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ABSTRACT

We present a simple and effective way to estimate the batch-norm statistics during
test time, to fast adapt a source model to target test samples. Known as Test-Time
Adaptation, most prior works studying this task follow two assumptions in their
evaluation where (1) test samples come together as a large batch, and (2) all from
a single test distribution. However, in practice, these two assumptions may not
stand, the reasons for which we propose two new evaluation settings where batch
sizes are arbitrary and multiple distributions are considered. Unlike the previous
methods that require a large batch of single distribution during test time to calcu-
late stable batch-norm statistics, our method avoid any dependency on large online
batches and is able to estimate accurate batch-norm statistics with a single sam-
ple. The proposed method significantly outperforms the State-Of-The-Art in the
newly proposed settings in Test-Time Adaptation Task, and also demonstrates im-
provements in various other settings such as Source-Free Unsupervised Domain
Adaptation and Zero-Shot Classification.

1 INTRODUCTION

Deep learning models have brought tremendous performance improvements over many different
domains (Krizhevsky et al. (2012); He et al. (2016); Deng et al. (2009)) in recent years. In spite of
this, we often find that a well-trained model can perform unexpectedly poorly in real-world settings.
Many factors play a role in this challenging problem; but one of the most probable causes stems from
a domain shift from the training data ( Quiñonero-Candela et al. (2009)). To study the domain shift
in production environment and to evaluate the generalization ability of deep learning models, many
benchmarks have been proposed (Saenko et al. (2010); Peng et al. (2017); Hendrycks & Dietterich
(2019)). Figure 1 demonstrates the samples from one of the benchmarks, ImageNet-C (Hendrycks
& Dietterich (2019)), in which synthesized corruptions are added to ImageNet (Deng et al. (2009))
test images in an attempt to simulate domain shift.

To increase deep learning models’ robustness when there is domain shift, various approaches have
been developed in different settings, such as Domain Adaptation (Patel et al. (2015)), Unsupervised
Domain Adaptation(Wilson & Cook (2020)), Source-Free Domain Adaptation(Liang et al. (2020))
and Fully Test-Time Adaptation (Wang et al. (2020)). Among all those different settings, the task of
Fully Test-Time Adaptation is one of the most challenging settings. With only access to a model that
is pre-trained offline, the goal of Test-Time Adaptation (TTA) is to rapidly adapt the model to the
test samples while making predictions. The task is essentially Domain Adaptation plus three more
challenging conditions:

• Online: The model gets updated during inference, and has access to each test sample only
once.

• Source-Free: The model does not have access to training data after the offline training is
done. It will only have access to the pre-trained weights.

• Unsupervised: There is no label for the test data.

Several works have studied the Test-Time Adaptation problem in recent years (Li et al. (2016); Sun
et al. (2020); Wang et al. (2020)). Existing methods focus on adapting the Batch Normalization
Layers (Ioffe & Szegedy (2015)) in the deep learning models, and have significantly improved deep
learning model’s performance against test-time domain shift.
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Figure 1: Examples from ImageNet-C dataset
Hendrycks & Dietterich (2019). ImageNet-
C contains 75 corrupted copies of the original
ImageNet-1K test set, with 5 severity levels and
15 different corruption types. This dataset is used
to simulate the distribution shift between training
domain (original) and test domains (corrupted).

Such Batch-Norm Layer based methods make
two underlying assumptions to estimate stable
normalization statistics during evaluation: 1)
test data come together in large batches; 2)
all the test samples are from the same shifted
distribution (single corruption types, single do-
main, etc). However, such assumptions might
not be practical in the real world as the samples
might come from an arbitrary distribution such
as: varying sample sizes, different ways of col-
lection, or different types of corruptions. Fur-
ther, during inference, the AI system might not
have the freedom to postpone the prediction in
order to collect enough data to apply test-time
adaptation algorithm on the incoming test sam-
ples.

To eliminate the dependency on large batch size
and sole distribution, we propose to replace
the Batch-Norm Layers with a novel MixNorm
operation that performs adaptive prediction of
the normalization statistics from a single input.
The MixNorm Layer considers not only global
statistics calculated from all historical samples,
but also local statistics calculated from incoming test sample and its spatial augmentations. Figure
2 illustrates our overall approach. The novel MixNorm method demonstrate significant improve-
ment over the State-of-the-art methods TENT (Wang et al. (2020)), especially in the two newly
proposed evaluation protocols, where the all Test-Time Adaptation methods are evaluated at various
batch sizes, and against mixture of test samples from different shifted domains. In addition to the
Test-Time Adaptation task, the proposed MixNorm Layer demonstrates improvement over two other
tasks, source-free Domain Adaptation and Zero-Shot Image Classification.

Our contributions are:

• We propose two new evaluation conditions for the task of Test-Time Adaptation, which
avoid the impractical assumptions made by previous protocols.

• We propose a novel and simple way to adaptively estimate the test-time normalization
statistics from single sample.

• We performed extensive experiments that demonstrate the effectiveness of the new
MixNorm Layer in various tasks, such as Test-Time Adaptation, Source-Free Unsupervised
Domain Adaptation and Zero-Shot Image Classification.

2 RELATED WORK

Distribution shift between training domain and evaluation domain often causes a drop in the perfor-
mance of deep learning models. In recent years, many proposals have been made to increase deep
learning model’s robustness against distribution shifts, a field of research known as Domain Adapta-
tion. Domain Adaptation methods can be classified into different settings depending on factors like
access to source (training) samples, existence of new or missing categories, availability of support-
ing samples in evaluation domain, etc. In this paper, we focus on settings where there is no access to
the source (training) samples. In particular, we compare our new method with existing methods on
Test-Time Adaptation, Source-Free Unsupervised Domain Adaptation and Zero-Shot Classification
settings.

2.1 TEST-TIME ADAPTATION

The task of Test-Time Adaptation (TTA) is one of the most challenging settings in the field of
Domain Adaptation, as it requires rapid adaptation while making predictions, without access to
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Figure 2: Method overview for Test-Time Adaptation with MixNorm layers. Before the inference,
we replace all the Batch-Norm layers in the pre-trained model with the new proposed MixNorm
layers. The MixNorm layers are initialized by the training set (source) statistics (means and vari-
ances) and the corresponding weights and biases from the pre-trained Batch-Norm layers. During
inference, each input is paired with another augmented view for calculation in the MixNorm layers
and the final prediction is made only on the original input.

anything but the pre-trained model and testing samples. BN (Li et al. (2016)) was one of the earliest
work that explores the TTA task. It focuses on adapting the Batch-Norm Layers in deep learning
models. A traditional Batch-Norm module collects running means and variances at training time
from the training data, and uses the collected means and variance at test time. BN argued that
when there are distribution shifts between training and testing data, it should not keep using the
same training statistics. Instead, the model should collect statistic directly from the online batch.
BN demonstrates that this simple approach of using online statistics is effective in handling the
distribution shifts caused by corruptions. However, one clear drawback of the method is that it
requires relative large batches to obtain stable online statistics. Following the work of BN (Li et al.
(2016)), TTT (Sun et al. (2020)) proposed to update not only the batch-norm statistics, but also the
affine weights and biases, which are learnable weights in Batch-Norm Layers that further re-scale
the normalized output. TTT performs a single step gradient update over the batch-norm parameters
after each prediction, with an unsupervised loss defined by rotation prediction task. TENT (Wang
et al. (2020)) further proposed to use entropy loss instead of rotation prediction loss and achieved
state-of-the-art performance on CIFAR-10C, CIFAR-100C and ImageNet-C datasets.

Most of the existing works in TTA follow the same evaluation protocol proposed by Li et al. (2016),
where the models are adapted using large batches of test samples coming from a single type of
corruption. However, such an assumption is not realistic in practice, because the test samples in
the real world could come in any batch size (in particular, real time high performance inference
platforms often process one input at a time, Anderson et al. (2021)), or from any shifted distribution.

2.2 SOURCE-FREE UNSUPERVISED DOMAIN ADAPTATION

Similar to the task of TTA, in Source-Free Unsupervised Domain Adaptation (UDA), the models
only have access to pre-trained models and test samples. Different than the TTA setting, Source-
Free UDA models have access to the evaluation samples as many times as needed during adaptation.

SHOT Liang et al. (2020) is currently the state of the art in Source-Free UDA, and also one of
the first to propose UDA without needing any source data. In SHOT, the parameters are fine-tuned
with a self-supervised loss that minimize the prediction entropy in the target samples, while keeping
the classification head intact. SHOT demonstrates that it is possible to get reasonable performance
on standard benchmarks such as Office (Saenko et al. (2010)), Office-Home (Venkateswara et al.
(2017)) and VisDA (Peng et al. (2017)).
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Another method called TENT (Wang et al. (2020)) also has shown potential for the Source-
Free UDA task with promising performance on digit datasets (e.g. adapting SVHN model to
MNIST/MNIST-M/USPS). TENT cannot reach SHOT’s performance when scaled to much larger
scale datasets such as VisDA (Peng et al. (2017)), but TENT adapts to target domain inputs with
much cheaper operations and sees each test sample only once during testing.

Algorithm 1: Mix-Norm Update
Input:
Input Feature: F ∈ RD×H×W
Augmentation Features of the same sample:
F ′ ∈ RN×D×H×W
Training Set Mean µ0 and Variance σ0

Exponential Moving Speed τ = 0.001
Mixing Scale m = 0.05
Weights, Bias: α, β
Procedure:
// Update µ and σ with most recent sample
µt+1 ← (1− τ)µt + τF.mean(1, 2)
σt+1 ← (1− τ)σt + τ(F − µ).var(1, 2))
// Get global statistics
µglobal ← µt

σglobal ← σt

// Get local statistics from Augmentations
µlocal ← F ′.mean(0, 2, 3)
σlocal ← (F ′ − µlocal).var(0, 2, 3)
// Mix Global and Local
µmixed ← (1−m)µglobal +mµlocal
σmixed ← (1−m)σglobal +mσlocal
// Calculate shifted f
F ← αF−µmixed

σmixed
+ β

return F

Algorithm 2: MixNormBN: Combines
MixNorm and BatchNorm
Input:
Batch of Features: F ∈ RB×D×H×W
Augmentated Features of the same batch:
F ′ ∈ RB×N×D×H×W
Training Set Mean µ0 and Variance σ0

Max Moving Speed τmax = 0.9
Mixing Scale m = 0.05
Weights, Bias: α, β
Procedure:
// Adjust τ based on Batch Size B
τ ← τmax10

− 3
B

// Update µ and σ with most recent sample
µt+1 ← (1− τ)µt + τF.mean(0, 1, 2)
σt+1 ← (1− τ)σt + τ(F − µ).var(0, 1, 2)
// Update global statistics with current batch
µglobal ← µt

σglobal ← σt

// Get local statistics from Augmentations
µlocal ← F ′.mean(0, 1, 3, 4)
σlocal ← (F ′ − µlocal).var(0, 1, 3, 4)
// Mix Global and Local
µmixed ← (1−m)µglobal +mµlocal
σmixed ← (1−m)σglobal +mσlocal
// Calculate shifted f
F ← αF−µmixed

σmixed
+ β

return F

2.3 ZERO-SHOT CLASSIFICATION

Unlike Test-Time Adaptation or Source-Free UDA, where methods are developed to close the do-
main gap during evaluation stage, the goal of Zero-Shot Classification (Xian et al. (2018)) is to
increase the generalization ability during the training stage so that it can be applied to any test do-
main without adaptation. Without access to any support samples from the new categories, Zero-Shot
Classification methods typically take advantage of cues from syntax information such as label em-
bedding (Frome et al. (2013)) or attributes (Lampert et al. (2013)) to establish knowledge about the
new categories.

Recently, along with the success in large-scale pre-training (Brown et al. (2020)), self-supervised
learning and contrastive learning (Chen et al. (2020)), CLIP (Radford et al. (2021)) has brought a
huge improvement over almost all of the common benchmark datasets. CLIP collects 400 millions
image-caption pairs and learns a joint representation space of visual and language representations.
With the joint representation space, CLIP has the ability to do Zero-Shot Classification by directly
looking at the potential category names, and its Zero-Shot Classification performance is close to that
of fully supervised models on many datasets including ImageNet (Deng et al. (2009)).

3 TEST-TIME ADAPTATION WITH MIX-NORM LAYER

In this section, we define our new Mix-Norm layer and provide details on how it can be utilized
for closing domain gap during test time on Deep Neural Networks (DNN). Given a pre-trained
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DNN, we replace its existing Batch-Norm layers (Ioffe & Szegedy (2015)). During test time, for
arbitrary sized batches our new MixNorm layer calculates empirical normalization statistics from
two sources:

• Global Statistics: The Batch-Norm layers from the pre-trained model store the statistics
from the training distribution. Our MixNorm layer uses this training statistics as a global
anchor point. The global statistics, initialized by the training statistics, is updated by an
exponential moving average of the online test sample.

• Local Statistics: We create additional augmented views of the test sample to form a small
augmentation batch. We calculate the empirical statistics from this augmentation batch to
capture the local distribution shift of the test sample. The augmentations are spatial, in-
cluding random-resized-crop and random-flipping. In practice, we only use one additional
augmentation as it has the best performance.

In a typical deep learning model such as ResNet (He et al. (2016)) or WideResNet (Zagoruyko &
Komodakis (2016)), there will be multiple batch-norm layers across the whole backbone network.
Figure 3 below, illustrates our proposed operation in only one such layer. As shown earlier in
Figure 2, each sample X comes along with its augmented view X ′. After the encoding layers and
right before our MixNorm layer, input images X,X ′ ∈ R3×224×224 become feature tensor F, F ′ ∈
RD×H×W . For simplicity, we denote the i-th row, j-th column of F, F ′ to be Fi,j , F ′i,j ∈ RD.

As depicted in Figure 3, our global statistics µt, σt are initialized with train-time statistics, copied
from the batch-norm layers in the pre-trained network:

µ0 = µtraining σ0 = σtraining,

and they will be slowly updated by the statistics on each new sample. At (t+ 1)-th test example:

µt+1 = (1− τ)µt + τµ σt+1 = (1− τ)σt + τσ,

where τ is the exponential moving speed, and µ and σ are the means and variances from F :

µ =

∑H
i=0

∑W
j=0 Fij

HW
σ =

∑H
i=0

∑W
j=0(Fij − µ)2

HW
.

On the other hand, we calculate the local statistics µlocal, σlocal by examining both F, F ′:

µlocal =

∑
F∗∈{F,F ′}

∑H
i=0

∑W
j=0 F

∗
ij

2HW
σlocal =

∑
F∗∈{F,F ′}

∑H
i=0

∑W
j=0(F

∗
ij − µlocal)2

2HW
.

Renaming µt+1, σt+1 to µglobal, σglobal, we obtain our final statistics:

µmixed = (1−m)µglobal +mµlocal σmixed = (1−m)σglobal +mσlocal.

Finally, with µmixed, σmixed, we can perform the normalization operation, and forward the resulting
F, F ′ to next layers:

F = α
F − µmixed
ε+
√
σmixed

+ β F ′ = α
F ′ − µmixed
ε+
√
σmixed

+ β,

where α, β, ε are the parameters copied from the pre-trained network batch-norm layers.

While the above process describes the procedure in Algorithm 1, we also present an variant of
MixNorm in Algorithm 2. Different from the vanilla MixNorm which only consider single sample,
Algorithm 2 updates the global statistics with batch statistics, and have an adaptive moving speed
τ which approximates Batch-Norm behavior for large batch size, and MixNorm behavior for small
batch size.

4 EXPERIMENTS AND RESULTS

Datasets. For the Test-Time Adaptation task, we follow TENT (Wang et al. (2020)) and evaluate
our method over the standard benchmarks CIFAR-10C and ImageNet-C (Hendrycks & Dietterich
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Figure 3: Illustration of the MixNorm Layer. Inside the MixNorm layer we estimate the normal-
ization statistics by looking at both global statistics from historical data and local statistics from
augmented views.

(2019)). CIFAR-10C includes 75 subsets that are composed of 15 types of corruptions at 5 sever-
ity levels. It comprises the 10,000 images, each of size 32x32 pixels, from the 10 classes in the
CIFAR10 test set, but with each modified by the corresponding corruption type at certain severity
level. Similarly, ImageNet-C is composed of a set of 75 common visual corruptions, applied to the
original ImageNet validation set, with 50,000 images of 224x224 pixels from 1000 classes.

For Source-Free Unsupervised Domain Adaptation task, we follow the experiment setup from Wang
et al. (2020), and use SVHN (Netzer et al. (2011)) as the source domain and MNIST (LeCun et al.
(1998))/MNIST-M (Ganin & Lempitsky (2015))/USPS (Netzer et al. (2011)) as the target domains.
SVHN, MNIST, MNIST-M and USPS are all 10-class digits datasets, with training/testing data sizes
of 73257/26032, 60000/10000, 60000/10000 and 7291/2007 respectively.

For Zero-Shot Image Classification, we follow the setup from CLIP (Radford et al. (2021)) and
evaluate our method on CIFAR-10/100 (Krizhevsky et al. (2009)), STL-10 (Coates et al. (2011)),
Stanford Cars (Krause et al. (2013)) and Food101 (Bossard et al. (2014)). Details of these datasets
are provided in the Appendix C.

Implementation Details. For Test-Time Adaptation experiments, we follow the optimization setting
from TENT (Wang et al. (2020)), which uses Adam optimizer on CIFAR-10C with learning rate
0.001 and SGD optimizer on ImageNet-C with learning rate 0.00025, both optimized by the entropy
minimization loss on output logits as described in Wang et al. (2020). For CIFAR-10C we compare
with TENT on both Wide-ResNet-28 and Wide-ResNet-40 (Zagoruyko & Komodakis (2016)) and
for ImageNet-C we compare with TENT on ResNet-50 (He et al. (2016)) following the official
public model provided by the TENT repository1.

For Source-Free Unsupervised Domain Adaptation experiments, we replicated TENT (Wang et al.
(2020)) and BN (Li et al. (2016)) methods using the pre-trained SVNH model repository2 since
the original ResNet-26 model reported in TENT (Wang et al. (2020)) was not public. For hyper-
parameter selection, on CIFAR-10C/ImageNet-C we use the “Gaussian Noise at Severity 5” set to
choose the hyper parameters, and then use the same hyper-parameters during all experiments. For
Source-Free UDA and Zero-Shot Classification experiments, as there is no trivial way to split a val-
idation set, we just report the optimal hyper-parameters for each dataset. The details of the selected
hyper-parameters will be provided in Appendix B. For all the experiments, we use RandomResized-
Crop and RandomFlip as the augmentation methods.

1https://github.com/DequanWang/tent
2https://github.com/aaron-xichen/pytorch-playground
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4.1 TEST-TIME ADAPTATION

To understand the merit of our new method in real world scenarios, we introduce two new conditions
during evaluations. In TENT, error rates for each of the 15 corruption types at severity 5 are reported
with a fixed batch size of 200 on CIFAR-10C and 64 on ImageNet-C. In addition to this standard
protocol, we compare our method with TENT under two new conditions:

1) Different Batch Sizes. In additional to the fixed 200/64 batch size in the previous protocol, we
also compare our method with TENT at batch sizes of 1, 5, 8, 16, 32, 64, 100, 200;

2) Mixed Distribution. In additional to the standard protocol where the model’s final error rate
is averaged from 15 separate evaluations, each of which contains only one type of corruption, we
further evaluate the models with all 15 corruptions types shuffled and mixed together.
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Figure 4: Comparison of MixNorm, with and without learnable affine weights (Algorithm 1), and
MixNormBN (Algorithm 2) methods to the baseline method TENT in two different test time settings
i) test samples come only from a single type of corruption; ii) test samples come from mixed types
of corruptions. For the Single Type experiments, we report average error rates over all 15 corruption
types at severity 5. Numerical results are reported in the Appendix A.

Figure 4 shows our main results. Blue curves represent the SOTA model TENT, the red and orange
curves represent MixNorm model with and without learnable affine weights α and β. Green curves
represent the performance of MixNormBN as described in Algorithm 2. Tent’s performance drops
as the batch size decreases, while MixNorm’s performance stays stable for any batch size. Addi-
tional to the improvement to small batch size, Figure 4 also shows the advantages of MixNorm when
test samples come from different distributions. In TENT’s testing protocol, all test samples are col-
lected from the same corruption distribution, which makes it easier to obtain reliable normalization
statistics especially when the batch size is large. However, when tested with batches of mixed inputs
sampled from different corruption types, such assumption does not hold and Tent’s performance
drops significantly compared to MixNorm. This result holds even when tested with larger batch size
(up to 64 on ImageNet-C and up to 200 on CIFAR-10C). We also observe that when batch size is
large enough and all samples come from a similar distribution, TENT might have an advantage over
MixNorm; because TENT can get to estimate stable normalization statistics from empirical sam-
ples. In order to take advantage of large batch size, when we test our MixNormBN method (green
curves), again we report consistently better scores than TENT at all batch sizes.
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Figure 5: Comparison of our MixNorm and MixNormBN methods to the baseline method TENT,
with a different backbone architecture (WideResNet40). Numerical results are reported in the Ap-
pendix A.

4.2 ABLATION STUDIES

In this section, we present the results of several ablations on architecture selection, ways of collecting
normalization statistics and number of augmentations.

Architectures: Figure 5 provides the results on CIFAR-10C where both TENT and MixNorm adopt
a more powerful backbone, WideResNet40, as opposed to the WideResNet28 used in Figure 4.
Along with the ResNet-50 used in the ImageNet-C experiments, we demonstrate the effectiveness
of MixNorm on architecture with different depth and width.

Normalization Statistics Estimation: In Table 1, we present an ablation study on different ways
to collect normalization parameters. They include: 1) Instance Norm: each feature is normalized by
itself along the spatial dimensions; 2) Augmentation (Local) Norm: features are normalized within
the local batch of original samples and corresponding augmented views, i.e., only local statistics
are used; 3) Fixed Global Norm: each feature is normalized by the fixed statistics stored in the pre-
trained weights learned during training; 4) Moving Global Norm: each feature is normalized by the
exponential moving statistics, i.e., only global statistics are used.

As shown in the table row 1 and 2, Augmentation Norm improves on Instance Norm by having
augmented samples in addition to the original samples, but both of them perform poorly due to
the absence of global statistics. Rows 3 and 4 show that Moving Global Norm works better than
Fixed Global Norm, which is expected due to the existence of domain shift. Rows 5, 6, 7 indicate
that combining the global and local statistics boosted performance by a significant scale. Row 8
indicates that learnable affine weights, α and β, do not seem to provide additional boost to the
performance observed in TENT, possibly because MixNorm can already make accurate prediction
so it does not need to be adjusted by the affine weights.

Augmentations: Table 2 shows that one augmentation is enough to get good performance, and
the number of augmentations in local statistics calculation does not have significant influence on
performance. Therefore, we just use one augmentation for faster computation.

4.3 TEST-TIME ADAPTATION IN ZERO-SHOT LEARNING SETTING

For Zero-Shot Classification, samples are evaluated separately at batch size of 1. Therefore, we use
the regular MixNorm with fixed affine weights for comparison. We replace the Batch-Norm layers
from the pre-trained CLIP models, with backbone architectures of ResNet-50, and then use the
updated ResNet-50 model to calculate the visual features in Zero-Shot Classification. The results
in Table 3 shows MixNorm improves the CLIP’s zero-shot learning performance on CIFAR-100,
Stanford-Cars and CIFAR-10 and is on par with CLIP on Food-101 and STL10. This experiment
aims to show MixNorm can bring reasonable improvements even over extremely large-scale pre-
training models. Interestingly, the results show that our new method can bring larger improvements
when the CLIP has a lower performance, which implicitly could be indication of the presence of
larger domain shifts.
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No Experiment Name Way of Collecting Means & Vars Error RateMoving Speed Global Scale Local Scale
1 Instance Norm 0 0 1 78.21%
2 Augmentation (Local) Norm 0 0 1 68.73%
3 Fixed Global Norm 0 1 0 50.50%
4 Moving Global Norm 0.001 1 0 38.45%
5 Mixed Norm 0.001 0.95 0.95 34.45%
6 Mixed Norm 0.001 0.9 0.1 32.66%
7 Mixed Norm 0.001 0.8 0.2 31.96%
8 Mixed Norm w/ fixed params 0.001 0.8 0.2 32.01%

Table 1: Ablation studies on different ways to collect normalization statistics, tested with CIFAR-
10C, with a mixed set of corruptions.

Number of Augmentations 1 3 5 7 9 15
ImageNet-C Error Rate 58.16% 58.33% 58.35% 58.44% 58.49% 58.56%

Table 2: Ablation studies on the effect of number of augmentations to MixNormBN method when
collecting normalization statistics, tested with ImageNet-C and ResNet-50, with a mixed set of
corruptions.

Model CIFAR-100 Stanford-Cars CIFAR-10 Food-101 STL10
CLIP (RN50) 40.97% 53.80% 72.26% 78.99% 94.84%

MixNorm 45.13% 54.01% 75.36% 78.78% 94.67%

Table 3: Zero-Shot Image Classification Accuracy. We replaced the Batch-Norm layers in the pre-
trained CLIP ResNet-50 weights and tested it under the zero-shot setting on the standard bench-
marks. Result shows MixNorm improved the CLIP performance

4.4 SOURCE-FREE UNSUPERVISED DOMAIN ADAPTATION

Model SVHN→MNIST SVHN→USPS SVHN→MNIST-M
Source 23.84% 37.02% 45.45%

BN (Li et al. (2016)) 22.70% 36.87% 44.04%
TENT (Wang et al. (2020)) 8.17% 34.63% 42.28%

MixNormBN 7.95% 25.71% 42.19%

Table 4: Error rate for Source-Free Unsupervised Domain Adaptation experiment on Digits Sets
from SVHN to MNIST/MNIST-M/USPS.

For Source-Free UDA experiments, as we compare to TENT (Wang et al. (2020)) and BN (Li et al.
(2016)), both of which use large batch sizes (200), we use MixNormBN for a fair comparison. As
shown in Table 4, MixNormBN outperforms both TENT and BN by a significant margin on all three
datasets, indicating the effectiveness of MixNormBN in the task of Source-Free UDA, for other
types of domain shift that are not just corruptions.

5 CONCLUSION

We have developed a novel way to estimate the batch-norm statistics during test time, to fast adapt
a source model to target test samples. Unlike the previous methods that require a large batch from
a single distribution to calculate stable batch-norm statistics, our proposed method eliminates any
dependency on online batches and is able to estimate accurate batch-norm statistics with single
samples. The newly proposed method significantly outperformed the State-Of-The-Art models in the
newly proposed real-world settings, and also demonstrated potential to improve zero-shot learning
performance.
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A FULL RESULTS ON CIFAR-10C, IMAGENET-C

In Table 9,10, 5,6 we present the exact error rates shown in Figure 4. In Table 7,8 we present the
error rates shown in Figure 5.

Batch Size TENT MixNorm w/ Fixed Parameters MixNorm MixNormBN
1 90.00% 21.76% 21.94% 22.33%
5 29.21% 21.57% 21.94% 22.47%
8 25.81% 21.53% 21.94% 22.16%
16 22.07% 21.48% 21.94% 20.94%
32 20.65% 21.53% 21.94% 20.19%
64 19.69% 21.43% 21.94% 19.43%

100 19.11% 21.26% 21.94% 18.94%
200 18.58% 21.20% 21.94% 18.52%

Table 5: Single Distribution Error Rates of TENT, MixNorm (Algorithm 1) with and without fixed
affine parameters, MixNormBN (Algorithm 2) on CIFAR-10C datasets. All scores are average
error rates from all 15 corruption datasets at severity level 5. All methods adopt Wide-ResNet-28
as backbone architectures.

Batch Size TENT MixNorm w/ Fixed Parameters MixNorm MixNormBN
1 89.69% 31.94% 32.01% 32.01%
5 39.39% 31.96% 32.01% 33.24%
8 37.15% 31.98% 32.01% 32.67%
16 35.22% 32.06% 32.01% 32.18%
32 33.18% 32.17% 32.01% 31.73%
64 32.74% 32.09% 32.01% 30.87%

100 32.52% 32.51% 32.01% 30.24%
200 33.12% 31.96% 32.01% 30.33%

Table 6: Mixed Distribution Error Rates of TENT, MixNorm (Algorithm 1) with and without fixed
affine parameters, MixNormBN (Algorithm 2) on CIFAR-10C datasets. All methods are tested
with 10,000 randomly ordered samples composed of corrupted images from 15 different corruptions
types at severity level 5. All methods adopt Wide-ResNet-28 as backbone architectures.

Batch Size TENT MixNorm w/ Fixed Parameters MixNorm MixNormBN
1 90.00% 15.09% 15.59% 15.62%
5 23.18% 14.60% 15.59% 15.61%
8 19.32% 14.45% 15.59% 15.46%
16 15.53% 14.23% 15.59% 14.26%
32 14.13% 14.19% 15.59% 13.53%
64 13.12% 14.41% 15.59% 12.78%

100 12.59% 13.96% 15.59% 12.32%
200 12.08% 13.85% 15.59% 11.95%

Table 7: Single Distribution Error Rates of TENT, MixNorm (Algorithm 1) with and without fixed
affine parameters, MixNormBN (Algorithm 2) on CIFAR-10C datasets. All scores are average
error rates from all 15 corruption datasets at severity level 5. All methods adopt Wide-ResNet-40
as backbone architectures.

B HYPER PARAMETER SELECTION

In this section we report the hyper parameters we used for each experiments. As we mentioned in
Section 4, we use the “Gaussian Noise at Severity 5” set to choose the hyper parameters on CIFAR-
10C and ImageNet-C experiments. For other dataset, because of the absence of proper validation
set, we just pick the hyper-parameters that give the optimal performance. All learning rate stay the
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Batch Size TENT MixNorm w/ Fixed Parameters MixNorm MixNormBN
1 89.81% 18.80% 15.99% 18.52%
5 27.92% 18.80% 15.99% 20.21%
8 24.57% 18.80% 15.99% 19.97%
16 21.07% 18.80% 15.99% 18.71%
32 18.76% 18.80% 15.99% 17.45%
64 17.12% 18.80% 15.99% 16.44%

100 17.12% 18.80% 15.99% 16.53%
200 16.43% 18.80% 15.99% 17.67%

Table 8: Mixed Distribution Error Rates of TENT, MixNorm (Algorithm 1) with and without fixed
affine parameters, MixNormBN (Algorithm 2) on CIFAR-10C datasets. All methods are tested
with 10,000 randomly ordered samples composed of corrupted images from 15 different corruptions
types at severity level 5. All methods adopt Wide-ResNet-40 as backbone architectures.

Batch Size TENT MixNorm w/ Fixed Parameters MixNorm MixNormBN
1 99.87% 74.44% 74.44% 74.03%
5 81.08% 74.43% 74.44% 74.89%
8 75.74% 74.44% 74.44% 72.93%
16 69.85% 74.41% 74.44% 69.02%
32 65.51% 74.41% 74.44% 65.34%
64 62.74% 74.43% 74.44% 62.69%

Table 9: Single Distribution Error Rates of TENT, MixNorm (Algorithm 1) with and without fixed
affine parameters, MixNormBN (Algorithm 2) on ImageNet-C datasets. All scores are average error
rates from all 15 corruption datasets at severity level 5. All methods adopt ResNet-50 as backbone
architectures.

same as the learning rated used by other baselines. Finding optimal hyper-parameters remains to be
a challenging problem for methods in Test-Time Adaptation.

C ZERO-SHOT CLASSIFICATION DATASETS

In Table 13 we report the details of datasets we used for Zero-Shot Classification Experiments.
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Batch Size TENT MixNorm w/ Fixed Parameters MixNorm MixNormBN
1 99.86% 78.88% 78.89% 88.73%
5 90.59% 78.87% 78.89% 85.06%
8 88.72% 78.87% 78.89% 84.75%
16 87.27% 78.85% 78.89% 83.99%
32 86.39% 78.87% 78.89% 83.55%
64 86.09% 78.86% 78.89% 82.78%

Table 10: Mixed Distribution Error Rates of TENT, MixNorm (Algorithm 1) with and without fixed
affine parameters, MixNormBN (Algorithm 2) on ImageNet-C datasets. All methods are tested
with 50,000 randomly ordered samples composed of corrupted images from 15 different corruptions
types at severity level 5. All methods adopt ResNet-50 as backbone architectures.

Scale m Moving Speed τ Learning Rate
CIFAR10-C Single 0.05 1.00E-03 1.00E-03
CIFAR10-C Mixed 0.2 1.00E-03 1.00E-03
ImageNet-C Single 0.01 1.00E-03 2.50E-04
ImageNet-C Mixed 0.05 1.00E-06 2.50E-04

CIFAR-10 0.01 1.00E-06 -
CIFAR-100 0.01 1.00E-06 -

STL10 0.01 1.00E-06 -
Stanford-Cars 0.01 1.00E-07 -

Food-101 0.005 1.00E-07 -

Table 11: Hyper-Parameters of MixNorm Experiments. In Figure 4 and 5 we reported scores for both
MixNorm with and without fixed affine parameters. The MixNorm uses the same hyper-parameter
in the both cases.

Scale m Max Moving Speed τmax Learning Rate
CIFAR10-C Single 0.01 0.75 1.00E-03
CIFAR10-C Mixed 0.2 0.75 1.00E-03
ImageNet-C Single 0.01 1.1 2.50E-04
ImageNet-C Mixed 0.05 1.1 2.50E-04

MNIST 0.1 0.75 0.75
MNIST-M 0.01 0.75 0.05

USPS 0.01 0.5 0.75

Table 12: Hyper-Parameters of MixNormBN Experiments.

Datasets Classes Train Size Test Size
CIFAR-10 10 50000 10000

CIFAR-100 100 50000 10000
Stanford-Cars 196 8144 8041

Food-101 101 75750 25250
STL10 10 1000 8000

Table 13: Dataset Size and Class Number
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