.0

t

−1

0

1

x

Iteration 1000

0.0 0.5 1.0

t

−1

0

1

x
Iteration 2000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 3000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 4000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 5000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 6000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 7000

0.0 0.5 1.0

t

−1

0

1

x
Iteration 8000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 9000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 10000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 11000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 12000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 13000

0.0 0.5 1.0

t

−1

0

1

x
Iteration 14000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 15000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 16000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 17000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 18000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 19000

0.0 0.5 1.0

t

−1

0

1

x
Iteration 20000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 21000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 22000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 23000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 24000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 25000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 26000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 27000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 28000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 29000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 30000

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.5 L-PINN SAMPLE TRAJECTORY

This figure depicts the sample trajectory of the proposed L-PINN algorithm. As iterations progress,
the sample points are proportionally distributed according to the residual landscape, maintaining
diversity across the domain. Unlike other methods, proposed L-PINN algorithm avoids over-
concentration in regions of high residuals, instead ensuring that sample points are scattered in a
balanced manner. Additionally, the distribution adapts in line with the residual peaks, with an ap-
propriate portion of samples allocated based on the peak heights. This indicates that the L-PINN
algorithm successfully addresses the key objectives of both proportionality and diversity in sample
distribution, improving stability and overall performance.

0.0 0.5 1.0
t

−1

0

1

x

Iteration 1000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 2000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 3000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 4000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 5000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 6000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 7000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 8000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 9000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 10000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 11000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 12000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 13000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 14000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 15000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 16000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 17000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 18000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 19000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 20000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 21000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 22000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 23000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 24000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 25000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 26000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 27000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 28000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 29000

0.0 0.5 1.0
t

−1

0

1

x

Iteration 30000

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E RELATIONSHIP BETWEEN LEARNING RATE AND MODEL COMPLEXITY

E.1 LEARNING CURVE VARIATION WITH INCREASING DEPTH

Here, we aim to visualize and interpret the learning curves for the Allen−Cahn equation observed
during the training process of the models, as reported in Table 1, with detailed experimental settings
provided in Section 5, varying only the depth of the neural networks.

0
20

00
0

40
00

0
60

00
0

80
00

0

10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

20
00

00

Number of iterations

0

50

100

Re
la

tiv
e

L2
 e

rro
r [

%
]

0
20

00
0

40
00

0
60

00
0

80
00

0

10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

20
00

00

Number of iterations

0

50

100

Re
la

tiv
e

L2
 e

rro
r [

%
]

0
20

00
0

40
00

0
60

00
0

80
00

0

10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

20
00

00

Number of iterations

0

50

100

Re
la

tiv
e

L2
 e

rro
r [

%
]

0
20

00
0

40
00

0
60

00
0

80
00

0

10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

20
00

00

Number of iterations

0

50

100

Re
la

tiv
e

L2
 e

rro
r [

%
]

L-PINN (Ours) RAD (Wu et al., 2023) R3 (Daw et al., 2023) L (Wang et al., 2022) Random-R

Figure 9: From top to bottom in the figure, the learning curves correspond to layers 4, 6, 8, and 10
for the Allen−Cahn equation.

Our primary observation is that most algorithms exhibit a slow learning progression until the learn-
ing rate reaches a specific value (which, of course, varies depending on the algorithm). This phe-
nomenon appears to correlate with the degree of high residual concentration in the residual landscape
of each algorithm. Specifically, the relative L2 error in the learning curve requires more iterations
to drop below a certain threshold (denoted as 50 in the figure) as the number of layers increases.

From an algorithmic perspective, most methods achieve the 50-threshold of the relative L2 error
crossing before iteration 40,000 with a 4 layer network. However, as the number of layers increases,
particularly with 8 and 10 layers, the threshold-crossing iterations are significantly delayed. This
delay is especially pronounced in algorithms such as R3 and L∞, which are highly focused on
regions of extreme high residuals. This observation suggests that these algorithms are more affected
by the increased complexity and residual concentration in deeper networks.

To verify whether this phenomenon depends on overall model complexity, in the following subsec-
tion, we also conducted experiments focusing on increasing the width rather than the depth of the
model.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E.2 LEARNING CURVE VARIATION WITH INCREASING WIDTH

Simple calculations show that a neural network with 8 hidden layers and 128 nodes per layer has the
same number of parameters as a neural network with 4 hidden layers and a width of 203. However,
comparisons based solely on parameter count are inadequate, as depth introduces issues such as
gradient vanishing.

Therefore, instead of viewing width solely from the perspective of parameter count, we conducted
experiments by progressively doubling the width. The results showed that, similar to depth, in-
creasing width also led to a gradual breakdown in learning stability. Consistent with the rankings
observed in depth experiments, among adaptive sampling techniques, L-PINN reached the relative
L2 error threshold of 50 the fastest. Interestingly, Random-R demonstrated robustness in this setting,
particularly with wide neural networks.

0
20

00
0

40
00

0
60

00
0

80
00

0

10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

20
00

00

Number of iterations

0

50

100

Re
la

tiv
e

L2
 e

rro
r [

%
]

0
20

00
0

40
00

0
60

00
0

80
00

0

10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

20
00

00

Number of iterations

0

50

100

Re
la

tiv
e

L2
 e

rro
r [

%
]

0
20

00
0

40
00

0
60

00
0

80
00

0

10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

20
00

00

Number of iterations

0

50

100

Re
la

tiv
e

L2
 e

rro
r [

%
]

0
20

00
0

40
00

0
60

00
0

80
00

0

10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

20
00

00

Number of iterations

0

50

100

Re
la

tiv
e

L2
 e

rro
r [

%
]

L-PINN (Ours) RAD (Wu et al., 2023) R3 (Daw et al., 2023) L (Wang et al., 2022) Random-R

Figure 10: From top to bottom in the figure, the learning curves correspond to 128, 256, 512, and
1024 nodes per hidden layer, each with 4 layers, for the Allen−Cahn equation.

Through the experimental analyses described above, we argue that the proposed L-PINN demon-
strates superior performance in terms of learning stability, particularly for models with high com-
plexity.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

F SUPPLEMENTARY DETAILS ON EXPERIMENTAL SETUP

F.1 DETAILS OF PARTIAL DIFFERENTIAL EQUATIONS

Burgers′: We set (λpde, λic, λbc) = (1, 100, 1) to solve the equation

∂u

∂t
+ u

∂u

∂x
− 0.01

π

∂2u

∂x2
= 0, x ∈ [−1, 1], t ∈ [0, 1]; (F.1.1)

u(−1, t) = u(1, t) = 0; (F.1.2)
u(x, 0) = − sinπx (F.1.3)

Convection: We set (λpde, λic, λbc) = (1, 100, 100) to solve the equation

∂u

∂t
+ 50

∂u

∂x
= 0, x ∈ [0, 2π], t ∈ [0, 1]; (F.1.4)

u(0, t) = u(2π, t); (F.1.5)
u(x, 0) = sinx (F.1.6)

Allen−Cahn: We set (λpde, λic, λbc) = (1, 100, 1) to solve the equation

∂u

∂t
− 0.0001

∂2u

∂x2
− 5(u− u3) = 0, x ∈ [−1, 1], t ∈ [0, 1]; (F.1.7)

u(−1, t) = u(1, t); (F.1.8)
ux(−1, t) = ux(1, t); (F.1.9)

u(x, 0) = x2 cosπx (F.1.10)

Korteweg−DeVries: We set (λpde, λic, λbc) = (1, 100, 1) to solve the equation

∂u

∂t
+ u

∂u

∂x
+ 0.0025

∂3u

∂x3
= 0, x ∈ [−1, 1], t ∈ [0, 1]; (F.1.11)

u(−1, t) = u(1, t); (F.1.12)
u(x, 0) = cosπx (F.1.13)

Schrödinger: We set (λpde, λic, λbc) = (1, 100, 1) to solve the equation

i
∂h

∂t
+ 0.5

∂2h

∂x2
+ |h|2h = 0, x ∈ [−5, 5], t ∈

[
0,

π

2

]
; (F.1.14)

h(−5, t) = h(5, t); (F.1.15)
hx(−5, t) = hx(5, t); (F.1.16)
h(x, 0) = 2sech(x) (F.1.17)

F.2 IMPLEMENTATION DETAILS OF BASELINE ALGORITHMS

For all PDEs, we conducted experiments by fixing the algorithms’ hyperparameters to the values
specified in the original baseline code. Specifically, for RAD, we set c = k = 1, and for L∞, we
fixed the number of gradient steps at 20 and step size 0.05.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

G ADDITIONAL RESULTS WITH VARYING L-PINN HYPERPARAMETERS

G.1 VARIATION OF β AND lL WITH FIXED τ = 0.002

1. Instability of performance for small β values as the layer increases: As the layer depth
increases, small β values lead to unstable performance. For instance, in layer 4, a small
β = 0.001 results in a relatively stable error value of 1.18±0.23 at lL = 1, whereas in layer
10, the error rises significantly to 8.20 ± 15.63. This pattern suggests that small values of
β hinder performance stability in deeper layers.

2. Increased instability with higher lL values: Generally, the performance deteriorates as
lL increases, particularly for small β values. For example, in layer 6 with β = 0.001,
the relative error increases from 0.58 ± 0.08 at lL = 1 to 22.73 ± 22.08 at lL = 20. This
indicates that excessive Langevin iterations could lead to performance instability, especially
when the concentration parameter β is low.

Layer and concentration parameter β Langevin iteration lL

Layer β 1 5 10 20

Layer 4

0.001 1.18± 0.23 1.63± 0.40 1.66± 0.20 6.34± 2.69

0.05 1.53± 0.36 1.41± 0.43 1.27± 0.21 1.25± 0.16

0.1 1.08± 0.37 0.93± 0.09 1.23± 0.23 1.06± 0.13

0.3 2.50± 0.28 2.30± 0.34 2.54± 0.35 2.51± 0.36

0.4 2.80± 0.60 3.14± 0.22 3.14± 0.49 2.90± 0.44

Layer 6

0.001 0.58± 0.08 10.89± 19.65 10.10± 17.80 22.73± 22.08

0.05 0.62± 0.11 0.64± 0.12 0.65± 0.12 0.67± 0.15

0.1 0.74± 0.12 0.58± 0.08 0.64± 0.07 0.58± 0.03

0.3 1.05± 0.27 1.15± 0.21 1.16± 0.11 1.33± 0.13

0.4 1.47± 0.10 1.49± 0.08 1.48± 0.22 1.58± 0.13

Layer 8

0.001 0.65± 0.14 1.25± 0.73 10.66± 19.50 22.14± 24.51

0.05 0.88± 0.34 0.46± 0.05 0.59± 0.10 1.44± 0.81

0.1 0.59± 0.14 0.58± 0.08 0.68± 0.35 0.86± 0.56

0.3 1.06± 0.16 1.15± 0.21 1.08± 0.24 0.92± 0.11

0.4 1.12± 0.25 1.09± 0.19 1.14± 0.17 1.12± 0.27

Layer 10

0.001 8.20± 15.63 23.14± 20.74 40.14± 19.78 41.79± 20.50

0.05 0.46± 0.17 17.33± 21.03 17.21± 21.02 30.08± 24.07

0.1 0.63± 0.20 0.73± 0.23 0.70± 0.22 10.23± 18.99

0.3 0.94± 0.18 0.98± 0.15 0.83± 0.25 1.02± 0.30

0.4 0.94± 0.15 0.96± 0.22 0.97± 0.37 1.12± 0.33

Table 2: Relative L2 error for varying β and lL across different layers of the Allen−Cahn equation.

As a result, the main takeaway is that small values of β are prone to instability as the layer depth
increases and lL becomes large. Conversely, higher β values can ensure stable performance, even
with varying lL values. In shallow layers, however, lower β values can be beneficial, providing a
more precise error at lower lL values.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

G.2 VARIATION OF τ AND lL WITH FIXED β = 0.2

1. Stability across τ values: The relative L2 error exhibits minor fluctuations across different
values of τ for each layer suggesting a negligible dependency on τ .

2. Limited impact of lL: While increasing lL slightly reduces the variance of L2 error in
some cases, the effect is not consistent across layers showing only marginal improvement.

Layer and Langevin step τ Langevin iteration lL

Layer τ 1 5 10 20

Layer 4

0.0001 1.98± 0.35 2.12± 0.14 1.66± 0.06 1.74± 0.19

0.0005 1.81± 0.13 1.74± 0.40 1.77± 0.34 1.74± 0.35

0.001 2.35± 0.37 1.85± 0.25 1.98± 0.18 1.68± 0.24

0.005 1.96± 0.15 2.08± 0.18 1.84± 0.22 1.71± 0.17

0.01 1.93± 0.28 1.92± 0.09 1.48± 0.09 1.79± 0.09

Layer 6

0.0001 0.96± 0.11 0.89± 0.06 0.96± 0.11 1.00± 0.14

0.0005 0.92± 0.13 0.69± 0.34 1.14± 0.23 1.17± 0.25

0.001 0.85± 0.07 1.00± 0.18 0.70± 0.09 0.96± 0.03

0.005 0.85± 0.07 0.82± 0.22 0.97± 0.10 0.78± 0.37

0.01 0.90± 0.04 0.90± 0.06 1.03± 0.16 0.93± 0.06

Layer 8

0.0001 0.62± 0.04 0.79± 0.11 0.92± 0.10 0.82± 0.05

0.0005 0.81± 0.02 0.85± 0.12 0.78± 0.07 0.75± 0.06

0.001 0.91± 0.13 0.82± 0.02 0.71± 0.04 0.77± 0.10

0.005 0.85± 0.07 0.83± 0.04 0.64± 0.06 0.63± 0.08

0.01 0.64± 0.14 0.77± 0.17 0.88± 0.13 0.81± 0.09

Layer 10

0.0001 0.41± 0.18 0.75± 0.08 0.82± 0.02 0.68± 0.12

0.0005 0.82± 0.13 0.64± 0.04 0.68± 0.07 0.82± 0.06

0.001 0.91± 0.21 0.74± 0.19 0.87± 0.25 0.59± 0.05

0.005 0.64± 0.04 0.53± 0.32 0.67± 0.05 0.64± 0.12

0.01 0.56± 0.29 0.65± 0.13 0.71± 0.14 0.61± 0.09

Table 3: Relative L2 error for varying τ and lL across different layers of the Allen−Cahn equation.

Overall, the impact of τ and lL on both relative L2 error and variance is limited, indicating robustness
of the method across a range of parameters. This robustness simplifies Langevin hyperparameter
tuning, making the approach more practical for real-world applications.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

H EXPERIMENTAL COMPARISON OF THE COMPUTATIONAL COMPLEXITIES

To evaluate computational complexities, we measured the computational costs for training deep
neural networks using each algorithm. Specifically, to validate the scalability of the algorithms,
we conducted experiments to analyze their computational requirements in terms of the number of
collocation points Npde and the dimensionality of the PDE.

Based on our observations, the runtime of the sampling algorithms was independent of the specific
PDE. Thus, we utilized equations that allowed for a straightforward extension from 1D to 2D in
dimensionality. More specifically, we experimented with different sizes of collocation points (100,
1,000, 10,000, 50,000, and 100,000) for both 1D and 2D Burgers′ equations.

As part of the detailed experimental process, we calculated the elapsed time over 1,000 epochs. The
measurement was repeated 10 times using 10 different random seeds, and the mean and standard
deviation were computed. For additional clarity, the elapsed time was measured excluding auxiliary
operations such as saving the model or storing data, focusing solely on the computations required to
run the algorithms.

Hardware specification. NVIDIA RTX 4090 GPU with 24GB of memory.

Changes with NPDE. As NPDE increases, the computational cost grows for all methods. However,
the growth rate varies significantly between methods. Gradient-based algorithms such as L-PINN
and L∞ show a particularly sharp increase in computational cost as NPDE grows. This is due to the
iteration-intensive nature of their sampling processes. For example, with NPDE = 50, 000 in 2D,
the computational cost of L-PINN (lL = 20) reaches 613.96 seconds, whereas simpler methods like
Fixed or Random-R remain below 35 seconds. For NPDE = 100, 000, L-PINN and L∞ run out of
memory in the 2D case, highlighting their scalability limitations for very large PDE sample sizes.

Changes with dimensionality (1D vs. 2D). Extending from 1D to 2D consistently increases the
computational cost for all methods. While simple methods like Fixed or Random-R exhibit a rela-
tively modest increase in cost when transitioning from 1D to 2D, gradient-based methods such as
L-PINN and L∞ show disproportionately higher computational times in the 2D case. For example,
in the 2D case with NPDE = 1, 000, L-PINN (lL = 10) takes 45.74 seconds, compared to only 16.97
seconds in 1D. At NPDE = 10, 000, L-PINN (lL = 10) takes 59.32 seconds in 2D versus 20.43
seconds in 1D.

However, despite the overall computational expense of L-PINN for higher lL values, the case of
lL = 1 demonstrates significantly lower computational costs, making it relatively practical and
scalable. For example, at NPDE = 50, 000, L-PINN (lL = 1) takes 63.98 seconds in 2D, which
is manageable compared to the prohibitive 324.49 seconds for lL = 10. Similarly, for smaller
NPDE, such as 1,000, L-PINN (lL = 1) shows competitive runtimes (e.g., 26.62 seconds in 2D).
An additional advantage of using lL = 1 is that it avoids the out of memory issues observed for
higher values of lL, even in large-scale scenarios such as NPDE = 100, 000 in 2D. Furthermore, the
relative L2 error reported in our paper uses lL = 1 as the baseline, demonstrating its effectiveness in
balancing computational efficiency with accuracy.

Finally, while gradient-based methods like L-PINN exhibit high computational costs due to the
overhead of gradient computation, future work optimizing the gradient operations could signifi-
cantly enhance the scalability and practicality of these methods. Thus, with improved optimization
techniques, L-PINN (lL = 1) remains a promising candidate for solving PDEs efficiently at scale.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652

Under review as a conference paper at ICLR 2025

Ta
bl

e
4:

C
om

pa
ri

so
n

of
co

m
pu

ta
tio

na
lc

om
pl

ex
iti

es
fo

rB
u
rg
er
s′

eq
ua

tio
n

(1
D

an
d

2D
),

m
ea

su
re

d
in

se
co

nd
s.

M
et

ho
d

N
pd

e
=

1
0
0

N
pd

e
=

1,
0
0
0

N
pd

e
=

1
0,
0
0
0

1D
2D

1D
2D

1D
2D

Fi
xe

d
2.
58
±

0.
03

6
.0
7
±
0.
1
5

2
.5
4
±
0
.0
3

6.
4
5
±

0.
1
4

3.
0
7
±
0
.0
5

7.
8
3
±

0.
0
3

R
an

do
m

-R
2.
66
±

0.
10

6
.2
2
±
0
.2
1

2
.6
1
±
0
.0
1

6.
5
4
±

0.
1
6

3.
1
4
±
0
.0
4

7.
8
5
±

0.
0
3

R
3

2.
99
±

0.
01

6
.1
5
±
0
.1
9

2
.9
4
±

0.
0
0

6.
5
7
±

0.
2
2

3.
2
0
±
0
.0
2

7.
9
7
±

0.
0
3

R
A

D
3
.4
0
±

0.
00

7
.6
1
±
0
.0
2

3
.4
6
±

0.
1
3

8.
0
0
±

0.
0
9

3.
9
9
±
0
.0
0

1
0
.0
4
±

0.
0
1

L
-P

IN
N

(l
L
=

1)
3
.9
0
±
0.
03

9
.9
6
±
0
.2
6

3
.8
9
±

0.
0
3

1
0.
4
2
±

0.
3
1

5.
0
1
±
0
.0
1

1
3
.5
9
±

0.
0
3

L
-P

IN
N

(l
L
=

5)
11
.5
9
±

0.
03

2
5
.6
7
±
0.
5
1

9.
7
0
±

0.
0
2

2
6.
6
2
±

0.
3
7

1
1.
9
0
±
0
.1
6

3
3.
4
0
±

0.
1
4

L
-P

IN
N

(l
L
=

10
)

15
.5
5
±

0.
05

4
4
.6
8
±
0
.5
2

1
6
.9
7
±
0
.3
7

4
5.
7
4
±

0.
9
2

2
0.
4
3
±
0
.1
0

5
9.
3
2
±

0.
2
7

L
-P

IN
N

(l
L
=

20
)

29
.4
6
±

1.
99

8
5
.1
0
±
0
.1
5

2
9
.0
4
±

0.
0
2

8
5.
4
0
±

1.
1
9

3
7.
5
7
±
0
.0
1

1
1
0
.2
1
±

0.
1
7

L
∞

28
.7
7
±

1.
99

8
2
.7
5
±
0
.8
8

2
9
.0
3
±

2.
2
0

8
4.
2
1
±

1.
6
8

3
7.
5
4
±
0
.4
8

1
1
5
.2
9
±

0.
2
1

M
et

ho
d

N
pd

e
=

50
,0
0
0

N
pd

e
=

1
0
0,
0
0
0

1D
2D

1D
2D

Fi
xe

d
11

.6
3
±

0.
56

3
4
.8
3
±

0.
0
4

2
4
.9
3
±

0.
0
2

8
0.
1
7
±
0
.0
5

R
an

do
m

-R
11

.6
6
±

0.
05

3
4
.8
7
±

0.
0
4

2
4
.9
1
±
0.
0
4

8
0.
2
6
±
0
.0
4

R
3

11
.9
7
±

0.
04

3
5
.1
9
±

0.
0
3

2
5
.3
4
±
0
.0
5

8
0.
6
1
±
0
.0
6

R
A

D
14

.9
2
±

0.
03

4
4
.3
0
±

0.
0
5

3
1
.8
1
±
0
.0
9

9
9.
6
7
±
0
.1
0

L
-P

IN
N

(l
L
=

1)
21
.1
9
±

0.
06

6
3
.9
8
±

0.
0
8

4
6
.3
6
±
0
.0
5

1
5
1.
3
3
±
0
.1
1

L
-P

IN
N

(l
L
=

5)
56
.8
6
±

0.
06

1
7
9.
6
9
±

0.
2
0

1
3
0
.9
5
±

0.
0
8

O
U

T
O

F
M

E
M

O
R

Y

L
-P

IN
N

(l
L
=

10
)

10
2
.5
2
±

0.
17

3
2
4
.4
9
±

0.
3
5

2
3
6
.9
5
±
0.
1
1

O
U

T
O

F
M

E
M

O
R

Y

L
-P

IN
N

(l
L
=

20
)

19
2.
52
±

0.
30

6
1
3
.9
6
±

0.
4
3

4
4
8
.6
2
±
0
.3
0

O
U

T
O

F
M

E
M

O
R

Y

L
∞

19
7.
24
±

0.
17

6
1
2
.2
2
±

0.
5
3

4
4
8
.9
5
±
0
.2
7

O
U

T
O

F
M

E
M

O
R

Y

31

1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706

Under review as a conference paper at ICLR 2025

I COMPATIBILITY OF L-PINN WITH HIGH-DIMENSIONAL PROBLEMS

To analyze the compatibility of L-PINN with high-dimensional problems, we first highlight its dis-
tinctions from existing adaptive sampling techniques, such as RAD. While both methods aim to
achieve a balanced residual distribution for sampling, their approaches differ significantly. RAD uti-
lizes Monte Carlo integration (MCI) to estimate E|Rθ(x)|k, whereas L-PINN bypasses this step by
asymptotically converging to the desired distribution. However, this comes at the cost of increased
hyperparameter complexity.

Effect of high dimensionality on PDEs. The difference between L-PINN and MCI-based methods
becomes evident in high-dimensional PDEs with limited collocation points Npde. For MCI, the
accuracy depends on evenly distributed residual points, which becomes challenging as the spatial
dimension increases. In contrast, L-PINN achieves the desired asymptotic distribution with fewer
collocation points, provided that parameters τ and lL are properly tuned. For instance, in a 1D
domain divided into P uniform partitions, the probability of a sample falling into a specific partition
is 1/P . However, in higher dimensions, this value decreases exponentially, further complicating
MCI-based approaches.

Experimental results. The limitations of adaptive sampling methods in high-dimensional settings
are evident in the Heat equation experiments. Table 5 and Figure 11 summarize the results. For
reproducibility, all experiments were conducted using default settings for both L-PINN and baseline
methods. Detailed configurations are described in the main text section 5 and Appendix F.2. A
notable observation is that Random-R performed better than other adaptive sampling techniques
in the restricted 2D PDE cases we proposed. Nonetheless, it was observed that the proposed L-
PINN consistently maintained the second-best performance, following Random-R, under default
hyperparameter settings. Additionally, based on the visual results, it can be inferred that gradient-
based algorithms such as L∞ and L-PINN captured high-frequency components at t = 0 more
effectively than RAD or R3.

Table 5: Relative L2 error comparison of methods for Burgers′ 2D and Heat 2D equations

PDE
Method

L-PINN RAD R3 L∞ Random-R

Burgers′ 2D 0.05± 0.00 0.06± 0.00 0.06± 0.00 0.05± 0.00 0.05± 0.00

Heat 2D 1.03± 0.26 2.79± 0.10 9.14± 1.18 16.93± 0.50 0.43± 0.03

32

1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760

Under review as a conference paper at ICLR 2025

0 0.5 1
x

0

0.5

1

y

t = 0

0 0.5 1
x

0

0.5

1

y
t = 0.005

0 0.5 1
x

 Exact solution

0

0.5

1

y

t = 0.01

0 0.5 1
x

0

0.5

1

y

t = 0.025

0 0.5 1
x

0

0.5

1

y

t = 0.05

0 0.5 1
x

0

0.5

1

y

t = 0.1

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

 L-PINN

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y
0 0.5 1

x

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

 RAD

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

0

0.5

1
y

0 0.5 1
x

0

0.5

1

y
0 0.5 1

x

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

 R3

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

0

0.5

1
y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

 L

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

 Random-R

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

0 0.5 1
x

0

0.5

1

y

Figure 11: From top to bottom in the figure: exact solution, predicted solutions for benchmark
algorithms, L-PINN, RAD, R3, L∞, and Random-R for the 2D Heat equation.

33

1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

Under review as a conference paper at ICLR 2025

J COMPATIBILITY ISSUES WITH DIFFERENT NEURAL NETWORK
ARCHITECTURES

We aimed to experimentally evaluate the compatibility of the proposed adaptive sampling technique
with architectures beyond MLPs, including self-attention and modified-MLPs (Wang et al., 2023).
Detailed descriptions of each architecture are provided in Table 6. Furthermore, to address the
spectral bias issue commonly found in MLPs, we performed additional experiments incorporating
random Fourier blocks (FB), as detailed in Tancik et al., 2020. The FB hyperparameters were set
with a Fourier feature scale of 2 and a Fourier block dimension of 64.

Table 6: Parameter configuration for different architectures

Parameter MLP Self-attention Modified MLP

Activation Tanh Tanh Tanh
Embedding dimension 128 128 128
Number of layers 4 4 4
Multi-head number N/A 4 N/A
Fully connected dimension N/A 256 N/A
Attention dropout N/A 0.1 N/A
Additional encoders U , V N/A N/A Yes

The results are summarized in Table 7. All algorithms were evaluated using the default settings pro-
vided in the benchmark algorithm papers, and the same applies to our approach, as detailed in the
experimental settings described in the main text. Analyzing the results, we observe that the proposed
L-PINN demonstrates high compatibility in terms of relative L2 error. Even in the less favorable
architectures, such as MLP and self-attention, L-PINN achieved the second-best performance. No-
tably, in scenarios incorporating FB, the proposed L-PINN consistently exhibited superior compati-
bility across all cases.

Table 7: Relative L2 error comparison for different architectures across sampling methods.

Architecture L-PINN RAD R3 L∞ Random-R

MLP 2.15 ± 0.12 2.65 ± 0.47 1.84 ± 0.08 2.76 ± 0.26 3.56 ± 0.20
MLP + FB 0.56 ± 0.14 0.69 ± 0.05 0.61 ± 0.04 0.81 ± 0.18 0.94 ± 0.06
Modified MLP 0.43 ± 0.10 0.51 ± 0.05 0.66 ± 0.07 0.55 ± 0.08 0.56 ± 0.07
Modified MLP + FB 0.11 ± 0.04 0.22 ± 0.09 0.24 ± 0.03 0.34 ± 0.01 0.21 ± 0.04
Self-attention 2.13 ± 0.13 2.30 ± 0.13 2.25 ± 0.06 1.98 ± 0.03 2.91 ± 0.69
Self-attention + FB 1.29 ± 0.09 1.53 ± 0.03 1.52 ± 0.15 1.33 ± 0.12 1.35 ± 0.12

34

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868

Under review as a conference paper at ICLR 2025

K PSEUDO CODE LISTINGS

In this section, we provide the pseudo code for sampling via Langevin dynamics and the functions
used in the training of the PINN model, specifically PDELoss(·) and Langevin update(·). A notable
feature is that the automatic partial derivative, originally used to compute the PDE loss, is applied
once more for the Langevin update.

K.1 PDE LOSS CALCULATION

1 def PDELoss(DNN, XTGrid):
2 u = DNN.forward(XTGrid)
3 u_grad = torch.autograd.grad(
4 outputs=u,
5 inputs=XTGrid,
6 grad_outputs=torch.ones(u.shape),
7 create_graph=True,
8 allow_unused=True
9)[0]

10

11 ux, uy, ut = u_grad[:, 0], u_grad[:, 1], u_grad[:, 2]
12 uxx = torch.autograd.grad(
13 outputs=ux,
14 inputs=XTGrid,
15 grad_outputs=torch.ones(ux.shape),
16 create_graph=True,
17 allow_unused=True
18)[0][:, 0]
19

20 uyy = torch.autograd.grad(
21 outputs=uy,
22 inputs=XTGrid,
23 grad_outputs=torch.ones(uy.shape),
24 create_graph=True,
25 allow_unused=True
26)[0][:, 1]
27

28 loss = (uxx + uyy - ut) ** 2
29 return loss

Listing 1: PDE loss function

It can be observed that the PDE loss itself is not significantly different from the approach typically
used in standard PINN models.

35

1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922

Under review as a conference paper at ICLR 2025

K.2 LANGEVIN UPDATE

1 def Langevin_update(DNN, XYTGrid, l_\mathrm{L}=1, tau=2e-3, beta=0.2):
2 for l in range(l_\mathrm{L}):
3 loss = PDELoss(DNN, XYTGrid)
4 XYT_grad = torch.autograd.grad(
5 outputs=loss,
6 inputs=XYTGrid,
7 grad_outputs=torch.ones(loss.shape),
8 create_graph=True,
9 allow_unused=True

10)[0]
11

12 scaler = torch.sqrt(torch.sum((XYT_grad + 1e-16) ** 2, axis=1)).
reshape(-1, 1)

13 XYT_grad = XYT_grad / scaler
14

15 with torch.no_grad():
16 XYTGrid += tau * XYT_grad + beta * torch.sqrt(2 * tau) *

torch.randn(XYT_Grid.shape)
17 XYTGrid[:, 0] = torch.clamp(XYTGrid[:, 0], min=0, max=1)
18 XYTGrid[:, 1] = torch.clamp(XYTGrid[:, 1], min=0, max=1)
19 XYTGrid[:, 2] = torch.clamp(XYTGrid[:, 2], min=0, max=0.1)
20 return XYTGrid # updated grid points

Listing 2: Langevin update function

To explain the Langevin update function, additional details from the actual implementation are pro-
vided, with a key feature being the scaling of the Langevin gradient. As mentioned in the main text,
this scaling is employed as a mechanism to ensure the stability of the training process. Furthermore,
to prevent issues related to the feasibility of sample points due to the Langevin gradient update,
we applied a clamp function to enforce the boundary condition. Finally, the collocation points are
updated for lL iterations using the step size τ , the updated sample population is returned.

K.3 TRAINING PROCESS OF 2D HEAT EQUATION

1 def Train(DNN, n_iters):
2 x_init = torch.zeros(N_pde, 1, dtype=torch.float32).uniform_(0, 1)
3 y_init = torch.zeros(N_pde, 1, dtype=torch.float32).uniform_(0, 1)
4 t_init = torch.zeros(N_pde, 1, dtype=torch.float32).uniform_(0, 0.1)
5 XYTGrid = torch.concatenate((x_init, y_init, t_init), axis=1)
6

7 for i in range(n_iters):
8 params = list(DNN.parameters())
9 optimizer = torch.optim.Adam(params, lr=1e-3)

10 XTYGrid = Langevin_update(DNN, XYTGrid)
11 optimizer.zero_grad()
12

13 pdeloss = PDELoss(DNN, XYTGrid)
14 pdeloss.backward()
15 optimizer.step()

Listing 3: Train function

The training process aligns exactly with the standard procedure for PINN models. First, the data is
updated using Langevin dynamics, and then the updated data is used to compute the loss, followed
by parameter updates.

36

	Introduction
	Background and Related Work
	Analysis of the Learning Stability
	Proposed Approach: Langevin PINN (L-PINN)
	Langevin Dynamics and Stationary Distriburion
	Practical Implementation

	Experiments
	Ablation Studies
	Additional Experiments on Representative PDEs

	Conclusions
	Empirical Validation of Assumptions
	Local Approximation of the Feature Vector
	Heavy-Tailed Behavior of the Norm of Feature Vectors
	Emerging Disparities with Increasing Model Complexity

	Learning Rate Upper Bound Varying
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Theorem 3.1

	Stationary Distribution of Langevin Dynamics
	Proof of Theorem 4.1

	Sample Trajectories of L-PINN and Benchmark Algorithms
	Random-R Sample Trajectory
	RAD Sample Trajectory
	R3 Sample Trajectory
	L Sample Trajectory
	L-PINN Sample Trajectory

	Relationship Between Learning Rate and Model Complexity
	Learning Curve Variation with Increasing Depth
	Learning Curve Variation with Increasing Width

	Supplementary Details on Experimental Setup
	Details of Partial Differential Equations
	Implementation Details of Baseline Algorithms

	Additional Results with Varying L-PINN Hyperparameters
	Variation of and lL with Fixed =0.002
	 Variation of and lL with Fixed =0.2

	Experimental Comparison of the Computational Complexities
	Compatibility of L-PINN with High-Dimensional Problems
	Compatibility Issues with Different Neural Network Architectures
	Pseudo Code Listings
	PDE Loss Calculation
	Langevin Update
	Training Process of 2D Heat Equation

