
Published as a conference paper at ICLR 2025

IMPROVED APPROXIMATION ALGORITHMS FOR k-
SUBMODULAR MAXIMIZATION VIA MULTILINEAR EX-
TENSION

Huanjian Zhou1,2 Lingxiao Huang3 Baoxiang Wang4∗

1The University of Tokyo 2 RIKEN AIP
3State Key Laboratory of Novel Software Technology, New Cornerstone Science Laboratory,

Nanjing University
4The Chinese University of Hong Kong Shenzhen

ABSTRACT

We investigate a generalized form of submodular maximization, referred to as
k-submodular maximization, with applications across the domains of social net-
works and machine learning. In this work, we propose the multilinear extension
of k-submodular functions and unified Frank-Wolfe-type frameworks based on
that. This continuous framework accommodates 1) monotone or non-monotone
functions, and 2) various constraint types including matroid constraints, knapsack
constraints, and their combinations. Notably, we attain an asymptotically optimal
1/2-approximation for monotone k-submodular maximization problems with knap-
sack constraints, surpassing previous 1/3-approximation results (Ha et al., 2024),
and a factor-1/3 approximation for non-monotone k-submodular maximization
problems with knapsack constraints and matroid constraints which outperforms
previous 0.245-approximation results (Yu et al., 2023). The foundation for our
analysis stems from new insights into specific linear and monotone properties
pertaining to the multilinear extension.

1 INTRODUCTION

Consider the following problems in machine learning and operations research: (i) identifying influen-
tial individuals in a social network with k topics to maximize the number of individuals influenced
by at least one topic (Qian et al., 2017; Zhang et al., 2019), (ii) partitioning a set of features into
k + 1 subsets such that one feature can be used in at most one regression target (or none of them) for
k regression targets on these features (Singh et al., 2012b; Zhou et al., 2019), and (iii) selecting a
small set of sensors from k types of sensors in an area to maximize the information obtained from the
sensors (Ohsaka & Yoshida, 2015). These problems are often constrained, such as selecting sensors
with different costs within a finite budget. More examples can be found in Appendix A.1.

Solving these problems involves maximizing a k-submodular set function f : {0, . . . , k}n →
R≥0 subject to some constraints. Intuitively, the k-submodularity property captures the notion of
diminishing returns. For instance, consider identifying influential individuals in a social network.
For a fixed topic, the newly selected influential individuals will contribute less to the overall user
coverage if many influential individuals have already been selected, and more if only a few have been
selected. Similarly, adding additional features in regression problems and placing additional sensors
in an area also share such diminishing returns property.

Formally, for an integer k ≥ 1 and a finite nonempty set [n], a non-negative function f :
{0, . . . , k}n → R≥0 is called k-submodular if for all s and t in {0, . . . , k}n, we have

f(s) + f(t) ≥ f(min
0

(s, t)) + f(max
0

(s, t)), (1)

∗Corresponding to: Huanjian Zhou, Lingxiao Huang, Baoxiang Wang

1

Published as a conference paper at ICLR 2025

where for every i ∈ [n],

min
0

(s, t)i =

{
0, siti ̸= 0 and si ̸= ti,

min(si, ti), otherwise,
and

max
0

(s, t)i =

{
0, siti ̸= 0 and si ̸= ti,

max(si, ti), otherwise.

We provide an illustrative example of sensor placement for k-submodular: Suppose there are k = 3
types of sensors and n = 4 different locations to deploy them. The vector s = (1, 2, 0, 3) means
placing type-1, type-2, no sensor, type-3 sensor, in locations 1, 2, 3, 4, respectively. The vector
t = (0, 2, 1, 3) means placing no sensor, type-2, type-1, type-3 sensor, in locations 1, 2, 3, 4,
respectively. Then min0(s, t) = (0, 2, 0, 3) and max0(s, t) = (1, 2, 1, 3). Intuitively, adding
more sensors to a single task does not yield proportional benefits compared to evenly distributing
them across tasks. Such diminishing return property is described by Eq. (1) that f(1, 2, 0, 3) −
f(0, 2, 0, 3) ≥ f(1, 2, 1, 3)− f(0, 2, 1, 3). In fact, the diminishing return applies to every coordinate
of the problem by the inequality. Our definition of k-submodular functions (Eq. (1)), which is
also employed in Ward & Zivný (2016), is equivalent to an alternative definition used in Iwata et al.
(2016); Sakaue (2017). In this paper, we use the definition of Eq. (1) since it is more convenient to
define and study the properties of multilinear extension. For completeness, we give the explicit form
of the equivalent definition and show their equivalence in Appendix A.2.

A special case of the k-submodular maximization problem is the submodular maximization problem
with k = 1. The techniques for submodular maximization problems can generally be classified into
two main lines. The first line is combinatorial and is mostly based on greedy rules and local search.
This approach has been applied to both monotone and non-monotone submodular objective functions
under various constraints (Buchbinder et al., 2015; Feige et al., 2011; Filmus & Ward, 2014; Lee
et al., 2010a;b; Nemhauser et al., 1978). In some cases, optimal algorithms have been obtained using
this line of approaches (Buchbinder et al., 2015; Sviridenko, 2004). The second line is a two-staged
framework based on the multilinear extension. This line of methods involves identifying a fractional
solution for the relaxation of the problem and then rounding the fractional solution to obtain an
integral one while incurring a bounded loss in the objective. This line of approaches achieves better
approximation ratios in most cases (Buchbinder & Feldman, 2019; Călinescu et al., 2011; Chekuri
et al., 2010a; 2014; Feldman et al., 2011a; Kulik et al., 2013).

Previous works in constrained k-submodular function maximization were based on combinatorial
techniques, such as the greedy algorithm. However, compared with tight approximations of submodu-
lar maximization with various constraints, previous combinatorial approaches have not been able to
achieve asymptotically optimal approximation results in most cases. In fact, the only tight results
available are on the basic case of a single matroid constraint. For example, even for the important
case of monotone k-submodular maximization with single knapsack constraint, the current best
combinatorial method only obtains 1/3-approximation (Ha et al., 2024), leaving a large gap with the
best known lower bound of k+1

2k (Iwata et al., 2016). Also, existing combinatorial methods do not
provide the flexibility to combine constraints of different types, especially O(1) knapsack constraints.

1.1 OUR CONTRIBUTIONS

We propose a generalization of multilinear extension for the case of k-submodular functions (Def-
inition 2.4), which allows us to use continuous optimization methods for this class of problems.
Using this new concept of multilinear extension, we propose a unified framework, that is capable of
handling different types of constraints, as well as monotone and non-monotone cases (Problem 2.3).
We study two classic types of constraints: matroid constraints and knapsack constraints.

We first present the results when f is non-negative and monotone, i.e., if f(s) ≤ f(t) holds for every
pair of integral vectors s, t ∈ {0, . . . , k}n satisfying that every non-zero coordinate of s has the same
value as that of t, i.e., 1) supp(s) ⊆ supp(t), where supp(s) := {e ∈ [n] : se ̸= 0} represents the
support set, and 2) se = te for all e ∈ supp(s).
Theorem 1.1 (Informal, see Theorem 3.1). For monotone constrained k-submodular maximization,
there exists a (randomized) polynomial-time algorithm that returns 1) 1/2 − ε approximation for
O(1) knapsacks; 2) 1/2− ε approximation for a single matroid; 3) 0.3/b− ε approximation for the
intersection of O(1) knapsacks and b matroids.

2

Published as a conference paper at ICLR 2025

Problem type of k-submod. max. Prior results Our results

d knapsacks
(d = O(1))

Monotone
1
3 (Ha et al., 2024) (d = 1)
1

2+2d − ε (Gong et al., 2024)
1
2 − ε

♠

Non-monotone (k ≥ 2)
1−e−4

4 (Yu et al., 2023) (d = 1)
1

3+2d − ε (Gong et al., 2024)
1
3 − ε

single matroid
Monotone 1

2 (Sakaue, 2017)♠ 1
2 − ε

♠

Non-monotone (k ≥ 2) 1−e−4

4 (Yu et al., 2023) 1
3 − ε

b matroids +
d knapsacks
(d = O(1))

Monotone 1−e−(b+2)

b+2 (Yu et al., 2023) (d = 1) 0.3
b − ε

Non-monotone (k ≥ 2) 1−e−(b+3)

b+3 (Yu et al., 2023) (d = 1) 0.2
b − ε

Table 1: Comparison with previous work for constrained k-submodular maximization. ϵ > 0 can be
a constant arbitrarily close to 0. Symbol ♠ represents that the results are asymptotically tight.

For a single knapsack constraint, we achieve an approximation ratio of 1/2− ε, which aligns with the
established lower bound of k+1

2k (Iwata et al., 2016) and is thus asymptotically tight. This outcome
represents an improvement over the prior 1/3-approximation for a single knapsack (Ha et al., 2024).
Additionally, we successfully extend this 1/2−ε approximation ratio to scenarios with O(1) knapsack
constraints, maintaining asymptotic tightness. Contrasting with a recent result by (Gong et al., 2024),
which provides an approximation ratio of 1

2+2d − ε where d represents the number of knapsack
constraints, our result eliminates the dependency factor of 2d, significantly enhancing the scalability
as d increases. In the context of a single matroid constraint, we also secure an asymptotically optimal
approximation ratio of 1/2− ε, corroborating the findings of previous studies (Sakaue, 2017).

Furthermore, our algorithm adeptly handles intersections of O(1) knapsacks and b matroids, achieving
an approximation ratio of 0.3/b− ε. This extends beyond the capabilities of Yu et al. (2023), which
addresses only the intersection of a single knapsack and b matroids. We remark that for a single
knapsack case, their approximation ratio 1−e−(b+2)

b+2 is better than our ratio 0.3/b−ε for any b. Notably,
the factor 1/b is justified by a lower bound of O(log b/b) (Appendix G). A comprehensive summary
of these results is available in Table 1.

We then present results when f is non-negative and non-monotone.

Theorem 1.2 (Informal, see Theorem F.1). For non-monotone constrained k-submodular maxi-
mization where k ≥ 2, there exists a (randomized) polynomial-time algorithm that returns 1) 1/3− ε
approximation for O(1) knapsacks; 2) 1/3 − ε approximation for a single matroid 2) 0.2/b − ε
approximation for the intersection of O(1) knapsacks and b matroids.

The theorem presents enhanced approximation ratios for non-monotone objectives under knapsack
and matroid constraints. Specifically, for a single knapsack constraint or a single matroid constraint,
we have improved the approximation ratio from (1− e−4)/4 (approximately 0.25) as established by
(Ha et al., 2024), to 1/3− ε (approximately 0.33). Additionally, for scenarios involving d = O(1)
knapsack constraints, we maintain this improved ratio of 1/3 − ε, surpassing the recent result of
1/(3 + 2d) found in (Gong et al., 2024). Our results eliminate the dependency factor of 2d, thereby
significantly enhancing scalability as d increases.

Furthermore, we extend the improvements beyond the framework of the intersection of a single
knapsack and b matroids, as in (Yu et al., 2023), to include intersections of O(1) knapsacks and b
matroids, with only minimal reduction in the approximation ratio. See also Table 1 for a summary.

1.2 TECHNICAL OVERVIEW

We adopt the idea of two-stage continuous methods of submodular maximization for k-submodular
problems. Our techniques, however, depart crucially from the works of submodular maximization in
the design of multilinear extension for k-submodular functions (Definition 2.4) and the utilization
of its new properties (Lemma C.1). With the multilinear extension for k-submodular functions, we
further introduce Frank-Wolfe-type methods (Algorithms 1 and 3) and a novel rounding scheme
(Lemma 3.2 and F.3). Below we summarize these notion contributions and technical novelties.

3

Published as a conference paper at ICLR 2025

Recap of multilinear extension for submodular functions For a submodular function f :
{0, 1}n → R≥0, its multilinear extension F : [0, 1]n → R≥0 provides a useful relaxation of f
to the continuous space [0, 1]n. Intuitively, for every item i ∈ [n], a fractional value xi in the
relaxed continuous space [0, 1] represents that the item is selected with probability xi. Hence, given
a fractional point x ∈ [0, 1]n, F (x) is defined as the expected value of f(S) where each element i
is included in the random set S with probability xi. Such a formulation based on the expectation
maintains coordinate linearity and specific submodular properties in a continuous domain. The
advantageous properties of multilinear extensions have been leveraged in numerous previous studies,
such as Buchbinder & Feldman (2019); Ene & Nguyen (2016); Călinescu et al. (2011); Chekuri
et al. (2014), to develop continuous methodologies for constrained submodular maximization. This
approach typically unfolds in two distinct phases.

In the continuous optimization stage, the process begins with an empty initial solution x(0) = 0
and progressively updates this solution within the interval [0, 1]. Through continuous methods, a
fractional solution x(1) ∈ [0, 1]n is derived, which approximates the maximization of the extension F
subject to certain combinatorial constraints. For example, the well-established Frank-Wolfe algorithm
(Călinescu et al., 2011) iteratively updates the current solution x by moving it in the direction of a
constrained vector v that maximizes the local gain, quantified by ⟨∇F (x),v⟩, where∇F (x) denotes
the gradient vector of F at x. Each iteration aims to enhance the value of F (x) by an amount
proportional to F (o⋆) − F (x), with o⋆ ∈ [0, 1]n being the vector that optimizes the multilinear
extension F under the given constraints. Following the continuous optimization, the rounding stage
involves converting the fractional solution x(1) into a feasible integral solution. In this stage, each
element i vies for inclusion based on its coordinate value x(1)i, thereby rounding x(1) to an integral
form that adheres to the problem’s constraints. This two-stage framework not only facilitates the
effective handling of combinatorial constraints but also optimizes the solution with respect to the
submodular function’s multilinear extension.

Notion contribution: multilinear extension of k-submodular functions. We introduce the
concept of the k-multilinear extension for k-submodular functions (Definition 2.4), which serves
as a natural extension to the multilinear extension for submodular functions. For an item i ∈ [n],
our goal is to represent a probability distribution on the set {0, 1, . . . , k} using a fraction point xi.
To achieve this, we specify the domain of each xi as ∆k = {y ∈ [0, 1]k :

∑k
j=1 yj ≤ 1}, where

each coordinate xi,j indicates the probability of item i being assigned to state j, and 1−
∑

j∈[k] xi,j

represents the residual probability that item i being assigned to state 0. Subsequently, a k-multilinear
extension F is defined over the domain ∆n

k , where F (x) (for x ∈ ∆n
k) computes the expected value

of f(s), with each si = j occurring with probability xi,j .

The k-multilinear extension exhibits several advantageous properties that facilitate the development
of continuous optimization methods. These include multilinearity, element-wise non-positive Hessian,
pairwise monotonicity, approximate linearity, and the preservation of monotonicity as delineated in
Lemma C.1. The richness of these attributes makes the k-multilinear extension a compelling subject
of study for k-submodular functions and could potentially offer valuable insights independently.

Challenges of using k-multilinear extension. Similar to the submodular case, we aim to use the
k-multilinear extension to design two-staged continuous methods. The extension of the rounding
stage is rather straightforward, for both monotone and non-monotone cases (Lemmas 3.2 and F.3).
The technical challenges come from the continuous optimization stage, which we summarize below.

• Closure: The domain of submodular extension is [0, 1]n, which benefits the closure of the
coordinate-wise maximum operation, i.e., x ∨ y ∈ [0, 1]n for all x,y ∈ [0, 1]n. This prop-
erty is crucial in the analysis of the approximation ratio of the derived fractional solution x(1).
However, the domain of k-submodular extension is the corner of the cube ∆n

k rather than [0, 1]nk.
Consequently, the closure property no longer holds.

• Approximate linearity: Another advantageous property of submodular extensions is their approx-
imate linearity, whereby the function F closely approximates a linear function along any given
direction (Bian et al., 2017). This property significantly influences the value change at each step in
continuous optimization methods. However, it remains uncertain whether this property extends to
k-submodular extensions, given the complex structure introduced by the k coordinates.

4

Published as a conference paper at ICLR 2025

Technical novelty. Our technical contributions lie in tackling these challenges by introducing
auxiliary points for analysis and uncovering novel properties of k-multilinear extension. We outline
these approaches below.

To address the initial challenge about closure, we shift our focus to the operation of linear combination,
which constructs ax+ (1− a)y (for a ∈ [0, 1]) for x,y ∈ ∆n

k , rather than using the coordinate-wise
maximum for submodular. This operation benefits from closure within ∆n

k , thereby facilitating
the construction of auxiliary points for analytical purposes. More specifically, we consider o⋆ as
the optimal fractional solution for the k-submodular extension F . At each time step t ∈ [0, 1], we
define x(t) ∈ t ·∆n

k as the current point.1 We generate a pseudo-convex-combination point o(t) =
x(t) + (1− t)o⋆, an auxiliary point that is assuredly within ∆n

k due to the set’s closure properties.
This method of using pseudo-convex-combination points aligns with approaches previously explored
in literature, such as Iwata et al. (2016), Ohsaka & Yoshida (2015), and Sakaue (2017). These studies
have demonstrated the utility of such points in facilitating detailed and effective analysis.

Then we investigate the relation between F (x(t)) and F (o(t)), whose key is to address the afore-
mentioned second challenge about approximate linearity. When f is monotone, we demonstrate
that F (x(t + δ)) − F (x(t)) ≳ F (o(t)) − F (o(t + δ)), which directly leads to a conclusion that
F (x(1)) ≳ 1

2F (o⋆) (Lemma 3.3). Theorem 1.1 is a direct corollary of this conclusion and the round-
ing guarantee (Lemma 3.2). We establish this result based on extending the approximate linearity
property for submodular to k-submodular functions (Lemma C.1). This property captures certain Lip-
schitzness of k-multilinear extension F and allows us to estimate the increment F (x(t+δ))−F (x(t))
for sufficiently small values of δ.

When f is non-monotone, we utilize a new property of k-multilinear extension F , called pairwise
monotonicity (Lemma C.1), which help reduce the problem to the monotone case. Utilizing pairwise
monotonicity, we are able to obtain an approximation F (x(1)) ≳ 1

3F (o⋆) (Lemma F.2). Similarly,
Theorem 1.2 is a direct corollary of this approximation and the rounding guarantee (Lemma 3.2).

Comparison with existing combinatorial approaches. We demonstrate that our approach using
continuous optimization methods yields improved approximations for knapsack constraints compared
to prior combinatorial methods such as those presented in (Ha et al., 2024; Yu et al., 2023). We offer
intuitive explanations for this improvement and observe that a similar conclusion holds for submodular
maximization with O(1) knapsack constraints: to the best of our knowledge, no combinatorial method
achieves an optimal approximation, whereas an optimal approximation algorithm via multilinear
extension has been presented by (Chekuri et al., 2014). Our findings may suggest that the flexibility
of continuous methods in selecting stepsizes and update directions provides an advantage over
combinatorial approaches for handling knapsack constraints.

1.3 OTHER RELATED WORKS

Submodular maximization, a special case of k-submodular maximization, has a rich line of research
with numerous results. In the monotone case, tight (1− 1/e)-approximations have been proposed
for various constraints, such as single matroid constraint and O(1) knapsacks constraint (Călinescu
et al., 2011; Chekuri et al., 2014; Kulik et al., 2009; Nemhauser et al., 1978). Furthermore, additional
results have been developed for more complicated constraints, including the intersection of matroids
and exchange systems (Feldman et al., 2011b; Lee et al., 2010b). In the non-monotone case, the best-
known approximation ratio for the single matroid or O(1) knapsack constraint is 0.401 (Buchbinder
& Feldman, 2024) while the hardness of 0.478 holds for single matroid (Gharan & Vondrák, 2011).

Concurrent work Recent developments in k-submodular maximization research have introduced
new algorithms with varying approximation ratios. For single matroid constraints, the threshold-
decreasing algorithm in Niu et al. (2023) achieves a 1/2-approximation ratio for monotone objectives
and a 1/3-approximation ratio for non-monotone cases. For single knapsack constraints, an alterna-
tive greedy algorithm with 0.432- and 0.317-approximation ratios for monotone and non-monotone
objectives, respectively, is presented in (Xiao et al., 2023). In comparison, our algorithms outper-
form these approaches by achieving better approximation ratios or allowing more general types
of constraints. For instance, for the non-monotone case with a single constraint, our algorithm

1t ·∆n
k is defined as {y ∈ ∆n

k : 1
t
y ∈ ∆n

k}.

5

Published as a conference paper at ICLR 2025

achieves an approximation ratio 1/3− ε instead of 0.317 in (Xiao et al., 2023). Our algorithms also
offer greater flexibility across various constraints and achieve a tight 1/2 approximation ratio for
monotone objectives and a 1/3 approximation ratio for non-monotone objectives with O(1) knapsack
constraints and single matroid constraints.

2 PROBLEM FORMULATION AND k-MULTILINEAR EXTENSION

In this section, we first define the constrained k-submodular maximization problem and then present
the notion of k-multilinear extension. Let [n] be the ground set. Let f : {0, 1, . . . , k}n → R≥0 be a
non-negative k-submodular function. Throughout this paper, we assume there exists a value oracle
Of that answers f(s) for any query s ∈ {0, . . . , k}n.

k-submodular maximization with matroid and knapsack constraints. As outlined in Section
1, our study encompasses two classic types of constraints: matroid and knapsack constraints. In
the context of submodular functions, these constraints are typically defined over the domain 2n.
Specifically, a constraint for submodular functions is represented by a down-close collection I ⊆ 2n,
where “down-close” means that for any S ∈ I and T ⊆ S, T also belongs to I.

However, it is important to note that the domain for a k-submodular function is not 2n but {0, . . . , k}n.
Consequently, in a k-submodular setting, it becomes necessary to adapt any given constraint I to the
domain {0, . . . , k}n. This adaptation involves defining the constraint based on the support set supp(s)
of a vector s ∈ {0, . . . , k}n, where supp(s) is defined as the collection of indices corresponding to
non-zero coordinates of s. Therefore, a vector s ∈ {0, . . . , k}n is deemed feasible with respect to the
constraint I if and only if its support set, supp(s), is a member of I. This redefinition ensures that
the extended constraints are appropriately applied within the k-submodular context.

Using this idea of domain adaption, we provide the following notions of matroid constraints and
knapsack constraints for k-submodular maximization.

Definition 2.1 (Matroid constraint for k-submodular maximization). Denote a matroid by a
pair M = ([n], IM) where IM ⊆ 2n, such that 1) ∀B ∈ IM, A ⊂ B ⇒ A ∈ IM; 2)
∀A,B ∈ IM, |A| < |B| ⇒ ∃x ∈ B \ A s.t. A ∪ {x} ∈ IM. A matroid constraint for
k-submodular is defined to be the collection of all vectors s ∈ {0, . . . , k}n whose support set
supp(s) ∈ IM, i.e., CM := {s ∈ {0, . . . , k}n : supp(s) ∈ IM}.
Definition 2.2 (Knapsack constraint for k-submodular maximization). Given a non-negative
vector a ∈ Rn

≥0, define IK := {S : a⊤1S ≤ 1}, where 1S is the indicator vector of set S ⊆ [n]. A
knapsack constraint is defined to be the collection of all vectors s ∈ {0, . . . , k}n whose support set
supp(s) ∈ IK, i.e., CK := {s ∈ {0, . . . , k}n : supp(s) ∈ IK}.

We are now ready to define the following problem.

Problem 2.3 (k-submodular maximization with matroid and knapsack constraints). Given
a k-submodular function f : {0, 1, . . . , k}n → R≥0, b matroid constraints CM1 , . . . , CMb

and d
knapsack constraints CK1

, . . . , CKd
, the objective is to identify a vector s ∈ {0, 1, . . . , k}n that

maximizes f(s) subject to the constraint: s ∈
(⋂

i∈[b] CMi

)
∩
(⋂

i∈[d] CKi

)
.

Particularly, when b = 1 and d = 0, this scenario is termed k-submodular maximization with a
matroid constraint; conversely, when b = 0 and d = 1, it is known as k-submodular maximization
with a knapsack constraint. To solve this problem, the idea is to design continuous methods, which
are widely used for the submodular case. To this end, we extend the notion of multilinear extension
of submodular functions to the k-submodular case.

Multilinear extension of k-submodular functions. The first step is to relax the domain of k-
submodular functions. Recall that in the submodular context, the domain of multilinear extension is
[0, 1]n, which is relaxed from {0, 1}n. For each item i ∈ [n], a fraction value xi ∈ [0, 1] represents a
probability of selecting i. Now we tend to k-submodular functions, whose domain is {0, 1, . . . , k}n.
The first idea is to relax this domain to [0, k]n. However, it is unclear how to use a fraction value
xi ∈ [0, k] to represent a probability (distribution) in [0, k]n. To address this issue, we utilize
the idea of one-hot encoding that encodes a value a ∈ {0, 1, . . . , k} by a k-dimensional vector

6

Published as a conference paper at ICLR 2025

b ∈ {0, 1}k with bj = 1 if a = j and bj = 0 otherwise. This encoding motivates us to consider the
domain ∆k = {y ∈ [0, 1]k :

∑k
j=1 yj ≤ 1} to represent probability distributions on discrete values

{0, 1, . . . , k}. To be specific, a vector x ∈ ∆k represents a probability distribution, where each j ∈ [k]
is assigned with probability xj . Thus, the domain of the k-multilinear extension of k-submodular

function is defined to be the corner of the cube ∆n
k :=

{
x ∈ [0, 1]nk :

∑k
j=1 xi,j ≤ 1,∀i ∈ [n]

}
.

Note that ∆n
k can be viewed as a (partition) matroid polytope with rank 1 and nk elements. 2 We are

ready to propose the following notion of multilinear extension of k-submodular functions.

Definition 2.4 (k-multilinear extension). Given a k-submodular function f : {0, . . . , k}n → R≥0,
the k-multilinear extension F : ∆n

k → R≥0 is defined as

F (x) =
∑

s∈{0,...,k}n

f(s)
∏

i∈[n]:si ̸=0

xi,si

∏
i∈[n]:si=0

(
1−

k∑
j=1

xi,j

)
. (2)

For every x ∈ ∆n
k , it follows that F (x) = E[f(s)] where s ∈ {0, . . . , k}n denotes a random vector:

for each item i ∈ [n], si = j for j ∈ [k] with a probability xi,j and otherwise, si = 0, which occurs
independently across all items. Multilinear extension of submodular function is a special case of
Definition 2.4 when k = 1.

Designing continuous algorithms via multilinear extension typically necessitates computing the
gradient of the function F . However, accurately calculating the gradient value∇F (x) for a vector
x ∈ ∆n

k involves an exponential number of queries to the value oracle Of , presenting a significant
computational challenge. To mitigate this issue, we propose a method for constructing an approximate
gradient oracle, as outlined in the following lemma. The implementation details and proofs can be
found in Appendix B.

Lemma 2.5 (Existence of approximate oracle O(ε,η)
∇F). Given ε, η ∈ (0, 1), let F be the k-

multilinear extension of f . There is an oracle O(ε,η)
∇F that for any x ∈ ∆n

k , calls Of for at most

⌈
16kn4 log

(
n2+1
εη

)
ε2 ⌉ times and returns a stochastic estimate ∇̂F (x) of the gradient∇F (x) such that

for all i ∈ [n] and j ∈ [k],
∣∣∣ ̂∂i,jF (x)− ∂i,jF (x)

∣∣∣ ≤ εM
n
√
k
, with probability at least 1− εη

n2+1 .

We find that k-multilinear extension enjoys several useful properties. We first note that the following
preservation of monotonicity trivially holds: if a k-submodular function f is monotone, its k-
multilinear extension F is also monotone.

Let M := max{maxi,j f(ei,j) − f(0), 0} be the maximum value of an element determined by f ,
where ei,j is a basis vector in Rn×k with only the (i, j)-th entry being 1. The following is another
useful property of F , called element-wise non-positive Hessian:

∂2F
∂xi1,j1

∂xi2,j2

{
= 0 if i1 = i2,

∈ [−2M, 0] if i1 ̸= i2.
(3)

Furthermore, we observe the following approximate linearity property for F : for any points x,x′ ∈
∆n

k satisfy that x′ − x ∈ δ ·∆n
k , we have

F (x′)− F (x) ≥
∑

i∈[n],j∈[k](x
′
i,j − xi,j) · ∂i,jF (x) − n2δ2M. (4)

As discussed in Section 1.2, this property is essential for the analysis of a Frank-Wolfe type algorithm.
These properties, together with other useful properties, are summarized in Lemma C.1 and their
proofs can be found in Appendix C.

Continuous constraints for k-multilinear extension and membership oracle. In addressing the
continuous domain ∆n

k for k-multilinear extension, it becomes necessary to adapt both matroid and
knapsack constraints to this continuous framework. Initially, we define polytopes that correspond to
these constraints:

2Despite the similarity in appearance, there is no known reduction from a k-submodular function to a
submodular function with a partition matroid constraint. See Appendix A.3 for details.

7

Published as a conference paper at ICLR 2025

For a matroid constraint defined by a collection IM, we establish its corresponding polytope
PM as conv{1S : S ∈ IM}, where 1S denotes the indicator vector of set S. For a knap-
sack constraint characterized by a vector a ∈ Rn

≥0, we define the corresponding polytope PK

as
{
x ∈ [0, 1]n : a⊤x ≤ 1

}
. Another important notion is how a fractional vector within ∆n

k relates
to a polytope. Given a vector x ∈ ∆n

k , we say x is consistent with a polytope P , denoted as x ∼ P ,

if
(∑k

j=1 x1,j , . . . ,
∑k

j=1 xn,j

)
∈ P . Additionally, we define a membership oracle OP that, given

a vector x ∈ ∆n
k , determines whether x ∼ P .

With these definitions in place, we can illustrate how to relax matroid and knapsack constraints for
vectors in ∆n

k : A vector x satisfies a matroid constraint if x ∼ PM, and it satisfies a knapsack
constraint if x ∼ PK. We further present a lemma demonstrating the existence of a membership
oracle for these relaxed constraints.
Lemma 2.6 (Existence of membership oracle (Cunningham, 1984)). For any constraint P =(⋂

i∈[b] PMb

)
∩
(⋂

i∈[d] PKd

)
of the intersection of b matroid constraints and d knapsack constraints,

there exists an efficient membership oracle OP .

It is well-established that with access to a membership oracle OP , linear optimization problems
involving the function F can be efficiently addressed using Frank-Wolfe-type methods, as noted by
Lee et al. (2018). To address Problem 2.3, we frame a constrained optimization challenge within a
continuous domain: We aim to maximize a k-multilinear extension F : ∆n

k → R≥0 at a fractional
point x ∈ ∆n

k , subject to the constraint x ∼ P , where P is a down-closed convex polytope.

Define o⋆ := argmaxx∼P F (x) as the optimal fractional solution for this continuous optimiza-
tion scenario. We assume that for every i ∈ [n], the unit vector ei is within P . If not, the
i-th element is irrelevant to the constrained k-submodular maximization problem and can be
excluded. With this premise, it follows that F (o⋆) ≥ F (ei,j) = f(ei,j). Recalling that
M = max {maxi,j f(ei,j)− f(0), 0}, we establish that F (o⋆) ≥M .

3 RESULTS FOR MONOTONE k-SUBMODULAR MAXIMIZATION

In this section, we consider the case that the objective k-submodular function f is monotone.
Theorem 3.1 (Main theorem I, monotone case). There exists a polynomial-time algorithm that given
a monotone k-submodular f : {0, 1, . . . , k}n and a constraint polytope P ⊆ ∆n

k , with probability at
least 1− η, outputs a solution that is

• (12 − ε)-approximate under a single matroid constraint, with calling Of at most

O
(

kn6 log(n
εη)

ε3

)
times and calling OP at most O

(
k3n6 log(n

εη)
ε2

)
, for any fixed ε > 0;

• (12 − ε)-approximate under the intersection of O(1) knapsack constraints, with calling Of

at most O
(
kpoly(

1
ε)npoly(1

ε)
)

times and calling OP at most O
(
kpoly(

1
ε)npoly(1

ε)
)

, for any
fixed ε > 0;

• (0.3b − ε)-approximate under the intersection of b matroid constraints and O(1) knapsack

constraints, with calling Of at most O
(
kpoly(

1
ε)npoly(1

ε)
)

times and calling OP at most

O
(
kpoly(

1
ε)npoly(1

ε)
)

, for any fixed ε > 0.

The difference in approximation guarantees and query complexity arises due to the rounding pro-
cedure’s impact under varying constraints. Our algorithm maintains a consistent approximation
ratio for the k-multilinear extension across down-closed constraints (Lemma 3.3), but the rounding
effectiveness varies, leading to different guarantees (Lemma 3.2).

We remark that our query complexity is usually larger than existing combinatorial methods, e.g., a
0.432-approximate algorithm with a query complexity of O(k9n10) for a single knapsack constraint
(Niu et al., 2023). Nevertheless, the focus of this paper is to improve the approximation ratio,
specifically achieving (asymptotically) optimal approximation algorithms.

8

Published as a conference paper at ICLR 2025

In Section 3.1, we propose a unified optimization framework thereof, and in Section 3.2, we analyze
the approximation ratio in Theorem 3.1. The complete proof of Theorem 3.1 can be found in
Appendix E. We can also extend the result to non-monotone case; see Appendix F.

3.1 THE ALGORITHM

In this section, we propose the algorithm for Theorem 3.1 using k-multilinear extension. The
algorithm consists of two stages: a continuous optimization stage and a rounding stage.

The continuous optimization stage. In the first stage, we design a Frank-Wolfe-type method to
approximately maximize the k-multilinear extension (Algorithm 1).

Algorithm 1: Frank-Wolfe algorithm for the monotone case, FW(f,P, ε, η)
Input : Of , OP and hyperparameters ε, η ∈ (0, 1).

1 Initialize: x(0)← 0, t← 0; stepsize δ = 1
N with N = ⌈n

2

ε ⌉, O
(ε,η)
∇F by Lemma 2.5.

2 while t < 1 do
3 find a direction v(t) = argmaxv∈∆n

k ,v∼P⟨ ̂∇F (x(t)),v⟩ ▷ By LP

4 x(t+ δ) = x(t) + δv(t), t← t+ δ

5 return x(1).

The Frank-Wolfe algorithm terminates after the N -th iteration. During each iteration, the surrogate
function ⟨∇F (s(t)),v(t)⟩ is utilized to identify the feasible direction that maximizes the improve-
ment in the function value. This process involves maximizing a linear objective subject to constraints
defined within a polytope in the positive coordinate space. The computational effort required per
iteration is comparable to solving a positive linear program (LP), for which a quadratic time solver is
documented in Lee et al. (2018).

The Rounding Stage. Let x(1) represent the fractional solution obtained from Algorithm 1. The
subsequent stage involves rounding x(1) to an integral solution. The performance of this rounding
process is encapsulated in the following lemma.

Lemma 3.2 (Rounding scheme). Let ϵ, η ∈ (0, 1), and P be a polytope. Suppose for any monotone
k-submodular function f ′, Algorithm FW(f ′,P, ε, η) outputs a solution x ∈ ∆n

k that satisfies
F (x) ≥ αmaxy∈∆n

k ,y∼P F (y). Then for any ε > 0, there exists a rounding scheme that outputs a
solution s ∈ {0, . . . , k}n with s ∼ P , that is

• α-approximate under a single matroid constraint, i.e., f(s) ≥ α·maxs′∈{0,...,k}n,s′∼P f(s′),
with calling FW one time and calling OP at most O(Nn2) times;

• α(1− ε)-approximate under O(1) knapsack constraints, with calling FW, Of ,OP at most
O
(
kpoly(1/ε)npoly(1/ε)

)
times;

•
(
0.6α
b (1− ε)

)
-approximate under the intersection of b matroid constraints and l = O(1)

knapsack constraints, with calling FW, Of ,OP at most O
(
kpoly(1/ε)npoly(1/ε)

)
times.

Our rounding scheme is an extension of the approaches developed for submodular maximization,
as detailed in works by (Călinescu et al., 2011; Chekuri et al., 2014; 2010b). Specifically, for a
single matroid constraint, the rounding procedure is directly applied to the output of FW(f,P, ϵ, η),
necessitating only a single invocation of the FW algorithm. For knapsack constraints, where elements
might exhibit large costs or significantly influence the function value, an enumeration stage akin to
that used in submodular maximization (Chekuri et al., 2014) is employed, resulting in a complexity
of O(npoly(1/ε)). This process is extended by first employing the continuous maximization algorithm
FW(f ′,P ′, ϵ, η), where f ′ and P ′ represent a marginal function and a restricted polytope specifically
for large elements. By enumerating all possible restrictions and selecting the optimal result, the
complexity becomes O(kpoly(1/ε)npoly(1/ε)), given that the number of large elements is capped at
O(poly(1/ε)). Each large element has k potential assignments, amplifying the complexity by a factor
of O(kpoly(1/ε)). Details and proofs are provided in Appendix D.

9

Published as a conference paper at ICLR 2025

3.2 PERFORMANCE ANALYSIS OF ALGORITHM 1

We focus on proving the approximation ratio of Theorem 3.1 in the main body. Recall that o⋆ :=
argmaxx∈∆n

k ,x∼P F (x). By Lemma 3.3, it suffices to prove the following key lemma.

Lemma 3.3 (Analysis of the Frank-Wolfe algorithm). When f is monotone, then F (x(1)) ≥(
1
2 − 2ε

)
F (o⋆), with probability at least 1− η.

Technical novelty in the proof of Lemma 3.3. As discussed in Section 1.2, due to the closure
challenge, we consider the following operation of linear combination: for each time step t ∈ [0, 1],
we generate an auxiliary point o(t) = x(t) + (1 − t)o⋆. Since x(t) ∈ t ·∆n

k , this auxiliary point
o(t) must be within ∆n

k . We find that, to prove Lemma 3.3, it suffices to prove
F (x(t+ δ))− F (x(t)) ≥ F (o(t))− F (o(t+ δ))− 3εMδ, (5)

which lower-bounds the value gain of each iteration. Recall that M = max{maxi,j f(ei,j)−f(0), 0}.
To see this, we note that by summing over all t,

F (x(1)) ≥ F (x(1))− F (x(0)) ≥ F (o(0))− F (o(1))− 3εM = F (o⋆)− F (x(1))− 3εM.

Rearranging this inequality, we obtain that F (x(1)) ≥ 1
2 (o

⋆)−3εM . Recall that F (o⋆) ≥M . Thus,
we conclude that F (x(1)) ≥

(
1
2 − 2ε

)
F (o⋆).

It remains to prove Ineq. (5). The key is to provide a lower bound for F (x(t + δ)) − F (x(t))
and an upper bound for F (o(t)) − F (o(t + δ)). We first note that F (x(t + δ)) − F (x(t)) ≥
⟨∇F (x(t)),o⋆⟩δ − 3εMδ. To see this, using Ineq. (4) and the fact that δ ≤ ε

n2 , we have
F (x(t+ δ))− F (x(t)) ≥ ⟨∇F (x(t)),v(t)⟩δ − n2δ2M ≥ ⟨∇F (x(t)),v(t)⟩δ − εMδ, (6)

where v(t) is the local optimal direction obtained in Line 3 of Algorithm 1. Furthermore, using
the theoretical guarantee of approximate oracle O(ε,η)

∇F stated in Lemma 2.5, we can conclude that
⟨∇F (x(t)),v(t) ≥ ⟨∇F (x(t)),o⋆⟩ − 2εM . Combining with Ineq. (6), we can conclude that
F (x(t+ δ))− F (x(t)) ≥ ⟨∇F (x(t)),o⋆⟩δ − 3εMδ.

Next, we show that F (o(t)) − F (o(t + δ)) ≤ ⟨∇F (x(t)),o⋆⟩δ. This inequality, when combined
with Ineq. (6), concludes Ineq. (5). To derive this bound, we define the component-wise minimum
of o(t) and o(t+ δ) as o′(t) = x(t) + (1− t− δ)o⋆. By analyzing the trajectory from o(t+ δ) to
o′(t) and then to o(t), we observe a decrease in each coordinate during the first transition and an
increase during the second. Given the function’s monotonicity, we infer that F (o(t))−F (o(t+δ)) ≤
F (o(t))−F (o′). Furthermore, leveraging the concavity along the positive direction o(t)−o′ = δo⋆

as specified by Eq. (3), we deduce that F (o(t))− F (o′) ≤ ⟨∇F (o′(t)),o⋆⟩δ. Finally, considering
the non-increasing nature of the partial derivative (also confirmed by Eq. (3) and the fact that o⋆ ∈ ∆k

n,
we establish that ⟨∇F (o′(t)),o⋆⟩δ ≤ ⟨∇F (x(t)),o⋆⟩δ. Thus, summarizing the above findings, we
confirm that F (o(t))− F (o(t+ δ)) ≤ ⟨∇F (x(t)),o⋆⟩δ.

The details of the proof of Lemma 3.3 can be found in Appendix E.

4 CONCLUSIONS AND FUTURE WORKS

We introduce a unified Frank-Wolfe-type framework for addressing k-submodular maximization
across various settings. Notably, we achieved an optimal 1/2-approximation for monotone k-
submodular functions and a 1/3-approximation for non-monotone functions under constraints of
a single matroid and O(1) knapsacks. Our framework is adaptable to a broad range of constraints,
including any combination of matroid and knapsack constraints.

The foundation of our frameworks is the multilinear extension of k-submodular functions, which
facilitates the design of maximization algorithms that allow for flexible step sizes and update di-
rections. Given the success of multilinear extensions in achieving optimal outcomes in numerous
submodular maximization scenarios, our approach to extending and rounding k-submodular functions
may present novel avenues for further research and application.

There are several interesting directions for future exploration. Determining tight approximation ratios
for non-monotone k-submodular maximization is an intriguing challenge that continues to be of
significant academic interest. Furthermore, the potential to derandomize k-submodular maximization
algorithms offers a valuable area of inquiry, particularly for applications that benefit from deterministic
outputs, enhancing both reproducibility and consistency in practical deployments.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

HZ was supported by International Graduate Program of Innovation for Intelligent World and Next
Generation Artificial Intelligence Research Center. LH has been supported by the New Cornerstone
Science Foundation. BW was partially supported by the National Natural Science Foundation of
China (62106213, 72394361), Longgang District Key Laboratory of Intelligent Digital Economy
Security, and an extended support project from the Shenzhen Science and Technology Program.

REFERENCES

Noga Alon and Joel H Spencer. The probabilistic method, 3rd ed. John Wiley & Sons, 2008.

Andrew An Bian, Baharan Mirzasoleiman, Joachim Buhmann, and Andreas Krause. Guaranteed non-
convex optimization: Submodular maximization over continuous domains. In Artificial Intelligence
and Statistics, pp. 111–120. PMLR, 2017.

Niv Buchbinder and Moran Feldman. Constrained submodular maximization via a nonsymmetric
technique. Mathematics of Operations Research, 44(3):988–1005, 2019.

Niv Buchbinder and Moran Feldman. Constrained submodular maximization via new bounds for
dr-submodular functions. In Symposium on Theory of Computing, STOC, 2024.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A Tight Linear Time (1/2)-
Approximation for Unconstrained Submodular Maximization. SIAM J. Comput., 44(5):1384–1402,
2015.

Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone submodular
function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766, 2011.

Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized rounding via exchange
properties of combinatorial structures. In 51th Annual IEEE Symposium on Foundations of
Computer Science, pp. 575–584. IEEE Computer Society, 2010a.

Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized rounding via exchange
properties of combinatorial structures. In 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science, 2010b.

Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular Function Maximization via the
Multilinear Relaxation and Contention Resolution Schemes. SIAM J. Comput., 43(6):1831–1879,
2014.

Yixin Chen and Alan Kuhnle. Practical and parallelizable algorithms for non-monotone submodular
maximization with size constraint. volume 79, 2024.

William H. Cunningham. Testing membership in matroid polyhedra. J. Comb. Theory, Ser. B, 36(2):
161–188, 1984.

Alina Ene and Huy L Nguyen. Constrained submodular maximization: Beyond 1/e. In 2016 IEEE
57th Annual Symposium on Foundations of Computer Science (FOCS), pp. 248–257. IEEE, 2016.

Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular functions.
SIAM J. Comput., 40(4):1133–1153, 2011.

Moran Feldman, Joseph Naor, and Roy Schwartz. A unified continuous greedy algorithm for
submodular maximization. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pp. 570–579. IEEE, 2011a.

Moran Feldman, Joseph Naor, Roy Schwartz, and Justin Ward. Improved approximations for k-
exchange systems. In Algorithms–ESA 2011: 19th Annual European Symposium, pp. 784–798.
Springer, 2011b.

Yuval Filmus and Justin Ward. Monotone submodular maximization over a matroid via non-oblivious
local search. SIAM Journal on Computing, 43(2):514–542, 2014.

11

Published as a conference paper at ICLR 2025

Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated annealing. In
Dana Randall (ed.), Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1098–1116. SIAM, 2011.

Shu-Fang Gong, Bin Liu, and Qi-Zhi Fang. Streaming algorithms for maximizing k-submodular
functions with the multi-knapsack constraint. Journal of the Operations Research Society of China,
2024.

Dung Ha, Canh Pham, and Tan Tran. Improved approximation algorithms for k-submodular maxi-
mization under a knapsack constraint. Computers & Operations Research, 2024.

Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximating k-set packing.
Comput. Complex., 15(1):20–39, 2006.

Satoru Iwata, Shin-ichi Tanigawa, and Yuichi Yoshida. Improved approximation algorithms for
k-submodular function maximization. In Proceedings of the twenty-seventh annual ACM-SIAM
symposium on Discrete algorithms, pp. 404–413. SIAM, 2016.

Ariel Kulik, Hadas Shachnai, and Tami Tamir. Maximizing submodular set functions subject to
multiple linear constraints. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 545–554. SIAM, 2009.

Ariel Kulik, Hadas Shachnai, and Tami Tamir. Approximations for monotone and nonmonotone
submodular maximization with knapsack constraints. Mathematics of Operations Research, 38(4):
729–739, 2013.

Jon Lee, Vahab S Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Maximizing nonmono-
tone submodular functions under matroid or knapsack constraints. SIAM Journal on Discrete
Mathematics, 23(4):2053–2078, 2010a.

Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over multiple matroids via
generalized exchange properties. Math. Oper. Res., 35(4):795–806, 2010b.

Yin Tat Lee, Aaron Sidford, and Santosh S Vempala. Efficient convex optimization with membership
oracles. In Conference On Learning Theory, pp. 1292–1294, 2018.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
maximizing submodular set functions-i. Mathematical programming, 14:265–294, 1978.

Shuxian Niu, Qian Liu, Yang Zhou, and Min Li. Fast algorithms for k-submodular maximization
subject to a matroid constraint. arXiv preprint arXiv:2307.13996, 2023.

Naoto Ohsaka and Yuichi Yoshida. Monotone k-submodular function maximization with size
constraints. In Advances in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, pp. 694–702, 2015.

Chao Qian, Jing-Cheng Shi, Ke Tang, and Zhi-Hua Zhou. Constrained monotone k-submodular
function maximization using multiobjective evolutionary algorithms with theoretical guarantee.
IEEE Transactions on Evolutionary Computation, 22(4):595–608, 2017.

Shinsaku Sakaue. On maximizing a monotone k-submodular function subject to a matroid constraint.
Discrete Optimization, 23:105–113, 2017.

Ajit Singh, Andrew Guillory, and Jeff Bilmes. On bisubmodular maximization. In Artificial
Intelligence and Statistics, pp. 1055–1063. PMLR, 2012a.

Ajit P. Singh, Andrew Guillory, and Jeff A. Bilmes. On bisubmodular maximization. In Neil D.
Lawrence and Mark A. Girolami (eds.), Proceedings of the Fifteenth International Conference on
Artificial Intelligence and Statistics, volume 22 of JMLR Proceedings, pp. 1055–1063. JMLR.org,
2012b.

Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack constraint.
Oper. Res. Lett., 32(1):41–43, 2004.

12

Published as a conference paper at ICLR 2025

Justin Ward and Stanislav Zivný. Maximizing k-submodular functions and beyond. ACM Trans.
Algorithms, 12(4):47:1–47:26, 2016.

Hao Xiao, Qian Liu, Yang Zhou, and Min Li. Approximation algorithms for k-submodular maxi-
mization subject to a knapsack constraint. arXiv preprint arXiv:2306.14520, 2023.

Kemin Yu, Min Li, Yang Zhou, and Qian Liu. On maximizing monotone or non-monotone k-
submodular functions with the intersection of knapsack and matroid constraints. Journal of
Combinatorial Optimization, 45(3):1–21, 2023.

Yuhui Zhang, Ming Li, Dejun Yang, and Guoliang Xue. A budget feasible mechanism for k-topic
influence maximization in social networks. In 2019 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6, 2019.

Zhi-Hua Zhou, Yang Yu, and Chao Qian. Subset selection: k-submodular maximization. Evolutionary
Learning: Advances in Theories and Algorithms, pp. 233–254, 2019.

13

Published as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

1.1 Our contributions . 2

1.2 Technical overview . 3

1.3 Other related works . 5

2 Problem formulation and k-multilinear extension 6

3 Results for monotone k-submodular maximization 8

3.1 The algorithm . 9

3.2 Performance analysis of Algorithm 1 . 10

4 Conclusions and future works 10

A Additional discussion 15

A.1 More examples of k-submodular application in machine learning 15

A.2 An equivalent definition of k-submodular functions 15

A.3 k-submodular can not be reduced to submodular with a partition matroid 16

B Proof of Lemma 2.5: Existence of an efficient oracle OF 16

C Properties of k-multilinear extension 18

D Proof of Lemma 3.2: A novel rounding scheme 21

E Proof of Theorem 3.1: Performance analysis of Algorithm 1 25

F Results for non-monotone k-submodular maximization 27

G Hardness for the intersection of O(1) knapsacks and b matroids 30

14

Published as a conference paper at ICLR 2025

A ADDITIONAL DISCUSSION

A.1 MORE EXAMPLES OF k-SUBMODULAR APPLICATION IN MACHINE LEARNING

While submodular maximization may be more famous in the ML community, many applications of
it could be extended to k-submodular maximization. One example is diversity, where the selection
needs to balance multiple sources.

• Feature selection: In machine learning, feature selection is the process of identifying a
subset of features that are most relevant to a given task. k-submodular maximization can be
used to find a diverse set of features that maximizes the performance of a model.

• Active learning: Active learning is a technique for selecting the most informative data points
to label, which can help to reduce the cost of labeling data. k-submodular maximization can
be used to select a diverse set of data points that are likely to provide the most information
about the underlying model.

• Recommendation systems: Recommendation systems are used to provide personalized
recommendations to users. k-submodular maximization can be used to select a diverse set
of items that are likely to be of interest to a given user.

There are many other applications. When we mention sensor placement in Section 1, this is also
related to data acquisition in machine learning. Determining the optimal placement of sensors to
collect the most informative data for training a model. It is also useful in anomaly detection, where
one trategically places monitoring agents within a network to maximize the chances of detecting
anomalies. Meanwhile, k-submodular optimization is useful for resource allocation tasks, which is
relevant in several ML senarios. In distributed computing, one may assign tasks to a limited number
of computing nodes to optimize ML training performance and energy consumption. In cloud ML,
one may allocate different types of virtual machines or containers to meet varying workloads while
minimizing costs.

A.2 AN EQUIVALENT DEFINITION OF k-SUBMODULAR FUNCTIONS

In this subsection, we demonstrate the equivalence between the definition of k-submodularity (Eq. (1))
and another definition (Definition A.1) in the literature. We first recall another definition as follows.
Definition A.1 (Alterative definition of k-submodular Sakaue (2017)). Let (k + 1)n :=
{(X1, . . . , Xk) | Xi ⊆ [n] (i = 1, . . . , k), Xi∩Xj = ∅ (i ̸= j)}. Then, a function f : (k+1)n → R
is called k-submodular if, for any X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) in (k + 1)n, we have

f(X) + f(Y) ≥ f(X ⊔ Y) + f(X ⊓ Y) (7)

where

X ⊓ Y := (X1 ∩ Y1, . . . , Xk ∩ Yk),

X ⊔ Y :=

(
X1 ∪ Y1\

(⋃
i ̸=1

Xi ∪ Yi

)
, . . . , Xk ∪ Yk\

(⋃
i ̸=k

Xi ∪ Yi

))
.

We also recall our definition defined by Eq. (1) in Section 1.
Definition A.2 (Our definition of k-submodular). For an integer k ≥ 1 and a finite nonempty set
[n], a non-negative function f : {0, . . . , k}n → R≥0 is called k-submodular if for all s and t in
{0, . . . , k}n, we have

f(s) + f(t) ≥ f(min
0

(s, t)) + f(max
0

(s, t)), (8)

where for every i ∈ [n],

min
0

(s, t)i =

{
0, siti ̸= 0 and si ̸= ti,

min(si, ti), otherwise,
and

max
0

(s, t)i =

{
0, siti ̸= 0 and si ̸= ti,

max(si, ti), otherwise.

We now show the equivalence of these two definitions.

15

Published as a conference paper at ICLR 2025

Equivalence of {0, . . . , k}n and (k + 1)n. It is straightforward to verify that the two sets are
equivalent: an element e belongs to Si if and only if se = i. Furthermore, se = 0 if and only if e
from the set [n] is not included in any of the sets S1, . . . , Sk.

Equivalence of Eq. (7) and Eq. (8). The equality of the left side is clear. For the right part, the
following claim is made:

• Intersection (⊓ in Definition A.1 and min
0

in Definition A.2):

– For Definition A.1, (X ⊓ Y)i = Xi ∩ Yi.
– For Definition A.2, (min

0
(s, t))i = min(si, ti) when si, ti ∈ {0, i}, aligning with the

intersection of sets for corresponding labels. If si and ti are different and nonzero, the
result is 0, representing the empty intersection.

• Union (⊔ in Definition A.1 and max
0

in Definition A.2):

– For Definition A.1, (X ⊔Y)i = Xi ∪Yi \
⋃

j ̸=i(Xj ∪Yj), which ensures disjointness.
– For Definition A.2, (max

0
(s, t))i = max(si, ti) when si, ti ∈ {0, i}, aligning with

the union of sets. If si and ti are different and nonzero, the result is 0, ensuring
disjointness.

Both definitions use the inequality:

f(x) + f(y) ≥ f(x ∪ y) + f(x ∩ y),

which holds in both formulations because the operations ⊔,⊓ in Definition A.1 are equivalent to
max

0
,min

0
in Definition A.2, and the domains and function mappings are equivalent.

A.3 k-SUBMODULAR CAN NOT BE REDUCED TO SUBMODULAR WITH A PARTITION MATROID

In this section, we revisit the findings of Singh et al. (2012a), which demonstrate that non-negative 2-
submodular functions (i.e., k = 2) cannot be universally reduced to general non-negative submodular
functions within a partition matroid framework. Below we explain the reason.

One possible reduction is as follows. We define the domain as ∆̄n
k ⊆ {0, 1}nk where ∆̄k = {x ∈

{0, 1}k :
∑k

j=1 xj ≤ 1}, and define a function f̄ : ∆̄n
k → R as f̄(S) = f(s), where s is defined as

si = j if there exists a unique element ei,j ∈ S and si = 0 otherwise. However, we may not be able
to extend the domain of such a submodular function to {0, 1}nk without violating non-negativity or
monotonicity, even for the simplest case of k = 2. Specifically:

• As shown in Lemma 2 of Singh et al. (2012a), there exists a non-negative 2-submodular
function, for which no extension is both non-negative and submodular.

• Furthermore, Lemma 3 of Singh et al. (2012a) demonstrates that there exists a monotone,
non-negative 2-submodular function, for which no extension is non-negative, monotone,
and submodular.

B PROOF OF LEMMA 2.5: EXISTENCE OF AN EFFICIENT ORACLE OF

We recall Lemma 2.5 states that there exists a (stochastic) gradient oracle O(ε,η)
∇F for ∇F with

parameters ε, δ ∈ (0, 1) where for any query x ∈ ∆n
k , O(ε,η)

∇F provides a stochastic estimate ∇̂F (x)

that is “ εM
kn2 -close” to the gradient∇F (x) in terms of ℓ∞-norms, with a probability at least 1− η.

Lemma B.1 (Existence of oracle O(ε,η)
∇F). Given ε, η ∈ (0, 1), let F be the k-multilinear extension

of f . There is an algorithm that for any point x ∈ ∆n
k , calls Of for at most ⌈

16kn4 log
(

n2+1
εη

)
ε2 ⌉ times

and returns a stochastic estimate ∇̂F (x) of the gradient∇F (x) such that for all i ∈ [n] and j ∈ [k],∣∣∣∣ ̂∂i,jF (x)− ∂i,jF (x)

∣∣∣∣ ≤ εM

n
√
k
,

16

Published as a conference paper at ICLR 2025

with probability at least 1− εη
n2+1 .

Proof. Given oracle access to a k-submodular function f , the Chernoff bounds (see Theorem A.1.16
in (Alon & Spencer, 2008)) implies the following theorem which allows us to approximate the value
of the k-multilinear extension F to arbitrary accuracy.

Lemma B.2. Assume F is the k-multilinear extension of f . Given a point x ∈ ∆n
k , if s1, . . . , st ∈

{0, . . . , k}n are random vectors independently sampled as follows: for each l ∈ [t], for each item
i ∈ [n], sli = j for j ∈ [k] with probability xi,j and otherwise, sli = 0, which occurs independently
across all items; then for any ε0 ∈ (0, 1), we have∣∣∣∣∣1t

t∑
i=1

f(si)− F (x)

∣∣∣∣∣ ≤ ε0| max
s∈∆n

k

f(s)|

with probability at least 1− e−tε20/4.

For any partial derivative ∂i,jF (x) at point x ∈ ∆n
k and direction ei,j , we construct its stochastic

estimate ̂∂i,jF (x) as follows. Consider points x0,x1 ∈ ∆n
k defined as

x0
p,q =

{
0 If p = i,

xp,q Otherwise.
and x1

p,q =

0 If p = i, q ̸= j,

1 If p = i, q = j,

xp,q Otherwise.

We observe that the Hessian elements of F satisfy the condition ∂2F
∂xi,j1

∂xi,j2
= 0, for all i ∈ [n] and

j1, j2 ∈ [k]. This implies that ∂i,jF (x0) = ∂i,jF (x). Leveraging the multilinearity of F , we deduce
that

F (x1)− F (x0) = ∂i,jF (x0) = ∂i,jF (x).

We consider two sets of independent samples of random vectors, s0,1, . . . , s0,t and s1,1, . . . , s1,t,
which satisfy the property delineated in Lemma B.2 for the points x0 and x1, respectively. Define

̂∂i,jF (x) =
1

t

t∑
i=1

f(s1i)−
1

t

t∑
i=1

f(s0i). Then by Lemma B.2 the concentration property holds as

∣∣∣ ̂∂i,jF (x)− ∂i,jF (x)
∣∣∣ =

∣∣∣∣∣1t
t∑

i=1

f(s1i)− F (x1)−

(
1

t

t∑
i=1

f(s0i)− F (x0)

)∣∣∣∣∣
≤

∣∣∣∣∣1t
t∑

i=1

f(s1i)− F (x1)

∣∣∣∣∣+
∣∣∣∣∣1t

t∑
i=1

f(s0i)− F (x0)

∣∣∣∣∣
≤ 2ε0| max

s∈∆n
k

f(s)|

≤ 2ε0nM,

with probability at least 1− 2e−tε20/4. By setting ε0 = ε
2k1/2n2 and t = ⌈

16kn4 log
(

n2+1
εη

)
ε2 ⌉ we prove

the lemma.

As a direct corollary, we know that
∥∥∇̂F (x)−∇F (x)

∥∥
2
≤ εM√

n
holds for any point x ∈ ∆n

k , which
is useful for our analysis.

For the general case of a k-submodular function f , computing the k-multilinear extension F poses
significant challenges. This computational challenge also appears for submodular functions (k = 1).
Nevertheless, we have identified instances, such as the MAX-k-CUT problem, where the k-multilinear
extension F and its gradient ∇F can be explicitly calculated. This extends the multilinear extension
for the MAX-CUT problem, which is shown to have an efficient gradient oracle (Chen & Kuhnle,
2024, Appendix G).

Given a weighted undirected graph G = (V,E) together with a weight function w on edges, the
goal of the MAX-k-CUT problem is to partition the vertices into k distinct parts, such that the

17

Published as a conference paper at ICLR 2025

total weight of the edges across the parts is maximized, i.e., maximizing the cut value of a partition
s ∈ {0, 1, . . . , k − 1}n, defined as

f(s) =
∑

(u,v)∈E

wu,v · 1(su ̸= sv).

By Iwata et al. (2016), this function f is a k-submodular function. In this case, we can verify that its
k-multilinear extension is of the form:

F (x) =
∑

(u,v)∈E

wu,v · (1− (1−
k−1∑
j=1

xu,j)(1−
k−1∑
j=1

xv,j)−
k−1∑
j=1

xu,jxv,j),

and its gradient is of the form:

∇u,jF (x) =
∑

(u,v)∈E

wu,v · (1−
k−1∑
j=1

xv,j − xv,j).

The computation time for F (x) and its gradient ∇F (x) is O(n2k), which is efficient. For the
multilinear extension of submodular maximization, a similar argument for MAX-CUT can be found
in Appendix G of Chen & Kuhnle (2024).

C PROPERTIES OF k-MULTILINEAR EXTENSION

The following lemma presents good properties for k-multilinear extension, which are useful for
algorithm design.
Lemma C.1 (Properties of k-multilinear extension). Let f : {0, . . . , k}n → R≥0 be a k-
submodular function. Then its multilinear extension F : ∆n

k → R≥0 satisfies the following properties:

• (Preservation of monotonicity) If f is monotone, F is monotone, i.e., for any point x ∈ ∆n
k ,

∂i,jF (x) ≥ 0 for all i ∈ [n] and j ∈ [k].

• (Pairwise monotonicity) For all i ∈ [n], j1, j2 ∈ [k], ∂F
∂xi,j1

+ ∂F
∂xi,j2

≥ 0, i.e., along any
direction ei,j1 + ei,j2 , the k-multilinear extension is non-decreasing.

• (Multilinearity) For every i ∈ [n], j ∈ [k] and x,x′ ∈ ∆n
k with x′−x = c·ei,j ,3 the equality

∂i,jF (x) = ∂i,jF (x′) holds, i.e., along every coordinate direction, the corresponding
directional derivative remains constant.

• (Element-wise non-positive Hessian) Let M := max{maxi,j F (ei,j)− F (0), 0} be a value
determined by f . For all i1, i2 ∈ [n], j1, j2 ∈ [k],

∂2F

∂xi1,j1∂xi2,j2

{
= 0 if i1 = i2,

∈ [−2M, 0] if i1 ̸= i2.

• (Approximate linearity) For any points x,x′ ∈ ∆n
k satisfy that x′ − x ∈ δ ·∆n

k , then

F (x′)− F (x) ≥
∑

i∈[n],j∈[k]

(x′
i,j − xi,j) · ∂i,jF (x) − n2δ2M,

i.e., the difference F (x′) − F (x) can be approximated by the linear (first-order Taylor)
expansion at x with error O(n2δ2).

As a generalization of the multilinear extension of submodular functions, k-multilinear extension also
exhibits multilinearity and non-positive Hessian elements. Furthermore, monotonicity is preserved
by the extension.

Several novel properties emerge due to the inherent partition property of k-submodular func-
tions. First, the Hessian of our extension contains zero-value elements in the same i’s blocks,

3ei,j is the (i, j)-th unit basis vector in Rn×k.

18

Published as a conference paper at ICLR 2025

i.e. ∂2F/∂xi1,j1∂xi2,j2 = 0 if i1 = i2, which is useful in designing rounding schemes. Our
extension also exhibits an exclusive pairwise monotone property, which allows us to handle the
non-monotone case. More importantly, we demonstrate a novel approximate linearity property for the
k-submodular case, which allows us to estimate the increment of movement with a sufficient small
stepsize in the analyses of the Frank-Wolfe type methods (Bian et al., 2017). This property is analo-
gous to the approximate linearity described in Equation (4) of Bian et al. (2017) for DR-submodular
maximization, which arises from the Lipschitz continuity of the gradient of DR-submodular functions.
Although our bound on the elements of the Hessian implies a Lipschitz constant for the gradient
of the k-multilinear extension, this Lipschitz constant scales with k2. However, our error in the
approximate linearity is independent of k. This independence stems from the fact that any difference
x− x′ lies within ∆n

k .

Proof of Lemma C.1. We first remind the definition of the multilinear extension of k-submodular
functions.

Definition C.2 (k-multilinear extension). Given a k-submodular function f : {0, . . . , k}n → R≥0,
we define its multilinear extension F : ∆n

k → R≥0 as

F (x) =
∑

s∈{0,...,k}n

f(s)
∏

i∈[n]:si ̸=0

xi,si

∏
i∈[n]:si=0

(
1−

k∑
j=1

xi,j

)
. (9)

Preservation of monotonicity. As

∂F

∂xi,j
=

∑
s∈{0,...,k}n

si=j

f(s)
∏

t∈[n]\{i}:st ̸=0

xt,st

∏
t∈[n]:st=0

(
1−

k∑
l=1

xt,l

)

−
∑

s∈{0,...,k}n
si=0

f(s)
∏

t∈[n]:st ̸=0

xt,st

∏
t∈[n]\{i}:st=0

(
1−

k∑
l=1

xt,l

)
.

for every vector s such that si = 0, which is in the second term, we can find S′ such that
s′i = j and s′l = sl for any l ̸= i ,

in the first term. When f is monotone (assume that f is increasing without loss of generality), we
have f(s′) ≥ f(s). Thus ∂F

∂xi,j
≥ 0, for all i ∈ [n] and j ∈ [k], which indicates that F is also

monotone as desired.

Pairwise monotonicity. We first remind the (discrete) k-submodular function holds the pairwise
monotone property.

Theorem C.3 (Theorem 7 of Ward & Zivný (2016)). k-submodular function holds pairwise
monotone property, i.e., for any i ∈ [n], j1, j2 ∈ [k], s with si = 0, we have

f(s+ ej1) + f(si + ej2) ≥ 2f(s).

Taking derivative of Eq. (9),

∂F

∂xi,j1

+
∂F

∂xi,j2

=
∑

s∈{0,...,k}n
si=j1

f(s)
∏

t∈[n]\{i}:st ̸=0

xt,st

∏
t∈[n]:st=0

(
1−

k∑
l=1

xt,l

)

−
∑

s∈{0,...,k}n
si=0

f(s)
∏

t∈[n]:st ̸=0

xt,st

∏
t∈[n]\{i}:st=0

(
1−

k∑
l=1

xt,l

)

+
∑

s∈{0,...,k}n
si=j2

f(s)
∏

t∈[n]\{i}:st ̸=0

xt,st

∏
t∈[n]:st=0

(
1−

k∑
l=1

xt,l

)

−
∑

s∈{0,...,k}n
si=0

f(s)
∏

t∈[n]:st ̸=0

xt,st

∏
t∈[n]\{i}:st=0

(
1−

k∑
l=1

xt,l

)
.

19

Published as a conference paper at ICLR 2025

For every vector s with si = 0, which is in the second term and the fourth term, we can find a set
tuple s1 such that

s1l = j1 and s1l = sl for any l ̸= i ,

in the first term, and a set tuple s2 such that

s2l = j2 and s2l = sl for any l ̸= i ,

in the third term. By the (discrete) pairwise monotonicity of k-submodular functions, we have

f(s1)− f(s) + f(s2)− f(s) ≥ 0 .

Thus
∂F

∂xi,j1

+
∂F

∂xi,j2

≥ 0 .

Multilinearity. Taking derivative of Eq. (9) with respect to xi,j ,

∂F

∂xi,j
=

∑
s∈{0,...,k}n

si=j

f(s)
∏

t∈[n]\{i}:st ̸=0

xt,st

∏
t∈[n]:st=0

(
1−

k∑
l=1

xt,l

)

−
∑

s∈{0,...,k}n
si=0

f(s)
∏

t∈[n]:st ̸=0

xt,st

∏
t∈[n]\{i}:st=0

(
1−

k∑
l=1

xt,l

)
.

As both the terms do not depend on xi,j , the derivative is constant when other coordinates are fixed.

Element-wise non-positive Hessian. Taking the second-order derivative of Eq. (9) with respect to
xi1,j1 and xi2,j2 ,

∂2F

∂xi1,j1∂xi2,j2

=
∑

s∈{0,...,k}n
si1

=j1, si2
=j2

f(s)
∏

t∈[n]\{i1,i2}:st ̸=0

xt,st

∏
t∈[n]:st=0

(
1−

k∑
l=1

xt,l

)

−
∑

s∈{0,...,k}n
si1

=0, si2
=j2

f(s)
∏

t∈[n]\{i2}:st ̸=0

xt,st

∏
t∈[n]\{i1}:st=0

(
1−

k∑
l=1

xt,l

)

−
∑

s∈{0,...,k}n
si1

=j1, si2
=0

f(s)
∏

t∈[n]\{i1}:st ̸=0

xt,st

∏
t∈[n]\{i2}:st=0

(
1−

k∑
l=1

xt,l

)

+
∑

s∈{0,...,k}n
si1

=0, si2
=0

f(s)
∏

t∈[n]:st ̸=0

xt,st

∏
t∈[n]\{i1,i2}:st=0

(
1−

k∑
l=1

xt,l

)
.

(10)

If i1 ̸= i2, for every vector s such that si1 = 0 and si2 = 0 which is in the fourth term, we can find a
vector s1 such that,

s1i1 = j1 and s1i = si for any i ̸= i1 ,

in the third sum, and a vector s2 such that,

s2i2 = j2 and s2i = si for any i ̸= i2 ,

in the second sum, and a vector s0 such that,

s0i1 = j1, s0i2 = j2 and s0i = si for any i /∈ {i1, i2} .

Thus we have min0(s
1, s2) = s and max0(s

1, s2) = s0. Due to k-submodularity, we have

f(s0) + f(s)− f(s1)− f(s2) ≤ 0 ,

which implies that
∂2F

∂xi1,j1∂xi2,j2

≤ 0 .

20

Published as a conference paper at ICLR 2025

On the other hand, due to submodularity, we have

|f(s0) + f(s)− f(s1)− f(s2)| ≤ |f(s0)− f(s1)|+ |f(s2)− f(s)| ≤ 2M ,

which implies that
∂2F

∂xi1,j1∂xi2,j2

≥ −2M .

If i1 = i2 = i, by the multilinearity we have

∂2F

∂xi,j1∂xi,j2

= 0 .

Approximate linearity. Since F is polynomial in x, by the Lagrangian form of Taylor’s Theorem,
F (x′) at F (x) can be expanded as

F (x′)− F (x) = (x′ − x)T∇F (x) +
1

2
(x′ − x)TH(ξ)(x′ − x),

where H(·) is the Hessian matrix, and ξ is a point that lies on the line segment connecting points
x and x′, Now we consider an element ∂2F (ξ)

∂xi1,j1∂xi2,j2
in H(ξ). By the property of Element-wise

non-positive Hessian, we have ∣∣∣∣ ∂2F

∂xi1,j1∂xi2,j2

∣∣∣∣ ≤ 2M.

Therefore, if x′ − x ∈ δ∆n
k , i.e., for all i ∈ [n],

∑
j∈[k]

x′
i,j − xi,j ≤ δ, we have

∣∣∣∣12(x′ − x)TH(ξ)(x′ − x)

∣∣∣∣
≤

∑
i1∈[n],j1∈[k]

∑
i2∈[n],j2∈[k]

∣∣∣∣ ∂2F

∂xi1,j1∂xi2,j2

∣∣∣∣ |x′
i1,j1 − xi1,j1 ||x′

i2,j2 − xi2,j2 |

≤ 1

2

∑
i1∈[n],j1∈[k]

∑
i2∈[n],j2∈[k]

2M |x′
i1,j1 − xi1,j1 ||x′

i2,j2 − xi2,j2 |

= M
∑

i1∈[n]

∑
i2∈[n]

 ∑
j1∈[k]

|x′
i1,j1 − xi1,j1 |

 ∑
j2∈[k]

|x′
i2,j2 − xi2,j2 |

≤ M

∑
i1∈[n]

∑
i2∈[n]

δ2

= n2δ2M.

Therefore,

F (x′)− F (x) ≥
∑

i∈[n],j∈[k]

(x′
i,j − xi,j) · ∂i,jF (x)− n2δ2M.

D PROOF OF LEMMA 3.2: A NOVEL ROUNDING SCHEME

In this section, we prove Lemma 3.2 by describing and analyzing a rounding algorithm called
KSUBROUND (Algorithm 2).

Useful notations and facts for Lemma 3.2. We first recall the round procedure of submodular
functions (Călinescu et al., 2011; Chekuri et al., 2014; 2010b). For ε < 1/2 we say PK is small-
weighted, if its weight matrix A satisfies ai,j < ε3 for all i ∈ [l] and j ∈ [n].

21

Published as a conference paper at ICLR 2025

Lemma D.1 ((Călinescu et al., 2011; Chekuri et al., 2014; 2010b)). Assume P ⊆ [0, 1]n is a down-
closed polytope and G : [0, 1]n → R≥0 is a multilinear extension of some submodular function g,
then there exists an algorithm, that takes a vector y ∈ P and the function G as input and return a set
S ∈ 2n obeying 1S ∈ P and

• E [G(1S)] ≥ G(y), when P is single matroid constraint with rank r, with calling OP at
most Nr2 times if y is convex combination of N bases;

• E [G(1S)] ≥ (1− ε)G(y), when P is l = O(1) small-weighted knapsack constraints, with
calling OP at most poly

(
n, 1

ε

)
times, for any fixed ε > 0;

• E [G(1S)] ≥
(
0.6
b − ε

)
G(y), when P is intersection of b matroid constraints and l = O(1)

small-weighted knapsack constraints, with calling OP at most poly
(
n, 1

ε

)
times, for any

fixed ε > 0;

without calling to g. We refer this algorithm as SUBROUND(y, G,P).

Our approach uses the rounding procedures SUBROUND, which are applied after reducing the multilin-
ear extension of the k-submodular function to the multilinear extension of a submodular function
with an index vector I ∈ {1, . . . , k}n.

Definition D.2 (Reduced multilinear extension). Given a multilinear extension of k-submodular
function, F : ∆n

k → R≥0 for any index vector I ∈ {1, . . . , k}n, we define a reduced function
FI : [0, 1]

n → R≥0 as
FI(x) = F (xI),

where xI ∈ ∆n
k is defined as

xI
i,j =

{
xi j = Ii,

0 otherwise.
.

Intuitively, we define a reduced function by constraining xI to only take non-zero values at the coordi-
nates specified by an index vector I ∈ {1, . . . , k}n. Such reduced functions enjoy the submodularity
shown in Claim D.3.

Claim D.3. If F is a multilinear extension of the k-submodular function f , the reduced function FI

is a multilinear extension of the submodular function fI : 2
n → R≥0 defined as

fI(S) = f(SI),

where SI ∈ {0, . . . , k}n is defined as

SI
i =

{
Ii i ∈ S,

0 i ̸∈ S.

Proof. We first illustrate the function-extension correspondence in the following figure.

f F

fI FI

Multilinear
Extension

I I

♠ Multilinear

Extension

We also illustrate the domain correspondence in the below figure.

{0, . . . , k}n ∆n
k

2n [0, 1]
n

Extension

I I

Extension

22

Published as a conference paper at ICLR 2025

In the following, we complete the proof by showing the submodularity of fI and prove the multilinear
extension relationship between fI and FI (marked as ♠ in the first figure).

We obtain the submodularity of fI by the inequality that

fI(S) + fI(T) = f(SI) + f(T I) ≥ f(min
0

(SI, T I)) + f(max
0

(SI, T I)) = fI(S ∩ T) + fI(S ∪ T).

By the definition of the reduced function, we have

FI(x) = F (xI)

=
∑

s∈{0,...,k}n

f(s)
∏

i∈[n]:si ̸=0

xI
i,si

∏
i∈[n]:si=0

(
1−

k∑
j=1

xI
i,j

)

=
∑
S∈2n

f(SI)
∏

i∈[n]:SI
i ̸=0

xI
i,SI

i

∏
i∈[n]:SI

i=0

(
1−

k∑
j=1

xI
i,j

)
=

∑
S∈2n

f(SI)
∏

i∈[n]:SI
i ̸=0

xi

∏
i∈[n]:SI

i=0

(
1− xi

)
=

∑
S∈2n

fI(S)
∏
i∈S

xi

∏
i ̸∈S

(
1− xi

)
.

Thus, FI is the multilinear extension of fI.

The correspondence between the reduced function and the submodular function can also be understood
through a probabilistic view. Specifically, we consider a random vector s̃ ∈ {0, . . . , k}n, where

each entry s̃i ̸= 0 is drawn independently with probability
n∑

j=1

xI
i,j for each i ∈ [n], and we have

n∑
j=1

xI
i,j = xI

i,Ii
= xi. If s̃i ̸= 0 in this process, si is assigned with value Ii. We can observe that this

probability-based definition of reduced function is equivalent to the probability-based definition of
the multilinear extension.

Now we are ready to use the rounding scheme for submodular maximization (Lemma D.1) to design
a rounding scheme for k-submodular maximization (Lemma D.4).
Lemma D.4. Given a non-monotone k-submodular function f , its multilinear extension F , a support
constraint P , a fractional solution x ∈ ∆n

k with x ∼ P , there is an algorithm KSUBROUND(x, F,P)
which runs in polynomial time and outputs an integral solution s ∈ {0, . . . , k}n with s ∼ P such that

• E [f(s)] ≥ F (x), when P is single matroid constraint with rank r, with calling OP at most
Nr2 times if xI is convex combination of N bases;

• E [f(s)] ≥ (1 − ε)F (x) when P is l = O(1) small-weighted knapsack constraints, with
calling OP at most poly

(
n, 1

ε

)
times, for any fixed ε > 0;

• E [f(s)] ≥
(
0.6
b F (x)− ε

)
when P is intersection of b matroid constraints and l = O(1)

small-weighted knapsack constraints, with calling OP at most poly
(
n, 1

ε

)
times, for any

fixed ε > 0.

Algorithm for Lemma D.4. Now we are ready to introduce our rounding algorithm KSUBROUND
(Algorithm 2) which consists of three phases: rounding from ∆n

k to [0, 1]n (Lines 1-7), rounding
from [0, 1]n to 2n (Line 8) and recovering from 2n to (k + 1)n (Lines 9-12). In each phase, we
preserve the feasibility and control the loss.

In the first phase (Line 1-7), for any i, we merge all non-zero values and assign value j to the i-th
coordinate of the index vector I with a categorical probability of the proportion. This merging
process does not conflict with the support constraint because the sum

∑k
j=1 xi,j remains constant.

23

Published as a conference paper at ICLR 2025

Furthermore, at each iteration i, by the definition of multilinear extension F , the function value is
exactly the linear combination of function value at every vertex of the affined corner of cube, i.e., 4

EI [FI(y)] = EI

[
F (yI)

]
= EI

 ∑
s∈{0,...,k}n

f(s)
∏

i∈[n]:si ̸=0

yI
i,si

∏
i∈[n]:si=0

(
1−

k∑
j=1

yI
i,j

)
=

∑
s∈{0,...,k}n

f(s)
∏

i∈[n]:si ̸=0

xi,si

∏
i∈[n]:si=0

(
1−

k∑
j=1

xi,j

)
= F (x).

In the second phase (Line 14), we apply the rounding procedure SUBROUND which takes the fractional
solution y ∈ P ⊆ [0, 1]n and the reduced function FI as input and returns an integer solution S ∈ 2n.
The loss of this rounding procedure is bounded by Lemma D.1.

In the final phase (Lines 16-18), we recover the solution s ∈ ∆n
k by setting si = Ii if i ∈ S. This

recovery step incurs no loss since the recovery procedure and reducing procedure correspond to the
same index vector I.

Algorithm 2: KSUBROUND(x, F,P)
Input :A fractional solution x ∈ ∆n

k with x ∼ P , OF,∇F , membership oracle OP .
1 Initialize y← [0, . . . , 0]⊤ ∈ [0, 1]n and I← [0, . . . , 0]⊤ ∈ {0, . . . , k}n.
2 for i ∈ [n] do

3 yi ←
k∑

j=1

xi,j .

4 if yi ̸= 0 then

5 With Categorical Probability p = xi,j/
k∑

j=1

xi,j : Ii ← j.

6 else
7 Ii ← 0.

8 S ← SUBROUND(y, FI,P).
9 Initialize s← [0, . . . , 0]⊤ ∈ {0, . . . , k}n.

10 for i ∈ [n] do
11 if i ∈ S then
12 si ← Ii.

13 Return: s.

Proof of Lemma D.4. We first analyze the feasibility and then prove the approximation performance.

Feasibility In Lines 1-7, since x ∼ P =

x ∈ ∆n
k :

(
k∑

j=1

x1,j , . . . ,
k∑

j=1

xn,j

)⊤

∈ P

, and the

sum
k∑

j=1

xi,j will remains constant during the moving for any i, we have y ∼ P . In Line 8, by

Lemma D.1, we have 1S ∈ P . In Line 9-12, by the definition of support constraint, we have s ∼ P .

Approximation ratio of Algorithm 2. In Line 1-7, by the definition of F and F I, we conclude that

EI

[
F I(y)

]
= F (x). (11)

4We can also conclude the linearity by the zero value of the Hessian element at the same element i’s block,
i.e., ∂2F

∂xi,j1
∂xi,j2

= 0 for any j1, j2 ∈ [k].

24

Published as a conference paper at ICLR 2025

In Lines 9-12, by the definition of FI, we have

F (1s) = FI(1S). (12)

Combine Eq. equation 11 and 12 and Lemma D.1, we complete the proof.

Finally, we combine Lemma D.4 and standard enumeration tricks to prove the Lemma 3.2.

Proof of Lemma 3.2. For the matroid constraint, we directly employ KSUBROUND(x, F,P) on the
vector x, which is the output from FW(f,P, ε, δ). We note the reduced vector xI of the output x from
FW(f,P, ε, δ) is convex combination of N bases.

In the case involving l = O(1) knapsack constraints (and possibly other constraints), we implement an
enumeration strategy for every subset A ⊆ [n] with |A| < n0 where n0 = 2

ε4 . Let Ā = n\A. For each
A, we explore all potential vectors in {0, . . . , k}A. For any sA ∈ {0, . . . , k}A and sĀ ∈ {0, . . . , k}Ā,

we define the concatenate vector as ⊕(sA, sĀ) such that ⊕(sA, sĀ)i =
{
(sA)i if i ∈ A,

(sĀ)i if i ∈ Ā.
For each

vector sA ∈ {0, . . . , k}A, we define the resident k-submodular maximization problem such that the
objective function fsA : {0, . . . , k}Ā → R≥0 satisfies that fsA(s

′) = f(⊕(sA, s′)). By definition,
the objective function fsA still satisfies the k-submodularity. For the constraint, the vector s′ is
deemed feasible iff ⊕(sA, s′) is feasible for P , and refer its conjunction constraint as PsA . For
each resident k-submodular maximization problem, we perform FW(fsA ,PsA , ε, δ) to solve the
continuous problem and yields a fractional solution x(sA). Then we perform rounding scheme
KSUBROUND(x(sA), FsA ,PsA) to obtain a solution sĀ(sA) ∈ {0, . . . , k}Ā; note that if the knapsack
constraint is not small-weighted, we can still perform a rounding scheme KSUBROUND but with a
weaker guarantee or without a guarantee. Finally, we output the best solution overall cases by
comparing all f(⊕(sA, sĀ(sA))).
Now we consider a special case of sA. Select sA greedily from the optimal solution, by picking
elements as long as their marginal contribution is at least ε4OPT ; note that |A| ≤ 1

ε4 . For any
i ∈ Ā, we add it randomly to sA if its size for some knapsack constraint is more than 1

ε3 , i.e.
ai,j ≥ 1

ε3 for some j ∈ [l]. The number of such elements in a knapsack can be at most ε3 and
hence they can contribute at most εOPT , and the total lost value is at most lεOPT . For this sA,
we obtain a (α(1− (l + 1)ε))-approximate solution, when P is O(1) knapsack constraints and a(
0.6α
b (1− (l + 1)ε)

)
-approximate solution, when P is the intersection of b matroid constraints and

O(1) knapsack constraints. By rescale ε we obtain the result.

E PROOF OF THEOREM 3.1: PERFORMANCE ANALYSIS OF ALGORITHM 1

It suffices to prove the following key lemma. By the selection of δ in Algorithm 1, Theorem 3.1 is a
direct corollary of Lemmas 3.2 and 3.3.

Lemma E.1 (Restatement of Lemma 3.3). Let o⋆ = argmaxx∈∆n
k ,x∼P F (x). If f is monotone,

then F (x(1)) ≥
(
1
2 − 2ε

)
F (o⋆), with probability at least 1− η.

The key idea of Lemma 3.3 is to analyze the value gain of each iteration. Following the commonly
used idea to k-submodular maximization (Iwata et al., 2016; Ohsaka & Yoshida, 2015; Sakaue, 2017),
we construct an auxiliary sequence o(t) = x(t) + (1 − t)o⋆ to be a linear combination of o⋆ and
x(t) such that o(t) is still consistent to P . Such sequence satisfies that o(0) = o⋆ and o(1) = x(1).
Then it suffices to show the decrease of the auxiliary sequence F (o(t)) − F (o(t + δ)) is smaller
than the increase of the solution sequence F (x(t+ δ))−F (x(t)) with a additional error bounded by
O(εMδ).

Proof of Lemma E.1. To obtain the guarantee, we construct the following auxiliary sequences. Let

o(t) = x(t) + (1− t)o⋆,

o(t+ δ) = x(t) + δv(t) + (1− t− δ)o⋆,

25

Published as a conference paper at ICLR 2025

and
o′(t) = x(t) + (1− t− δ)o⋆.

By definition, it is clear that o(0) = o⋆ and o(1) = x(1). By induction on t and the definition of
x(t), we obtain 1

tx(t) =
∑t/δ

i=1
δ
tv(i). Thus, 1

tx(t) can be expressed as a linear combination of
v(1), . . . ,v(t). Since v(t) ∼ P , it follows that x(t) ∼ t · P , which implies that o(t),o(t+ δ) ∼ P .
By the definition of o′(t) and o(t+ δ), we have

o(t+ δ)− o′(t) = δv(t) ∈ [0, 1]nk.

Combining the monotonicity of F , we have

F (o′(t))− F (o(t+ δ)) ≤ 0. (13)

We also bound the error caused by the stochastic estimate of gradient ∇̂F (x).

Lemma E.2. For any direction y ∈ ∆n
k with y ∼ P and any t, with probability at least 1− εη

n2+1 ,

⟨∇F (x(t)),y⟩ ≤ ⟨∇F (x(t)),v(t)⟩+ 2εM.

Proof. For any t

⟨∇F (x(t)),y⟩ = ⟨ ̂∇F (x(t)),y⟩+ ⟨∇F (x(t))− ̂∇F (x(t)),y⟩

≤ ⟨ ̂∇F (x(t)),v(t)⟩+ ⟨∇F (x(t))− ̂∇F (x(t)),y⟩ (by choice of v(t))

= ⟨∇F (x(t)),v(t)⟩+ ⟨∇F (x(t))− ̂∇F (x(t)),y⟩+ ⟨ ̂∇F (x(t))−∇F (x(t)),v(t)⟩

≤ ⟨∇F (x(t)),v(t)⟩+
∥∥∥∇F (x(t))− ̂∇F (x(t))

∥∥∥
2
∥y∥2

+
∥∥∥∇F (x(t))− ̂∇F (x(t))

∥∥∥
2
∥v(t)∥2 (by Cauchy–Schwarz inequality)

≤ ⟨∇F (x(t)),v(t)⟩+ εM√
n
∥y∥2 +

εM√
n
∥v(t)∥2 (by Lemma 2.5)

≤ ⟨∇F (x(t)),v(t)⟩+ 2εM.

Now we bound the improvement in every step.

F (o(t))− F (o(t+ δ))

= F (o(t))− F (o′(t)) + F (o′(t))− F (o(t+ δ))

≤ F (o(t))− F (o′(t)) (by Eq. (13))

= ⟨∇F (o′(t)),o⋆⟩δ + 1

2
(o⋆)′H(ξ)o⋆δ2 (with ξ = o′(t) + co⋆δ and c ∈ (0, 1))

≤ ⟨∇F (o′(t)),o⋆⟩δ (by element-wise non-positive Hessian)

=
∑
i,j

∂i,jF (o′(t))o⋆
i,jδ

≤
∑
i,j

∂i,jF (x(t))o⋆
i,jδ (by element-wise non-positive Hessian)

= ⟨∇F (x(t)),o⋆⟩δ
≤ ⟨∇F (x(t)),v(t)⟩δ + 2εMδ (by Lemma E.2)

≤ F (x(t+ δ))− F (x(t)) + n2δ2M + 2εMδ (by approximate linearity)
≤ F (x(t+ δ))− F (x(t)) + 3εMδ. (by choice of δ)

By Lemma E.2, the above inequality holds with probability at least 1− εη
n2+1 . Thus, by union bound

over N = ⌈n
2

ε ⌉ steps, we conclude that the following inequality holds

F (o(0))− F (o(1)) ≤ F (x(1))− F (x(0)) + 3εM

26

Published as a conference paper at ICLR 2025

with probability at least 1− η. Thus

F (x(1)) ≥ 1

2
F (o⋆)− 2εM ≥

(
1

2
− 2ε

)
F (o⋆).

Now we prove Theorem 1 by combining with Lemma 3.2.

Proof. Combining Lemma 3.3 and Lemma 3.2, we can show the approximation ratio part of Theorem
3.1.

Now, we analyze the query complexity and success probability of Algorithm 1. Algorithm 1 queries
O∇F a total of N = ⌈n

2

ε ⌉ times, which implies that the query complexity with respect to f is
bounded as

#Calls to Of ≤ ⌈
n2

ε
⌉ · ⌈

16kn4 log
(

n2+1
εη

)
ε2

⌉ = O

(
kn6 log(n

εη)

ε3

)
.

Also the query complexity of OP is bounded as

#Calls to OP ≤ O
(
k2n2

)
· ⌈

16kn4 log
(

n2+1
εη

)
ε2

⌉ = O

(
k3n6 log(n

εη)

ε2

)
.

To obtain 1− η success probability, we scale the success probability of the Frank-Wolfe algorithm
FW, and the total query complexity is at most scaled by a logarithmic factor by Lemma 2.5.

F RESULTS FOR NON-MONOTONE k-SUBMODULAR MAXIMIZATION

In this section, we present an algorithm (Algorithm 3) and its analysis (Theorem F.1) for the non-
monotone k-submodular objective. Recall that M = max {maxi,j F (ei,j)− F (0), 0}.

Theorem F.1 (Main theorem II, non-monotone case). There exists a polynomial-time algorithm
that given a non-monotone k-submodular f : {0, 1, . . . , k}n and a constraint polytope P ⊆ ∆n

k ,
with probability at least 1− η, outputs a solution that is

• (13 − ε)-approximate under a single matroid constraint, with calling Of at most

O

(
kn6 log(n

εη)
ε3

)
times and calling OP at most O

(
k3n6 log(n

εη)
ε2

)
, for any fixed ε > 0;

• (13 − ε)-approximate under the intersection of O(1) knapsack constraints, with calling Of

at most O
(
kpoly(1

ε)npoly(1
ε)
)

times and calling OP at most O
(
kpoly(1

ε)npoly(1
ε)
)

, for any
fixed ε > 0;

• (0.2b − ε)-approximate under the intersection of b matroid constraints and O(1) knapsack

constraints, with calling Of at most O
(
kpoly(1

ε)npoly(1
ε)
)

times and calling OP at most

O
(
kpoly(1

ε)npoly(1
ε)
)

, for any fixed ε > 0.

27

Published as a conference paper at ICLR 2025

Algorithm 3: Frank-Wolfe algorithm for non-monotone case, NFW(f,P, ε, η)

Input :Parameters ε, η ∈ (0, 1); oracles Of , O(ε,η)
∇F , OP .

1 Initialize: x(0)← 0, t← 0; stepsize δ = 1
N with N = ⌈n

2

ε ⌉.
2 while t < 1 do
3 Find a direction v(t) = argmaxv∈∆n

k ,v∼P⟨ ̂∇F (x(t)),v⟩. ▷ By LP

4 Initialize: v′(t) = 0.
5 for i ∈ supp(v(t)) do
6 Order partial derivative as ̂∂i,j1F (x(t)) ≥ ̂∂i,j2F (x(t)) ≥ . . . ≥ ̂∂i,jkF (x(t)).

7 if ̂∂i,j2F (x(t)) ≥ 0 then
8 v′

i,j2
(t)←

∑
j∈[k] vi,j(t).

9 v̂(t) = 1
2 (v(t) + v′(t)).

10 x(t+ δ) = x(t) + δv̂(t), t← t+ δ.
11 return s

Similar to Algorithm 1, Algorithm 3 is also A Frank-Wolfe-type method that computes a fraction
solution x(1) ∼ P . The main difference is in the first stage, where Algorithm 3 moves along the
complemented direction v̂(t) as an average of the locally optimal direction v(t) and vector v′(t)
depending on the signal of the second largest partial derivatives ∂i,j2F (x(t)) for every i ∈ [n].
This construction is motivated by the pairwise monotonicity of F , which enables us to reduce the
non-monotone case to the monotone one in the analysis. Now we prove Theorem F.1. Similar to
Lemma 3.3, we first summarize the quality of the fractional solution x(1) in the following lemma.
Lemma F.2. Let o⋆ = argmaxx∈∆n

k ,x∼P F (x). Then F (x(1)) ≥
(
1
3 − 2ε

)
F (o⋆), with probability

at least 1− η.

Proof. To obtain the guarantee, we construct the following auxiliary sequences. Let o(t) = x(t) +
(1− t)o⋆, o(t+ δ) = x(t) + δv̂(t) + (1− t− δ)o⋆, and o′(t) = x(t) + (1− t− δ)o⋆. Now we
consider a fixed i ∈ [n] in Line 6. Note that the feasibility of support constraint P is only affected by∑

j∈[k] vi,j . Hence, we have vi,j(t) =

{∑
j′∈[k] vi,j′(t) j = j1,

0 j ̸= j1,
. by the definition of j1.5 Next,

we discuss two cases based on the signal of ∂i,j2F (x(t)) at each step. We remind the concentration
property of the gradient estimators: for all i ∈ [n] and j ∈ [k] (Lemma 2.5),∣∣∣ ̂∂i,jF (x)− ∂i,jF (x)

∣∣∣ ≤ εM

n
√
k

and
∥∥∥∇̂F (x)−∇F (x)

∥∥∥
2
≤ εM√

n
(14)

with probability at least 1− εη
n2+1 .

Case 1: ̂∂i,j2F (x(t)) < 0. By submodularity, we have ∂i,j2F (o′(t)) ≤ ∂i,j2F (x(t)) < 0. Com-
bining Eq. (14), we have

̂∂i,j2F (o′(t)) ≤ ∂i,j2F (o′(t)) +
εM

n
√
k
≤ ̂∂i,j2F (x(t)) +

2εM

n
√
k
<

2εM

n
√
k
.

By pairwise monotonicity (Lemma C.1), we have
∂i,j1F (o′(t)) + ∂i,j2F (o′(t)) ≥ 0.

Combining Eq. (14), we have

̂∂i,j1F (o′(t)) + ̂∂i,j2F (o′(t)) ≥ −2εM

n
√
k
.

Thus ∂i,j1F (o′(t)) ≥ − 4εM
n
√
k

. Furthermore, we have ⟨∇iF (o′(t)), v̂i(t)⟩ ≥ − 4εM
n
√
k
. Moreover, due

to the fact that v̂i(t) =
1
2vi(t), we have
⟨∇iF (x(t)),vi(t)⟩ = 2⟨∇iF (x(t)), v̂i(t)⟩.

5Given the equivalency of the support constraint for all vi,j(t), there should only be one unique non-zero
value j1, ensuring the auxiliary linear function achieves its maximum.

28

Published as a conference paper at ICLR 2025

Case 2: ̂∂i,j2F (x(t)) ≥ 0. By the definition of v̂(t) and v′(t), we have

2v̂i,j(t) = vi,j(t) + v′
i,j(t) =

∑

j′∈[k] vi,j′(t) j = j1,∑
j′∈[k] vi,j′(t) j = j2,

0 otherwise.

Combining the pairwise monotonicity that ∂i,j1F (o′(t)) + ∂i,j2F (o′(t)) ≥ 0, we have

⟨∇iF (o′(t)), v̂i(t)⟩ ≥ 0.

By the condition that ̂∂i,j2F (x(t)) ≥ 0 and Eq. (14), we have

∂i,j2F (x(t)) ≥ − εM

n
√
k
,

which implies that

⟨ ̂∇iF (x(t)),v′
i(t)⟩ ≥ −

εM

n
√
k
.

Combining the fact that v̂i(t) =
1
2vi(t) +

1
2v

′
i(t), we have

⟨∇iF (x(t)),vi(t)⟩ ≤ ⟨∇iF (x(t)),vi(t)⟩+ ⟨∇iF (x(t)),v′
i(t)⟩+

εM

n
√
k

= 2⟨∇iF (x(t)), v̂i(t)⟩+
εM

n
√
k
.

Combining these two cases and the approximate linearity, we have

F (o′(t))− F (o(t+ δ)) ≤ −⟨∇F (o′(t)), v̂(t)⟩δ + n2δ2M ≤ 4εM√
k

+ n2δ2M, (15)

and
⟨∇F (x(t)),v(t)⟩ ≤ 2⟨∇F (x(t)), v̂(t)⟩+ εM√

k
. (16)

By definition o(1) = x(1) and o(0) = o⋆. We bound the improvement in every step by the following
inequalities.

F (o(t))− F (o(t+ δ))

= F (o(t))− F (o′(t)) + F (o′(t))− F (o(t+ δ))

≤ F (o(t))− F (o′(t)) +
4εδ√
k
+ n2δ2M (by Eq. (15))

= ⟨∇F (o′(t)),o⋆⟩δ + 1

2
(o⋆)′H(ξ)o⋆δ2 +

4εδ√
k
+ n2δ2M

≤ ⟨∇F (o′(t)),o⋆⟩δ + 4εMδ√
k

+ n2δ2M (by element-wise non-positive Hessian)

≤ ⟨∇F (x(t)),o⋆⟩δ + 4εMδ√
k

+ n2δ2M (by element-wise non-positive Hessian)

≤ ⟨∇F (x(t)),v(t)⟩δ + 2εMδ +
4εMδ√

k
+ n2δ2M (by Lemma E.2)

≤ 2⟨∇F (x(t)), v̂(t)⟩δ + 2εMδ +
5εMδ√

k
+ n2δ2M (by Eq. (16))

≤ 2 (F (x(t+ δ))− F (x(t))) + 2εMδ +
5εδ√
k
+ 2n2δ2M. (by approximate linearity)

with probability at least 1− εη
n2+1 . To sum the above inequalities over t = 0, δ, . . . , 1 and apply the

union bound on the probability , we conclude that

F (o(0))− F (o(1)) ≤ 2 (F (x(1))− F (x(0))) + 5εM,

with probability at least 1− η.

29

Published as a conference paper at ICLR 2025

Finally, the query complexity of Algorithm 3 is identical to that of Algorithm 1. We complete the
proof of Theorem F.1 by combining Lemma F.2 and the following ronding lemma which is similar to
Lemma 3.2.
Lemma F.3 (Rounding scheme for non-monotone case). Let ϵ, η ∈ (0, 1), and P be a constant.
Suppose for any monotone k-submodular function f ′, Algorithm NFW(f ′,P, ϵ, η) outputs a solution
x ∈ ∆n

k that satisfies F (x) ≥ αmaxy∈∆n
k ,y∼P F (y) Then for any ε > 0, there exists a rounding

scheme that outputs a solution s ∈ {0, . . . , k}n with s ∼ P , that is

• α-approximate when P is single matroid constraint, i.e., f(s) ≥ α ·
maxs′∈{0,...,k}n,s′∼P f(s′), with calling NFW one time and calling OP at most O(Nn2)
times;

• α(1− ε)-approximate when P is l = O(1) knapsack constraints, with calling NFW, Of ,OP
at most O

(
kpoly(1/ε)npoly(1/ε)

)
times;

•
(
0.6α
b (1− ε)

)
-approximate whenP is the intersection of b matroid constraints and l = O(1)

knapsack constraints, with calling NFW, Of ,OP at most O
(
kpoly(1/ε)npoly(1/ε)

)
times.

The proof is omitted as the proof of Lemma 3.2 does not require the monotonicity of the objective
function. The only difference is that we use NFW for the non-monotone case.

G HARDNESS FOR THE INTERSECTION OF O(1) KNAPSACKS AND b MATROIDS

Theorem G.1 (Hardness for the intersection of b matroids). There exist instances of k-submodular
maximization with support constraints, max{f(s), s ∈ P}, where P is intersection of b matroids,
any algorithm with better than O(log b/b+ ε) approximation ratio for this problem would require
exponentially many value queries for any ε > 0, unless P = NP .

Proof. Consider the monotone k-submodular function g : {0, 1, 2}n → R≥0, defined as

g(s) = f(S1) + εf(S2),

where f : 2n → R≥0 is a monotone submodular function, ε ∈ R+, S1 = {i : si = 1} ∈ 2n and
S2 = {i : si = 2} ∈ 2n. We set ε to be sufficiently small such that

min
i

f(N)− f(N \ {i}) ≥ ε
(
max

i
f(i)− f(ε)

)
.

This ensures that the optimal solution o ∈ {0, 1, 2}n satisfies that oi ∈ {0, 1} for all i ∈ [n].
Otherwise, we can improve the function value by changing the value oi from 2 to 1 without conflict
with the support constraint. In other words, maximizing the k-submodular function g subject to any
support constraint is equivalent to maximizing the submodular function f with the same constraint.

It is well-known that unless P = NP , there is no approximation algorithm better than O(log b/b)
for b-dimensional matching (see (Hazan et al., 2006)). Hence, there is no better approximation
algorithm for submodular maximization subject to the intersection of b matroids constraint (Lee
et al., 2010b). Therefore, the hardness result of O(log b/b) also holds for constrained k-submodular
maximization.

30

	Introduction
	Our contributions
	Technical overview
	Other related works

	Problem formulation and k-multilinear extension
	Results for monotone k-submodular maximization
	The algorithm
	Performance analysis of Algorithm 1

	Conclusions and future works
	Additional discussion
	More examples of k-submodular application in machine learning
	An equivalent definition of k-submodular functions
	k-submodular can not be reduced to submodular with a partition matroid

	Proof of Lemma 2.5: Existence of an efficient oracle OF
	Properties of k-multilinear extension
	Proof of Lemma 3.2: A novel rounding scheme
	Proof of Theorem 3.1: Performance analysis of Algorithm 1
	Results for non-monotone k-submodular maximization
	Hardness for the intersection of O(1) knapsacks and b matroids

