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Abstract

Automatic related work generation (RWG) can
save people’s time and effort when writing a
draft of related work section (RWS) for further
revision. However, existing methods for RWG
always suffer from shallow comprehension due
to taking the limited portions of references pa-
pers as input and isolated explanation for each
reference due to ineffective capturing the re-
lationships among them. To address these is-
sues, we focus on full-text-based RWG task
and propose a novel multi-agent framework.
Our framework consists of three agents: a se-
lector that decides which section of the papers
is going to read next, a reader that digests the
selected section and updates a shared work-
ing memory, and a wrifer that generates RWS
based on the final curated memory. To better
capture the relationships among references, we
also propose two graph-aware strategies for se-
lector, enabling to optimize the reading order
with constrains of the graph structure. Exten-
sive experiments demonstrate that our frame-
work consistently improves performance across
three base models and various input configura-
tions. The graph-aware selectors outperform
alternative selectors, achieving state-of-the-art
results. The code and data will be available.

1 Introduction

With the exponential growth of academic publica-
tions (Wang et al., 2024a), automatic related work
generation (RWG) becomes more and more attrac-
tive to research communities because it can save
time and effort in preparing the first draft of the
related work section (RWS) (Sahinug et al., 2024;
Martin-Boyle et al., 2024). Although the RWG
task has a long history (Hoang and Kan, 2010) and
the advancement of LLMs significantly improves
the general ability of text understanding and gen-
eration, writing a good RWS is not trivial. Even
for experienced researchers, they have to spend
a bunch of time to draft the RWS after intensive

reading of all references. They need to deeply com-
prehend the similarities and differences between
references, organize them in a reasonable taxon-
omy, and position the current work by pointing
out its novelty. However, existing methods are far
from being as excellent as experienced researchers
in writing RWS. There are at least two main chal-
lenges: 1) misinterpretations or hallucinations due
to using limited portions of references (C/) and
2) isolated explanation for each reference due to
ineffective exploitation of the relationships (C2).
C1. Due to the limitations of input window sizes
in language models, previous methods for RWG
always rely on limited portions of references, such
as abstracts (AbuRa’ed et al., 2020; Ge et al., 2021;
Li et al., 2022; Mandal et al., 2024), introduction
and conclusion (Chen and Zhuge, 2019; Deng et al.,
2021), related work (Xing et al., 2020; Ge et al.,
2021), or retrieved text spans (Li et al., 2023; Li
and Ouyang, 2024), rather than leveraging the full
texts. The lack of rich full-text information often
prevents models from fully capturing the content
and relationships among references, leading to fre-
quent misinterpretations and hallucinations (Xu
et al., 2024). However, full-text-based RWG task
faces the challenge of limited context window size.
It often requires the inclusion of numerous lengthy
references. Although models with long context
windows have emerged (such as GPT-40, 128K-
token), directly feeding all textual data into the
model in a single pass is not optimal. These models
face diminishing performance when approaching
their maximum context window (Liu et al., 2024).
C2. A high-quality RWS in academic writing
needs to provide precise and in-depth comparisons
across reference papers, highlight the novelty of
the paper being written, and avoid isolated explana-
tion of each reference. These criteria underscore an
essential aspect of RWG: capturing and explaining
the relationships among references. However, this
is a common struggle in previous models, where



loose relationships among references and isolated
explanations for each reference are frequent is-
sues (Li and Ouyang, 2024). While some works
leverage graph structure (Chen et al., 2021; Wang
et al., 2022) to model inter-paper relationships, they
integrate graph structures implicitly, failing to ef-
fectively address the aforementioned issues.

We overcome the two challenges by proposing
a multi-agent framework (C/) and a graph-aware
selector within the framework (C2). We design our
framework as a system comprising three agents:
a selector, a reader, and a writer. The first two
agents work collaboratively and iteratively process
input content while maintaining a shared working
memory. The selector decides the reading order
of papers’ sections, and the reader digests the se-
lected content and updates the memory. Then the
writer generates the RWS based on the final cu-
rated memory. To better capture the relationships
among references, we introduce the graph struc-
ture within our framework. We build two kinds
of relationship graphs: a co-occurrence graph and
a citation graph. Based on these graphs, we pro-
pose the graph-aware selector, which is able to
explicitly obtain the structure of the graph and uti-
lizes the relationships among references. Exten-
sive experiments demonstrate that our framework
consistently improves performance across three
base models (Llama3-8B, GPT-40, and Claude-3-
Haiku) in terms of LLM-based and graph-based
metrics. Among selectors with different strategies,
our graph-aware selectors perform the best.

Our contributions can be summarized as follows:

* We propose a multi-agent framework for full-
text-based RWG task. Our framework cre-
atively delegates iterative reading to two dis-
tinct agents: the selector and the reader. And
the writer generates the final RWS.

* We design two kinds of graphs and propose
a graph-aware selector within our framework,
which acts under the constraints of the graph.

* We conduct in-depth experiments on the im-
pact of different selecting strategies and in-
put configurations. Our framework consis-
tently improves the performance across differ-
ent configurations.

2 Related Work

2.1 Related Work Generation

Existing approaches for RWG can be categorized
into two types: extractive and abstractive meth-

ods. Extractive methods focus on selecting key
sentences from cited papers and concatenating
them to form the related work section (Hoang and
Kan, 2010; Hu and Wan, 2014; Wang et al., 2018;
Chen and Zhuge, 2019; Wang et al., 2019). Re-
cent RWG models predominantly adopt abstrac-
tive methods (Chen et al., 2021, 2022; Liu et al.,
2023). However, due to the limitations of in-
put window sizes, these methods always rely on
limited portions of reference papers, such as ab-
stracts (AbuRa’ed et al., 2020; Ge et al., 2021; Li
et al., 2022; Mandal et al., 2024), introductions and
conclusions (Chen and Zhuge, 2019; Deng et al.,
2021), related work section (Xing et al., 2020; Ge
et al., 2021) or retrieved text spans (Li et al., 2023;
Li and Ouyang, 2024). This lack of full-text infor-
mation prevents models from fully capturing the
content and relationships among references, lead-
ing to frequent misinterpretations and hallucina-
tions (Xu et al., 2024). In addition, explaining the
relationships among references is a critical aspect
of RWG tasks. This is also a common struggle in
previous models, where loose relationships among
references and isolated explanations for each refer-
ence are frequent issues (Li and Ouyang, 2024). Al-
though some works attempt to model inter-paper re-
lationships using relation graph (Chen et al., 2021)
or knowledge graph (Wang et al., 2022), they inte-
grate graph structures implicitly and the challenge
remains largely unresolved. To address the above
challenges, we focus on the full-text-based RWG
task and incorporate explicit graph structure con-
straints within a multi-agent framework.

2.2 Long-Sequence Modeling

Extensive approaches are proposed to address the
input length limitations of language models, which
can be categorized into four types: context window
scaling, recurrence-based methods, retrieval-based
methods, and agent-based methods. Context win-
dow scaling methods extrapolate the positional em-
beddings (Press et al., 2021; Chen et al., 2023b) or
employ modified self-attention mechanisms (Belt-
agy et al., 2020; Guo et al., 2022). However, the
attention mechanism may become less effective
as sequence length increases (Liu et al., 2024).
Recurrence-based methods use recursive mecha-
nism to encode text, which are explored for dif-
ferent base models (Miller et al., 2016; Chevalier
et al., 2023). However, each recurrence step can in-
troduce information loss. Retrieval-based methods
retrieve relevant portions based on the query (Izac-
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Figure 1: Overview of our multi-agent framework. The framework comprises a selector, a reader, and a writer,
which collaboratively read the papers and generate the related work section.

ard and Grave, 2021; Wu et al.). However, such
methods risk overlooking critical information. In
agent-based frameworks, models operate as agents
that dynamically read portions of the text and take
flexible actions (Nakano et al., 2021; Yao et al.,
2022; Chen et al., 2023a; Wang et al., 2024b). We
adopt an agent-based framework, however, existing
agent-based methods primarily focus on question
answering (QA) tasks, where the agent only needs
to locate an answer and a single agent suffices. In
contrast, in RWG tasks, the reading order can im-
pact the model’s understanding of the papers and
their relationships. Our multi-agent framework cre-
atively delegates the reading process to two distinct
agents, enabling to optimize both reading order and
updating memory.

3 Problem Formulation

Before introducing our framework, we first de-
fine the problem formulation and notations used
throughout this paper.

The input to the task consists of two main com-
ponents: the citing paper C, which represents the
paper being written, and a set of reference papers
R = {R1,Rs,...,Ry}, where R; denotes a sin-
gle reference paper and NV is the total number of
references. For simplicity, C'is also denoted as Rj.
Following prior RWG tasks, R is assumed to be
given and corresponds to the references cited by
the ground-truth related work section. Given the
above inputs { Ry} U R, the goal of the task is to
generate a related work section (RWS) for C' that
incorporates all references in R while maintaining
coherence with the context of C'.

Since we focus on full-text-based RWG task,

each reference paper R; contains its entire content,
represented as R; = {s;1,si2,...,5r,}, Where
s;,j denotes the j-th section of R;, and L; is the
total number of sections in R;. Similarly, the input
also includes all sections of the citing paper Ry =
{s0,1, 50,2, - - -, 50, }> except for the related work
section, which is to be generated.

4 Multi-Agent Framework

4.1 Overall Framework

As shown in Figure 1, our proposed framework
is designed as a multi-agent system comprising
three specialized agents: a selector, a reader, and
a writer. These agents work collaboratively to it-
eratively process input content while maintaining
a shared working memory M and a prior reading
history H. The working memory M is designed
in a well-organized JSON format, storing key in-
formation deemed essential for drafting the RWS.
The prior reading history H records the sequence
of previously read content in the form of tuples
(paper ID, section name) in order to prevent cyclic
reading of the input materials.

Selector. The selector is responsible for select-
ing the next section to read based on the abstracts
of all papers { Ro} U R, the current working mem-
ory M;_1, and the reading history H;_;. It outputs
a tuple (Ry, s;), representing the selected paper ID
and section name to be read at step t:

(Rt, St) = Selector((so,l, RN SNJ), M;_q, Ht—1>7

ey
Here, so1 to s 1 denote the abstracts of all papers.
Importantly, the selected section (R;, s;) must not
already exist in H;_;. When the selector deter-
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mines that no further reading is necessary, it explic-
itly outputs a special termination symbol <End>
to conclude the iterative process.

Reader. The reader processes the content of
the selected section (R;, s¢) and updates the work-
ing memory M;_q:

M; = Reader((Ry, s¢), My_1), (2)

Given the task’s requirement to handle numerous
lengthy references, the working memory M can
easily exceed the model’s context size limitation.
To address this, we enforce an explicit size con-
straint on M (e.g., 4096 tokens) and require the
reader to reorganize its contents at each step, dis-
carding irrelevant information to maintain a con-
cise and task-relevant memory. After each itera-
tion, the reading history H is updated as follows:
H; = (Hi—1; (Ry, s¢)). This iterative process con-
tinues until the selector signals termination.

Writer. Once the above iterative process con-
cludes, the writer generates the final related work
section based on the ultimate working memory M7
and reading history Hrp:

RWS = Writer(Mrp, Hr), 3)

Here, 1" represents the total number of iterations.

To guide the writer in understanding what consti-
tutes a high-quality RWS in academic writing, we
prompt the writer with explicit instructions (e.g.,
avoid isolated descriptions of each reference; ex-
plain the relationships between papers; group sim-
ilar studies together). In addition, we provide the
writer with an example of a well-crafted related
work section to leverage the in-context learning
capabilities of LLMs.

4.2 Different Strategies for Selector

Since the reading order can impact the model’s un-
derstanding of the papers and their relationships,

our framework is designed to allow diverse strate-
gies for selector. In this paper, we investigate the
following five distinct selectors, each offering a
unique strategy for determining the reading order
of papers and sections.

Sequential Reading (SR). The selector deter-
mines the reading order by following the papers’
IDs sequentially. It reads each section of a paper in
order before moving on to the next. Formally, the
selector generates a reading history Hr as:

Hr = {(Ro,50,1),---»(RN,sN,Ly)}, (D)
Here, s; ; denotes the j-th section of paper ;.

Random Reading (RR). Sequential reading
may introduce biases due to the fixed order of read-
ing, such as prioritizing earlier-read papers. To
mitigate the potential bias, we implement a random
reading strategy. The selector shuffles the sequen-
tial reading history into a random order:

HT = shufﬂe({(Ro, 80’1), ey (RN, 3N7LN)})7

&)

Vanilla LLM-Based Selector (Vanilla). We
explore a vanilla LLM-based selector that dynami-
cally determines the reading order. At each step ¢,
the selector selects the next paper and section as:

(Rt, St) = LLM((SQJ, .

ySN1), M1, Hyv),
(6)
This implementation takes advantage of the con-
textual reasoning abilities of LLMs to adaptively

prioritize reading based on the task requirements.
Graph-Aware Selector. Understanding the re-
lationships among references is crucial for RWG
tasks. The graph structure is an intuitive way to de-
scribe relationships. Therefore, we propose a novel
graph-aware selector, which constrains the read-
ing order within the graph, enabling the selector



to capture the relationships among papers. Specifi-
cally, we propose building two types of graphs: a
co-occurrence graph and a citation graph.
Co-occurrence Graph (Graph-Co). In practice,
the RWS of reference papers ‘R can provide valu-
able guidance for writing the RWS of the citing
paper Ry. If the RWS of a reference discusses
certain papers together, it is likely that these pa-
pers share a strong connection. To model this,
we construct a co-occurrence graph (as shown in
Figure 2(c)), where each node represents a ref-
erence paper, and an edge between two nodes
indicates that the two papers are co-occurred in
the same sentence of a prior paper’s RWS. For
convenience, we define the co-occurrence graph
as a directed graph G, = (Vio, Eco), vertices
Veo = {RO} UTR, edges Eeo = {(RM Rj) ‘
R; and R; are jointly cited in R;,’s RWS}. Impor-
tantly, the citing paper Ry is assumed to be con-
nected to all the reference papers in the graph to
ensure its accessibility. The co-occurrence graph
can effectively capture the implicit relationships
among papers as exhibited in prior works.
Citation Graph (Graph-Ci). For all papers
{Rp} U R, there is a citation graph G, =
(Vei, E), vertices Vo; = {Ro} UR, edges E.; =
{(Ri,R;j) | Rjcites R;}. Citation relationships
between papers can provide a more direct and ex-
plicit way to model inter-paper connections. Im-
portantly, the citing paper Ry is also included in
the graph and cites all the reference papers in R.
As shown in Figure 2(a), the graph-aware selec-
tor begins by selecting an initial paper Rjni based
on GG. At each step t — 1, the selector is positioned
at a paper R;_; and operates within its one-hop
subgraph G;—1 = (V;—1, Fy_1), defined as:

Viei ={Ri—1} U{R; |(R;, Ri—1) € Gor
(Ri—1, Ri) € G},

Ey 1 = {(Ri, Rj) |Ri, Rj € V1,
(Ri, R;j) € G},
Within this subgraph, the selector selects either to

continue reading the current paper or jump to an
adjacent paper:

(N

®)

(R, s¢) = Selector((so,1,-..,5N,1),
Mt—laHt—lvG)7 (9)
Rt S ‘/;5—17

We grant the selector access to the entire graph G
as well as the abstracts of all papers, enabling it to
make globally informed decisions.

S Experiments

5.1 Experiment Setup

Dataset. We utilize OARelatedWork dataset (Do-
cekal et al., 2024), currently the only dataset sup-
porting full-text-based RWG. It has an average in-
put length of 70k tokens in the test set. Unlike other
datasets that are often domain-specific and focus
on computer science (Lu et al., 2020; Chen et al.,
2022), OARelatedWork is an open-domain dataset.
Due to the substantial size of the dataset, all our
experiments are conducted on 10% of the dataset.

Implementation Details. We experiment with
three advanced LLMs in our multi-agent frame-
work: one open-source model Llama3-8B and two
closed-source models Claude-3-Haiku ! and GPT-
40 2. While the use of closed commercial LLMs is
common in NLP research, it poses challenges for
reproducibility. To address this concern, we ensure
that all experiments conducted with Llama3-8B are
performed on-site, providing strict reproducibility.
As detailed in Section 4.2, our framework imple-
ments five distinct variants of the selector. These
variants are distinguished using subscripts through-
out the paper. The prompts and implementation de-
tails for each agent are provided in the Appendix C.
Baselines. We compare our framework against
baselines of three categories: 1) Abstract-based
RWG Models. Due to the input length limitations
of language models, most previous works generate
RWS solely based on the abstracts. We take several
state-of-the-art models as our baselines, including
the traditional language models PRIMERA (Xiao
et al., 2022) and STK5SciSumm (To et al., 2024),
as well as advanced LLMs (Llama3-8B, Claude-3-
Haiku, and GPT-40). 2) Retrieval-based Full-Text
RWG Models. Many studies address the challenge
of processing long inputs by leveraging retrieval-
based methods (Izacard and Grave, 2021; Wu et al.).
In RWG tasks, the Greedy Oracle (GO) (Nallap-
ati et al., 2017) is a popular choice for selecting
sentences. The selected sentences are then used
as input to fit the context window of the model.
We take the same models mentioned in abstract-
based RWG category but extend their input to in-
clude sentences selected by the GO. 3) LLMs with
Extended Context Windows. Certain advanced
LLMs are equipped with long input windows, en-
abling them to process the full-text of all references

"Version claude-3-haiku-20240307
Version gpt-40-2024-08-06



Graph-based Metrics LLM-based Evaluation
Model é?i:lgi s A\Sigljfide g(l)g;;ecril:ngt Coverage Logic Relevance Overall
Abstract-based RWG Models
STK5SciSumm 0.0 0.0 0.0 1.02 1.04 2.18 1.41
PRIMERA - - - 1.60 1.66 3.42 2.23
Llama3-8B 1.000 0.348 0.054 2.64 3.16 4.04 3.28
Claude-3-Haiku 1.729 0.448 0.084 2.84 3.40 4.10 345
GPT-40 1.180 0.439 0.057 3.16 3.70 4.22 3.69
Retrieval-based Full-Text RWG Models
STK5SciSumm + GO 0.0 0.0 0.0 1.08 1.14 2.48 1.57
PRIMERA + GO - - - 1.78 1.72 342 2.31
Llama3-8B + GO 1.511 0.350 0.054 2.68 3.16 4.02 3.29
Claude-3-Haiku + GO 2.308 0.530 0.100 2.90 348 4.18 3.52
GPT-40 + GO 1.611 0.535 0.096 322 3.76 4.28 3.75
LLMs with Extended Context Windows
Claude-3-Haiku 2.344 0.869 0.097 2.34 3.32 3.74 3.13
GPT-40 1.244 0.624 0.136 3.18 3.66 4.20 3.68
Ours
Llama3-8B Graph-co 1.162 0.644 0.135 2.74 3.20 3.98 3.31
Llama3-8B Graph-ci 1.410 0.651 0.154 2.80 3.34 4.18 344
Claude-3-Haiku Graph-co | 2.840 0.832 0.210 2.98 348 4.22 3.56
Claude-3-Haiku Graph-ci | 3.240 0.942 0.231 3.00 3.62 4.22 3.61
GPT-40 Graph-co 1.900 0.649 0.123 3.28 3.74 4.34 3.79
GPT-40 Graph-ci 2.125 0.667 0.128 3.32 3.86 4.44 3.87

Table 1: Performance of different models on the OARelatedWork dataset. The best and runner-up are in bold and
underlined. Graph-based metrics for the PRIMERA model are not reported because its generated results do not
distinguish between different references, making it infeasible to construct the corresponding graph.

simultaneously. We choose Claude-3-Haiku (200K-
token) and GPT-40 (128K-token) as baselines.

5.2 Maetrics

To avoid the poor correlation with human judg-
ments in traditional automatic metrics (Chen et al.,
2024), we choose two kinds of evaluation methods
specifically for the RWG task.

Graph-based Metrics. To evaluate how well the
generated RWS integrates and relates references,
we adopt graph-based metrics (Martin-Boyle et al.,
2024). A co-occurrence graph is constructed from
the generated RWS, where each node represents
a reference paper, and edges indicate that two ref-
erences are jointly cited in a single sentence. A
denser graph can reflect a more interrelated expla-
nation of the references. We select three simple
yet insightful graph statistics as metrics: Average
Number of Edges, Average Node Degree, and
Clustering Coefficient. Clustering coefficient can
evaluate the tendency of references to form tightly
connected clusters and avoid overestimating quality
for connections between unrelated references.

LLM-based Evaluation. Previous LLM-based
methods for evaluation predominantly focus on lin-
guistic quality (Ge et al., 2021; Li et al., 2022).
To provide more accurate evaluations tailored to

RWG tasks, we carefully design three metrics (in-
spired by Wang et al.)—coverage, logic, and rele-
vance—to assess the generated content’s alignment
with the essential characteristics of a high-quality
RWS. Coverage: whether the generated RWS cov-
ers all key topics and provide detailed and thorough
discussions about the references. Logic: whether
the RWS is tightly structured and logically coher-
ent, with content arranged in a clear and reasonable
manner. Relevance: whether the RWS aligns with
all papers and avoids hallucinations or factual inac-
curacies. Each metric is scored on a 5-point scale.
To enhance the accuracy and consistency, we em-
ploy chain-of-thought (CoT) prompting (Yu et al.,
2023) with explicit scoring criteria. To mitigate
potential biases introduced by the preferences of
individual LLMs, we utilize three advanced LLMs:
GPT-40 3, Claude-3.5-haiku, and Gemini-1.5-Pro.
The final results are the average of these three mod-
els. Details on the prompt design and scoring crite-
ria for each metric are provided in the Appendix C.

5.3 Main Results

We compare our framework with three types of
baselines and present the results in Table 1. We re-

3A distinct version, gpt-40-2024-05-13
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Figure 3: Performance comparison of five different selector strategies across three base models: (a) average number
of edges in graph-based metrics, (b) overall LLM-based evaluation.

port the performance of our framework with graph-
aware selectors, as they achieve the best perfor-
mance. The key findings from the table are as
follows: (1) Full-text-based RWG models outper-
form abstract-based models. The performance of
full-text-based RWG models (including retrieval-
based models and our framework) is significantly
better than that of abstract-based RWG models.
This trend holds consistently across five baselines
and two kinds of evaluation metrics. It validates
our motivation for full-text-based RWG tasks. (2)
Feeding all textual data in a single pass is not op-
timal. While many advanced LLMs claim to han-
dle long inputs, their methods for extending input
windows often come at the cost of performance. As
shown in Table 1, for GPT-40 and Claude-3-Haiku,
feeding all the content does not perform as well as
providing just the abstracts. Claude-3-Haiku’s per-
formance on LLM-based evaluation even drops by
as much as 9.3% in overall. (3) Consistent perfor-
mance improvement with our framework. Our
framework shows consistent performance improve-
ments across all three base models. Compared to
retrieval-based models, our framework with Graph-
Ci improves performance by 4.6%, 2.6%, and 3.2%
on Llama3-8B, Claude-3-Haiku, and GPT-4o, re-
spectively. However, the base model’s capabilities
still play a dominant role. The performance of
Llama3-8B Graph-ci is still lower than that of the
abstract-based Claude-3-Haiku.

5.4 Different Strategies for Selector

We experiment with five different selector strate-
gies across three base models. As shown in Fig-
ure 3, the performance trends of the five strategies
are similar across the base models, following the
order: SR < RR < Vanilla < Graph-Co < Graph-

Avg. Overall
Input | Model Edges LILM
(Graph) | -based
Llama3-8B 1.063 2.93
Intro. Llama3-8B Graph-ci 1.163 3.29
& Claude-3-Haiku 1.452 3.33
Claude-3-Haiku Graph-ci 2413 3.41
Con. GPT-40 1.033 3.69
GPT-40 Graph-Ci 1.735 3.71
Llama3-8B 1.088 3.22
Llama3-8B Graph-ci 1.385 3.31
Related | Claude-3-Haiku 2.324 3.29
Work Claude-3-Haiku Graph-ci 2.796 3.49
GPT-40 1.938 3.71
GPT—40 Graph-Ci 1 .9 1 8 3 .73

Table 2: Performance of different models under two
common input configurations. Our proposed framework
consistently improves the performance of all three base
models across both settings.

Ci. These results are expected: RR helps mitigate
the potential bias in SR. Integrating LLMs into
the decision-making process allows for a more in-
telligent selection of the reading order. Introduc-
ing the graph constraint enables the agent to more
clearly capture the relationships among references.
The inferior performance of Graph-Co compared to
Graph-Ci may be attributed to the high connectivity
of the co-occurrence graph, which imposes limited
constraints on the agent’s decision-making. In ad-
dition, there are minimal performance differences
in Llama3-8B, which could be due to its relatively
weaker capabilities, making it less sensitive to dif-
ferent selectors. The more detailed data can be
found in Table 3 in Appendix A.

5.5 Different Input Configurations

In addition to the abstracts, existing works also uti-
lize introduction and conclusion (Chen and Zhuge,



Domain adaptation has emerged as a critical area of research to address the challenge of transferring

learned models from a source domain with abundant labeled data to a target domain with limited or

no labeled data. Early approaches primarily focused on learning domain-invariant features by

@ aligning feature distributions between domains. For instance, CORrelation ALignment (CORAL) [17,

18] aligns the second-order statistics of source and target distributions, and has been extended to ( X ] ([ ‘\ a [

GPT-40 deep networks (Deep CORAL) to improve performance on benchmark datasets. However, these
methods often overlook the unique characteristics of each domain, potentially limiting their
effectiveness. To address this, ... Overall, our method builds on these insights by introducing

auxiliary residual networks that predict parameters in the target domain from the source domain.
Co-occurrence graph

A5

Figure 4: A case study comparing the RWS generated by GPT-40 and GPT-40 graph-ci- On the right, a co-
occurrence graph for graph-based metrics is constructed from the generated RWS. Our GPT-40 gGrqph-c; model

Deep Domain Adaptation (DDA) seeks to leverage annotated data from a source domain to improve

model performance in a target domain with limited labels. A prevalent strategy involves learning

domain-invariant feature representations [6, 8, 9, 18], where methods like Domain-Adversarial

Neural Networks (DANN) [9] and Deep CORAL [18] align feature distributions to minimize domain

GPT-40 shift. However, these approaches often overlook domain-specific characteristics, which can be

(Graph-Ci)  crucial for effective adaptation. Recent advancements... Our proposed approach leverages these

Ours insights by incorporating auxiliary residual networks, which forecast parameters from the source
domain to the target domain.

gives a more cohesive and interrelated explanation of the references , which is much easier for readers to follow.

In contrast, GPT-40 fails to establish connections between references .

2019; Deng et al., 2021) or RWS (Xing et al., 2020;
Ge et al., 2021) to represent references. We also
apply our framework in these scenarios with lim-
ited portions of papers as text inputs and present
the results in Table 2. There are some interest-
ing findings: (1) When limiting the task input to
only the Intro. & Con. or RWS, our framework
still improves the performance of all base models.
It underscores the robustness and adaptability of
our framework when applied to text inputs of vary-
ing lengths. (2) A comparison between Table 1
and Table 2 reveals that for both Llama3-8B and
Claude-3-Haiku, providing additional sections re-
sults in a performance decline. It could stem from
the relatively weaker long-text processing capabili-
ties of these models. In contrast, for GPT-4o0, the
inclusion of additional sections improves its per-
formance. (3) Even with the integration of our
framework, models based on partial sections still
fall short in performance compared to models uti-
lizing the full text. It emphasizes the necessity of
full-text-based RWG task. (4) Models leveraging
the RWS consistently outperform those based on
the Intro. & Con. This aligns well with common
academic writing practices, where the RWS of pre-
vious work is often a primary source for crafting
the RWS of one’s own paper. The detailed data can
be found in Table 4 in Appendix A.

5.6 Case Study

Figure 4 presents a case study comparing the RWS
generated by GPT-4o0 without and with our frame-
work. The RWS generated by GPT-40 Graph-ci 18
significantly more organized, with a clearer struc-
ture and stronger connections between references.

The corresponding co-occurrence graph is also no-
tably denser. It gives a more cohesive and interre-
lated explanation of the references, which is much
easier for readers to follow. In contrast, GPT-4o0
fails to establish connections between references.
The explanations of individual references are overly
detailed and disjointed. As a result, it is less co-
herent and harder for readers to grasp, which is a
common struggle in previous models. By constrain-
ing the reading process to the citation graph, our
GPT-40 Graph-ci model is better able to capture the
relationships among references, resulting in a more
logically structured and tightly connected output.

6 Conclusion

In this paper, we propose a multi-agent framework
along with a graph-aware selector within the frame-
work for full-text-based related work generation
(RWG) tasks. The framework consists of three
agents: a selector, a reader, and a writer, which
work collaboratively to read the papers in selected
order and finally generate the related work sec-
tion (RWS). Our framework enables to optimize
both the reading order and memory update. Our
graph-aware selector can operate under the con-
straints of the graph to better capture the relation-
ships among references. Extensive experiments
demonstrate that our framework consistently im-
proves the performance of different base models
across various input configurations and the graph-
aware selector based on the citation graph achieves
the best performance. Case study reveals that our
framework generates more logically coherent and
tightly connected RWS.



Limitations

While our proposed framework improves graph-
based metrics across different base models, in-
dicating that the generated related work sections
better capture the relationships among references,
there is still a significant gap compared to human-
written related work. Human-written related work
can achieve an average number of edges of 9.48,
whereas our best model, Claude-3-Haiku Graph-ci»
only reaches 3.24. This gap is primarily due to the
model’s inability to effectively handle the level of
detail in different references. For example, refer-
ences that could be summarized in a single sentence
may be overly elaborated by the model, leading to
lower coherence and relevance in the generated re-
lated work. Addressing this issue is a key focus for
our future work.

Our framework also requires that users provide
a set of references in advance. Significant effort
still needs to be spent on manually retrieving and
selecting relevant papers. It limits the practical
applicability of our method. We aim to develop a
unified framework in the future where users can
simply provide keywords or the citing paper, and
the system will automatically retrieve the relevant
papers from a vast corpus, pipelining the process
of generating related work.

Ethical Statement

Given the exponential growth of academic publica-
tions, manually curating a comprehensive and rele-
vant related work section has become increasingly
challenging and time-consuming. The RWG task
aims to enhance the efficiency of scientific work by
reducing the time and effort required for authors to
draft the related work section of their papers. How-
ever, the misuse of automatic RWG tools could
raise ethical concerns, such as the potential for the
generated related work to inadvertently plagiarize
content or misrepresent the details of reference pa-
pers. Therefore, the related work generated by our
model is intended to serve only as a preliminary
draft, helping authors save time during the writ-
ing process. Authors are still required to carefully
revise and verify the output to ensure academic
integrity. We believe that using such models as as-
sistive tools rather than a replacement for thorough
reading and writing can enhance the exploration of
vast scientific literature. The benefits of these tools
are expected to outweigh the risks, provided they
are used responsibly.
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A Detailed Results

Table 3 reports all the evaluation results for five dif-
ferent selector implementations across three base
models (Llama3-8B, Claude-3-Haiku, and GPT-
40), representing the raw data for Figure 3. These
additional results are consistent with the conclu-
sions drawn in Section 5.4.

Table 4 reports all the evaluation results for the
performance of different models under two com-
mon input configurations across three base models
(Llama3-8B, Claude-3-Haiku, and GPT-40). These
additional results are consistent with the conclu-
sions drawn in Section 5.5.
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Figure 5: The proportion of sections that are selected
for reading by GPT-40 Graph-ci-

B Section Reading Statistics

We first report the average proportion of content
read by our framework with different selectors (i.e.,
the number of sections read / total sections). As
shown in Table 5, both SR and RR require reading
all content. When LLMs are used for decision-
making, the amount of content read is significantly
reduced. The graph-aware selector further reduces
the amount of required reading and Graph-Ci re-
quires the least content to be read, at just 25.81%.
It further emphasizes the advantage of Graph-Ci,
which achieves the highest performance while re-
ducing both time and computational costs.

To understand what content our framework se-
lects for reading to achieve optimal performance,
we conduct an analysis of the sections read by the
best-performing model, GPT-40 Gaph.ci. We cat-
egorize the sections of the papers into five cate-
gories: Introduction, Related Work, Methodology,
Experiments, and Conclusion. We then calculate
the proportion of these sections that are selected for
reading, as shown in Figure 5. We do not include
the abstracts because we provide the abstracts of
all papers for the model. The results reveal that
the selector mainly selects the RWS, with a read-
ing proportion of 73.5%, while the Experiments
sections are the least read. This is consistent with
our experience in writing the related work section.
By focusing on these high-proportion sections, re-
searchers could reduce the reading overhead while
still obtaining sufficient information to write high-
quality related work.

C Prompts for Agents and Evaluation

Figure 6 - Figure 11 present the detailed prompts
for agents and evaluation.



Graph-based Metrics LLM-based Evaluation
Model é?i:lgi s A\Sigljfide g(l)g;;ecr;:ngt Coverage Logic Relevance Overall
Llama3-8B sg 0.923 0413 0.063 2.70 3.12 4.02 3.28
Llama3-8B rr 0.902 0.433 0.094 2.70 3.20 3.96 3.29
Llama3-8B vaniiia 1.154 0.455 0.077 2.76 3.10 3.98 3.28
Llama3-8B Graph-co 1.162 0.644 0.135 2.74 3.20 3.98 3.31
Llama3-8B Graph-ci 1.410 0.651 0.154 2.80 3.34 4.18 3.44
Claude-3-Haiku sg 2.120 0.602 0.119 2.88 3.50 4.08 3.49
Claude-3-Haiku rr 2.260 0.617 0.108 292 3.52 4.12 3.52
Claude-3-Haiku vaniiia 2.720 0.668 0.117 2.94 3.50 4.20 3.55
Claude-3-Haiku Graph-co | 2.840 0.832 0.210 2.98 3.48 4.22 3.56
Claude-3-Haiku Graph-ci | 3.240 0.942 0.231 3.00 3.62 4.22 3.61
GPT-40 sr 1.760 0.602 0.106 3.20 3.78 4.20 3.73
GPT-4orr 1.750 0.572 0.117 3.22 3.76 4.28 3.75
GPT-40 vanilla 1.840 0.563 0.108 3.22 3.84 4.28 3.78
GPT-40 Graph-co 1.900 0.649 0.123 3.28 3.74 4.34 3.79
GPT-40 Graph-ci 2.125 0.667 0.128 3.32 3.86 4.4 3.87

Table 3: Performance of five different selector implementations across three base models on the OARelatedWork
dataset. The best for each base model are in bold.

Graph-based Metrics LLM-based Evaluation

Input | Model Iﬁi‘;%: R A\]/Sgéglj;de g(l)l;z%eg:ri Coverage Logic Relevance Overall
Llama3-8B 1.063 0.505 0.094 2.38 2.60 3.80 2.93
Intro. | Llama3-8B graph-ci 1.163 0.522 0.124 2.66 3.12 4.08 3.29
& Claude-3-Haiku 1.452 0.525 0.107 2.52 3.30 4.18 3.33
Claude-3-Haiku Graph-ci | 2.413 0.776 0.164 2.76 3.40 4.08 3.41
Con. GPT-40 1.033 0.537 0.117 3.14 3.68 4.26 3.69
GPT-40 Graph-ci 1.735 0.545 0.107 3.20 3.62 4.30 3.71
Llama3-8B 1.088 0.442 0.125 2.52 3.16 3.98 3.22
Llama3-8B Graph-ci 1.385 0.534 0.115 2.76 3.14 4.04 3.31
Related | Claude-3-Haiku 2.324 0.538 0.110 2.62 3.20 4.06 3.29
Work | Claude-3-Haiku Graph-ci | 2.796 0.736 0.173 2.90 3.46 4.12 3.49
GPT-40 1.938 0.536 0.084 3.20 3.70 4.24 3.71
GPT-40 Graph-ci 1.918 0.560 0.117 3.20 3.68 432 3.73

Table 4: Performance of different models under two common input configurations. Our proposed framework
consistently improves the performance of all three base models across both settings.

Average proportion of

Model content read (%)
GPT-40 sr 100.00
GPT-40rr 100.00
GPT-40 vanilia 35.27
GPT-40 Graph-Co 28.53
GPT-40 Graph-Ci 25.81

Table 5: The average proportion of content read by our
framework (GPT-40 base) with different selectors.
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Prompt for Selector-Vanilla
(System Prompt: You are a research worker with excellent paper reading skills. \

User Prompt:

I am writing a scientific paper. Now I need to cite some reference papers and write the Related Work section for the paper. Given the
limitation on input length, your current task is to decide to read the content of each article (the paper currently being written and all
cited papers) and remember the content needed for writing the Related Work section.

You need to explicitly maintain a memory of limited size (4096 tokens). Each time, I will provide you with the information you have
read before and your memory after reading the previous content. Then, please select the content you want to read next.

I will list the abstracts and content structures of all papers in JSON format, for example, {'id": the id of the paper, 'abstract': the abstract
of the paper, 'structure': the list of sections included in the paper}. The JSON information of the paper currently being written is as
follows: {The Json information of the citing paper.} The JSON information of the cited papers is as follows: {The Json information of
all the cited papers. }

Your previous memory is: {Working Memory M;_}

The content you have read before (in the JSON format) is: {Reading History H;_;} This information is crucial because you cannot
request to re-read content that has already been read.

Please select the content you want to read next based on the previous memory and the papers' information, and give the reason. Please
answer in the JSON format {"id": the id of the article to be read, "section": the name of the section to be read in the article, "rationale":
the reason}. You must ensure that the section name appears in the structure of the corresponding article. You also must ensure that the
section has not been read before. If you think that there is no need to read any more content, please only respond with 'End’. Respond

'End’ at any appropriate time, as many sections of the paper are irrelevant to writing the Related Work section. You need to minimize

uhe consumption brought about by reading. Be strictly follow the format, and do not respond with any other additional content! J

Figure 6: Prompt for Selector-Vanilla.
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Prompt for Selector-Graph-Co
/ System Prompt: You are a research worker with excellent paper reading skills. \
User Prompt:
I am writing a scientific paper. Now I need to cite some reference papers and write the Related Work section for the paper. Given the
limitation on input length, your current task is to decide to read the content of each article (the paper currently being written and all
cited papers) and remember the content needed for writing the Related Work section.
We will provide a co-occurrence graph of the papers where each node represents a reference paper, and edges indicate that two
references are jointly cited in a single sentence in previous Related Work. Your role is to act as an intelligent agent traversing this graph.
At each step, you will know your current position in the graph (the paper you are currently reading), along with its adjacent papers.
Your task is to decide what to read next within this local graph structure. You can choose to continue reading the current paper or move
to a connected paper (essentially making a jump in the graph).
You also need to explicitly maintain a memory of limited size (4096 tokens). Each time, I will provide you with the information you
have read before and your memory after reading the previous content. Then, please decide the content you want to read next.
I will first provide global co-occurrence graph information. The graph is presented in the form of a dictionary with the format:
{"paper_id": [list of its co-occurrence papers IDs]}. The specific co-occurrence graph is as follows: {Co-occurrence Graph G}
T will list the abstracts and content structures of papers in JSON format, for example, {'id": the id of the paper, 'abstract': the abstract of
the paper, 'structure”: the list of sections included in the paper}. An ID of -1 represents the paper currently being written. The JSON
information of the paper currently being read is as follows: {The Json information of the paper currently being read.} The JSON
information of the adjacent papers is as follows: {The JSON information of the adjacent papers} We additionally provide information
about other papers that are not part of the local subgraph, which may assist in your selection. However, you are not allowed to request
the content of these papers, as your task is to choose what to read within the local subgraph. The JSON information of the other papers
is as follows: {The Json information of the other papers.}
Your previous memory is: {Working Memory M;_}
The content you have read before (in the JSON format) is: {Reading History H;_;} This information is crucial because you cannot
request to re-read content that has already been read.
Please select the content you want to read next based on the previous memory and the papers' information, and give the reason. Please
answer in the JSON format {"id": the id of the article to be read, "section": the name of the section to be read in the article, "rationale":
the reason}. You must ensure that the section name appears in the structure of the corresponding article. You also must ensure that the

section has not been read before. If you think that there is no need to read any more content, please only respond with 'End’. Respond

’

\End! at any appropriate time, as many sections of the paper are irrelevant to writing the Related Work section. You need to minimize/

the consumption brought about by reading. Be strictly follow the format, and do not respond with any other additional content!

Figure 7: Prompt for Selector-Graph-Co.

14



Prompt for Selector-Graph-Ci
/ System Prompt: You are a research worker with excellent paper reading skills. \

User Prompt:

I am writing a scientific paper. Now I need to cite some reference papers and write the Related Work section for the paper. Given the
limitation on input length, your current task is to decide to read the content of each article (the paper currently being written and all
cited papers) and remember the content needed for writing the Related Work section.

We will provide a citation graph of the papers, and your role is to act as an intelligent agent traversing this graph. At each step, you will
know your current position in the graph (the paper you are currently reading), along with the papers cited by this paper and those that
cite it. Your task is to decide what to read next within this local graph structure. You can choose to continue reading the current paper
or move to a connected paper (essentially making a "jump" in the graph).

You also need to explicitly maintain a memory of limited size (4096 tokens). Each time, I will provide you with the information you
have read before and your memory after reading the previous content. Then, please decide the content you want to read next.

I will first provide global citation graph information. The citation graph is presented in the form of a dictionary with the format:
{"paper_id": [list of its referenced papers IDs]}. The specific citation graph is as follows: {Citation Graph G}

I will list the abstracts and content structures of papers in JSON format, for example, {'id": the id of the paper, 'abstract': the abstract of
the paper, 'structure': the list of sections included in the paper}. An ID of -1 represents the paper currently being written. The JSON
information of the paper currently being read is as follows: {The Json information of the paper currently being read.} The JSON
information of the papers cited by the paper currently being read is as follows: {The Json information of the papers cited by the paper
currently being read.} The JSON information of the papers citing the paper currently being read is as follows: {The Json information of
the papers citing the paper currently being read.} We additionally provide information about other papers that are not part of the local
subgraph, which may assist in your selection. However, you are not allowed to request the content of these papers, as your task is to
choose what to read within the local subgraph. The JSON information of the other papers is as follows: {The Json information of the
other papers. }

Your previous memory is: {Working Memory M,_}

The content you have read before (in the JSON format) is: {Reading History H,_;} This information is crucial because you cannot
request to re-read content that has already been read.

Please select the content you want to read next based on the previous memory and the papers' information, and give the reason. Please
answer in the JSON format {"id": the id of the article to be read, "section": the name of the section to be read in the article, "rationale":
the reason}. You must ensure that the section name appears in the structure of the corresponding article. You also must ensure that the

section has not been read before. If you think that there is no need to read any more content, please only respond with 'End'. Respond

Qd’ at any appropriate time, as many sections of the paper are irrelevant to writing the Related Work section. You need to minimizy

the consumption brought about by reading. Be strictly follow the format, and do not respond with any other additional content!

Figure 8: Prompt for Selector-Graph-Ci.
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Prompt for Reader
/ System Prompt: You are a research worker with excellent paper reading skills. \

User Prompt:

I am writing a scientific paper. Now I need to cite some reference papers and write the Related Work section for the paper. Given the
limitation on input length, your current task is to read the content of each article (the paper currently being written and all cited papers)
and remember the content needed for writing the Related Work section.

You need to explicitly maintain a memory of limited size (4096 tokens). Each time, I will provide you with the information you have
read before and your memory after reading the previous content. At the same time, I will provide you with the content you were asked
to read last time. You need to read this content and update what you have in your memory.

I will list the abstracts of all papers in JSON format, for example, {'id": the id of the paper, 'abstract": the abstract of the paper}. The
JSON information of the paper currently being written is as follows: {The Json information of the citing paper.} The JSON information
of the cited papers is as follows: {The Json information of all the cited papers.}

The content you requested to read last time is the {Section s,} of paper {R,}: {The content of s5;.}

The content you have read before (in the JSON format) is: {Reading History H,_;} This information is crucial because you cannot
request to re-read content that has already been read.

Your previous memory is: {Working Memory M;_4 }

You need to differentiate between different articles by the paper id in the memory. When writing the Related Work section,
understanding the relationships between different papers is very important, so you can try to keep track of this in your memory. Please
answer your updated memory based on the provided content and the previous memory. Feel free to modify the content in the memory,
adding information that you believe will be useful for writing the Related Work section and removing any irrelevant or redundant
information in the memory. Due to the memory size limitations, you should aim to record as much useful information as possible.

Please also give the reason. Please answer in the JSON format {"memory": the updated memory, "rationale": the reason}. Be strictly

\follow the format, and do not respond with any other additional content! /

Figure 9: Prompt for Reader.

/ Prompt for Writer

System Prompt: You are a research worker with excellent paper writing skills.

User Prompt:

T am writing a paper and have already written all the sections except for the Related Work section. Now I need to cite some reference
papers. Please write a Related Work section for me to conform to the format of scientific conferences. Please note that explain the
connections between the papers rather than summarize each article separately. Also, please summarize all the papers at the beginning
and elaborate on the relationship between papers.

The abstract that has already been written is as follows: {The abstract of the citing paper.}

T will list the abstracts of all cited papers in JSON format like {'id": id of the cited paper, 'abstract": abstract of the cited paper}. Note that
the order of the provided papers is random, so you need to reorganize the order based on the relationship between the papers. The Json
information of cited papers is as follows: {The Json information of all the cited papers. }

In order to get more detailed information about the papers, one of your peers has read the full content of all the articles and has
maintained a memory they believe are important for writing the Related Work section. You might find this memory helpful and receive
assistance from it. The content of the memory is as follows: {Working Memory My }

In the Related Work section, it is crucial to maintain a high level of synthesis and cohesion. Therefore, you should group similar studies
together, highlighting their shared themes, and clearly explain the relationships between the referenced works. Incorporate multiple
references within a single sentence, rather than introducing each reference in isolation! Here is an example of a Related Work section
with a high level of synthesis and cohesion: {An example of the Related Work section. }

Please note that cite the corresponding papers by their ids and return the Related Work section in the format {'related_work': the content

\of the Related Work}. Be strict to the format and do not answer any other extra content!

J

Figure 10: Prompt for Writer.
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Prompt for Evaluation
/ System Prompt: You are a strict paper reviewer.

User Prompt:

Coverage

Please evaluate the 'Coverage' of the Related Work section of papers based on the abstracts of all the cited papers.

The scoring criteria are as follows:

- Score 1: The 'Related Work' has limited coverage, only touching on a small portion of the topic and lacking discussion on key areas.

- Score 2: The 'Related Work' covers some parts of the topic but has noticeable omissions, with significant areas either
underrepresented or missing.

- Score 3: The 'Related Work' is generally comprehensive in coverage but still misses a few key points that are not fully discussed.

- Score 4: The 'Related Work' covers most key areas of the topic comprehensively, with only very minor topics left out.

- Score 5: The Related Work' comprehensively covers all key and peripheral topics, providing detailed discussions and information.

Logic

Please evaluate the 'Logic' of the Related Work section of papers based on the abstracts of all the cited papers.

The scoring criteria are as follows:

- Score 1: The 'Related Work' lacks logic, with no clear connections between sentences, making it difficult to understand the content.

- Score 2: The Related Work' has weak logical flow with some content arranged in a disordered or unreasonable manner.

- Score 3: The 'Related Work' has a generally reasonable logical structure, with most content arranged orderly, though some links
and transitions could be improved such as repeated explanation.

- Score 4: The 'Related Work' has good logical consistency, with content well arranged and natural transitions, only slightly rigid in a
few parts.

- Score 5: The 'Related Work' is tightly structured and logically clear, with all content arranged most reasonably, and transitions
between adjacent sentences smooth without redundancy.

Relevance

Please evaluate the 'Relevance' of the Related Work section of papers based on the abstracts of all the cited papers.

The scoring criteria are as follows:

- Score 1: The content is outdated or unrelated to the field it purports to review, offering no alignment with the topic.

- Score 2: The 'Related Work' is somewhat on topic but with several digressions; the core subject is evident but not consistently
adhered to.

- Score 3: The Related Work' is generally on topic, despite a few unrelated details.

- Score 4: The 'Related Work' is mostly on topic and focused; the narrative has a consistent relevance to the core subject with
infrequent digressions.

- Score 5: The 'Related Work' is exceptionally focused and entirely on topic; the article is tightly centered on the subject, with every

piece of information contributing to a comprehensive understanding of the topic.

Json information of all the cited papers.} The content of the ‘abstract’ section of the current paper is: {The abstract of the citing paper.}

And the content of the ‘Related Work” section to be evaluated is: {Related Work section to be evaluated}

Provide your reasoning for the score first, and then give the final score. Use JSON format for your response, like: {"reason": "The

reason for your score", "score": "The final given score"}. Be strict to the format and do not answer any other extra content!

Figure 11: Prompt for Evaluation.
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