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Abstract

Self-Supervised Learning (SSL) for Combinatorial Optimization (CO) is an emerg-
ing paradigm for solving combinatorial problems using neural networks. In this
paper, we address a central challenge of SSL for CO: solving problems with
discrete constraints. We design an end-to-end differentiable framework that en-
ables us to solve discrete constrained optimization problems with neural networks.
Concretely, we leverage algorithmic techniques from the literature on convex ge-
ometry and Carathéodory’s theorem to decompose neural network outputs into
convex combinations of polytope corners that correspond to feasible sets. This
decomposition-based approach enables self-supervised training but also ensures
efficient quality-preserving rounding of the neural net output into feasible solu-
tions. Extensive experiments in cardinality-constrained optimization show that our
approach can consistently outperform neural baselines. We further provide worked-
out examples of how our method can be applied beyond cardinality-constrained
problems to a diverse set of combinatorial optimization tasks, including finding
independent sets in graphs, and solving matroid-constrained problems.

1 Introduction

Combinatorial Optimization (CO) encompasses a broad category of optimization problems where the
objective is to find a configuration of discrete objects that satisfies specific constraints and is optimal
given a prescribed criterion. It has a wide range of real-world applications [64, 58, 31, 7, 94, 73]
while also being of central importance in complexity theory and algorithm design. These problems
are often non-convex, and solving them involves exploring large-scale discrete combinatorial spaces
of configurations. To that end, neural networks have emerged as a powerful tool for designing CO
algorithms as they can learn to exploit patterns in real-world data and discover high-quality solutions
efficiently. A compelling proposal in that direction is self-supervised CO because it eschews the need
to acquire labeled data, which can be computationally expensive for those problems. This usually
involves training a neural network to produce solutions to input instances by minimizing a continuous
proxy for the discrete objective of the problem [35, 84, 1, 36, 90]. While the efficiency and scalability
of this approach are appealing, it also harbors significant challenges.

Enforcing constraints on the output of the neural network is one of the primary obstacles. When
training, this is often done by including a weighted term in the loss function that penalizes solutions
that do not comply with the constraints. There are two key considerations when doing this. Having
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Figure 1: Overview of our framework. During training (top), the model learns to output a point in the
convex hull of feasible solutions. A self-supervised extension loss is computed by decomposing this
point and evaluating the objective, which is then used to backpropagate. During inference (bottom),
the model outputs a relaxed solution, which is decomposed and the best feasible set is selected with a
rounding guarantee.

access to a differentiable function that encodes constraint violation for the discrete problem, and
carefully tuning its contribution to the overall loss. Furthermore, at inference, it is important to
guarantee that the output of the neural network is discrete and it complies with the constraints.
In practice, this is usually achieved with an algorithm that rounds the continuous output of the
neural network to a feasible discrete solution. Such algorithms are often heuristics and treat inference
differently from training which may hurt performance. Despite recent developments that have enabled
tackling new combinatorial problems in the self-supervised setting, combining loss function design
and rounding in a coherent fashion can still be highly nontrivial.

In this work, building on ideas from the literature on self-supervised CO and techniques from
geometric algorithms and combinatorial optimization, we propose an approach to loss function design
that seamlessly integrates training and inference while also providing a rounding guarantee. The
main idea is to learn to map input instances to distributions of feasible solutions that maximize
(or minimize resp.) the objective. Given an input instance, we use the neural network to predict a
continuous vector in the convex hull of feasible solutions. Using an iterative algorithm, this vector is
decomposed into a distribution of discrete feasible sets. This algorithm draws from the literature on
Carathéodory’s theorem [13] to express points in the interior of a convex polytope as a sparse convex
combination of the corners of the polytope. This decomposition yields a distribution that allows us to
tractably calculate the expected value of the discrete objective. We use this expectation as our loss
and minimize it with a neural net and standard automatic differentiation in a self-supervised fashion.
By backpropagating derivatives from this expectation, the neural network learns to generate outputs
in the feasible set that optimize the expected objective. At inference time, the iterative algorithm
generates candidate feasible solutions to the problem. The pipeline is summarized in Figure 1.

Our contribution. Our method generalizes previous work, and offers strong empirical benefits in
efficiency and performance on large-scale CO instances. Our contributions can be summarized as
follows:

• We use a class of geometric decomposition algorithms to design end-to-end learning
pipelines for constrained neural CO. Our main result establishes the applicability of our
method to any problem whose feasible set polytope admits a fast linear optimization oracle.

• Our geometric algorithms effectively tackle both the challenge of loss function design for
training with constraints, and the challenge of rounding neural network outputs at inference.
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• We show strong results in cardinality constrained CO on large-scale instances with hundreds
of thousands of nodes, often surpassing previous neural baselines and heuristics.

• We conduct ablation studies to test the effectiveness of optimizing the extension with gradient
descent and the contribution of the model in the overall performance.

2 Related work

Self-Supervised CO and continuous extensions. Our work follows a long line of work on unsu-
pervised CO [1, 2, 35, 84, 36, 82, 87, 30, 72, 24, 63, 78, 43, 60, 90]. Crucial components of those
pipelines include the choice of model, the use of specific input features (positional encodings), the loss
function, and the rounding algorithm. There has been extensive research on neural net architectures
for combinatorial problems [57, 85, 74, 93] and the role of input features for well known classes of
models [91, 53, 38]. Our primary focus will be on loss function design and rounding. We build on
previous work that proposed using continuous extensions of discrete functions as losses for neural
CO [36]. Following this blueprint, bespoke extensions have been used for learning on permutations
[62], hierarchical clustering [43] and interpretable graph learning [16]. However, there is no general
extension design paradigm that can accommodate different constraints. We address this issue by
proposing a template for extension design and show how it enables building the constraints into the
distribution. This streamlines the process of building extensions and dispenses with the need to tune
constraint terms in the loss function that is present in other approaches to self-supervised CO.

Loss function design and enforcing constraints. The design of specific loss functions in self-
supervised CO to enable smoother optimization, integration with different powerful architectures,
and/or better rounding has been studied over the past few years. A common approach is to adopt
a probabilistic perspective and parametrize a distribution of outputs with a neural network that
learns to optimize the expected cost and the probability of constraint violation [60, 87, 36, 72, 62].
Deriving and/or computing those expectations and probability terms for more complex problems can
be difficult, which motivated the work by [10] that provides derivations and fast rounding techniques
for cases such as spanning trees and cardinality constraints. In our work, the constraints are built
into the distribution and the loss only has to handle the objective function. It is challenging to craft
such losses which has led to the development of techniques that improve training dynamics via
annealed training [82, 33]. Other approaches to loss function design leverage ideas from physics
[78, 79], and semidefinite programming [93, 32]. Those cases also involve tunable constraint terms.
Another major consideration is that of enforcing constraints on the outputs of the neural networks.
Techniques in the literature typically involve calculating the projection of the neural net output
onto the feasible set. This has been done for cardinality constraints using ideas from the theory of
optimal transport [89], and general linear constraints with gradient-based techniques [18, 95]. In the
continuous (potentially non-convex) optimization setting, several projection techniques have also
been developed [51, 52, 50, 48].

Convex geometry and learning over polytopes. Our approach relies on fundamental results from
convex geometry and geometric algorithms. Specifically, the Carathéodory Theorem states that any
point in a polytope P ⊆ Rd can be expressed as a convex combination of at most d+ 1 points. The
constructive versions of this result [25] have been adapted to yield efficient algorithms in polytopes
for ranking [42] and scheduling problems [29, 21, 8]. Approximate versions of the decomposition
have been developed that do not explicitly depend on the ambient dimension d [4] and admit efficient
algorithms with fast convergence rates [59, 17]. In the context of machine learning, polyhedral
methods have been used extensively to impose constraints on the outputs of models for generative
modelling [22], for learning with end-to-end differentiable sampling from exponential families using
perturb-and-map techniques [67], for applications to differentiable sorting [6, 71] and learning to
optimize over permutations [26, 56, 62]. For additional discussion, please refer to the appendix.

3 Problem formulation and learning setup

Let V = {v1, . . . , vn} be a set of variables, each assigned a value from a discrete domain D =
{1, . . . , d}. A combinatorial optimization problem consists of a universe of instances T , where each
instance T ∈ T can be represented by a tuple T = (V,D, C, f). The set C ⊆ Dn defines the feasible
solutions to the instance. The real-valued function f : Dn → R is called the objective function.
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The problem is then to find an optimal feasible vector x∗, i.e., to find a feasible vector x ∈ Dn that
maximizes the objective function f :

max f(x), s.t. x ∈ C. (1)

In this paper, we focus on CO problems with Boolean domain, i.e., D = {0, 1}, and C ⊆ {0, 1}n.
This domain choice corresponds to combinatorial optimization problems that involve set functions,
i.e., x indicates a subset S ⊆ V of a ground set V = {v1, . . . , vn} of elements and xi = 1 if element
i is in the subset, and f maps each subset to a real number. The subsets can be, for instance, nodes or
edges in a graph, and are central to many problems in applied mathematics and operations research [9].
The set C ⊆ {0, 1}n includes all subsets of V that obey the constraints of the problem. Each subset
S is identified with its indicator vector 1S ∈ {0, 1}n and we use f(S) and f(1S) interchangeably
throughout this paper. The objective function is the set function f : {0, 1}n → R. The goal is to
select an optimal feasible subset so Equation (1) takes the form maxS∈C f(S).

Background on polyhedral geometry. Define the encoding length of a number as the length of the
binary string representing the number. The encoding length of an inequality a⊤x ≤ b, is the sum of
encoding lengths of the entries of the vectors a and b. Let P ⊆ Rn be a polyhedron and let φ be
a positive integer. We say that P has facet–complexity at most φ if there exists a system of linear
inequalities with rational coefficients whose solution set is P , and such that the encoding length of
each inequality in the system is at most φ. A well–described polytope is a triple (P; n, φ) where
P ⊆ Rn is a polytope with facet–complexity at most φ. The strong optimization problem for a given
rational vector x ∈ Qn and any well–described (P; n, φ) is

max
c∈P

c⊤x. (2)

A strong optimization oracle returns a maximizer c∗ for (2). Polytopes can be described as convex
hulls of finitely many vectors or as systems of linear inequalities. Even though a description may
require exponentially many vectors or inequalities, the polytope may admit a fast optimization oracle.
This is the case for submodular polyhedra [3] or the matching polytope [77, Chapters 25, 26].

Self-Supervised CO. Given a problem instance T and input features ZT ∈ Rn×d, we use a neural
network NNθ, which we will often refer to as the encoder network, to map the instance data to an
output prediction x ∈ Rn by computing x = NNθ(ZT ;T ). For example, the input instance could
be a graph, the input features could be positional encodings for the graph, and the neural net a
Multi-Layer Perceptron (MLP). The output x may not correspond to a discrete feasible point. In
those cases, a rounding algorithm will be used to map x to a feasible indicator vector of a set. The
goal is for the neural net to learn to predict the optimal solution x∗. In self-supervised CO, this is
done by training NNθ on a collection of instances T1, T2, . . . , Tm. The neural net minimizes the
problem-specific loss function LT computed for each instance LT (NNθ (ZTi ;Ti)) and averaged over
a batch (or the entire training set). Since there are no labels, how the loss function is designed to fit
the constraints of the problem is of critical importance. At inference time, a test instance is processed
through the neural network to obtain a prediction. At this step, rounding heuristics are typically used
to ensure that the solution is feasible and discrete. It should be noted that, it is possible to directly
optimize the model with gradient descent on the test instances since no labels are leveraged during
training. In this case, the additional computational cost of backpropagation is incurred at inference
time.

4 Proposed approach

First, we present an overview of the key components in the pipeline and then we discuss each
component in more detail. Our proposed method focuses on the design of LT (x) that is used to train
the model. The objective f is a set function with discrete domain and cannot be directly optimized.
Following the literature, we construct a continuous extension of f , denoted by F (x) : [0, 1]n → R,
and use it as our loss function, i.e. LT (x) = F (x). The extension is defined as

F (x) := ES∼DC(x)[f(S)], (3)

where DC(x) is a distribution parametrized by the output of the neural network and S ∈ C for all
S in the support of DC(x). The key challenge lies in how to tractably construct and parameterize
such a distribution on feasible sets in a way that enables end-to-end learning. We achieve this using
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an iterative algorithm that ensures DC(x) is supported on O(n) feasible sets and the probability of
each set is a differentiable function of x. This allows us to efficiently compute the exact expectation
in Equation (3) and to calculate its derivatives with standard automatic differentiation packages. At
inference time, the geometric algorithm can be used as a rounding algorithm for x since DC(x) has a
small number of sets in its support. Specifically, we can round x to the best set in the support and
obtain a feasible integral solution whose quality is at least as good as F (x).

4.1 A general decomposition algorithm for extension design

For a feasible set C, consider the polytope P(C) = Conv({1S : S ∈ C}), i.e., the convex hull of the
indicator vectors of the sets in C. Any point x ∈ P(C) is a convex combination x =

∑
S∈C αS1S

of feasible solutions from C. In fact, from Carathéodory’s theorem we know that this convex
combination requires at most n + 1 points where n is the ambient dimension of the space. The
coefficients of the convex combination can be viewed as the probabilities of a distribution DC(x)
and hence x = ES∼DC(x)[1S ]. If we can uniquely and efficiently decompose each point x ∈ P(C)
into such a convex combination, we can leverage that distribution to compute the extension in
Equation (3). In Algorithm 1, we propose a general template for an iterative algorithm that yields
such decompositions and forms the foundation for our approach.

Intuitively, the algorithm decomposes x iteratively by removing a corner 1S weighted by a suitably
chosen coefficient in each iteration. This is done until the coefficients and the corresponding corners
can be used to reconstruct x up to some small error ϵ.

Algorithm 1 General decomposition algorithm

Require: x ∈ [0, 1]n in P(C).
1: x0 ← x, t← 0.
2: repeat
3: 1St ← vertex from P(C) in the support of xt.
4: at ← g(xt,1St)
5: xt+1 ← (xt − at1St) /(1− at)

6: pxt(St)← at

∏t−1
i=0(1− ai)

7: t← t+ 1
8: until ∥x−

∑
t pxt(St)1St∥ ≤ ϵ

9: return All {pxt(St),1St)} pairs.

Let x ∈ P(C) and x0 = x. In each iteration t,
the algorithm finds a feasible solution in C that
is both an extremal point of the convex hull and
lies in the support of xt. Here by the support
of xt we mean supp(xt) := {S ∈ C : xt(i) ̸=
0 ∀i ∈ S}, that is all the feasible subsets S ∈ C
such that every corresponding entry of xt in-
dexed by i ∈ S is nonzero. Let this point be
1St ∈ supp(xt) ⊆ {0, 1}n. Let at ∈ [0, 1] be
the coefficient at iteration t. We express each
iterate xt as

xt = at1St
+ (1− at)xt+1, (4)

where at = g(xt,1St
) is a function of xt and 1St

, chosen such that xt+1 remains in P(C). We can
recursively apply the same process to xt+1 until x has been decomposed into a convex combination of
feasible sets. After the algorithm terminates, we can obtain a distribution DC(x) which is completely
characterized by the sets St and probabilities pxt(St) = at

∏t−1
i=0(1 − ai) of the decomposition.

Determining the specific form of steps 3 and 4 in a way that yields a polynomial-time algorithm that
is usable in an end-to-end learning setting is a non-trivial task that depends on the polytope. We
prove the following theorem which relies on a constructive version of the Carathéodory theorem, also
known in the literature as the GLS method (from Grötschel-Lovász-Schrijver) [29, 42]. The GLS
method establishes a decomposition for a large class of polytopes. Our result builds on top of the
GLS method to show how this decomposition is also almost everywhere differentiable with respect to
x.
Theorem 4.1. There exists a polynomial-time algorithm that for any well-described polytope P
given by a strong optimization oracle, for any rational vector x, finds vertex-probability pairs
{pxt

(St),1St
} for t = 0, 1, . . . , n− 1 such that x =

∑n−1
t=0 pxt

(St)1St
and all pxt

(St) are almost
everywhere differentiable functions of x.

Intuitively, at each iteration the decomposition algorithm leverages the strong optimization oracle to
obtain a vertex for a minimal face of the polytope that contains the current iterate. This corresponds
to step 3 of our algorithm. At step 4, the largest possible at is chosen that yields a new iterate that
remains in the polytope. This means that xt+1 will intersect the boundary of the polytope. At each
iteration, the iterate lies on a lower-dimensional face of the polytope than the previous one, and hence
the algorithm terminates in polynomial time, in at most n+ 1 iterations.

End-to-end learning with the decomposition. Drawing insights from the GLS method, we aim
to design a decomposition that can be integrated in gradient-based optimization pipelines. Here,
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we summarize the basic requirements for the general decomposition to yield an extension that can
be optimized with standard automatic differentiation, which will enable end-to-end learning. To
obtain consistent tie breaks at the boundaries for the strong optimization oracle, we adopt a standard
lexicographic ordering of the coordinates. This also ensures that the steps of the decomposition are
deterministic and that the coefficients of the decomposition are uniquely determined for each point in
the polytope. For our approach to be useful for end-to-end learning, we require:

1. A differentiable method that ensures our starting point x lies in the polytope P(C).
2. A routine that efficiently finds a vertex 1St

∈ P(C) in the support of xt.

3. An (almost everywhere) differentiable function g(xt,1St
) that yields a valid decomposition.

Satisfying these conditions will allow us to tractably construct a distribution of feasible sets DC(x),
which will enable efficient calculation of the expectation in Equation (3). It also means that we can
update the parameters of the neural network that is used to predict x by optimizing the extension
via standard automatic differentiation packages. Our proof of Theorem 4.1 establishes that a strong
optimization oracle is sufficient to handle steps 2 and 3. See Appendix B.1 and Appendix B.2 for
detailed comments on the applicability of the method.

Practical considerations for step 3 and 4. Our GLS-based construction offers a canonical template
that can instantiate Algorithm 1, but deviating from GLS can confer additional benefits. For example,
g in Step 4 can be chosen so that the next iterate does not intersect a lower dimensional face of the
polytope. The difference now is that, instead of choosing the maximum coefficient possible, we will
rescale it in each step by some fixed constant b ∈ (0, 1]. Termination of the algorithm is ensured by
the parameter ϵ in step 8 of Algorithm 1 and a lower bound l on the minimum value of the coefficient.

Proposition 4.2. Let

ãt =

{
b at, b at ≥ ℓ,

at, b at < ℓ
(5)

be the coefficient we pick for step 3 in Algorithm 1. Then the reconstruction error of step 8 Algorithm 1
decays exponentially in k.

This approach allows for controlled approximation of x and the introduction of more vertices into the
decomposition which can help exploration when optimizing the extension.

Neural predictions in the feasible set polytope. Suppose our encoder network outputs x ∈ Rn.
Since Algorithm 1 requires a point in the polytope x ∈ P(C), we need a way to enforce this constraint
on the output of our neural network. This type of problem has received significant attention (see
Section 2) in both the optimization and machine learning communities. Commonly, this can involve
projection-based techniques such as Sinkhorn’s algorithm [80] and its various extensions [88] or other
gradient-based approaches [95]. This can be a viable strategy but, depending on the polytope, may be
difficult to integrate in a differentiable pipeline. We will leverage a projection-based approach when
appropriate but we also introduce a simple efficient alternative. We interpret the neural encoder output
as a perturbation of an interior point in P(C). More concretely, the neural net predicts a perturbation
vector z ∈ Rn such that x = z+ u, where u ∈ Rn is an interior point of P(C). While this approach
circumvents the need for projection, it requires access to an interior point of the polytope. It also
requires care so that the perturbed point z + u remains in the polytope. Nonetheless, we show
that for several fundamental constraint families–including cardinality constraints, partition matroids,
and the spanning tree base polytope–it is possible to do this efficiently in a differentiable way (e.g.,
Proposition ??).

Extension function, training, and inference. Once the decomposition algorithm providesDC(x), we
can use it to compute our loss function. For the extension to be well defined, the decomposition needs
to deterministically map each point in the polytope to vertex-probability pairs. This is guaranteed
in our constructions. It is also straightforward to compute derivatives of the extension with respect
to the neural network parameters. For simplicity, suppose the encoder network, parameterized by
weights θ, outputs x ∈ P(C). Then, we have ∂F

∂θ = ∂F
∂p(x) ·

∂p(x)
∂x · ∂x∂θ where p(x) is the vector of

probabilities returned by Algorithm 1.
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The extension F (x) = ES∼DC(x)[f(S)] =
∑

t pxt(St)f(St) has several desirable properties that
have been studied in the literature [36]. Since we are considering convex combinations of the objective
over the feasible set, the extreme points are preserved i.e., maxx∈P(C) F (x) = maxS∈C f(S);
moreover we have argmaxx∈P(C) F (x) ∈ Conv({1S : S ∈ argmaxS∈C f(S)}). The expectation
formulation also provides a rounding guarantee. There exists at least one feasible solution S∗ in the
decomposition of x such that f(S∗) ≥ F (x). This property enables fast inference on the output of
the encoder network without any degradation in solution quality.

4.2 Case studies

In this section we discuss how the decomposition can be generated for various constraints. We
provide a detailed treatment of the cardinality constraint to build intuition and then discuss additional
examples including spanning trees and independent sets. All proofs, additional details and additional
experiments can be found in the Appendix.

4.2.1 Cardinality constraint

Here, we focus on combinatorial problems that involve optimizing a set function under an exact
cardinality constraint. This setting is sufficiently general to encompass many fundamental and
practical combinatorial optimization problems. Formally, let f : 2V → R be a set function that
assigns a real value to each subset of V = {v1, . . . , vn}. For a given positive integer k, the set of
feasible solutions is defined as C = {S : |S| = k, S ⊆ V }, which includes all subsets of V of size
exactly k. The resulting constrained combinatorial optimization problem is:

max
x∈{0,1}n,∥x∥1=k

f(x). (6)

The associated convex polytope, P(C) = Conv({1S : |S| = k}), is the convex hull of Boolean
vectors with exactly k ones and n−k zeros and the matroid base polytope corresponding to a uniform
matroid on n elements of rank k. It is known as the (k,n)-hypersimplex and is denoted by ∆n,k [70].

Designing the decomposition algorithm. For now, we assume that our predictions lie in the polytope
of the feasible set, i.e. x ∈ ∆n,k. To construct a decomposition, we need to ensure that steps 3 and 4
in Algorithm 1 comply with our conditions for efficient end-to-end learning. To obtain a vertex of the
polytope in the support of xt for Step 3 in Algorithm 1, we set

1St
= argmax

c∈{0,1}n,∥c∥1=k

x⊤
t c. (7)

For step 4, we use Equation (4) to calculate the largest possible coefficient that keeps the iterate in
the polytope. This yields

at = min

{
min
i∈St

xt(i), 1−max
i/∈St

xt(i)

}
. (8)

The following result shows that our decomposition algorithm produces a valid convex decomposition
of points in the hypersimplex and is suitable for end-to-end learning.
Theorem 4.3. For x ∈ ∆n,k, Algorithm 1 with Step 3 according to Equation (7) and Step 4
according to Equation (8), terminates in at most n iterations and returns probability-vertex pairs
{(pxt(St),1St)} such that every St is a set of size k and x =

∑
t pxt(St)1St . Moreover, each

pxt(St) is a continuous and a.e. differentiable function of x.

At a high level, the result follows a similar strategy as Theorem 4.1. Our choice of coefficient ensures
that the next iterate intersects the boundary of the polytope and lies in a lower-dimensional face. This
in turn guarantees that the algorithm terminates in at most n+ 1 steps.

Generating neural predictions in the hypersimplex. The last concern to address is that of obtaining
a vector x ∈ ∆n,k in an efficient and differentiable manner. We follow the perturbation strategy that
we outlined earlier and use the neural network to predict a perturbation vector z ∈ [0, 1]n for an
interior point. The following result ensures that the perturbed point x remains in the polytope.
Proposition 4.4. Let z ∈ [0, 1]n and u = [ kn ,

k
n , . . . ,

k
n ]. Let µ be the mean of z, and z̃ be the

mean-centered version of z. For s = min(k/nµ , (n−k)/n
1−µ ) and x = sz̃+ u, we have that x ∈ ∆n,k.

This simple transformation is efficient to compute and maintains differentiability of x with respect to
the neural network parameters.
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4.2.2 Decomposition for Partition Matroids, Spanning Trees, and Independent Sets

Partition Matroids. We extend our result to general constraints beyond cardinality. Let V1, . . . , Vc

be disjoint subsets with V = ∪di=1Vi. The CO problem is maxS:|S∩Vi|=ki
f(S). When c = 1, this

reduces to the cardinality case. In step 3 of Algorithm 1, we obtain a vertex in the support of xt

by setting 1St
= argmaxc∈{0,1}n,∥c(Vi)∥1=ki

x⊤
t c. Step 4 matches Equation (8). The encoder can

similarly be constrained to the polytope, with scaling factor s being handled per partition.

Spanning Trees. Let G = (V,E) be a graph with n nodes and m edges. The CO problem is
maxS⊆E:S∈F f(S), where F is the set of full spanning forests of G. The convex hull of feasible sets
is the graphical matroid base polytope. In Step 3 of Algorithm 1, we obtain a vertex in the support of
xt by finding a maximum spanning forest. The encoder learns edge weights to perturb the uniform
spanning tree distribution, where we use Kirchhoff’s Matrix–Tree Theorem [41] and results from
spectral graph theory.

Independent Sets. The maximum independent set problem is an NP-hard problem where the goal is
to find the largest subset of nodes S in a graph G = (V,E) such that no pair of nodes in S is adjacent.
The strong optimization problem for the independent set polytope is NP-Hard. Furthermore, there
is no compact description of the polytope so this is a particularly challenging case. We circumvent
those difficulties by considering its relaxation, which admits a compact description and is known
as the fractional stable set polytope [55]. We use a fast gradient-based approach to project to the
polytope. Steps 3 and 4 are chosen according to the standard template set by the GLS decomposition.

5 Experiments

5.1 Experimental setup

We consider the Maximum Coverage problem [39], a fundamental combinatorial problem with
many variants that have been extensively studied. It appears in numerous applications, including
document summarization [54] and identifying influential users in social networks [37, 15]. Let
U = {e1, . . . , em} be a set of n elements and V = {T1, . . . , Tn} be n subsets of U . Given k ≤ n,
the Max Coverage problem asks for k subsets whose union covers the largest number of elements.
In the weighted version, each ei has a weight, and the goal is to maximize the total weight of
covered elements. This problem can be represented as a bipartite graph G = (U, V,E), where
(ej , Ti) ∈ E iff ej ∈ Ti. A node u ∈ U is covered by S ⊆ V if it is adjacent to some vertex in
S. Set f(S, u) = 1 if u is covered by S, and f(S, u) = 0 otherwise. The optimization problem is
maxS⊆V,|S|=k

∑
u∈U f(S, u). Next we provide details on the experimental results that are presented

in Figure 2 and the code can be found in this link.

Problem Encoder: To encode the bipartite graph, we use three layers of GraphSage [27] followed by a
fully-connected layer with our noise perturbation layer to map the output vector to the hypersimplex
∆n,k. We add normalization and residual connections in between the GraphSage layers.

Baselines. We adopt the same baselines as prior work, including: random, which samples k
candidates uniformly at random over multiple trials and selects the best within 240 seconds; Greedy
algorithm [61] that iteratively adds the element with the largest marginal gain and achieves the
well-known (1 − 1

e )-approximation guarantee; Gurobi for exact MIP-based solutions, with time
limited to 120 seconds for each graph; CardNN [88] and its variants (with and without test-time
optimization, following [10] approach); a naive version of EGN with a naive probabilistic objective
construction and iterative rounding [35]; UCOM2 with variants [10]; and a Reinforcement Learning
(RL) baseline. For the RL baseline, we follow the instructions in [45, 69] to use GraphSage layers
[28] as policy network with Actor-Critic [44] algorithm to train on the same problem instances. We
classify UCOM2 as a non-learning method because their incremental greedy de-randomization, when
applied to a uniform noise or all-zero input vector, performs as well as—or in some cases better
than—when applied to the output of their encoder network suggesting that its performance is mostly
due to the greedy module.

Dataset and training. We use synthetic graphs for training and real-world graphs for testing. Two
k values are chosen per dataset to assess method generalizability. (Due to space constraints, only
one value of k is shown; the full set is in the appendix.) Random graphs: the number in front of
“Random” indicates the size of U . Each group contains 100 graphs from either a uniform or Pareto
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distribution. Real-world graphs: Built from set systems like Twitch and Railway, each group
includes multiple graphs from the same source for broader coverage. Due to limited large-scale data,
real-world datasets are used only for testing, with training done on synthetic data. We point out
that scaling the probability weights in Equation (8) generates diverse decompositions, exposing the
model to more sets during training and inference. We use a list of scaling factors to produce these
decompositions in parallel. See Appendix C.1 for details.
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Figure 2: Performance comparison of our method against baseline approaches across three eval-
uation settings—Learning without Test-Time Optimization (TTO), Learning with TTO, and non-
learning/traditional baselines—on multiple datasets. Metrics used are inference time (lower is better)
and objective value (higher is better). In the Learning without TTO setting, our short version con-
sistently outperforms all baselines in both inference time and objective value, demonstrating strong
learning capability. When extended to medium and long versions, our method surpasses most TTO-
based baselines across datasets, with the exception of the Twitch dataset. It also outperforms the
greedy algorithm on multiple benchmarks. (Random(240s) is not included in the plots due to space
constraints. Detailed result numbers can be found in Appendix G.6.)

5.2 Discussion

Learnability results. Our end-to-end pipeline shows a very strong learning ability in comparison to
the existing learning baselines. In the setting where no method performs optimization at inference
time, the short version of our method already shows strong performance compared to existing
baselines. In this variant, we apply our decomposition procedure to the output of the neural encoder
and select the best set from the decomposition. Based on the rounding guarantees of our extension,
the resulting discrete solution is provably at least as good as the encoder’s output. Compared to other
baselines and CardNN-noTTO (across all three variants), our inference method achieves superior
efficiency in both runtime and output quality. Note that we do not include the UCOM2 method in this
comparison, as it falls outside the scope of this setting; more details are provided later in the paper.
Regarding the Twitch dataset, although our short method performs significantly better than other
approaches in this setting, we observe that all learning-based methods perform poorly overall on
this dataset. As mentioned in the introduction, this underperformance is largely attributed to the
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architecture of the encoder network and the specific characteristics of the data distribution. This
highlights a need for further investigation and suggests that adapting the model architecture to better
suit such data is an important direction for future work.

Test-Time Optimization (TTO). In this setting, additional computational time is allowed during
inference to improve solution quality. Specifically, we perform a simple optimization procedure: after
selecting the best set from the decomposition of the encoder output, we apply local improvement by
swapping a few elements with those from other sets in the decomposition’s support. This lightweight
optimization step demonstrates that the encoder has successfully learned meaningful structure from
the data, as reflected in the quality of the decomposition’s support. This is the medium variant of
our method. In the long version we moreover perform data augmentation similar to [34]. These
procedures yield noticeable improvements on the Random500 and Random1000 datasets, and produce
reasonably good results on the Railway dataset. On the twitch dataset, the CardNN methods directly
optimize the neural network output on the test sample with Adam, therefore overcoming the model
architecture problem. For our methods, performance remains poor on the Twitch dataset, consistent
with observations discussed earlier.

Comparison with Non-Learning methods. While greedy is an efficient baseline with a strong
approximation guarantee, our method performs competitively and is capable of outperforming it on
datasets like Random500 for larger values of k. We are also able to outperform UCOM in several
cases (e.g., Random1000 and Railway), though there are instances where greedy and/or UCOM
perform the best, such as the twitch dataset.

Ablation. We conduct an ablation study on the NP-hard problem of finding a cardinality-constrained
maximum cut. Given a graph G = (V,E), the goal is to find a set S of k nodes such that the number
of edges with exactly one endpoint in S is maximized. We compare the following baselines on
two datasets and two settings for the value k. Our decomposition-based method consists of two
main parts: a NN to predict a point in the polytope, and a loss function to optimize it and aid in
learning. To probe the effect of the loss function, we compare the quality of solutions obtained by the
decomposition when the input is i) a random point projected onto the polytope ii) a random point
optimized with Adam on the loss. To probe the effect of the neural network, we test the solutions
obtained by the decomposition of the predictions of a neural network that has optimized the loss on
the same data. Finally, to assess generalization, we compare the decomposed sets obtained from
the predictions of a neural net that has been trained on a separate training set. As a sanity check,
we also include a greedy algorithm. The table and more details of the experiment are provided in
Appendix H. We consistently observe that directly optimizing the extension on the test set with
Adam significantly improves the objective compared to decomposing a randomly chosen point and
reporting the result of its best performing set. Furthermore, the neural net optimized directly on the
test set improves consistently over direct optimization with Adam and is competitive with greedy
pointing to the benefits of parametrization. Finally, the performance of the SSL approach is close to
the competing neural baseline, suggesting that the model generalizes well.

6 Conclusion

We proposed a novel geometric approach to neural combinatorial optimization with constraints
that effectively tackles the challenges of loss function design and rounding. Our method achieved
strong empirical results against both neural baselines and classical methods, and opens up promising
avenues for further research on incorporating classical geometric algorithms into neural net pipelines.
It is important to note that the model architecture can play an important role in results; we have
not focused on this aspect here but it merits further exploration in future work. Our framework is
applicable whenever an oracle for the strong maximization problem exists, but its efficiency will vary
based on the polytope. The structure of the polytope influences our ability to obtain interior points, to
solve the strong optimization problem, and to compute intersections with its boundary. Nevertheless,
we believe that the blueprint described in this work paves the way towards new hybrid algorithms
that can effectively tackle complex combinatorial problems.
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A Additional discussion of related work

Reinforcement learning (RL)-based construction heuristics have been one of the leading paradigms
in neural CO. The first application to use RL with neural networks are [5], where they combined
a Pointer Network [85] with actor-critic reinforcement algorithm [44] to generate solutions for the
Traveling Salesman Problem. Later works including [45], [47], and [69] have gained great success in
solving larger-scale CO problems with RL algorithms, and also showed the ability to generalize to
large scale problem instances. There are similarities between our approach and the general approach
followed in RL algorithms like policy gradient [83] that are worth discussing. In RL, one learns
a distribution that maximizes the expected reward. This is done by sampling solutions from the
outputs of a neural network which are treated as the parameters of a probability distribution, then
calculating their reward and weighing it by their log probability, and finally backpropagating to the
parameters of the neural network. Stochasticity is often at the core of RL and the ways that one
may sample solutions for a given problem differ. Our goal is to propose a structured approach that
relies on methods from polyhedral combinatorics and convex geometry. Concretely, the output of
the neural network is transformed so that it yields a point in the convex hull of feasible solutions
of the problem. Then, instead of sampling, we leverage the decomposition algorithm to explicitly
construct the support of the distribution that is parametrized by the neural net output. The extension
we maximize can be viewed as the expected ’reward’ (objective), which is similar to how RL operates.
In terms of differentiability, our approach is slightly different since our extension is a.e. differentiable
and we can directly use automatic differentiation while RL deals with this using techniques like the
log-derivative trick. Importantly, extensions can be used to optimize any black-box objective which
is also the case for RL.

Other related lines of work include the Predict then Optimize paradigm [20] which combines learned
predictions with a deterministic optimization problem that is parametrized by them. The mathematical
relationship to extensions originates from the fact that extensions can be viewed as feasible solutions
to a linear program for the convex envelope that is parametrized by some neural net predictions
[36]. Another line of work that combines predictive and algorithmic components is the work on
backpropagating through solvers [68, 65, 66]. For a more complete reference on combinatorial
optimization with (graph) neural networks we refer the reader to [12].

B Decomposition Theorem: extended discussion

We will provide an extended discussion of the GLS result and its implications for our decomposition
approach. For that we will need some definitions as presented in [25] in order to provide a self-
contained discussion of the theorem, its proof, and its implications for our approach.
Definition B.1 (Defining properties of polyhedra). Let P ⊆ Rn be a polyhedron and let φ and ν be
positive integers.

1. We say that P has facet-complexity at most φ if there exists a system of inequalities
with rational coefficients that has solution set P and such that the encoding length of each
inequality of the system is at most φ. In case P = Rn we require φ ≥ n+ 1.

2. We say that P has vertex-complexity at most ν if there exist finite sets V,E of rational
vectors such that

P = conv(V ) + cone(E)

and such that each of the vectors in V and E has encoding length at most ν. In case P = ∅
we require ν ≥ n.

3. It can be shown that the vertex-complexity and facet-complexity are equivalent from the
perspective of polynomial-time algorithm design, i.e., one can be written as a polynomial of
the other [25, Lemma 6.2.4]. Therefore, we will only use the facet complexity to simplify
discussions.

4. A well-described polyhedron is a triple (P;n, φ) where P ⊆ Rn is a polyhedron with
facet-complexity at most φ. The encoding length ⟨P⟩ of a well-described polyhedron
(P;n, φ) is

⟨P⟩ = φ+ n.

□
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Definition B.2 (Strong optimization problem). The strong optimization problem for a given rational
vector x in n dimensions and any well described polytope (P;n, φ) is given by

max c⊤x, c ∈ P. (9)

Next, we state the GLS result which forms the foundation for Theorem 4.1.

Theorem B.3. (GLS decomposition) There exists an oracle polynomial-time algorithm that for any
well-described polyhedron (P;n, φ) given by a strong optimization oracle, for any rational vector x,
finds affinely independent vertices 1S0 ,1S1 , . . . ,1Sk

and positive rational numbers λ0, λ1, . . . , λk

such that x =
∑k

t=0 λt1St
.

Proof. Set x0 = x. The algorithm begins by finding the smallest face that contains x and then obtain
a vertex 1S0

of that face. If that vertex is x0 then the algorithm terminates. Otherwise, a half-line
is drawn from 1S0

through x0 until the boundary of the polytope is intersected. At the intersection
point, we obtain a new iterate x1. Notice that the previous iterate x0 can be written as a convex
combination of x1 and 1S0

since it is part of a line with endpoints x1 and 1S0
. Again, we find the

smallest face containing x1 and obtain a vertex 1S1
from it. If it matches the iterate, we terminate,

otherwise we repeat the process. Since each iterate belongs to the faces of all the previous iterates but
not the subsequent ones, the iterates are affinely independent and hence the process has to terminate
in at most k ≤ n steps. Given the starting vector and the vertices it is straightforward to compute
the coefficients with linear algebra. Furthermore the encoding length of each iterate is polynomial
since it is the unique point of intersection of affine subspaces spanned by x and the vertices of the
polytope.

B.1 Constructing a polynomial time and a.e. differentiable decomposition

Based on the GLS proof, we can identify two conditions that yield a valid decomposition when
satisfied. Assume we already have a starting point in the interior of the polytope, then:

1. For each iterate, finding a minimal face that contains it and retrieving a vertex from it.

2. The ability to find intersection points of half-lines with the boundary of the polytope.

Those requirements can be fulfilled via the strong maximization oracle.

Obtaining a polytope vertex for Step 3 of Algorithm 1. The proof requires a vertex of a face
containing the iterate xt. The oracle may return any maximizer of the optimization problem that is
not a vertex. The face F containing xt is the set of vectors attaining maxc∈P x⊤

t c [75]. Given access
to the vectors of the face F , we need to be able to retrieve a vertex of that face. This can be done by a
simple technique, where we make a call to the oracle for the perturbed program

max c̄⊤xt, c ∈ P, (10)

with c̄ = c+ [ϵ, ϵ2, . . . , ϵn]⊤ for some small ϵ [25][Remark 6.5.2].

Obtaining boundary intersections. It is a well-known fact that an optimization oracle can be
converted to a separation oracle in polynomial time. The separation oracle can be used to perform
line search across the ray sent from the vertex obtained in Step 3 that passes through the current
iterate. The line search can be used to calculate the coefficient that yields the next iterate which lies
on a lower-dimensional face of the polytope and this process can be performed repeatedly until the
full decomposition is computed.

Almost everywhere differentiable decomposition. To enable learning-based approaches with the
decomposition, the coefficients at each iteration have to be almost everywhere differentiable functions
of the iterates. We show how this is possible in the context of the recurrence Equation (4) by building
on the main idea behind the GLS theorem just by leveraging calls to the strong optimization oracle.

Theorem 4.1. There exists a polynomial-time algorithm that for any well-described polytope P
given by a strong optimization oracle, for any rational vector x, finds vertex-probability pairs
{pxt

(St),1St
} for t = 0, 1, . . . , n− 1 such that x =

∑n−1
t=0 pxt

(St)1St
and all pxt

(St) are almost
everywhere differentiable functions of x.
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Proof. Let P ⊂ Rn, current iterate xt ∈ P , and the vertex 1St given by the oracle in Step 3. Consider
the recursive decomposition

xt = αt 1St
+ (1− αt)xt+1, xt+1 ∈ P, 0 ≤ αt < 1.

First, we will focus on differentiability. Recall that we can view each iteration above as intersecting a
ray that passes through the vertex given by the strong optimization oracle and the current iterate with
the boundary of the polytope. To find the intersection, set the ray direction dt := xt − 1St ̸= 0 and
let

y(τ) := 1St
+ τ dt, τ ≥ 0,

so that xt = y(1). Note that we can recover the original iteration equation from y(τ) via

τ =
1

1− αt
.

Furthermore, note that the constraint xt − 1St ̸= 0 implies that the iterate cannot be a vertex of the
polytope. Indeed, the proof of the GLS result states that the decomposition terminates at a vertex,
which is consistent with this constraint. The intersection point with the boundary is given by the
largest coefficient allowed that can yield a point in the polytope

τ∗(xt;1St) = max{ τ ≥ 0 : y(τ) ∈ P }.

To derive the maximum step that yields an intersection with the boundary we will leverage the strong
optimization oracle. For any c ∈ Rn, the support function hP(c) := maxz∈P c⊤z which can be
computed using the strong optimization oracle satisfies

c⊤y(τ) = c⊤(1St
+ τ dt)

≤ hP(c).

This implies

τ ≤ hP(c)− c⊤1St

c⊤dt
, whenever c⊤dt > 0.

Taking the best bound yields

τ∗(xt;1St
) = min

c: c⊤dt>0

hP(c)− c⊤1St

c⊤dt
. (11)

Rewriting in terms of a∗ = 1− 1
τ∗ we obtain

a∗(xt;1St
) = 1− max

c: hP(c)>c⊤1St

c⊤(xt − 1St
)

hP(c)− c⊤1St

. (12)

Note that for a positive denominator, the maximum of the ratio is always between zero and one. To
see why that is the case, notice that c = xt − 1St is always feasible and it always yields a positive
ratio. The ratio is upper bounded by 1 because hP is the support function, so we have for x ∈ P that

hP(c) ≥ c⊤x =⇒ hP(c)− c⊤1St
≥ c⊤x− c⊤1St

.

The optimizer a∗ is a piecewise linear function of xt as a maximum over linear functions. Piecewise
linear functions are locally Lipschitz, and therefore differentiable almost everywhere. Note that 1St

is the maximizer of the strong optimization problem from Equation (9). The maximizer depends on
xt and its gradients are zero almost everywhere because it is a piecewise constant function of xt.
Given an optimal c∗, we can calculate a∗ and hence the probabilities in step 6 of Algorithm 1. Recall
that the probabilities are given by pxt

(St) = at
∏t

i=0(1− ai). Since each ai is an a.e. differentiable
function of its iterate and each iterate depends on the preceding iterate through the differentiable
recursive update rule, Equation (4), we can calculate the derivatives of each pxt

(St) with respect to
the starting point in the polytope x with standard automatic differentiation packages.

Finally, we want to show that the a.e. differentiable decomposition can be computed in polynomial
time. Step 3 requires solving an LP and can be done in polynomial time. If we show that Step 4 is also
computable in polynomial time, we are done. To do so, we need to show that the maximum coefficient
for the ray-boundary intersection is computable in polynomial time. We will show that the optimal
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c∗ can be found by solving a standard convex optimization problem. Observe that Equation (11) can
be written as

min
c∈Rn

hP(c)− c⊤1St , subject to c⊤dt = 1, (13)

by a simple change of variables c → c/(c⊤dt) because the ratio in Equation (11) is invariant to
rescalings of c. Therefore, the objective is a sum of the support function of the polytope (convex) and
−c⊤1St

which is just a linear function (convex). Hence, the sum is also convex, so we have a convex
minimization problem in c subject to a linear constraint. This is a standard linear program that we
can efficiently solve with any of the well known algorithms to obtain the optimal c∗.

Special case: Compact polytope description. An important special case that simplifies the design of
efficient decompositions for end-to-end learning is when the polytope admits a compact description
in terms of polynomially many inequalities. Recall that for a general polytope

P =
{
x ∈ Rn : z⊤i x ≤ bi, i = 1, . . . ,m

}
,

Again, we pick the convex combination coefficient as

amax
t = max

{
at ∈ [0, 1) : xt+1(at) ∈ P

}
,

This choice of coefficient leads to the next iterate being as far as possible from the current one. This
means the coefficient will be pushed until some constraints of the polytope are tight for the new
iterate and hence the boundary will be intersected. At iteration t, with current iterate xt and chosen
corner 1St

, we may determine the coefficient by enforcing each face inequality. In particular:

z⊤i xt+1 ≤ bi ⇐⇒ z⊤i
xt − at 1St

1− at
≤ bi

⇐⇒ at ≤
bi − z⊤i xt

bi − z⊤i 1St

, whenever bi − z⊤i 1St > 0.

Hence

amax
t (xt) = min

i: bi−z⊤
i 1St>0

bi − z⊤i xt

bi − z⊤i 1St

, (14)

which shows that the maximum feasible weight at is a well-defined differentiable function of the
current iterate xt. This is crucial because it allows us to backpropagate through the coefficient and
leverage the decomposition in gradient-based optimization.

Equation (14) and Equation (10) are sufficient for our decomposition. Specifically, given access to
a fast algorithm for Equation (14) and a fast algorithm for Equation (10) we can obtain a tractable
decomposition that allows us to build DC(x) in a differentiable manner. It should be noted that if the
polytope is defined by exponentially many inequalities, then iterating over the inequalities to find the
minimum becomes intractable.

B.2 On the applicability of our approach to different combinatorial problems

Computational complexity vs applicability. The existence of a strong optimization oracle for the
feasible set polytope is a sufficient condition for the applicability of our approach. Superficially, this
may seem to imply that our approach is only applicable to problems that are easy from a computational
complexity standpoint. However, as we will explain, the computational complexity of the problem
we are trying to solve is not sufficient to determine the applicability of our method.

Consider the Traveling Salesperson Problem (TSP) Polytope. The strong optimization problem for
that polytope is not solvable in polynomial time unless P = NP. Having such an oracle would be
equivalent to having an oracle for the problem itself. Fortunately, we can still apply our method to
TSP. In combinatorial optimization, one can reformulate a problem to “offload” some of its difficulty
from the constraints to the objective. While TSP can be viewed as a linear optimization problem
over the TSP polytope, it can also be viewed as a quadratic optimization problem over a permutation
(Birkhoff) polytope. Linear maximization can be done in polynomial-time in Birkhoff polytopes,
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which means we can efficiently construct an extension of the quadratic objective over the Birkhoff
polytope.

Polytope description vs applicability. Another important consideration is the size of the description
of the polytope. Indeed, as we showed in Appendix B.1, if a polytope admits a compact description
in terms of a polynomial number of inequalities, then we can straightforwardly proceed with our
decomposition. On the other hand, even when that is not the case our method can still be applied
using just the optimization oracle as it can be seen in the proof of Theorem 4.1. An intuitive example
is the base polytope of a submodular function. It is defined by exponentially many inequalities but
linear maximization over the polytope can be done efficiently with the greedy algorithm. The optimal
value of the linear maximization problem in the polytope is in fact given by the Lovász extension of
the submodular function.

C Decomposition with controlled approximation

One of the limitations of the decomposition as presented in the approach is that the support of the
distribution we obtain depends exactly on the ambient dimension of the space. There are a few
reasons why this might not be desirable. First, an exact decomposition like this fixes at most n sets in
the support. That may be too restrictive in problems with ’sparse rewards’, i.e., when good objective
values are achieved on only a few points. It would be preferable if we had more control over the
number of sets in the support of the distribution, which could in turn lead to better outcomes for
optimization. We show how we can achieve this with a simple tweak that allows us to control the
reconstruction quality, which we also utilize in our max coverage experiments.

C.1 Decomposition via rescaling

Start with x0 = x. For each iteration t = 0, 1, 2, . . . , k, we first pick the corner 1St
and compute the

iteration coefficient
ãt = min

{
min
i∈St

xt(i), min
j /∈St

(1− xt(j))
}
.

The difference now is that instead of picking the maximum coefficient ,we will rescale the ãt in each
step by some fixed constant b ∈ (0, 1]. This means that the next iterate will not be intersecting the
boundary and hence the algorithm will require more steps to terminate, hence requiring a tolerance
parameter ϵ as we have described in Algorithm 1. Additionally, we fix some lower bound ℓ on the
rescaling so that

at =

{
b ãt, b ãt ≥ ℓ,

ãt, b ãt < ℓ.

Using this coefficient we compute the new iterate using Equation (4).
Proposition C.1. Suppose we pick step 3 in Algorithm 1 according to Equation (5). Then the
reconstruction error of the algorithm (step 8 in Algorithm 1) decays exponentially in k.

Proof. After k iterations we may express x as

x =

k∑
t=0

(t−1∏
i=0

(1− ai)
)
at︸ ︷︷ ︸

pxt (St)

1St
+

( k∏
i=0

(1− ai)
)
xk+1.

Recall from step 8 of Algorithm 1 we have that the stopping criterion (given by the reconstruction
error) is

∥x−
k∑

t=0

pxt(St)1St
∥ ≤ ϵ.

Clearly, the term inside the norm on the left hand side of the inequality is the residual

rk+1 =
( k∏
i=0

(1− ai)
)
xk+1.
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For the reconstruction error we just need to compute the norm of the residual and show that it decays
exponentially in k. Hence, we calculate

∥rk+1∥2 =
( k∏
i=0

(1− ai)
)
∥xk+1∥2

≤ (1− ℓ)k ∥x∥2
≤ (1− ℓ)kn,

which completes the proof.

Given some tolerance parameter ϵ, this allows us to control the number of sets considered in the
iteration. We observed that using this approach helped with the training dynamics of the model as
well as with achieving better approximate solutions.

D Deferred proofs from Section 4.2

Proof of Theorem 4.3

Proof. The proof follows the same argument as the proof in [25][Theorem 6.5.11]. To make the
result more intuitive we may assume without loss of generality that the entries of xt are sorted, i.e.
xt(1) ≥ xt(2) ≥ · · · ≥ xt(n) . Under this ordering,

1St
= arg max

c∈{0,1}n

∥c∥1=k

x⊤
t c,

selects exactly the top k coordinates. Since ∥xt∥1 = k and ∥1St∥1 = k, taking the ℓ1-norm of both
sides of Equation (4) gives

k = at k + (1− at) ∥xt+1∥1,
so ∥xt+1∥1 = k and the sum-to-k constraint is preserved exactly. Apart from the norm constraint,
we also have to ensure that each coordinate remains in the hypercube. To keep each coordinate in
the hypercube we solve for the coefficient at that satisfies 0 ≤ xt+1 ≤ 1 in our recurrence equation.
First, we rearrange Equation (4)

xt+1 =
xt − at1St

1− at

and note that subtraction at the numerator affects only the top k coordinates. It is clear that for i ∈ St

the coordinates cannot possibly exceed one because the denominator is always larger, but they may
drop below 0. So we need to ensure

xt(i)− at
1− at

≥ 0, (15)

which implies at ≤ mini∈St
xt(i) and corresponds to a constraint on the k-th coordinate in this

ordering. On the other hand, for j /∈ St they can only increase in magnitude, so they may exceed 1,
which leads us to

xt(j)

1− at
≤ 1, (16)

and hence at ≤ 1−maxj /∈St
xt(j) which constrains the (k + 1)-th coordinate. Ensuring that both

Equation (15) and Equation (16) are satisfied, and following the GLS proof, we pick the largest
possible coefficient which leads us to Equation (8):

at = min
{
min
i∈St

xt(i), 1−max
j /∈St

xt(j)
}
.

If at = mini∈St xt(i), the k-th entry is set to zero; otherwise the (k + 1)-th coordinate is set to 1.
Note that from Equation (4), once a coordinate has been fixed to either 0 or 1, it cannot change in
subsequent iterations. Therefore, the process will terminate when the next iterate becomes a corner
of ∆n,k. Since there are k zeros and n− k ones at the final iterate and each iteration fixes exactly
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one coordinate, the process terminates after at most k + (n− k) = n iterations. In line with the GLS
proof, the next iterate intersects the boundary of the polytope at a face of lower dimension because
the minimum is guaranteed to fix a coordinate either to 0 or to 1.

Finally, because each at is defined via pointwise minima and maxima of the entries of xt, it is almost
everywhere differentiable in xt. By the chain rule, the resulting probability weights

pxt(St) = at
∏
i<t

(1− ai)

are almost-everywhere differentiable in the original input x0. This completes the proof.

Proof of Proposition 4.4

Proof. Let z ∈ [0, 1]n and x = sz̃+ u, and define

µ =
1

n

n∑
i=1

zi, z̃ = z− µ1, u =
k

n
1.

Since
∑

i z̃i =
∑

i(zi − µ) = 0, we have
n∑

i=1

xi = s

n∑
i=1

z̃i +

n∑
i=1

ui = 0 + k,

so ∥x∥1 = k. Next, for each coordinate

xi = s (zi − µ) +
k

n
.

Because 0 ≤ zi ≤ 1, we have −µ ≤ zi − µ ≤ 1− µ. Therefore

xi ≥ −s µ+
k

n
=

k

n

(
1− s

nµ

k

)
≥ 0

by s ≤ k
nµ , and

xi ≤ s (1− µ) +
k

n
= 1− n− k

n

(
1− s

n(1− µ)

n− k

)
≤ 1

by s ≤ n−k
n(1−µ) . Hence 0 ≤ xi ≤ 1 for all i, and we conclude x ∈ ∆n,k.

E Case study: Partition Matroids and Spanning Trees

E.1 Partition Matroid

Partition matroids provide a powerful and flexible framework for modeling constraints in set function
optimization problems. They capture scenarios where elements are divided into categories, and we
are allowed to select only a limited number from each category — a structure that arises naturally in
many real-world applications. This structure naturally arises in applications such as sensor placement,
where sensors are partitioned by geographic regions and each region has an independent budget
[46]; job allocation and welfare maximization, where tasks are categorized by required skills and
only a bounded number of tasks from each skill category can be assigned [11, 86]; and many other
theoretical and practical settings [23, 14, 39]. Partition matroids thus provide a flexible abstraction
for modeling structured selection problems with heterogeneous constraints.

A partition matroid or partitional matroid is a matroid that is a direct sum of uniform matroids. It
is defined over a ground set in which the elements are partitioned into different categories. For
each category, there is a cardinality constraint–a maximum number of allowed elements from this
category. Formally, let V1, . . . , Vc be disjoint subsets such that V = ∪di=1Vi. Let ki be integers with
0 ≤ ki ≤ |Vi|. Consider the following combinatorial optimization problem:

max
S:|S∩Vi|=ki

f(S). (17)
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Note that when c = 1, this reduces to the cardinality case. The convex polytope of feasible solutions
is known as the partition matroid base polytope and is described as follows:

B =

{
x : ∀S ⊆ E

∑
e∈S

x(e) ≤ r(S), and ∥x∥1 =

c∑
i=1

ki

}
(18)

r(S) =

c∑
i=1

min(|S ∩ Ei|, ki) ∀S ⊆ E. (19)

The vertices of the matroid base polytope B are the indicator vectors of sets whose intersection with
every block Vi has size exactly ki. Hence, any vector x ∈ B can be written as a convex combination of
the indicator vectors of feasible sets. We prove that Algorithm 2, given x ∈ B, returns in polynomial
time a distribution over feasible sets which is continuous and differentiable with respect to x. Note
that Algorithm Algorithm 2 is an explicit version of our generic Algorithm Algorithm 1, with steps 3
and 4 specified.

Theorem E.1. Given x ∈ B, Algorithm 2 terminates after at most O(n) iterations and returns
{(pxt

(St), St)} such that for every St and Vi we have |St ∩ Vi| = ki, and
∑

t pxt
(St) = 1 with

0 ≤ pxt
(St) ≤ 1. Moreover, each pxt

(St) is an almost everywhere differentiable function of x.

Proof of Theorem E.1. Suppose x0 = x ∈ B. We prove the correctness of our algorithm for every
iteration t. To obtain a vertex of the polytope in the support of xt, we set

1St = argmax
c∈{0,1}n,∥c(Vi)∥1=ki

x⊤
t c

The optimal solution for the above problem is St = ∪ci=1Ti where for each block Vi, Ti is the indices
of the top ki coordinates within xt(Vi). Define

at = min

{
min
i∈St

xt(i), 1−max
i/∈St

xt(i)

}
, and (20)

xt+1 = 1
1−at

(xt − at1St) (21)

For the correctness of Algorithm 2 it suffices to show xt+1 is in fact inside the matroid base polytope
B.

First, note that xt+1 ∈ [0, 1]n by the definition of at and the fact that xt ∈ [0, 1]n. Second, for both xt

and 1St
, we have ∥x∥1 = ∥1St

∥1 =
∑c

i=1 ki. Hence, by the definition xt = at1St
+ (1− at)xt+1,

it follows that ∥xt+1∥1 =
∑c

i=1 ki. It remains to show for all S ⊆ V it holds that
∑

e∈S xt+1(e) ≤
r(S). Recall that r(S) =

∑c
i=1 min(|S ∩ Vi|, ki) and

∑
e∈S

xt+1(e) =
∑

e∈S∩V1

xt+1(e) + · · ·+
∑

e∈S∩Vc

xt+1(e) (22)

We show each term
∑

e∈S∩Vi
xt+1(e) ≤ min(|S∩Vi|, ki). First suppose min(|S∩Vi|, ki) = |S∩Vi|.

Then since xt+1(e) ∈ [0, 1] we have
∑

e∈S∩Vi
xt+1(e) ≤

∑
e∈S∩Vi

1 = |S ∩ Vi|. Second, suppose
min(|S ∩ Vi|, ki) = ki. Note

∑
e∈S∩Vi

xt+1(e) ≤
∑

e∈Vi
xt+1(e), hence it suffices to show∑

e∈Vi
xt+1(e) ≤ ki.

In this case we use the induction hypothesis that xt ∈ B. xt being in B implies that
∑

e∈Vi
x(e) ≤

r(Vi) = ki. By definition we have
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at
∑
e∈Vi

1St
(e) + (1− at)

∑
e∈Vi

xt+1(e) =
∑
e∈Vi

xt(e) ≤ ki (23)

⇒at|St ∩ Vi|+ (1− at)
∑
e∈Vi

xt+1(e) ≤ ki (24)

⇒atki + (1− at)
∑
e∈Vi

xt+1(e) ≤ ki (|St ∩ Vi| = ki by the choice of St)

⇒(1− at)
∑
e∈Vi

xt+1(e) ≤ (1− at)ki (25)

⇒
∑
e∈Vi

xt+1(e) ≤ ki (26)

This finishes the proof that
∑

e∈S xt+1(e) ≤ r(S), thus xt+1 ∈ B.

Algorithm 2 terminates in at most O(n) iterations. At each iteration t, xt+1 differs from xt by fixing
one additional coordinate to either 0 or 1. Once a coordinate is fixed to 0/1, it remains unchanged in
all future iterates. The process terminates when xt has n−

∑c
i=1 k zeros and

∑c
i=1 ki ones, meaning

all coordinates are 0/1.

Finally, because each at is defined via pointwise minima and maxima of the entries of xt, it is almost
everywhere differentiable in xt. By the chain rule, the resulting probability weights

pxt
(St) = at

∏
i<t

(1− ai)

are almost-everywhere differentiable in the original input x0. This completes the proof.

Algorithm 2 Decomposition for partition matroid

Require: x ∈ B.
1: x0 ← x
2: repeat
3: 1St = argmaxc∈{0,1}n,∥c(Vi)∥1=ki

x⊤
t c

4: at = min {mini∈St xt(i), 1−maxi/∈St
xt(i)}

5: xt+1 ← (xt − at1St) /(1− at)

6: pxt
(St)← at

∏t−1
i=0(1− ai)

7: t← t+ 1
8: until xt ∈ {0, 1}n
9: return All {(pxt

(St), St)} pairs.

E.1.1 Generating neural predictions in the Partition Matroid Base Polytope

Similar to the cardinality constraint case, we need to map the output of the neural network to the
polytope in a differentiable and computationally efficient way so that it can be passed to Algorithm
2. The general idea is similar to the one we proposed in Section 4.2.1, however it requires a more
careful way of dealing with blocks.
Proposition E.2 (Block-wise scaling into a partitioned simplex). Let the index set [n] = {1, . . . , n}
be partitioned into disjoint blocks V1, . . . , Vc with |Vi| = ni and

∑c
i=1 ni = n. Given any vector

z ∈ [0, 1]n, set

mi :=
1

ni

∑
e∈Vi

z(e), m(e) := mi (e ∈ Vi), u(e) :=
ki
ni

(e ∈ Vi),

si := min
(

ki/ni

mi
, (ni−ki)/ni

1−mi

)
, s(e) := si (e ∈ Vi),
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and define
x := s⊙ (z−m) + u.

Then x ∈ B; that is, every coordinate of x lies in [0, 1] and each block Vi has the prescribed sum ki.

Proof. For each block Vi and every e ∈ Vi we have

x(e) = si
(
z(e)−mi

)
+

ki
ni

.

Since
∑

e∈Vi
(z(e)−mi) = 0, summing over Vi gives∑

e∈Vi

x(e) = ki.

Because −mi ≤ z(e)−mi ≤ 1−mi,

x(e) ≥ ki
ni
− simi, x(e) ≤ ki

ni
+ si(1−mi).

By the definition si = min
(ki/ni

mi
, (ni−ki)/ni

1−mi

)
both right–hand sides lie in [0, 1], so 0 ≤ x(e) ≤ 1.

Thus every block sums to ki and every coordinate is in [0, 1]; hence x ∈ B.

E.2 Graphical Matroid

In this subsection we turn our attention to graphical matroids and show that our framework can be
extended beyond cardinality constraints. Graphical matroids are core combinatorial objectives that
have been studied for decades in combinatorial optimization. Some of the most basic combinatorial
problems such as finding a minimum spanning tree in a connected graph to more complex problems
like "does a graph G contain k disjoint spanning trees?" which appears in many applications in
Network Theory.

Let G = (V,E) be a graph with n nodes and m edges. The type of optimization problems that we
consider here are expressed as follows

max
S⊆E:S∈F

f(S) (27)

where F denotes the set of full spanning forests of G. We focus on the convex hull formed by the
feasible sets edges in F . That is, let 1T be the indicator vector of T ∈ F and define

B(G) = conv{1T : T ∈ F} (28)

The combinatorial object B(G) is known as the graphical matroid base polytope. For any set of
edges let the rank be r(S) = n− c(S) where c(S) is the number of connected components of the
subgraphs formed by the edges in S. For instance, if G is connected and S forms a spanning tree
then r(S) = n− 1. It is known that B(G) can be defined in an equivalent way as follows

B(G) = {x ∈ [0, 1]m : ∀S ⊆ E, x(S) ≤ r(S), and ∥x∥1 = n− c(V )}, (29)

where we use the notation x(S) :=
∑

e∈S x(e) for every subset S. Note that any vector x ∈ B(G)
can be written as a convex combination of the indicator vectors of feasible sets i.e, indicator vectors
of spanning forests. We follow our general template to design a decomposition algorithm for the
graphical matroid (Algorithm 3). We can then prove the following.

Theorem E.3. Given x ∈ B(G), Algorithm 3 terminates after at most O(m) iterations and returns
{(pxt(St), St)} such every St corresponds to a spanning forest in G and

∑
t pxt(St) = 1 with

pxt
(St) ∈ [0, 1]. Moreover, each pxt

(St) is a continuous and almost everywhere differentiable
function of x.
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Algorithm 3 Decomposition for graphical matroid

Require: Graph G = (V,E) and x ∈ B(G).
1: x0 ← x
2: repeat
3: St ← A maximum spanning forest using xt as the weights for edges (treat zero entries as

non-edges.)
4: at = min

{
mine∈St

x(e), 1−maxe/∈St
x(e), minF⊆E

r(F )−xt(F )
r(F )−|St∩F |

}
5: xt+1 ← (xt − at1St

) /(1− at)

6: pxt(St)← at
∏t−1

i=0(1− ai)
7: t← t+ 1
8: until xt ∈ {0, 1}m
9: return All {(pxt

(St), St)} pairs.

Proof. The algorithm follows a similar template as our main result, the only difference is on select-
ing an appropriate vertex of the polytope at each step and selecting an appropriate coefficient at.
Specifically in each iteration t we define

xt+1 ← (xt − at1St
) /(1− at)

where St is a maximum spanning forest using xt as the weights for edges (treat zero en-
tries as non-edges). In order to guarantee that xt+1 is in the polytope B(G) it must satisfy
the rank inequalities and be in [0, 1]m. To guarantee xt+1 ∈ [0, 1]m we enforce that at ≤
min {mine∈St

x(e), 1−maxe/∈St
x(e)}. To satisfy the rank constraints, for every F ⊆ E we

must guarantee xt+1(F ) ≤ r(F ). That is

xt+1(F ) ≤ r(F ) ⇐⇒ (xt(F )− at1St
(F )) /(1− at) ≤ r(F )

⇐⇒ xt(F )− r(F ) ≤ at(|St ∩ F | − r(F ))

⇐⇒ at ≤
r(F )− xt(F )

r(F )− |St ∩ F |

Note that r(F ) > |St ∩ F | and we can dismiss the case where r(F ) = |St ∩ F |. This must hold for
all subsets F ⊆ E. We therefore set

at = min

{
min
e∈St

x(e), 1−max
e/∈St

x(e), min
F⊆E

r(F )− xt(F )

r(F )− |St ∩ F |

}
(30)

It is not immediate if we can compute at in polynomial-time as the third term in Equation (30) is
troublesome and involves minimization over all the 2m subsets. There however exists a polynomial
time algorithm to compute at. For a fixed λ ∈ [0, 1] define the set function g(λ,t) : 2

m → R

g(λ,t)(F ) := (1− λ)r(F )− xt(F ) + λ|F ∩ St| (31)

Then xt+1 is in the polytope iff:

1. at ≤ min {mine∈St
x(e), 1−maxe/∈St

x(e)}, and

2. min
F⊆E

g(at,t)(F ) ≥ 0.

To this end, our goal is to find the largest λ∗ ∈ [0,max {mine∈St x(e), 1−maxe/∈St
x(e)}] for

which min
F⊆E

g(λ∗,t)(F ) ≥ 0. Then at = min {mini∈St x(i), 1−maxi/∈St
x(i), λ∗}.

We find such λ∗ by doing a binary search over the interval. To justify our binary search we need
two things. First is monotonicity of ϕ(λ) := g(λ,t)(F ) w.r.t λ and any fixed F . Second is computing
minF⊆E g(λ,t)(F ) for a fixed λ.
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Claim E.4. For a fixed F , ϕ(λ) := g(λ,t)(F ) is a nonincreasing function in λ.

Proof. Note that (1− λ)r(F )− xt(F ) + λ|F ∩ St| = r(F )− xt(F ) + λ(|F ∩ St| − r(F )) is an
affine function of λ with negative slope since r(F ) > |St ∩ F |. This completes the proof.

Claim E.5. There is a polynomial time algorithm, i.e. efficient oracle, that for a fixed λ returns
min
F⊆E

g(λ,t)(F ).

Proof. We point out that the set function g(λ,t) for a fixed λ is a submodular function. This is
because the rank function r(F ) is submodular, −xt(F ) and λ|F ∩ St| are modular functions.
Hence, minF⊆E g(λ,t)(F ) can be found in strongly polynomial time by any submodular-function
minimization (SFM) algorithm, for example the one provided in [76].

In the binary search, at a fixed λ using the efficient oracle we compute minF⊆E g(λ,t)(F ). If this
value is greater than zero, we increase λ and continue the binary search in the right half interval. Else,
we decrease λ and continue the binary search in the left half integral. (Note that this approach finds
λ∗ up to a desired precision ε ≥ 0.)

Finally, we argue that at as defined in Equation (30) is an a.e. differentiable function with respect
to xt. The proof is similar to what we have seen in the cardinality cases. First note that for a fixed
maximum spanning tree St, at is the minimum of finitely many affine functions of xt; hence, it
is a piecewise linear function and almost everywhere differentiable. Second, the map that outputs
a maximum weight spanning tree with respect to xt is almost everywhere constant (the resulting
spanning tree changes only if some edge weights are exactly equal.). These two together yield that at
as defined in Equation (30) is an a.e. differentiable function with respect to xt.

E.2.1 Generating neural predictions in the Graphical Base Matroid

We need to massage the output of the neural network in a differentiable and computationally efficient
way so that it obeys a relaxed constraint and can be passed to Algorithm 3. Algorithm 3 requires x
to lie within the graphical matroid base polytope B(G), which represents a relaxed version of the
original constraints. Without loss og generality we assume G is a connected graph. Every point inside
the graphical matroid base polytope can be seen as a distribution over spanning trees. We first define
the uniform distribution over the set of all spanning trees and forces our encoder network to generate
a perturbation to this uniform distribution. Some notations are in order.

Fix an arbitrary orientation over the edges of G. For an edge e = (u, v), i.e., oriented from u to v, let

be = 1u − 1v with 1u(v) =

{
1 if v = u

0 otherwise
(32)

The Laplacian of (positively) weighted graph G is LG =
∑

e∈E w(e)beb
⊤
e . Let L†

G denote the
Moore–Penrose pseudo-inverse of LG.

Generating a perturbation vector. Let T denote the set of all spanning trees of G and µ be a
uniform distribution of all spanning trees of G. A uniform spanning tree distribution is a uniform
distribution over all spanning trees of a given graph. If the graph is weighted, then we can study the
weighted uniform distribution of spanning trees where the probability of each tree is proportional to
the product of the weight of its edges. For w : E → R+, we say µ(w) is a w-uniform spanning tree
distribution, if for any spanning tree T ∈ T ,

Pr[T ] ∝
∏
e∈T

w(e).

Let µe(w) := PrT ∼ µ[e ∈ T ] be the marginal probability of edge e. The following result gives us a
way of writing an analytical expression for µe.
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Theorem E.6 ([81]). For any edge e

µe = b⊤e L
†
Gbe.

Moreover, for weighted graph G with w : E → R+, if w(e) is the weight of e, then

µe(w) = w(e)b⊤e L
†
Gbe.

The above Theorem E.6 suggests the following way of generating a point inside the graphical matroid
base polytope. Let w ∈ RE

+ be the output of an encoder network that assigns a positive weight
to every edge of graph G. We think of w as a perturbation to the uniform distribution over the
spanning trees. Then obtain vector x whose e-th entry is µe(w) according to the weight vector w
and Theorem E.6. The vector x lies inside the graphical matroid base polytope B(G). Recall that
B(G) = conv{1T : T ∈ T } and x = ET∼µ(w)[1T ] is a convex combination of indicator vector of
the spanning trees. It remain to show that µ(w) is continuous and differential with respect to w.
Theorem E.7. Let G = (V,E,w) be a connected, weighted graph with non–negative edge weights
w : E → R≥0 and let

µe(w) = PT∼µ(w)[ e ∈ T ] = w(e) b⊤e L
†
G(w) be, e ∈ E,

where be is the signed incidence vector of e and LG(w) =
∑

f∈E w(f) bfb
⊤
f is the weighted

Laplacian (with Moore–Penrose pseudoinverse L†
G). Then

i. µe : RE
≥0 → R is continuous on the closed orthant;

ii. µe is C∞ (indeed analytic) on the open orthant RE
>0;

iii. µe is differentiable everywhere on RE
≥0.

Proof. Let L̃G(w) denotes the reduced Laplacian with any single row/column removed. By Kirch-
hoff’s Matrix–Tree Theorem [41] we have

τ(w) = det
(
L̃G(w)

)
=

∑
spanning trees T

∏
f∈T

w(f),

For an edge e we have,

µe(w) = 1− τ(w − e)

τ(w)
(33)

where w − e denotes the weight vector with w(e) = 0. Both numerator and denominator in (33) are
(multivariate) polynomials; moreover τ(w) > 0 whenever at least one spanning tree has positive total
weight, which is guaranteed by the connectivity of G. Hence the ratio is continuous on RE

≥0, proving
part (i).

On the interior RE
>0 the reduced Laplacian L̃G(w) is positive definite (PD). The maps

w 7−→ L̃G(w) (affine map), A 7−→ A−1 (C∞ on PD),

compose smoothly, so the formula µe(w) = w(e) b⊤e L̃G(w)
−1be is infinitely differentiable i.e., is

C∞ and indeed real-analytic on RE
>0, giving (ii).

It remains to show (iii) at boundary points where some coordinates of w equal 0. Let w0 be a weight
vector with at least one zero entry, and Z be the set of zero weight edges. There are two cases:

Case A: G− Z is connected. In this case the reduced Laplacian L̃G(w0) positive definite since G−Z
has at least one spanning tree, so the same smoothness argument used for (ii) applies; thus µe(w0) is
differentiable (in fact is C∞).

Case B: G− Z is disconnected. Then every spanning tree of any nearby weight vector must contain
the cut–edge whose weight vanished, so the term in Equation (33) equals 1 in a whole neighbourhood;
hence µe is locally constant and therefore differentiable at w0 with derivative 0.

In either case one-sided (classical) derivatives exist and coincide with the interior derivative, complet-
ing (iii).
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F Case study: Maximum Independent Set

For the maximum independent set problem, we want to find the largest set S of nodes in a graph
G = (V,E), where no pair of nodes in the set is adjacent. Unfortunately, there is no known
compact description in terms of inequalities for the independent set polytope [55]. This immediately
presents a challenge for the design of the decomposition. Furthermore, linear optimization over the
independent set polytope is NP-Hard since it amounts to solve the the maximum independent set
problem. Therefore, in this case, we will consider a relaxation of the polytope which has a known
description in terms of inequalities and for which the optimization problem can be solved efficiently.

First, let us assume that ∅ ∈ C, and that the graph G has no isolated nodes. In order to be able to
optimize over independent sets we are going to need access to a polytope description. The constraints
0 ≤ xi ≤ 1 for all i and x(i) + x(j) ≤ 1 for (i, j) ∈ E are defining the polytope referred to
in the literature as FSTAB [55]. FSTAB is a relaxation of the independent set polytope since it
includes half-integral vertices. We will explain how we will leverage FSTAB to explore the space of
independent sets.

For step 3 we use Equation (10) to obtain a vertex of the polytope FSTAB. Note that now the vertex
may contain half-integral coordinates. This will affect our coefficient selection. We need to select
a coefficient that does not violate the polytope inequalities. The constraints 0 ≤ x ≤ 1 imply the
same rule for the coefficient at. However, we have an additional consideration. If we just choose the
coefficients as in the cardinality constraint case, when the coordinates i, j /∈ S and (i, j) ∈ E get
rescaled by 1− at, we may break the constraint for x(i) + x(j) ≤ 1. This leads us to the following
result:

Theorem F.1. Let

at = min

{
min
i∈St

xt(i)︸ ︷︷ ︸
x(i)≥0

, min
j /∈St

(
1− xt(j)

)
︸ ︷︷ ︸

x(j)≤1

, min
(u,v)∈E: u,v/∈St

(
1− xt(u)− xt(v)

)
︸ ︷︷ ︸

x(u)+x(v)≤1

}
(34)

be the coefficient chosen at each iteration in the decomposition. Algorithm 1 on FSTAB using
coefficients from Equation (34) and Equation (10) for step 3, obtains an exact decomposition in at
most n+ 1 steps, and each coefficient is an a.e. differentiable function of its corresponding iterate in
the decomposition.

Proof. At each step, a coordinate is set to either 0, 1, or an edge inequality is tightened. Since we use
the same recurrence as with the cardinality constraint, if at any iteration a coordinate is set to 0 or
1, then it cannot change. For the edge inequalities, suppose we have xt+1(u) + xt+1(v) = 1, and
vt+1(u) + vt+1(v) = 1 where vt+1 is the vertex we obtain by the oracle at iteration t+ 1. Thus

xt+2(u) + xt+2(v) =
xt+1(u) + xt+1(v)− at+1

(
vt+1(u) + vt+1(v)

)
1− at+1

(35)

=
1− at+1 · 1
1− at+1

(36)

= 1, (37)

so the edge equality persists. Each time we tighten an inequality, the dimension of the minimal face
containing the current iterate is decreased by one. Thus, in at most n steps the algorithm will land on
a vertex (face of dimension 0) of the polytope, at which point the algorithm terminates. Finally, the
coefficients are always a.e. differentiable functions of xt since the minimum function over xt is also
everywhere differentiable.

Obtaining a point on FSTAB. Since we would like to build a support that avoids half-integral points
as much as possible we follow a simple gradient-based projection scheme for FSTAB. We begin by
defining the total edge-violation of a point x ∈ Rn with slack parameter s ≥ 0 as

V (x) =
∑

(i,j)∈E

max
{
0, x(i) + x(j) + s− 1

}
,
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which measures how much each edge (u, v) exceeds the bound x(i) + x(j) + s ≤ 1. To correct all
violations at once, we compute∇V (x) = (d1, . . . , dn), where

di =
∑

{j: (i,j)∈E}

1
[
x(i) + x(j) + s− 1 > 0

]
counts how many incident edges on node i are violated. Next, for each violated edge (u, v) with
violation amount

buv = x(u) + x(v) + s− 1 > 0,

we require a step-size η satisfying buv − η (du + dv) ≤ 0, which implies

η ≥ buv
du + dv

.

Taking the maximum of these ratios over all violated edges gives the minimal η that fixes every
violation:

η = max
(u,v) : x(u)+x(v)+s>1

x(u) + x(v) + s− 1

du + dv
.

Finally, we compute x′ = σ(x−η∇V (x)), where σ is a ReLU. This guarantees x′(u)+x′(v)+s ≤ 1
for every (u, v) ∈ E and x′ ≥ 0, which ensures that we have a point in FSTAB.

Dealing with half-integral corners. The decomposition may still yield several half-integral corners
which can affect the performance of our extension, since we need the support sets to be independent.
There are two ways of dealing with half integral corners. One approach is to penalize them in
the objective i.e., the function evaluated at half-integral corners returns 0. Another approach is by
tightening the relaxation with additional inequalities commonly found in the literature, including
clique constraints and odd cycle constraints [55]. In practice, many of those come down to imposing
an L1 norm constraint on the point in the polytope. We may enforce both constraints (FSTAB and L1)
by alternating projections. It is easy to see that if the norm is 1 and the constraints are all satisfied,
then we can always obtain a decomposition into independent sets, so a valid decomposition always
exists.

G Experiments

Here, we provide detailed experimental settings and some additional experimental results. All
the datasets are public and our code is available at https://github.com/frankx2023/Neural_
Combinatorial_Optimization_with_Constraints.

Hardware. All experiments are run on 16 cores (32 threads) of Intel(R) Xeon(R) Platinum 8268
CPU (24 cores, 48 threads in total), 32 GB ram, with a single Nvidia RTX8000 48GB GPU.

Datasets. Following previous work [10, 88], we evaluate our methods on both synthetic and real-
world bipartite graphs (U, V,E), V is the ground set and the goal is to select k nodes from V so that
we cover maximum number of nodes from U .

• Random Uniform. The Random Uniform datasets include both the Random500 and
Random1000 settings, and are used for both training and testing. Each dataset consists of
100 independently generated bipartite graphs, where |V | = 500, |U | = 1000 (Random500)
or |V | = 1000, |U | = 2000 (Random1000). Each u ∈ U is assigned a weight uniformly
at random from 1 to 100. Each v ∈ V covers a random subset of U , with the number of
covered nodes for each v chosen uniformly at random between 10 and 30.

• Random Pareto. The Random Pareto dataset consists of 100 independently generated
bipartite graphs with |U | = |V | = 1000, used exclusively for training in the Twitch
experiments. In each graph, the number of covered nodes per covering node v ∈ V follows
a Pareto distribution, with the α parameter randomly selected between 1 and 2, resulting
in a heavy-tailed degree distribution (typically, 20% of covering nodes account for 80% of
the edges). Each u ∈ U is assigned a weight uniformly at random from 1 to 100, and every
u ∈ U is covered by at least one v ∈ V .
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• Twitch. The Twitch datasets model social networks of streamers grouped by language, with
|U | = |V | set to the number of streamers. The dataset includes: DE (|U | = |V | = 9498),
ENGB (7126), ES (4648), FR (6549), PTBR (1912), and RU (4385). The objective is to
maximize the sum of logarithmic viewer counts over U .

• Railway. The Railway datasets are derived from real-world Italian railway crew assignments.
We evaluate on three graphs: rail507 (|V | = 507, |U | = 63009), rail516 (|V | = 516,
|U | = 47311), and rail582 (|V | = 582, |U | = 55515).

Baselines. We adopt the same baselines as prior work, including:

• Random. Samples k candidates uniformly at random over multiple trials, selects the best
within 240 seconds.

• Greedy algorithm [61]. Iteratively adds the element with the largest marginal gain, achiev-
ing a (1− 1/e) approximation.

• Gurobi. Exact MIP solver, time-limited to 120 seconds per instance. The version used is
Gurobi 12.01.

• EGN [35]. Optimizes a probabilistic objective with naive rounding; does not guarantee
feasibility during optimization.

• CardNN [88]. One-shot neural solvers for cardinality-constrained problems. Main vari-
ants: CardNN-S (Sinkhorn), CardNN-GS (Gumbel-Sinkhorn), CardNN-HGS (Homotopy
Gumbel-Sinkhorn). For each, a CardNN-noTTO variant omits test-time optimization.

• UCOM2 [10]. Combinatorial optimization using greedy incremental derandomization.
Three variants differ only by test-time augmentation and running time: UCOM2-short (no
augmentation, fastest), UCOM2-middle (moderate augmentation, medium time), UCOM2-
long (maximal augmentation, longest time).

• RL. For the RL baseline, we follow the instructions in [45? ] to use GraphSage layers [28]
as policy network with Actor-Critic [44] algorithm to train on the same problem instances.

G.1 Training

To enhance optimization stability and solution quality, we incorporate several training techniques.

A rescaling coefficient in Appendix C.1 is referred to as a scaling factor. A set of scaling factors
:[1.0, 0.8, 0.6, 0.4, 0.2, 0.1, 0.05, 0.02, 0.01] are used in the training and inference parallelly, helping
to get stable decompositions across different data distributions.

An entropy regularization term is applied with a cosine-decayed weight λt, initialized at 0.05 and
annealed to zero by the 30th epoch, promoting exploration within the hypersimplex.

Convergence speed is controlled via a sharpness factor applied to the noise perturbation layer when
the sigmoid activation function is used in that layer (when using min-max scaling, it is ignored). The
sharpness factor is linearly increased from 0.3 at the onset of training to 1.0 by epoch 80.

Gaussian noise is injected into the model logits throughout training to foster exploration and enhance
robustness. The standard deviation of this noise is initially set to 0.05 and is reduced to zero according
to a cosine decay schedule as training progresses.

The other hyperparameters are listed below:

• Dropout: 0.1 (applied only during training).

• Optimizer: AdamW.

• Learning Rate: 5× 10−3.

• Learning Rate Scheduler: warmup_cosine, with 50 warmup epochs, decaying to a mini-
mum of 5× 10−5.

• Weight Decay: 1× 10−4.

• Epochs: 80.

• Batch Size: 4.
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• Seed: 42.
• Workers: 16 CPU worker threads for data loading, preprocessing, and decomposition with

multiple scaling factors.

G.2 Inference strategies and local improvement

We evaluate our model using three distinct inference strategies—Short, Medium, and Long—each
balancing computational efficiency and local improvement:

Local improvement. To further refine the candidate solution, we employ a local search algorithm
based on iterative element replacement. At each step, the algorithm considers replacing a single
element in the current solution set with one from outside the set (within a defined candidate pool),
accepting only replacements that yield a strictly improved objective value. The procedure terminates
when no improving replacements are found or when the maximum iteration count is reached.

• Short: For each instance, 50 decomposed sets are generated from each scaling factor and
the best among them is chosen as the result, with no further local improvement applied.

• Medium: For each instance, 100 decomposed sets are generated from each scaling factor
and the best among them is chosen as the base set. The base set then undergoes the local
improvement procedure , performed for up to 10 iterations. The candidate pool consists of
the first k nodes produced by the scaling factor 0.1 that is not present in the base set .

• Long: For each instance, 5 additional augmented graphs are generated (with 0–30% feature
noise and 0–30% random edge dropout). For each graph, decomposed sets are generated
from each scaling factor and the best among them is chosen as the base set. Local im-
provement is performed for up to k iterations on the original graph, with the candidate pool
includes all nodes that appears in decomposed sets across from the scaling factor where the
base set is selected. The best solution found among all augmented graphs is selected as the
final result for the instance.

G.3 Ablation study: local improvement candidate pool selection

To demonstrate that the strategic selection of nodes in our candidate pool provides meaningful benefits,
we conducted an ablation study comparing our decomposition-based candidate pool against a random
alternative of equal size. In this ablation test, we maintain the same pre-local improvement solution
(the base set) as the starting point for both approaches. The original candidate pool is constructed
using our medium and long methods. The alternative candidate pool retains the same base set but
replaces the remaining candidates with randomly selected nodes, ensuring both pools have identical
size for fair comparison.

Table 1: Ablation study comparing decomposition-based candidate pool versus random alternative.
Improvement percentages over the base set.

Method rand500 rand1000 rand500 rand1000
k=10 k=20 k=50 k=100

Medium Long Medium Long Medium Long Medium Long

Decomposition-based (Ours) 2.41% 3.28% 5.15% 8.09% 2.11% 3.89% 3.83% 8.07%
Random Alternative 0.23% 1.02% 3.03% 5.74% 0.43% 2.39% 2.84% 5.79%

We evaluate both local improvement strategies across medium and long inference modes. The results,
Table 1, demonstrate that our strategic candidate selection provides consistent improvements over
random selection, validating that our local improvement procedure benefits specifically from the
candidate pool construction from our decomposition rather than simply having access to additional
nodes for local improvement.

G.4 Ablation study on short+Gurobi

We also tested two versions of the “short+Gurobi” approach on the random datasets, one with a
time limit near our "medium" method, and for some settings, an version given the time close to our
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"long" method. When the instance size and the cardinality constraint are small (k = 10 on Random
500), "short+Gurobi" performs slightly better than other methods. For larger instances like Random
500 with k = 50 and Random 1000, our "medium" and "long" approaches show their advantages
and achieved similar or better results, indicating that our local improvement technique effectively
constrains the solution space and works better even compared to the well-optimized Gurobi Solver.
In addition, the short+Gurobi method shows much better cost-efficiency compared to the pure Gurobi
method, showing the potential of our method to serve as an efficient initial solution for structured
solvers, significantly reducing overall computation time. The results of these tests can be found in
Table 5 and Table 6.

G.5 Ablation tests for UCOM2

As stated in Section 5.2, we categorize UCOM2 as a non-learning method and conduct several
ablation studies to substantiate this classification. Specifically, we evaluate two variants: setting the
neural network output to zero (UCOM2-zerostart-short), and to random uniform values between 0
and 1 (UCOM2-randomstart). Both ablations disregard the output of the neural network. We find
that UCOM2-zerostart-short achieves results nearly identical to the standard short variant, while
UCOM2-randomstart attains similar performance to all three UCOM2 variants, depending on the
number of random samples generated. These results demonstrate that UCOM2’s effectiveness is in
large part due to their greedy module and the fact that the maximum coverage objective is a monotone
submodular function.

Table 2: Ablation results for UCOM2 variants on Random500. Running time (time): smaller is better.
Objective (obj): larger is better. Standard deviations capture variability.

Random500, k = 10 Random500, k = 50
Method Time↓ Obj↑ Time↓ Obj↑
UCOM2-zerostart-short 0.1089 ± 0.0309s 15551.01 ± 367.12 0.0885 ± 0.1032s 44311.87 ± 819.96
UCOM2-randomstart-short 0.8862 ± 0.1238s 15294.04 ± 408.52 0.6957 ± 0.1369s 44237.92 ± 824.05
UCOM2-randomstart-medium 3.8521 ± 0.2770s 15586.95 ± 360.89 15.4367 ± 0.0493s 44867.19 ± 741.85
UCOM2-randomstart-long 35.9862 ± 2.5628s 15672.89 ± 351.74 30.5812 ± 0.0850s 44923.74 ± 754.78
UCOM2-short 1.0411 ± 0.0827s 15253.35 ± 370.00 0.7392 ± 0.0150s 44208.95 ± 768.68
UCOM2-medium 4.1891 ± 0.1150s 15589.25 ± 363.43 16.0005 ± 0.0408s 44852.82 ± 765.11
UCOM2-long 39.2018 ± 0.9474s 15779.45 ± 358.41 31.7587 ± 0.0811s 44906.50 ± 761.75

Table 3: Ablation results for UCOM2 variants on Random1000. Running time (time): smaller is
better. Objective (obj): larger is better. Standard deviations capture variability.

Random1000, k = 20 Random1000, k = 100
Method Time↓ Obj↑ Time↓ Obj↑
UCOM2-zerostart-short 0.2275 ± 0.0164s 30991.19 ± 528.97 0.1682 ± 0.0360s 88693.99 ± 1248.72
UCOM2-randomstart-short 1.6408 ± 0.0329s 29878.53 ± 601.10 1.5426 ± 0.0449s 88549.61 ± 1342.89
UCOM2-randomstart-medium 9.4358 ± 0.0415s 30437.43 ± 532.00 8.8802 ± 0.0522s 89077.84 ± 1244.72
UCOM2-randomstart-long 89.8093 ± 0.3444s 30752.49 ± 529.91 84.3725 ± 0.4054s 89386.56 ± 1245.85
UCOM2-short 1.7342 ± 0.0677s 29791.66 ± 678.02 1.6216 ± 0.0644s 88472.61 ± 1261.36
UCOM2-medium 9.5523 ± 0.0620s 30420.69 ± 552.66 8.9956 ± 0.0890s 89072.92 ± 1248.58
UCOM2-long 90.7475 ± 0.3342s 30744.61 ± 512.61 85.2663 ± 0.6164s 89408.28 ± 1232.74

On the twitch dataset, UCOM2 uses zero initialization (UCOM2-zerostart) in its original implemen-
tation, fully ignoring the trained model. To assess the impact of the neural network, we also evaluate
UCOM2-withmodel on twitch, which yields markedly inferior results. This further supports our
observation that all learning-based methods perform poorly on Twitch due to the architecture of the
encoder network.
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Table 4: Ablation results for UCOM2 variants on the Twitch dataset. Running time (time): smaller
the better. Objective (obj): the larger the better. The standard deviations are captured to show the
variability of the dataset and the method.

Twitch, k = 20 Twitch, k = 50
Method Time↓ Obj↑ Time↓ Obj↑
Ucom2-withmodel-short 73.2402 ± 80.5553s 18.67 ± 45.72 115.8045 ± 126.7061s 573.67 ± 376.52
Ucom2-withmodel-medium 333.3645 ± 363.4380s 102.00 ± 41.71 532.9243 ± 585.9112s 3018.17 ± 5208.31
Ucom2-withmodel-long 659.8775 ± 719.8658s 150.00 ± 48.88 1054.5567 ± 1160.6106s 3029.67 ± 5202.21
Ucom2-zerostart-short 17.8031 ± 18.4783s 25853.00 ± 1112.59 17.3739 ± 18.1940s 30526.00 ± 13043.86
Ucom2-zerostart-medium 19.6806 ± 19.8771s 25858.17 ± 11206.89 21.6114 ± 21.3478s 30544.17 ± 13052.91
Ucom2-zerostart-long 22.0589 ± 21.6869s 25858.17 ± 11206.89 27.2170 ± 25.6604s 30544.17 ± 13052.91

G.6 Detailed results

Below are the plots and tables showing the full detailed test results. The raw numerical results are
given in Table 5 to Table 8. The standard deviation are captured to show the variability of the dataset
and the method.
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Figure 3: Performance comparison of our method against baseline approaches across Learning without
TTO, on multiple datasets. Metrics used are inference time (lower is better) and objective value
(higher is better). In the Learning without TTO setting, our short version consistently outperforms all
baselines in both inference time and objective value, demonstrating strong learning capability.
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Figure 4: Performance comparison of our method against baseline approaches across Learning
with TTO, on multiple datasets. Metrics used are inference time (lower is better) and objective
value (higher is better). When extended to medium and long versions, our method surpasses most
TTO-based baselines across datasets, with the exception of the Twitch dataset.
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Figure 5: Performance comparison of our method against baseline approaches across non-
Learning/traditional methods on multiple datasets. Metrics used are inference time (lower is better)
and objective value (higher is better). While greedy is an efficient baseline with a strong approxima-
tion guarantee, our method performs competitively and is capable of outperforming it on datasets
like Random500 for larger values of k. We are also able to outperform UCOM in several cases (e.g.,
Random1000 and Railway), though there are instances where greedy and/or UCOM perform the best,
such as the Twitch dataset.
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Figure 6: Performance comparison of our method against all baseline approaches. Metrics used are
inference time (lower is better) and objective value (higher is better).
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Table 5: Maximum Coverage on rand500. Two budgets: k=10 and k=50. Time: lower is better;
Obj: higher is better.

Method
Setup k = 10 k = 50

Time↓ Obj↑ Time↓ Obj↑

Non-learning / Traditional
Random (240s) 240.0000s ± 0.0000s 13372.76 ± 308.83 240.0000s ± 0.0000s 36786.89 ± 655.45
Gurobi (120s) 1.5744s ± 0.5376s 15714.90 ± 346.84 120.0651s ± 0.0268s 44880.59 ± 7.13
Greedy 0.0572s ± 0.0502s 15640.99 ± 360.60 0.1210s ± 0.0563s 44597.56 ± 848.28
Ucom2-short 1.0411s ± 0.0827s 15253.35 ± 370.00 0.7392s ± 0.0150s 44208.95 ± 768.68
Ucom2-medium 4.1891s ± 0.1150s 15589.25 ± 363.43 16.0005s ± 0.0408s 44852.82 ± 765.11
Ucom2-long 39.2018s ± 0.9474s 15679.45 ± 358.41 31.7587s ± 0.0811s 44906.50 ± 761.75

Learning (no TTO)
CardNN-noTTO-S 1.6880s ± 0.0791s 9231.54 ± 827.09 1.7211s ± 0.0661s 33055.87 ± 1211.03
CardNN-noTTO-GS 7.4571s ± 0.0300s 13635.05 ± 303.36 9.5240s ± 0.5770s 37120.46 ± 610.25
CardNN-noTTO-HGS 9.6954s ± 0.0429s 13671.99 ± 302.84 12.2502s ± 0.1068s 37164.81 ± 678.19
EGN-naive (120s) 53.0409s ± 5.3879s 15262.76 ± 401.10 120.1361s ± 0.0796s 41272.68 ± 737.36
RL (GNN+Actor-Critic) 0.0696s ± 0.0028s 14741.26 ± 322.51 0.2471s ± 0.0290s 39510.96 ± 975.21

Learning (with TTO)
CardNN-S 7.5387s ± 0.6576s 15381.60 ± 394.79 4.9843s ± 0.2941s 41971.22 ± 814.87
CardNN-GS 26.3746s ± 0.0831s 15683.40 ± 350.79 26.8944s ± 0.1131s 44724.42 ± 773.70
CardNN-HGS 38.8875s ± 0.1065s 15685.39 ± 349.83 39.6041s ± 0.1122s 44745.20 ± 769.93

Ours
Ours-short 0.5786s ± 0.0094s 15177.77 ± 344.68 1.1078s ± 0.0149s 41247.80 ± 965.48
Ours-medium 1.0546s ± 0.0146s 15410.23 ± 353.91 2.1212s ± 0.0096s 43152.87 ± 1004.95
Ours-long 12.0878s ± 0.1365s 15714.63 ± 354.22 24.9885s ± 0.3543s 44866.84 ± 876.78
short+Gurobi (medium) N/A N/A 2.0622s ± 0.1122s 44894.62 ± 951.89
short+Gurobi (long) 2.3185s ± 0.5136s 15758.62 ± 343.40 25.0653s ± 0.0609s 45090.41 ± 887.32

Table 6: Maximum Coverage on rand1000. Two budgets: k=20 and k=100. Time: lower is better;
Obj: higher is better.

Method
Setup k = 20 k = 100

Time↓ Obj↑ Time↓ Obj↑

Non-learning / Traditional
Random (240s) 240.0000s ± 0.0000s 24133.50 ± 390.27 240.0000s ± 0.0000s 70527.31 ± 1051.87
Gurobi (120s) 37.2985s ± 30.0300s 31347.62 ± 509.75 120.1395s ± 0.0526s 89696.83 ± 1231.76
Greedy 0.1905s ± 0.0998s 31105.89 ± 506.23 0.4609s ± 0.1074s 88685.40 ± 1225.67
Ucom2-short 1.7342s ± 0.0677s 29791.66 ± 678.02 1.6216s ± 0.0644s 88472.61 ± 1261.36
Ucom2-medium 9.5523s ± 0.0620s 30420.69 ± 552.66 8.9956s ± 0.0890s 89072.92 ± 1248.58
Ucom2-long 90.7475s ± 0.3342s 30744.61 ± 512.61 85.2663s ± 0.6164s 89408.28 ± 1232.74

Learning (no TTO)
CardNN-noTTO-S 1.8693s ± 0.0018s 18458.92 ± 1283.61 1.8810s ± 0.0453s 65793.40 ± 1478.50
CardNN-noTTO-GS 14.1629s ± 0.0301s 24309.37 ± 465.91 22.3352s ± 0.0942s 71620.38 ± 1026.81
CardNN-noTTO-HGS 19.3888s ± 0.0532s 25135.52 ± 436.21 28.3368s ± 0.1218s 71604.61 ± 1010.17
EGN-naive (120s) 120.0105s ± 0.3980s 29968.04 ± 563.02 120.3565s ± 0.1600s 81166.12 ± 1391.02
RL (GNN+Actor-Critic) 0.1021s ± 0.0029s 29912.14 ± 571.12 0.4652s ± 0.0029s 81158.54 ± 1215.23

Learning (with TTO)
CardNN-S 7.6054s ± 0.6608s 30461.73 ± 590.50 5.0909s ± 0.3016s 83319.37 ± 1324.81
CardNN-GS 57.5445s ± 0.0670s 31250.56 ± 528.72 60.7239s ± 0.0665s 89269.41 ± 1253.68
CardNN-HGS 85.4505s ± 0.0952s 31250.47 ± 526.03 89.3385s ± 0.1235s 89280.17 ± 1261.34

Ours
Ours-short 0.8248s ± 0.0312s 29810.12 ± 586.05 1.9076s ± 0.0284s 81357.29 ± 1277.84
Ours-medium 1.4175s ± 0.0633s 30257.05 ± 606.07 3.6669s ± 0.0582s 84186.79 ± 1336.48
Ours-long 16.6007s ± 0.4632s 31230.26 ± 476.25 46.1200s ± 0.6998s 88796.03 ± 1327.83
short+Gurobi (medium) 2.0868s ± 0.1001s 30098.64 ± 767.38 5.2979s ± 0.1202s 82200.65 ± 2609.87
short+Gurobi (long) 15.8728s ± 2.8134s 31332.18 ± 471.59 46.2701s ± 0.3331s 89509.90 ± 1316.43
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Table 7: Maximum Coverage on railway. Two budgets: k=20 and k=50. Time: lower is better; Obj:
higher is better.

Method
Setup k = 20 k = 50

Time↓ Obj↑ Time↓ Obj↑

Non-learning / Traditional
Random (240s) 240.0000s ± 0.0000s 5291.67 ± 73.92 240.0000s ± 0.0000s 7367.00 ± 76.97
Gurobi (120s) 121.0590s ± 0.0318s 5631.67 ± 28.77 121.0329s ± 0.0613s 7604.67 ± 62.38
Greedy 0.7271s ± 0.0251s 5617.00 ± 49.00 1.3196s ± 0.5774s 7630.00 ± 72.19
Ucom2-short 2.2988s ± 0.2026s 5512.67 ± 56.89 2.4537s ± 0.3920s 7594.67 ± 68.72
Ucom2-medium 18.2307s ± 2.4105s 5560.33 ± 44.56 17.1635s ± 2.2504s 7618.00 ± 79.76
Ucom2-long 18.3035s ± 2.4544s 5574.33 ± 58.79 17.1988s ± 2.2001s 7617.00 ± 81.19

Learning (no TTO)
CardNN-noTTO-S 1.9287s ± 0.2161s 5074.33 ± 59.41 2.1892s ± 0.2505s 7193.00 ± 80.72
CardNN-noTTO-GS 5.9863s ± 0.5143s 5269.00 ± 68.83 7.3275s ± 0.3261s 7348.33 ± 80.31
CardNN-noTTO-HGS 8.8791s ± 0.7784s 5266.67 ± 76.01 10.8211s ± 0.6323s 7359.00 ± 70.89
EGN-naive (120s) 120.6763s ± 0.2931s 5234.67 ± 52.47 121.3351s ± 0.9133s 7408.33 ± 72.82
RL (GNN+Actor-Critic) 0.2191s ± 0.0030s 5137.00 ± 52.01 0.2191s ± 0.0031s 7456.67 ± 57.14

Learning (with TTO)
CardNN-S 2.7580s ± 0.2705s 5462.00 ± 56.00 3.0035s ± 0.2782s 7433.33 ± 63.34
CardNN-GS 8.6626s ± 0.5672s 5441.67 ± 58.77 15.6866s ± 1.0987s 7650.00 ± 73.33
CardNN-HGS 15.2983s ± 0.5441s 5535.67 ± 64.52 24.7941s ± 0.9907s 7650.00 ± 88.71

Ours
Ours-short 1.8559s ± 0.0458s 5343.00 ± 89.17 2.0838s ± 0.0142s 7411.67 ± 55.08
Ours-medium 2.5628s ± 0.0418s 5437.00 ± 66.84 3.4385s ± 0.0532s 7512.00 ± 63.85
Ours-long 27.0344s ± 0.9617s 5613.33 ± 55.58 43.2777s ± 1.3728s 7631.00 ± 75.19

Table 8: Maximum Coverage on twitch. Two budgets: k=20 and k=50. Time: lower is better; Obj:
higher is better.

Method
Setup k = 20 k = 50

Time↓ Obj↑ Time↓ Obj↑

Non-learning / Traditional
Random (240s) 240.0000s ± 0.0000s 12889.17 ± 5636.10 240.0000s ± 0.0000s 16050.50 ± 6715.32
Gurobi (120s) 0.8221s ± 0.5700s 25864.00 ± 10223.00 0.7961s ± 0.6577s 30560.33 ± 11922.45
Greedy 0.3970s ± 0.2536s 25855.50 ± 11207.33 0.6553s ± 0.3883s 30542.33 ± 13055.67
Ucom2-short 17.8031s ± 18.4783s 25833.00 ± 11212.59 17.3739s ± 18.1940s 30526.00 ± 13043.86
Ucom2-medium 19.6806s ± 19.8771s 25858.17 ± 11206.89 21.6114s ± 21.3478s 30544.17 ± 13052.91
Ucom2-long 22.0589s ± 21.6886s 25858.17 ± 11206.89 27.2170s ± 25.6604s 30544.17 ± 13052.91

Learning (no TTO)
CardNN-noTTO-S 0.8636s ± 0.2075s 77.00 ± 51.47 0.9635s ± 0.4585s 170.50 ± 158.15
CardNN-noTTO-GS 1.5749s ± 0.3842s 376.00 ± 194.67 1.6334s ± 0.6782s 1574.33 ± 631.04
CardNN-noTTO-HGS 2.1831s ± 0.7328s 1242.33 ± 499.23 2.3674s ± 0.7858s 1898.00 ± 506.67
EGN-naive (120s) 108.3030s ± 24.3569s 152.67 ± 12.22 105.4605s ± 20.7886s 247.17 ± 31.88
RL (GNN+Actor-Critic) 0.1694s ± 0.0028s 2379.50 ± 1471.50 0.2905s ± 0.0030s 5435.50 ± 3318.67

Learning (with TTO)
CardNN-S 5.1258s ± 0.6503s 25863.83 ± 11198.96 5.5767s ± 0.5135s 30556.00 ± 13063.12
CardNN-GS 10.1648s ± 1.1928s 25864.00 ± 11198.73 9.5794s ± 1.5230s 30560.67 ± 13061.60
CardNN-HGS 22.3602s ± 1.2962s 25864.00 ± 11198.73 19.7813s ± 3.4102s 30560.83 ± 13061.35

Ours
Ours-short 1.0975s ± 0.7446s 7689.00 ± 5712.56 1.1485s ± 0.7596s 10227.00 ± 5537.29
Ours-medium 1.6693s ± 0.9268s 8887.83 ± 5087.20 1.9401s ± 1.0147s 11858.50 ± 4793.61
Ours-long 26.4401s ± 15.9632s 18526.83 ± 8671.00 54.4778s ± 32.5091s 24509.83 ± 11171.33
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H Max-k-Cut Ablation

Datasets. We conduct experiments on two datasets. The IMDB-BINARY dataset [92] consists
of 1000 graphs. The Erdős–Rényi dataset consists of 1000 synthetic graphs generated under the
G(n, p) model. For each graph, the number of nodes n is drawn uniformly from {50, . . . , 100} and
each candidate edge is included independently with probability p = 0.15. Our experiments use the
following split for both datasets. 60% of the graphs are allocated for training, 20% for validation,
and the final 20% for testing. Within each split, any graphs with fewer than k nodes are excluded.
We compare in two settings, one of small and one of large k, where k is selected as a fraction of
the average number of nodes in the dataset. For small k we pick the fraction to be 0.25 of the node
average and for the large k we pick 0.75.

Random sampling + decomp. The purpose of this baseline is to highlight the contribution of
optimization and the neural network in the performance. In this baseline, we randomly sample
a single point in ∆n,k, decompose it, and then report the value of the best performing set in the
decomposition.

Direct optimization + decomp. In the direct optimization approach, we optimize a vector x ∈ Rn

using the perturbation method described in Section 4.1, i.e., we treat it as an additive perturbation
on the vector (k/n, k/n, . . . , k/n) in ∆n,k. We optimize the perturbation x by decomposing the
perturbed point and optimizing the value of the extension with gradient descent (Adam [40]). For
IMDB-BINARY, we set the learning rate to 0.015, and for Erdős–Rényi, the learning rate was set to
0.012. Each optimization run consists of 150 update steps.

NN + Optimization + Decomp. The neural network approach proceeds in a similar fashion as the
direct optimization one. Here, we use a neural network to generate the perturbation vector x ∈ Rn

for the perturbation approach described in Section 4.1. The perturbed interior point is decomposed
and we updated the parameters of the neural network by gradient descent on the extension. Here, the
neural network is an eight-layer GatedGraphConv network [49] followed by two linear layers. Node
features include random-walk positional encodings generated with AddRandomWalkPE [19] with
walk length 10. The neural network in this case is optimized directly on the test data. The results are
presented in the table below.

Standard SSL. In the standard SSL baseline, we train the same architecture on separate training
data and do model selection using a validation set. Then we report the performance of the selected
model (without any finetuning) on the test set. We observe that while the trained SSL baseline is
not able to match the performance of a neural net directly optimized on the test set, it consistently
produces performance that is competitive with direct optimization and greedy for large k.

Table 9: Test-set performance (mean ± std) on IMDB-BINARY graphs (avg. 20 nodes) and
Erdős–Rényi graphs (avg. 75 nodes, edge density 0.15).

Method IMDB-BINARY Erdős–Rényi
k = 5 k = 15 k = 15 k = 60

Greedy Algorithm 1.000 ± 0.002 0.801 ± 0.195 0.985 ± 0.015 0.900 ± 0.047
Random Sampling + Decomp 0.881 ± 0.140 0.850 ± 0.179 0.753 ± 0.038 0.761 ± 0.041
Direct optimization + Decomp 0.960 ± 0.064 0.922 ± 0.158 0.833 ± 0.025 0.844 ± 0.043
NN + Optimization + Decomp 0.971 ± 0.041 0.932 ± 0.089 0.910 ± 0.045 0.902 ± 0.041

Standard SSL + Decomp 0.956 ± 0.049 0.905 ± 0.117 0.899 ± 0.035 0.889 ± 0.044

43



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim to provide an end-to-end pipeline for neural combinatorial optimiza-
tion with constraints (section 4), which has applications to several fundamental constraint
classes (section 4.2.1 and 4.2.2), all of which are clearly given in the paper. In section 5, we
support our claims with experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the experiment section and also in the con-
clusion. Also, when we discuss the general pipeline we do not claim it covers all possible
constrained CO problems.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Assumptions are stated in theorem statements and all proofs are provided in
the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the details of the experiments such as training and dataset details are
provided either in the main body of the paper or appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the datasets are public. Our code is available https:
//anonymous.4open.science/r/Neural_Combinatorial_Optimization_with_
Constraints-3485/README.md .

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the details of the experiments such as training and dataset details are
provided either in the main body of the paper or appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars or statistical significance due to computational and
time constraints; as is common in combinatorial optimization, we report mean results over
multiple problem instances.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details are provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Given the focus on foundations, we do not have human subjects or sensitive
data and we do not perceive risks of harm or misuse.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The societal impact of improved combinatorial optimization or neural combi-
natorial optimization techniques are minimal.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not contain data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide citations to all data and code we use. All material is licensed for
such use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: There are no new assets released in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There were no human subjects in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects or study participants were used in this research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used in the core methods of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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