

ADAPTIVE ACQUISITION SELECTION FOR BAYESIAN OPTIMIZATION WITH LARGE LANGUAGE MODELS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
ABSTRACT

Bayesian Optimization critically depends on the choice of acquisition function, but no single strategy is universally optimal; the best choice is non-stationary and problem-dependent. Existing adaptive portfolio methods often base their decisions on past function values while ignoring richer information like remaining budget or surrogate model characteristics. To address this, we introduce LMABO, a novel framework that casts a pre-trained Large Language Model (LLM) as a zero-shot, online strategist for the BO process. At each iteration, LMABO uses a structured state representation to prompt the LLM to select the most suitable acquisition function from a diverse portfolio. In an evaluation across 50 benchmark problems, LMABO demonstrates a significant performance improvement over strong static, adaptive portfolio, and other LLM-based baselines. We show that the LLM’s behavior is a comprehensive strategy that adapts to real-time progress, proving its advantage stems from its ability to process and synthesize the complete optimization state into an effective, adaptive policy.

1 INTRODUCTION

Bayesian Optimization (BO) is a preeminent methodology for the global optimization of expensive-to-evaluate, black-box functions, a pervasive challenge across science and engineering (Shahriari et al., 2015). Its framework uses a surrogate model (often a Gaussian Process (GP)) to approximate the objective function and an acquisition function (AF) to intelligently select the next point to evaluate, balancing the trade-off between exploration and exploitation. A core challenge in BO is the selection of the AF. It is well-established that no single, fixed AF offers optimal performance across all problems (Hoffman et al., 2011); the best strategy is highly contingent on the characteristics of the objective function and can even change dynamically throughout a single optimization run. This has spurred the development of adaptive strategies that move beyond static AF selection to dynamically choose different AFs from a portfolio every iteration (Hoffman et al., 2011).

Existing adaptive portfolio methods, however, suffer from a critical limitation: their decisions are guided almost exclusively by a narrow view of the optimization process, typically relying on the history of observed function values. Portfolio-based strategies (Hoffman et al., 2011; Vasconcelos et al., 2019; 2022) operate on a reward signal derived from the past performance of each AF, utilizing only the function evaluations and the surrogate model’s output. These methods largely ignore a wealth of other critical state information, such as the remaining optimization budget, the distance between evaluated points, and insights about the function’s complexity encoded in the surrogate model’s own hyperparameters (e.g., GP lengthscales). The core challenge is that designing a principled, algorithmic approach that can effectively reason over such a diverse and complex set of strategic, tactical, and landscape-related information has proven immensely difficult.

This paper bridges this gap by leveraging a Large Language Model (LLM) as a dynamic optimization strategist. We are motivated by the fact that modern LLMs, trained on immense corpora of scientific literature and code, possess a rich, nuanced, and implicitly encoded understanding of optimization principles. Instead of hand-crafting a complex policy covering all state information, we tap into this pre-trained knowledge, as well as the reasoning capabilities of the LLM to guide the exploration-exploitation balance in an optimization process. We introduce a new formulation of adaptive BO: casting acquisition function selection as an in-context decision-making problem solved by a pre-trained LLM, supported by a novel state serialization design. At each iteration, the complete, multi-

054 faceted optimization state is serialized into a structured textual prompt. The LLM then analyzes this
 055 rich state and select the most appropriate AF from a diverse portfolio for the immediate next step.
 056

057 Experiments show LMABO consistently outperforms the baselines across diverse optimization
 058 problems. Ablation studies confirm the LLM leverages all components of the state summary, with
 059 performance dropping when any part is removed. A behavior analysis reveals a comprehensive
 060 strategy: LMABO prefers exploration when progress has stagnated, heavily exploits with low
 061 remaining budget, and aggressively switches between AFs; during early stages of optimization, the
 062 LLM is sensitive to all information; during middle stages, the performance history and process status
 063 are influential and towards the end, sensitive to only incumbent values. This proves that LMABO’s
 064 success stems from its ability to reason over a complete set of strategic and tactical information and
 065 to successfully mirror the established best practices in BO similar to the intuition of a human expert.
 066

067 The contributions of this work can be summarized as follows:
 068

- 069 • We recast BO’s acquisition function selection as an in-context decision-making task with
 070 an LLM as a closed-loop strategist to select the most appropriate AF.
- 071 • We propose a structured representation of the BO state, shown via ablations to be essential
 072 for effective zero-shot decision-making.
- 073 • On 50 benchmarks, LMABO outperforms static, adaptive, and LLM-based baselines, with
 074 analysis revealing emergent, state-aware strategies beyond simple heuristics.

075 2 BACKGROUND

076 **Bayesian Optimization** is a sample-efficient framework for optimizing expensive-to-evaluate
 077 black-box functions (Frazier, 2018). Formally, let $f : \mathcal{X} \rightarrow \mathbb{R}$ be an unknown objective function
 078 defined over $\mathcal{X} \subset \mathbb{R}^d$. BO constructs a probabilistic surrogate model, typically a Gaussian Process
 079 (Rasmussen & Williams, 2005), to approximate f and quantify uncertainty in unexplored regions. At
 080 each iteration, given the set of previously observed evaluations \mathcal{D}_{t-1} , BO selects the next query point
 081 $x_t \in \mathcal{X}$ by maximizing an *acquisition function* $\alpha(x; \mathcal{D}_{t-1})$, which balances *exploration* (sampling in
 082 uncertain regions) and *exploitation* (sampling near low predicted values (for minimization)). There
 083 are many well-studied and effective AFs, including Expected Improvement (EI) (Mockus, 1998),
 084 Thompson Sampling (TS) (Chowdhury & Gopalan, 2017), and Upper Confidence Bound (UCB)
 085 (Srinivas et al., 2010), and each of them has their own advantages and disadvantages. Some AFs
 086 like TS and UCB (given appropriate hyperparameters) are more explorative, while others like EI
 087 are more exploitative. However, no single AF performs optimally across all problems (Hoffman
 088 et al., 2011), and achieving sample efficiency often requires dynamically prioritizing exploration or
 089 exploitation at the appropriate stages of the optimization process. Therefore, using the right AF with
 090 the right focus on exploration or exploitation at the right time can be a key to better BO performance.
 091 More details about AFs used in this paper and their grouping are provided in Appendix A.

092 **A Gaussian Process** is a nonparametric prior over functions, defined such that any finite collection
 093 of function values follows a joint Gaussian distribution. A GP is fully specified by its mean function
 094 $m(x)$ and covariance kernel $k(x, x')$, where the kernel encodes assumptions about the smoothness
 095 and structure of the underlying function. An example of a kernel is the squared exponential kernel:

$$096 \quad k(x, x') = \sigma_f^2 \exp\left(-\frac{1}{2} \sum_{i=1}^d \frac{(x_i - x'_i)^2}{\ell_i^2}\right),$$

097 where ℓ_i are the *lengthscales*, controlling function variation along each input dimension, and σ_f^2 is
 098 the *outputscale*, determining the overall variance of the function values. A small lengthscale means
 099 the function varies rapidly with input changes, and a small outputscale keeps predictions close to the
 100 mean with little variation. These hyperparameters are typically learned by maximizing the marginal
 101 likelihood of observed data, enabling GPs to adapt their complexity to the underlying objective.
 102

103 3 RELATED WORKS

104 **Portfolio-Based Strategies** These methods treated AF selection as a portfolio allocation problem.
 105 GP-Hedge (Hoffman et al., 2011) framed the task as a *multi-armed bandit* problem, selecting AFs
 106

108 by first computing a reward signal derived from their past performance then randomly sampling
 109 an AF according to a probability distribution weighted by these rewards. Subsequent methods
 110 like No-PASt-BO (Vasconcelos et al., 2019) and SETUP-BO (Vasconcelos et al., 2022) sought to
 111 improve upon this by introducing memory factors to discount distant evaluations, but they still rely
 112 on the same fundamental reward mechanism. Shahriari et al. (2014) used an information-theoretic
 113 approach with Entropy Search Portfolio (ESP), which shifted the selection criterion to a forward-
 114 looking measure of utility: the expected reduction in uncertainty about the location of the global
 115 optimum. However, a key limitation unites these strategies: their decisions are guided by a narrow
 116 view of the optimization state, focusing primarily on function values and uncertainty while ignoring
 117 other critical information like the remaining budget or characteristics of the surrogate model itself.
 118

119 **Learning-Based Strategies** MetaBO (Volpp et al., 2020) and FSAF (Hsieh et al., 2021) meta-
 120 learn a state-dependent policy, formalizing AF selection as a reinforcement learning problem.
 121 Though related, these are not applicable to our setting, as they are designed for a transfer learning
 122 scenario, where a policy is learned on a distribution of source tasks and adapted to a new target task.
 123

124 **LLM-Based Bayesian Optimization** With the recent success of LLMs, efforts have emerged to
 125 incorporate them into the BO process, though their functional roles differ fundamentally from our
 126 approach. FunBO (Aglietti et al., 2025) uses the LLM as an *offline algorithm generator* to discover
 127 new AFs with a few function evaluations, but it does not participate in the adaptive process of AF
 128 selection. Other recent methods have integrated LLMs more directly into the optimization loop as
 129 *component replacements*. For instance, LLMP (Requeima et al., 2024) focuses on enhancing the
 130 surrogate model with natural language priors, while LLAMBO (Liu et al., 2024) uses the LLM for
 131 multiple steps in the optimization process including generating initial samples, surrogate modeling,
 132 and proposing candidate points. These approaches rely on the LLM’s inductive biases regarding
 133 numerical function shapes, effectively treating the text-based model as a numerical regression
 134 engine. LMABO establishes a distinct paradigm: the *semantic controller*. Unlike FunBO, LMABO
 135 operates online to adapt to real-time feedback. Unlike LLAMBO/LLMP, it does not replace the
 136 rigorous mathematical backbone (Gaussian Processes) with LLM predictions. Instead, it recasts
 137 the AF selection itself as a sequential decision-making task solvable by in-context reasoning,
 138 representing a new paradigm for adaptive BO.
 139

4 METHODOLOGY

4.1 LANGUAGE MODEL-ASSISTED ADAPTIVE BAYESIAN OPTIMIZATION (LMABO)

140 Our proposed method LMABO uses a pre-trained LLM to dynamically select the most appropriate
 141 acquisition function at each iteration of the BO process. The framework operates as a closed-loop
 142 system, where the LLM is prompted at each iteration with a rich representation of the optimization
 143 state to infer the most effective AF for evaluation. The entire process is detailed in Algorithm 1.
 144

145 **Algorithm 1** The LMABO Framework

146 **Require:** Objective function $f(\mathbf{x})$; Initial dataset $\mathcal{D}_0 = \{(\mathbf{x}_0, y_0), \dots\}$; Optimization budget T ;
 147 Portfolio of acquisition functions $\mathcal{A} = \{\alpha_1, \alpha_2, \dots, \alpha_K\}$; Large Language Model Ψ .
 148 1: Construct an initial prompt P_0 that defines the LLM’s role as a BO expert and provides the set
 149 of available acquisition functions \mathcal{A} . ▷ See Appendix C
 150 2: Send P_0 to Ψ to establish context. ▷ See Sec. 4.2
 151 3: **for** $t = 1, 2, \dots, T$ **do**
 152 4: Fit a Gaussian Process model \mathcal{GP}_{t-1} .
 153 5: Generate state summary S_t from \mathcal{GP}_{t-1} and optimization history. ▷ See Sec. 4.3
 154 6: Construct the update prompt P_t from S_t .
 155 7: Obtain the next acquisition function $\alpha_t \leftarrow \Psi(P_t)$. ▷ See Sec. 4.2
 156 8: Optimize α_t to find the next point to evaluate: $x_t \leftarrow \arg \max_x \alpha_t(x)$.
 157 9: Evaluate the true objective function: $y_t = f(x_t) + \eta_t$ with noise η_t .
 158 10: $\mathcal{D}_t \leftarrow \mathcal{D}_{t-1} \cup \{(x_t, y_t)\}$.
 159 11: **end for**
 160 12: **return** The point x^* corresponding to the best function value in \mathcal{D}_T .

162 4.2 THE LLM AS A ZERO-SHOT STRATEGIST
163164 A core tenet of our LMABO framework is to leverage the reasoning capabilities of a large, pre-
165 trained LLM in a zero-shot setting. This approach requires no task-specific fine-tuning to the LLM’s
166 weights. Instead, the model’s strategic behavior is guided entirely through in-context learning,
167 conditioned on an initial prompt, P_0 , that structures the entire decision-making task. The initial
168 prompt, P_0 , is a static instruction set that establishes the context for the entire optimization run. It is
169 composed of several key components designed to elicit an expert-like decision-making process:
170171 1. **Role-playing Instruction:** The prompt begins by providing the LLM with an instruction to
172 act as an “expert in Bayesian Optimization”. This contextual framing is used to condition
173 the model, leveraging the patterns it learned during pre-training to emulate the decision-
174 making process that a human expert might follow when presented with similar data.
175 2. **Available Actions:** We explicitly define the portfolio of available acquisition functions,
176 \mathcal{A} . Each function is listed with its abbreviation (e.g., EI, UCB) and full name. We refrain
177 from giving a description for each AF to avoid biased interpretations and instead rely on the
178 LLM’s encoded knowledge. Note that we default to UCB if the LLM’s output is invalid.
179 3. **State Information Schema:** The prompt describes the structure of the state summaries,
180 S_t , that it will receive at each subsequent step, explaining what each piece of information
181 (e.g., GP lengthscales, current performance) represents.
182 4. **Output Formatting Constraint:** Finally, the prompt specifies a strict output format
183 (“Acquisition abbreviation: Justification”) to ensure responses can be reliably parsed.
184185 P_0 is sent once at the beginning of the optimization to set the stage. At each iteration t , the
186 update prompt P_t is formed by appending the new state summary, S_t (see the next section), to
187 the established context of P_0 . The full text for P_0 is provided in Appendix C for reproducibility.
188189 4.3 OPTIMIZATION STATE REPRESENTATION
190191 A key component of our LMABO framework is the translation of the high-dimensional, numerical
192 state of the BO process into a concise, human-readable textual summary, S_t . This summary
193 is designed to provide the LLM with a comprehensive, multi-faceted view of the optimization
194 landscape and progress. The state summary S_t at each iteration t is composed of the following
195 elements:
196197 • **Process Status:** To contextualize the current step within the overall process, we provide
198 the number of **evaluations performed** so far (N), the **remaining budget** (N_{rem}), and the
199 problem **dimensionality** (D). The remaining budget, in particular, is critical for balancing
200 the long-term need for exploration against the short-term need for exploitation.
201 • **Performance History:** To provide context on the optimization’s progress, we include
202 several performance indicators. These are the **incumbent objective value** (f_{min}), the
203 observed **function value range**, and the **shortest distance** from the last evaluated point
204 to any previous point (as an indicator of the last evaluation’s exploration tendency).
205 • **GP Model Characteristics:** To inform the LLM about the current understanding of
206 the function landscape, we provide key hyperparameters from the fitted surrogate model
207 \mathcal{GP}_{t-1} . This includes the kernel’s **outputscale** and summary statistics of the **lengthscales**
208 (minimum, maximum, mean, and standard deviation).
209210 These components are formatted into a structured string that becomes the core of the prompt P_t sent
211 to the LLM at each iteration. See examples of these state summaries in Appendix C. The design
212 of S_t balances compactness with completeness, enabling the LLM to leverage domain-specific
213 signals (budget, GP hyperparameters, exploration metrics) without requiring training. Our ablation
214 results (Table 2) demonstrate that omitting any of these elements significantly degrades performance,
215 underscoring the importance of the representation.

216

5 EXPERIMENTS

217

5.1 EXPERIMENT SETUP

218 **Baselines** We employ a comprehensive set of 19 baselines spanning three categories:

- 219 • **Static Acquisition Functions:** These are standard and popular BO methods that use a
220 single, fixed AF throughout the process. We include all 12 AFs that constitute the portfolio
221 from which LMABO can select (see Appendix A for details).
- 222 • **Simple Meta-strategies:** These methods use simple, non-adaptive strategies to select
223 among multiple AFs. They first include the naive strategy of uniformly random selection
224 within a portfolio of: 1) all 12 AFs, 2) most popular AFs in practice (EI, TS, UCB,
225 PosMean), and 3) AFs that are commonly selected by LMABO (i.e. EI, LogEI, and TS,
226 as shown later in Figure 2a). We also include strategies that alternate between exploration
227 (TS) and exploitation (EI) (i.e. Alt-EI-TS- k with $k = 1, 3, 5$) and a strategy that explores
228 first then exploits (i.e. TwoPhases-TS-EI).
- 229 • **Adaptive Acquisition Functions:** These methods adapt their AF based on the optimization
230 state, including GP-Hedge (Hoffman et al., 2011), No-PAS-BO (Vasconcelos et al., 2019),
231 SETUP-BO (Vasconcelos et al., 2022), and ESP (Shahriari et al., 2014).
- 232 • **LLM-based Methods:** State-of-the-art baselines that incorporate LLMs into the BO
233 process, including LLAMBO (Liu et al., 2024) and LLMP (Requeima et al., 2024).

234 **Benchmark Problems** The evaluation is performed on a broad set of 50 problems to test for
235 robustness and general applicability. These includes 30 synthetic benchmark functions from the
236 COCO platform (Hansen et al., 2021) and the BoTorch library (Balandat et al., 2020). In addition,
237 we use 20 real-world hyperparameter optimization problems from Bayesmark (Uber, 2020). This
238 benchmark evaluates the practical applicability of LMABO on a common and important task in
239 machine learning. Details of these benchmark problems are provided in Appendix B.240 **Implementation Details** We implement LMABO with Gemini-2.5 Flash. For surrogate modeling
241 of GP-based methods, we use a GP with a Matérn 5/2 kernel, and the implementations are built
242 using standard modules from the BoTorch library. Each optimization run is initialized with $2D + 1$
243 points, where D is the dimensionality of the problem. The optimization budget is set to 50 iterations
244 for problems with fewer than 10 dimensions and 100 iterations for problems with 10 or more
245 dimensions. More implementation details are provided in Appendix B.246 **Evaluation** Each experiment is repeated 10 times with different random seeds. For each method
247 on each problem, we averaged the **Areas Under the Simple Regret Curves** (AUCs) over all 10
248 repetitions. We then compute **Relative Performance** (RP): for each problem, the method with the
249 lowest (best) total AUC receives an RP of 1.0, and all other methods are assigned an RP equal to their
250 total AUC divided by the best total AUC for that problem. This ensures aggregation across problems
251 is not affected by different absolute scales of AUCs. A **rank** of each method on each problem is
252 determined by sorting all methods by their total AUC (lower is better), assigning rank 1 to the best.
253 Note that the ranking includes 25 baselines, 8 ablation variants of LMABO, and 4 adaptive portfolio
254 variants, resulting in a maximum rank of 38. RP and rank help provide a clear and concise summary
255 of comparative performance across all methods and problems instead of plotting all regret curves
256 for 38 methods on 50 problems. Experimental results will undergo a rigorous statistical analysis to
257 ensure the validity of our findings. Details about the statistical tests are provided in Appendix B.3.258

5.2 MAIN RESULTS

259 The results, summarized in Table 1, demonstrate that LMABO achieves a substantial performance
260 improvement over all baseline categories. Averaged across problems, LMABO’s total AUC is 9.7%
261 lower than the best static AF, 14.8% lower than the best simple meta-strategies, 54.7% lower than the
262 best LLM-based method, and 16.6% lower than the best adaptive portfolio method; consequently,
263 LMABO ranks among the top four methods on average. LMABO’s relatively low variation (CV =
264 0.37) indicates high consistency across different seeds. A 50-iteration run with LMABO uses a total

270 **Table 1: Overall performance comparison of LMABO against all baselines across 50**
 271 **optimization problems.** P-values from Friedman tests in the last row indicate statistically
 272 significant differences among methods for both RP and rank. The third and fifth columns show
 273 p-values of post-hoc pairwise comparisons between LMABO and each method, which confirm that
 274 the differences in performance between LMABO and all methods are significant. Exploitative AFs
 275 are marked in **blue** and explorative AFs are marked in **magenta** (see Appendix A for details).

277 Method	278 Mean RP (Interquartile Range)	279 P-value (RP)	280 Mean Rank (Min - Max)	281 P-value (Rank)	282 CV of AUC
<i>283 Static Acquisition Functions</i>					
284 PI	285 1.53 (1.08–1.53)	286 3.71e-03	287 15.80 (1–36)	288 1.54e-04	289 0.45
290 LogPI	291 1.40 (1.10–1.47)	292 7.40e-03	293 14.52 (1–37)	294 3.89e-04	295 0.47
296 EI	297 1.34 (1.11–1.52)	298 2.85e-04	299 13.08 (1–34)	300 3.87e-05	301 0.44
302 LogEI	303 1.36 (1.15–1.48)	304 8.24e-06	305 13.92 (1–35)	306 1.49e-06	307 0.42
308 PosMean	309 1.42 (1.08–1.51)	310 1.05e-02	311 14.70 (1–37)	312 5.06e-04	313 0.45
314 PosSTD	315 7.02 (2.12–5.51)	316 3.37e-08	317 34.78 (3–38)	318 3.47e-08	319 0.48
320 UCB	321 1.75 (1.23–2.02)	322 2.59e-07	323 23.94 (1–37)	324 1.32e-07	325 0.37
326 TS	327 2.07 (1.32–1.92)	328 1.10e-07	329 25.46 (1–37)	330 7.05e-08	331 0.35
332 KG	333 1.66 (1.24–1.78)	334 7.19e-08	335 23.96 (4–36)	336 5.09e-08	337 0.40
338 PES	339 2.93 (1.68–3.24)	340 2.80e-08	341 31.92 (10–38)	342 2.74e-08	343 0.38
344 MES	345 2.80 (1.22–1.66)	346 5.16e-07	347 20.54 (1–37)	348 2.04e-07	349 0.40
350 JES	351 1.62 (1.30–1.70)	352 4.30e-08	353 24.64 (1–36)	354 4.79e-08	355 0.39
<i>356 Simple Meta-strategies</i>					
357 Random (Full portfolio)	358 1.43 (1.23–1.54)	359 5.16e-07	360 17.36 (2–31)	361 1.91e-07	362 0.41
363 Random	364 1.45 (1.19–1.55)	365 1.82e-07	366 17.62 (1–34)	367 2.07e-07	368 0.42
369 (EI, TS, UCB, PosMean)	370 1.42 (1.18–1.54)	371 7.91e-06	372 15.62 (1–33)	373 3.60e-06	374 0.40
376 Alt-EI-TS-1	377 1.50 (1.27–1.54)	378 7.94e-08	379 18.72 (4–35)	380 1.38e-07	381 0.40
383 Alt-EI-TS-3	384 1.62 (1.28–1.56)	385 1.27e-07	386 21.50 (2–33)	387 6.32e-08	388 0.38
391 Alt-EI-TS-5	392 1.58 (1.28–1.58)	393 7.78e-08	394 21.16 (3–35)	395 1.10e-07	396 0.39
399 TwoPhases-TS-EI	400 1.86 (1.30–1.63)	401 6.62e-08	402 24.06 (2–35)	403 6.32e-08	404 0.37
<i>406 LLM-based Methods</i>					
407 LLAMBO	408 2.67 (1.14–2.65)	409 1.55e-04	410 23.74 (1–38)	411 1.49e-06	412 0.43
413 LLMP	414 2.78 (1.59–2.49)	415 3.70e-08	416 31.30 (1–38)	417 3.52e-08	418 0.33
<i>419 Adaptive Portfolio Methods</i>					
420 GP-Hedge	421 1.45 (1.22–1.52)	422 1.82e-07	423 16.96 (1–34)	424 1.65e-07	425 0.42
426 No-PASt-BO	427 1.53 (1.20–1.74)	428 1.27e-07	429 19.08 (1–37)	430 1.65e-07	431 0.37
433 SETUP-BO	434 1.56 (1.21–1.62)	435 1.11e-07	436 19.06 (1–37)	437 8.91e-08	438 0.42
439 ESP	440 1.62 (1.29–1.67)	441 4.30e-08	442 22.98 (1–38)	443 5.53e-08	444 0.42
446 LMABO	447 1.21 (1.06–1.25)	448 –	449 5.62 (1–19)	450 –	451 0.37
<i>453 P-values of Friedman Tests</i>					
454 1.380e-106					

316 of about 6000 tokens ($\approx \$0.01$); both this expense and the LLM call latency of roughly 1 second per
 317 iteration are negligible relative to the cost of evaluating expensive black-box functions (which often
 318 takes minutes or hours per evaluation) and are justified by the resulting performance gains.

319 Static AFs are inherently unreliable. While strong heuristics like EI or LogEI are among the best
 320 in this class with relatively low RPs and ranks, their performance is brittle; on some problems,
 321 their rank drops to as low as 35th, highlighting the risk of a fixed strategy. In addition, adaptive
 322 portfolio methods, though achieving competitive results, frequently exhibit higher variability and
 323 are less robust across the heterogeneous problem suite. These approaches depend on heuristics
 324 for weighting past acquisition performance and thus can be slow to adapt when the task-specific

324 Table 2: **Ablation study on the components of LMABO.** We analyze the contribution of LMABO’s
 325 key components by comparing the full model to multiple ablated versions. LMABO-8B/30B uses
 326 open-source LLMs (Qwen3-8B and Qwen3-30B-A3B-Thinking-2507 (Team, 2025)). LMABO-
 327 120B uses the open-weight model gpt-oss-120b (OpenAI, 2025). The Mean RP and Mean Rank are
 328 calculated using the same global ranking of all baseline and ablation methods as in Table 1.

330 Method	331 Mean RP\downarrow (Interquartile Range)	332 P-value (RP)	333 Mean Rank\downarrow (Min - Max)	334 P-value (Rank)	335 CV of AUC
<i>336 LMABO without:</i>					
337 Remaining budget	1.40 (1.17–1.54)	4.25e-07	15.72 (3–34)	2.61e-07	0.39
338 GP model characteristics	1.50 (1.21–1.59)	4.30e-08	20.04 (4–34)	3.47e-08	0.40
339 Shortest distance information	1.50 (1.23–1.65)	1.62e-07	19.76 (1–33)	7.60e-08	0.39
340 Instruction to avoid 341 ineffective AFs	1.92 (1.45–1.91)	3.07e-08	28.30 (3–37)	3.02e-08	0.43
<i>342 LMABO using other LLMs</i>					
343 LMABO-8B	1.48 (1.24–1.62)	2.48e-07	18.94 (1–34)	1.72e-07	0.38
344 LMABO-30B	1.29 (1.15–1.35)	3.21e-04	10.70 (2–25)	6.28e-05	0.39
345 LMABO-120B	1.22 (1.07–1.24)	1.00e+00	6.64 (1–31)	3.99e-01	0.39
346 LMABO (GPT-4o mini)	1.21 (1.11–1.26)	1.00e+00	7.16 (1–21)	1.84e-01	0.37
347 LMABO	1.21 (1.06–1.25)	–	5.62 (1–19)	–	0.37

348 landscape changes or when surrogate uncertainty dynamics differ across problems. Given the
 349 same AF portfolio, LMABO mitigates this shortcoming by considering other important factors
 350 including the process status, performance history and surrogate model characteristics, which enables
 351 faster, more consistent adaptation and yields significantly better average performance. LLM-based
 352 methods, while occasionally ranking among the top performers (e.g., LLAMBO is in the top three on
 353 12 out of 50 problems), generally exhibit inconsistent results and often fall behind other approaches.
 354 This highlights that simply incorporating an LLM is not sufficient; effective navigation of the
 355 exploration-exploitation trade-off is crucial for robust BO. LMABO addresses this by explicitly
 356 framing AF selection as a decision-making task in which the LLM can make informed, context-
 357 aware decisions to balance the trade-off effectively.

358 Similar to the aforementioned baselines, simple meta-strategies also struggle to maintain consistent
 359 performance across diverse problems. Figures 2a and 2b show that LMABO uses EI, LogEI, and TS
 360 more frequently than other AFs and often switches between these three options. However, simple
 361 meta-strategies that mimic these behaviors (e.g., random selection between the three or alternating
 362 between EI and TS) fail to deliver robust performance. Therefore, these results demonstrate that
 363 LMABO’s behavior cannot be reduced to a simple heuristic.

364 5.3 ABLATION STUDIES

365 Our ablation studies confirm that each component of the LMABO framework is crucial for achieving
 366 its superior performance, with statistically significant degradation in performance compared to
 367 the full model once a component is removed, as shown in Table 2. However, these studies also
 368 demonstrate the robustness of our core framework, as the ablated versions still achieve respectable
 369 results, often performing on par with or better than many established baselines.

370 Firstly, LMABO’s performance is inherently coupled with the underlying LLM. With a small open-
 371 source model in our LMABO-8B experiment, we observed a noticeable performance drop, though
 372 it still achieves competitive results. LMABO-30B, using a larger model with improved thinking
 373 capabilities, recovers much of this drop, approaching that of the full LMABO with Gemini-2.5
 374 Flash and outperforming all baselines. Both LMABO-120B and LMABO with GPT-4o mini achieve
 375 performance comparable to the vanilla version, demonstrating that LMABO’s effectiveness is not tied
 376 to a specific LLM, but rather benefits from the general reasoning capabilities of strong LLMs.

377 Removing the remaining budget leads to the smallest performance drop, which means that this
 378 information is the least critical of the three ablated inputs. GP model characteristics and shortest

Figure 1: Impact of task-specific context on LMABO performance. Results are averaged over 10 runs with standard deviation shown as shaded regions.

distance information are equivalently impactful on the effectiveness of the LMABO. The large drop in LMABO-AB4 demonstrates that instructing the LLM to avoid AFs that failed to improve the incumbent is essential. Without this guidance, we find that the LLM repeatedly selects ineffective AFs, leading to significantly worse optimization performance.

In addition to these ablation studies, we attempted to inject task-specific context into the initial prompt P_0 on 4 benchmark problems, such as characteristics of the synthetic functions or hyperparameter optimization tasks. The hypothesis is that by exploiting prior knowledge about the problem domain, the LLM could make more informed AF selections, potentially enhancing the optimization performance. Details about these contexts are provided in Appendix C.1. The results, shown in Figure 1, suggest that providing context acts as a safeguard against stagnation in local optima, a benefit observed across both synthetic and real-world landscapes. Vanilla LMABO may stall at a sub-optimal plateau after the initial progress (e.g. between iterations 10 and 30 on HolderTable); however, being warned of “many local minima”, the context-aware variant successfully identified this trap and bypassed it early, converging to the global minimum significantly faster. Based on these findings, we recommend providing a textual description of the objective function whenever such knowledge is available. In hyperparameter optimization scenarios involving well-known algorithms (e.g. Decision Tree or AdaBoost), this semantic warmstarting can significantly reduce the computational budget required to reach competitive performance (which was also reported in Liu et al. (2024) albeit for point initialization).

6 ANALYSIS

To understand LMABO’s strategy, we performed an in-depth analysis of its AF selection behavior, which reveals a multi-faceted strategy with clear preferences, following distinct temporal patterns, and, most importantly, adapting its behavior in response to the real-time optimization state. Our findings provide strong evidence that LMABO effectively synthesizes the state information to execute a dynamic, context-aware policy that mirrors established practices in BO. Note that this section’s results are aggregated across all repetitions on all problems from experiments in Section 5.

Overall Preferences In Figure 2a, we observe that LMABO exhibits a clear preference for certain AFs (e.g. EI, LogEI, and TS). EI’s usage often increases slightly at the beginning as a response to early improvements, while TS’s usage decreases gradually near the end as the need for exploration diminishes. PosMean is heavily used near the end for LMABO as a last effort to find improvements. Another surprising observation is the high usage of MES and PES in the first few iterations, but this seems to align with the initial goal of quickly reducing uncertainty about the global optimum. However, the strong performance of LMABO also involves other factors, as discussed later. On other adaptive portfolio methods, there is no clear preference for any AF, and the selection is more uniformly distributed. The only exception is No-PAST-BO with an increasing preference for PosMean as the budget runs out. From this figure, a first insight is that LMABO’s success partly stems from a well-calibrated preference for strong AFs, rather than a uniform exploration of all options, as well as a dynamic adjustment of these preferences over time.

On a separate note, the adaptive portfolio baselines can be at a disadvantage without knowing the strengths of EI and LogEI. We conducted an additional experiment where these methods operate on

Figure 2: LMABO’s acquisition function selection behaviors. Note that these behaviors are aggregated across all runs on all problems.

only a curated subset comprising of EI, LogEI, and TS - the three most frequently selected AFs by LMABO. We indeed observe a performance improvement for these methods except for GP-Hedge (detailed results in Appendix E), but the curated versions are still strictly outperformed by LMABO.

Switching the AF in Response to the Optimization State In Figure 2b, a notable difference is observed between LMABO and the adaptive portfolio baselines in terms of AF switching. LMABO is the only method to perform a high number of switches between the group of explorative AFs (i.e. the first five AFs) and exploitative AFs (i.e. the remaining seven AFs) throughout the optimization process, as seen in the bottom left and top right of the figures. The dynamic adjustment mentioned earlier is more evident here, as LMABO frequently switches between exploration and exploitation. Figure 2c shows increased usage of exploitative AFs during improvement phases for all methods, which aligns with the goal of refining the search around promising areas. However, combined with the findings from Figure 2b, the adaptive portfolio baselines seem to demonstrate a passive, one-directional learning by using more exploitative functions after success, but their sparse switching patterns reveal a “sticky” policy that is slow to abandon a strategy, even when it is failing. This is likely because of their reliance on past successes to guide future choices, which can lead to overcommitment to a single AF. In contrast, LMABO employs an active, bi-directional strategy, not only learning to exploit on improvement but also decisively switching back to exploratory functions

486 to escape stagnation. This demonstrates that LMABO’s core advantage lies not just in identifying
 487 a good heuristic, but in its superior, more agile policy for knowing when that heuristic is no longer
 488 effective and a different approach is required.
 489

490 **Linking AF Selection to Justification** To verify a consistent
 491 link between the LLM’s AF choices and its justifications, we
 492 analyzed keywords appeared in the justifications across different
 493 AFs. In Figure 3, explorative AFs are strongly associated
 494 with terms like “exploration” or “stagnation”, and exploitative
 495 AFs are strongly associated with terms like “exploitation” or
 496 “improvement”. This confirms that the LLM’s selections are
 497 consistent with its justification, and that it is possible to use these
 498 justification to understand the decision of the LLM.
 499

500 **Information Sensitivity Analysis** To assess the sensitivity of
 501 LMABO to the information provided in the prompt, we conducted
 502 a sensitivity analysis by perturbing the values fed to the LLM in
 503 the state representation across early, middle and late stages. Due
 504 to space constraints, we summarize the key findings here (detailed
 505 results are in Appendix G). During the early stage, the LLM is
 506 highly reactive to all information changes, including the process
 507 status, performance history, and GP model characteristics. During
 508 the middle stage, performance history and process status are most influential. In the late stage,
 509 the LLM is less sensitive to perturbations and is mostly changing its decision in response to new
 510 incumbent values where it exhibits a strong preference for exploitative AFs. While perturbing the
 511 values presents inherent limitations (e.g. the perturbed values may be unrealistic or inconsistent with
 512 other state variables), the results still provide valuable insights into the LLM’s decision-making
 513 process. Overall, we find that LMABO is highly sensitive to tactical variables like performance
 514 history with evident signs of stagnation/improvement and process status, while correctly showing
 515 robustness to changes in secondary GP parameters that do not alter the overall strategic context.
 516 This demonstrates that the LLM is synthesizing the state summary to weigh the relative importance
 517 of different inputs, a key feature of its effective, state-aware policy.
 518

7 CONCLUSION

520 We introduced LMABO, a novel framework that successfully utilizes a pre-trained LLM as a zero-
 521 shot, online strategist for selecting acquisition functions in Bayesian Optimization. By prompting
 522 the LLM with a comprehensive, real-time summary of the optimization state, LMABO dynamically
 523 controls the exploration-exploitation trade-off. Our extensive experiments on 50 benchmarks show
 524 that this approach significantly outperforms strong static, adaptive, and other LLM-based baselines.
 525 Ablation studies and analysis of the LLM’s behavior confirm its success stems from a well-rounded
 526 state-aware strategy that adapts well to the optimization’s progress, demonstrating patterns that align
 527 closely with established BO best practices.
 528

529 This paper focused on standard BO with Gaussian Processes, and future work could adapt LMABO
 530 to other surrogate models and optimization settings. For instance, in constrained BO, the LLM
 531 could be leveraged to dynamically balance objective improvement against constraint satisfaction.
 532 Overall, LMABO opens new avenues for integrating LLMs into adaptive optimization frameworks,
 533 leveraging their reasoning capabilities for decision-making in complex tasks.
 534

REPRODUCIBILITY STATEMENT

535 We submitted the code as a supplementary material. The code includes the implementation of our
 536 method, baselines, and scripts to reproduce the main experiments. We also provide details of the
 537 experimental setup and datasets used in the experiments in the appendix. Upon acceptance, we will
 538 make the code publicly available.
 539

500 Figure 3: Word frequency in
 501 justifications. Red box (bottom
 502 left) is the explorative group.
 503 Blue box (top right) is the
 504 exploitative group.
 505

540 LLM USAGE
541542 Large Language Models were used for correcting grammar and improving writing clarity along with
543 updating the related works. We used Gemini Pro and ChatGPT for these purposes.
544545 REFERENCES
546547 Virginia Aglietti, Ira Ktena, Jessica Schrouff, Eleni Sgouritsa, Francisco Ruiz, Alan Malek, Alexis
548 Bellot, and Silvia Chiappa. FunBO: Discovering acquisition functions for bayesian optimization
549 with funsearch. In *Forty-second International Conference on Machine Learning*, 2025.550 Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy.
551 Unexpected improvements to expected improvement for bayesian optimization. *Advances in*
552 *Neural Information Processing Systems*, 36:20577–20612, 2023.
553554 Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham,
555 Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo
556 Bayesian Optimization. In *Advances in Neural Information Processing Systems 33*, 2020. URL
557 <http://arxiv.org/abs/1910.06403>.558 Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In *Proceedings of*
559 *the 34th International Conference on Machine Learning-Volume 70*, pp. 844–853, 2017.
560561 Peter I Frazier. A tutorial on bayesian optimization. *arXiv preprint arXiv:1807.02811*, 2018.562 Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and Dimo Brockhoff.
563 Coco: A platform for comparing continuous optimizers in a black-box setting. *Optimization*
564 *Methods and Software*, 36(1):114–144, 2021.
565566 José M Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive entropy
567 search for efficient global optimization of black-box functions. *Advances in neural information*
568 *processing systems*, 27, 2014.569 Matthew Hoffman, Eric Brochu, and Nando de Freitas. Portfolio allocation for bayesian
570 optimization. In *Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial*
571 *Intelligence*, pp. 327–336, 2011.572 Bing-Jing Hsieh, Ping-Chun Hsieh, and Xi Liu. Reinforced few-shot acquisition function learning
573 for bayesian optimization. *Advances in Neural Information Processing Systems*, 34:7718–7731,
574 2021.
575576 Carl Hvarfner, Erik O Hellsten, and Luigi Nardi. Vanilla bayesian optimization performs great in
577 high dimensions. In *Proceedings of the 41st International Conference on Machine Learning*, pp.
578 20793–20817, 2024.579 Harold J. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
580 the presence of noise. *Journal of Basic Engineering*, 86:97–106, 1964.
581582 Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language
583 models to enhance bayesian optimization. In *The Twelfth International Conference on Learning*
584 *Representations*, 2024. URL <https://openreview.net/forum?id=0OxotBmG0l>.585 J. Mockus. The application of bayesian methods for seeking the extremum, 1998.
586587 OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025. URL <https://arxiv.org/abs/2508.10925>.
588589 C.E. Rasmussen and C.K.I. Williams. *Gaussian Processes for Machine Learning*. Adaptive
590 Computation and Machine Learning series. MIT Press, 2005. ISBN 9780262182539.
591592 James Requeima, John Bronskill, Dami Choi, Richard Turner, and David K Duvenaud. Llm
593 processes: Numerical predictive distributions conditioned on natural language. *Advances in*
594 *Neural Information Processing Systems*, 37:109609–109671, 2024.

594 Bobak Shahriari, Ziyu Wang, Matthew W Hoffman, Alexandre Bouchard-Côté, and Nando
 595 de Freitas. An entropy search portfolio for bayesian optimization. *arXiv preprint*
 596 *arXiv:1406.4625*, 2014.

597

598 Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
 599 human out of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, 104(1):
 600 148–175, 2015.

601

602 Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process
 603 optimization in the bandit setting: no regret and experimental design. In *Proceedings of the*
 604 *27th International Conference on International Conference on Machine Learning*, pp. 1015–
 605 1022, 2010.

606

607 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

608

609 Ben Tu, Axel Gandy, Nikolas Kantas, and Behrang Shafei. Joint entropy search for multi-objective
 610 bayesian optimization. *Advances in Neural Information Processing Systems*, 35:9922–9938,
 2022.

611

612 Uber. Uber/bayesmark: Benchmark framework to easily compare bayesian optimization methods
 613 on real machine learning tasks. <https://github.com/uber/bayesmark>, 2020. Online;
 614 accessed 2025-09-09.

615

616 Thiago de P Vasconcelos, Daniel ARMA de Souza, César LC Mattos, and João PP Gomes. No-
 617 past-bo: Normalized portfolio allocation strategy for bayesian optimization. In *2019 IEEE 31st*
618 International Conference on Tools with Artificial Intelligence (ICTAI), pp. 561–568. IEEE, 2019.

619

620 Thiago de P Vasconcelos, Daniel Augusto RMA de Souza, Gustavo C de M Virgolino, Cesar LC
 621 Mattos, and Joao PP Gomes. Self-tuning portfolio-based bayesian optimization. *Expert Systems*
 622 *with Applications*, 188:115847, 2022.

623

624 Michael Volpp, Lukas P. Fröhlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank
 625 Hutter, and Christian Daniel. Meta-learning acquisition functions for transfer learning in
 626 bayesian optimization. In *ICLR*, 2020. URL <https://openreview.net/forum?id=ryeYpJSKwr>.

627

628 Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient bayesian optimization. In
 629 *Proceedings of the 34th International Conference on Machine Learning-Volume 70*, pp. 3627–
 3635, 2017.

630

631 Jian Wu and Peter I Frazier. The parallel knowledge gradient method for batch bayesian
 632 optimization. In *Proceedings of the 30th International Conference on Neural Information*
 633 *Processing Systems*, pp. 3134–3142, 2016.

634

635 A LIST OF ACQUISITION FUNCTIONS

636

637 The acquisition function $\alpha(x; \mathcal{D})$ guides the selection of query points in BO by quantifying the utility
 638 of evaluating f at x . By maximizing $\alpha(x; \mathcal{D})$ over the search space, we identify points that balance
 639 exploration (sampling where uncertainty is high) and exploitation (sampling where the surrogate
 640 predicts low function values). Details of the AFs used in our experiments are as follows:

641

- 642 • Probability of Improvement (PI) (Kushner, 1964):

643

$$\alpha_{\text{PI}}(x) = \Phi\left(\frac{\mu(x) - \tau}{\sigma(x)}\right),$$

644

645 where Φ is the standard normal CDF, $\mu(x)$ and $\sigma(x)$ are the posterior mean and standard
 646 deviation, and τ is a target (e.g., the incumbent solution). PI selects points with high
 647 probability of improving upon τ .

648 • Expected Improvement (EI) (Mockus, 1998):
 649

650
$$\alpha_{\text{EI}}(x) = (\mu(x) - \tau) \Phi(z) + \sigma(x) \phi(z), \quad z = \frac{\mu(x) - \tau}{\sigma(x)},$$

 651

652 where ϕ is the standard normal PDF. EI measures the expected magnitude of improvement.
 653

654 • Log Probability of Improvement (LogPI) (Balandat et al., 2020) and Log Expected
 655 Improvement (LogEI) (Ament et al., 2023): These are numerically stable variants of PI and
 656 EI, respectively, that operate in the log domain to handle vanishing values and gradients.
 657

658 • Upper Confidence Bound (UCB) (Srinivas et al., 2010):
 659

660
$$\alpha_{\text{UCB}}(x) = \mu(x) + \kappa \sigma(x),$$

 661

662 where $\kappa > 0$ controls the exploration weight. UCB explicitly balances exploitation (mean)
 663 and exploration (uncertainty).
 664

665 • Thompson Sampling (TS) (Chowdhury & Gopalan, 2017): Draws a sample $\tilde{f} \sim p(f \mid \mathcal{D})$
 666 and selects x maximizing $\tilde{f}(x)$. TS provides a randomized exploration strategy consistent
 667 with the posterior.
 668

669 • Posterior Mean (PosMean) and Posterior Standard Deviation (PosStd): Using $\alpha_{\text{mean}}(x) =$
 670 $\mu(x)$ yields pure exploitation, while $\alpha_{\text{std}}(x) = \sigma(x)$ performs pure exploration.
 671

672 • Knowledge Gradient (KG) (Wu & Frazier, 2016): This look-ahead function quantifies the
 673 expected increase in the maximum value of the function that results from collecting a new
 674 observation at a candidate point x .
 675

676 • Information-theoretic AFs:
 677

- 678 – Predictive Entropy Search (PES) (Hernández-Lobato et al., 2014): Selects points that
 679 maximize the expected reduction in entropy of the distribution over the location of the
 680 global optimum.
 681
- 682 – Max-value Entropy Search (MES) (Wang & Jegelka, 2017): Focuses on reducing
 683 uncertainty about the maximum function value rather than its location.
 684
- 685 – Joint Entropy Search (JES) (Tu et al., 2022): A recent AF that generalizes PES and
 686 MES by considering the joint entropy of both the location and value of the optimum.
 687

688 We use the implementations of these AFs from the BoTorch library (Balandat et al., 2020) in our
 689 experiments. For KG, PES, MES, and JES, we use their available batch implementations with a
 690 batch size of 1. We consider PosSTD, UCB, TS, KG, PES, MES, and JES to be in the exploratory
 691 category, while the exploitative AFs include PosMean, PI, LogPI, EI, and LogEI.
 692

693 B EXPERIMENTAL DETAILS

694 B.1 LIST OF BENCHMARKS

695 We evaluate LMABO on a diverse suite of 50 benchmark problems, including synthetic functions
 696 and real-world hyperparameter optimization tasks. The synthetic benchmarks are listed in Table 3,
 697 with 15 functions from the COCO suite (Hansen et al., 2021) and 15 from BoTorch (Balandat et al.,
 698 2020). For hyperparameter optimization tasks, we follow the practice of Liu et al. (2024) and use
 699 datasets and ML models available on Bayesmark (Uber, 2020) to form 20 dataset-model pairs. The
 700 datasets include Breast, Digits, Wines and Diabetes, and the ML models include Decision Tree,
 701 Random Forest, SVM, AdaBoost, and MLPSGD. The dimensionality of these search spaces ranges
 702 from 2 to 8. We use the empirical optimum found by all methods (as the true optima are unknown
 703 for many problems) to compute the simple regret at each iteration. See Appendix D.1 of Liu et al.
 704 (2024) for full details about the hyperparameter optimization tasks.
 705

706 B.2 IMPLEMENTATION DETAILS

707 We follow the standard practice to optimize the GP hyperparameters by maximizing the log marginal
 708 likelihood at each iteration. We use the default implementation of GP regression in BoTorch
 709 (Balandat et al., 2020) which has hyperparameter priors from (Hvarfner et al., 2024) to enhance
 710

702 Table 3: COCO and BoTorch synthetic benchmark functions used in our experiments.
703

704 COCO benchmarks (15)		705 BoTorch synthetic benchmarks (15)	
706 Name	707 Dimensionality	708 Name	709 Dimensionality
BucheRastrigin	5	Ackley	50
LinearSlope	5	Beale	2
AttractiveSector	5	Bukin	2
StepEllipsoid	5	Cosine8	8
Discus	5	DixonPrice	15
BentCigar	5	DropWave	2
SharpRidge	5	EggHolder	2
DifferentPowers	5	Griewank	9
Weierstrass	5	Hartmann	6
SchaffersIIICond	5	HolderTable	2
CompositeGriewankRosenbrock	10	Levy	13
Gallagher21	5	Michalewicz	10
Gallagher101	5	StyblinskiTang	21
Katsuura	5	Shekel	4
LunacekBiRastrigin	5	SixHumpCamel	2

720
721 performance on high-dimensional tasks. All acquisition functions are optimized using multi-start
722 LBFGS-B, except for TS and PES. For both TS and PES, we use discrete optimization over a finite
723 set of randomly sampled candidates due to the high computational cost of evaluating the acquisition
724 functions. This practice of AF optimization applies to running experiments with all static acquisition
725 functions, all adaptive portfolio baselines, and LMABO.

726 For all experiments, the LLMs were queried with a temperature of 0.0. Again, for invalid or failed
727 LLM responses, we fall back to UCB. The fallback rate is extremely small at only about 0.11% of
728 all queries (i.e. out of 10,000 queries, only 11 of them do not follow the “Acquisition abbreviation:
729 justification” format). This indicates that LLM failures are rare and have minimal impact on overall
730 optimization performance. All adaptive portfolio baselines, such as GP-Hedge, were implemented
731 using their standard configurations as described in their respective publications, except that the
732 portfolio of acquisition functions was expanded to include all 12 AFs listed in Appendix A.

733 B.3 STATISTICAL TESTS

734 Results in Tables 1, 2 and 6 follow a standardized statistical analysis to ensure the significance of
735 the results. This statistical analysis is conducted separately for both mean RPs and ranks (across
736 10 repetitions) of 38 methods on 50 benchmarks. Firstly, to assess the significance of performance
737 differences between the methods, we first apply the Friedman test (a non-parametric test for data
738 that is not normally distributed) on the matrix of mean RPs (or ranks). The null hypothesis of
739 the Friedman test is that all methods perform equally, while the alternative hypothesis is that at
740 least one method performs differently. If the Friedman test indicates significant differences, we
741 follow up with post-hoc pairwise comparisons using the Wilcoxon signed-rank test with Holm-
742 Bonferroni correction to control for multiple comparisons, specifically comparing each baseline
743 method against LMABO. The null hypothesis for each pairwise comparison is that there is no
744 difference in performance between LMABO and a baseline, while the alternative hypothesis is that
745 the performances of LMABO and the baseline differ. We set a significance level of 0.05 for all
746 statistical tests.

748 C PROMPTS

749 Figure 1 shows the complete, unabridged initial prompt (P_0) used to instruct the LLM in our
750 experiments. This prompt was developed through a very brief iterative process of 6-7 trials. The
751 refinements were not aimed at tuning for performance on a specific benchmark, but rather to ensure
752 accurate formatting of the LLM’s responses and to encourage a full consideration of all information
753 in the optimization state representation. Examples of follow up prompts during the optimization
754 process are shown in Table 8. For KG, PES, MES, and JES, we denote them by qKG, qPES,
755

756 Table 4: Additional contexts provided to the LLM to verify the benefit of prior knowledge on
 757 LMABO.

759 Problem	760 Context
761 HolderTable	762 This is to optimize a black-box synthetic function defined on a 2-dimensional bounded domain. The landscape is highly complex and non-convex, featuring a wavy pattern with many local minima. My prior analysis strongly suggests that the global minimum is not unique.
763 Shekel	764 This is to optimize a black-box synthetic function defined on a 4-dimensional bounded domain. The landscape should be mostly flat, 765 but it is punctuated by a small number of sharp, narrow, and deep 766 hollows at some locations. The main challenge is not finding the 767 general region of these minima, but precisely pinpointing the 'needle 768 in a haystack' global minimum at the very bottom of one of these steep 769 basins.
770 hpt_digits.DecisionTree	771 This is to optimize a 6-dimensional space for a Decision Tree 772 classifier on the Digits dataset, where the objective is to maximize 773 validation accuracy (by minimizing the negated values). The 774 landscape is relatively smooth but features several ridges and valleys 775 due to the complex interactions between parameters like max_depth, 776 max_features, and min_samples_split. The main challenge lies in 777 balancing these parameters to avoid overfitting while still capturing 778 the underlying patterns in the data. My analysis indicates that certain 779 combinations of these parameters can lead to similar accuracy levels, 780 suggesting multiple optimal regions in the parameter space.
781 hpt_diabetes.DecisionTree	782 This is to optimize a 6-dimensional space for a Decision Tree regressor 783 on the Diabetes dataset, where the objective is to minimize mean 784 squared error. The landscape is relatively smooth but features several 785 ridges and valleys due to the complex interactions between parameters 786 like max_depth, max_features, and min_samples_split. The main 787 challenge lies in balancing these parameters to avoid overfitting while 788 still capturing the underlying patterns in the data. My analysis 789 indicates that certain combinations of these parameters can lead 790 to similar error levels, suggesting multiple optimal regions in the 791 parameter space.

790 qMES, and qJES, respectively, in the initial prompt to align with the naming conventions in BoTorch
 791 (Balandat et al., 2020). In constructing the initial prompt, we observed the following phenomena
 792 during preliminary experiments that informed the final design:

- 793 • A full history of past function values and AF choices was not necessary for each input
 794 prompt, as the LLM seems capable of inferring relevant optimization history from previous
 795 input prompts.
- 796 • Specific examples of AF choices (e.g. "UCB: brief justification") in the prompt could bias
 797 the LLM towards a particular choice, so we replaced them with placeholders. Before this
 798 change, we found that Qwen3-8B often mimicked the exemplar choices if specific AFs
 799 were mentioned as examples, and only stopped doing so when the examples were replaced
 800 with placeholders.
- 801 • The LLM sometimes ignored certain details, such as the number of remaining iterations,
 802 so we added an assurance in the prompt to consider all provided context.

803 C.1 ADDITIONAL CONTEXTS

804 Table 4 contains the task-specific contexts provided to the LLM to test how such prior knowledge
 805 about the problem would affect LMABO's performance. These contexts were added to the initial
 806 prompt P_0 between lines 3 and 5 in Figure 1.

810
811
D RUNTIME COMPARISON

812 Table 5 shows the average runtime, in minutes, for 50 iterations of the methods across all tested
 813 benchmarks. LMABO only incurs a moderate overhead compared to static AFs due to the LLM
 814 query at each iteration, but it is significantly faster than adaptive portfolio methods that require
 815 optimizing multiple AFs at each iteration. Since the curated versions of adaptive portfolio methods
 816 only optimize 3 AFs instead of 12, they are much faster than their full versions while achieving
 817 better performance (as shown in Table 6), suggesting that a smaller, well-chosen portfolio can be
 818 beneficial for these methods. Among LLM-based methods, LLAMBO is comparable in speed to
 819 LMABO, while LLMP is much slower due to inferring with an open-source model locally. This
 820 higher runtime is also observed on LMABO-8B/30B/120B, the ablated versions of LMABO that
 821 use an open-source model.

822
823 Table 5: Average runtime for 50 iterations of all methods across all benchmarks (in minutes).

Method	Runtime	Method	Runtime
PosSTD	2.20	GP-Hedge-Curated	12.01
PosMean	2.06	No-PAS _t -BO	113.67
PI	2.62	No-PAS _t -BO-Curated	14.94
LogPI	2.09	SETUP-BO	104.42
EI	2.14	SETUP-BO-Curated	7.24
LogEI	2.15	ESP	50.61
UCB	2.07	ESP-Curated	6.01
TS	4.62	LMABO (with Gemini 2.5 Flash/GPT-4o mini)	7.42/7.36
KG	12.88	LMABO-AB1	6.69
PES	8.93	LMABO-AB2	8.17
MES	3.73	LMABO-AB3	7.79
JES	5.45	LMABO-AB4	6.46
LLAMBO	9.21	LMABO-8B	19.12
LLMP	29.35	LMABO-30B	14.87
GP-Hedge	109.18	LMABO-120B	15.61

841
842
E CURATED SET FOR ADAPTIVE PORTFOLIO BASELINES

843 In this experiment, the adaptive portfolio baselines (i.e. GP-Hedge, No-PAS_t-BO, SETUP-BO, and
 844 ESP) are restricted to a curated subset of acquisition functions: EI, LogEI, and TS. The curated
 845 methods also participated in the calculation of relative performance, rank, and statistical tests
 846 mentioned in Section 5. No-PAS_t-BO, SETUP-BO, and ESP show a performance improvement
 847 when using the curated set, while GP-Hedge shows a degradation.

849
850
F LLM RESPONSE EXAMPLES851
852
F.1 RESPONSES TO THE INITIAL PROMPT

853 Table 7 shows the responses of Gemini-2.5 Flash to the initial prompt across some different
 854 optimization problems. The responses confirm the LLM’s understanding of the task and readiness
 855 to proceed with the optimization process.

857
858
F.2 RESPONSES DURING OPTIMIZATION

859 Table 8 shows example responses from Gemini-2.5 Flash at different stages of an optimization run of
 860 the Weierstrass function. As seen on the table, the LLM adapts its acquisition function choices based
 861 on all provided context, including the number of remaining iterations, the current best objective
 862 value, the model’s lengthscales, and the shortest distance between points. Contrary to the popular
 863 choice of TS in early iterations in other cases, the first response opts for EI when it observes a
 wide range of function values. The second and fourth responses both select LogEI after a new best

Table 6: Comparing adaptive portfolio methods between using a large portfolio (of 12 AFs) and a curated portfolio (of 3 AFs). The curated methods are denoted with a "-Curated" suffix.

Method	Mean RP \downarrow (Interquartile Range)	P-value (RP)	Mean Rank \downarrow (Min - Max)	P-value (Rank)	CV of (AUC)
GP-Hedge	1.422 (1.206–1.517)	1.239e-07	12.42 (1–25)	1.112e-07	0.418
GP-Hedge-Curated	1.487 (1.233–1.670)	3.126e-08	15.06 (2–28)	5.444e-08	0.372
No-PAST-BO	1.505 (1.186–1.722)	9.572e-08	14.06 (1–28)	1.112e-07	0.370
No-PAST-BO-Curated	1.469 (1.218–1.579)	7.656e-08	14.38 (1–24)	7.235e-08	0.409
SETUP-BO	1.536 (1.155–1.688)	8.609e-08	13.88 (1–28)	6.129e-08	0.420
SETUP-BO-Curated	1.503 (1.243–1.556)	3.126e-08	14.76 (1–26)	4.781e-08	0.374
ESP	1.601 (1.273–1.674)	3.126e-08	16.82 (1–29)	3.742e-08	0.419
ESP-Curated	1.506 (1.240–1.537)	9.572e-08	15.06 (2–26)	1.112e-07	0.422

Table 7: Responses to the initial prompt P_0 .

Problem	Response
Cosine8	Yes, I understand the context. I am ready to receive the first summary of the Bayesian Optimization process.
Weierstrass	Okay, I understand. I am ready to receive the summary of the Bayesian Optimization process and recommend the next acquisition function. I will strictly follow the specified output format.
hpt_wine_MLPSGD	Yes, I understand the task and the available acquisition functions. I am ready to receive the first summary of the Bayesian Optimization process.

value is found, showing the LLM's ability to recognize when an improvement-focused acquisition is appropriate. Although both EI and LogEI are suitable in these contexts (as well as other exploitative AFs like PI), the LLM's choice of LogEI is influenced by the wide range of function values and the modest gain compared to the range (which were from -6.576 to -9.980 for the second response and from -10.148 to -11.302 for the fourth response). This is helpful when the values of EI may become very small, as LogEI is more numerically stable. The third response chooses TS to escape a stagnation phase in response to failed improvements and over-exploration signs (demonstrated by the smaller shortest distance). Finally, with only one iteration left, the LLM selects EI to maximize the chance of a final improvement.

G INFORMATION SENSITIVITY ANALYSIS

Tables 9, 10, 11, and 12 show the results of our information sensitivity analysis at early, middle, and late stages of optimization, respectively. For these experiments, we perturb each element of the state representation S_t individually while keeping all other elements fixed to their original values at iteration T in an optimization run. Input prompts from previous iterations were not modified, so the LLM's memory of the optimization history remains intact.

While perturbing the values may present some noises in the results, we still observe some clear trends across all four tables. Firstly, information about the process status (e.g. number of points evaluated, remaining budget) and the performance history (e.g. incumbent objective value, function value range, shortest distance) have a significant impact on the LLM’s acquisition function choices. Reducing the remaining budget or having a new incumbent objective value tends to shift the LLM’s preference towards exploitative AFs. However, in Tables 9 and 10, we observe that a very small improvement in the incumbent objective value (e.g. from 1.24 to 1.244 in Table 9 and from -9.98 to -9.982 in Table 10) can lead to a switch back to an explorative AF. This suggests that the LLM is sensitive to the magnitude of improvement relative to the overall function value range. Secondly, information about the model state (e.g. lengthscales, outputscale) appears to have a more subtle influence on the LLM’s choices. While perturbing these elements does lead to some changes in the selected AFs, the changes are less consistent and pronounced compared to the other state

918 elements. This indicates that the LLM may prioritize information about the optimization progress
919 and performance over the surrogate model's internal parameters when making decisions.
920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972 1 You are an expert in Bayesian Optimization, specifically tasked with
 973 2 recommending the most suitable acquisition function for the next
 974 3 iteration to minimize an objective function.
 975 4
 976 5 For context, we use a Gaussian Process as the surrogate model with a
 977 6 Matern 5/2 kernel with ARD.
 978 7
 979 8 I will provide you with a summary of the Bayesian Optimization process at
 980 9 each step. This summary will include the following information:
 981 10 - ****N:**** The total number of points evaluated so far.
 982 11 - ****Remaining iterations:**** The number of iterations left in the
 983 12 optimization process.
 984 13 - ****D:**** The dimensionality of the search space (number of input
 985 14 parameters).
 986 15 - ****f_range:**** The range of the objective function values observed so far
 987 16 .
 988 17 - ****f_min:**** The current best (lowest) observed objective value.
 989 18 - ****Shortest distance:**** The shortest distance from the last point to any
 990 19 other point, indicating whether it is exploiting too much.
 991 20 - ****Model lengthscales:**** These are crucial hyperparameters of the
 992 21 Gaussian Process model's kernel.
 993 22 They describe how the model perceives the smoothness and relevance of
 994 23 each input dimension to the objective function.
 995 24 You will receive their range (min/max), mean, and standard deviation.
 996 25 - ****Model outputscale:**** It defines the overall magnitude or amplitude of
 997 26 the function's variation.
 998 27
 999 28 Available acquisition functions you can choose from, with brief
 1000 29 descriptions of their primary uses:
 1001 30 1. PI (Probability of Improvement)
 1002 31 2. LogPI (Log Probability of Improvement)
 1003 32 3. EI (Expected Improvement)
 1004 33 4. LogEI (Log Expected Improvement)
 1005 34 5. UCB (Upper Confidence Bound)
 1006 35 6. PosMean (Posterior Mean):
 1007 36 7. PosSTD (Posterior Standard Deviation)
 1008 37 8. TS (Thompson Sampling)
 1009 38 9. qKG (Knowledge Gradient)
 1010 39 10. qPES (Predictive Entropy Search)
 1011 40 11. qMES (Max-value Entropy Search)
 1012 41 12. qJES (Joint Entropy Search)
 1013 42
 1014 43 At each step:
 1015 44 - ****Review the provided summary of the optimization process and consider
 1016 45 the current state of the optimization.****
 1017 46 - ****Select the acquisition function that you believe will be best for the
 1018 47 optimization process.****
 1019 48 - ****Avoid reusing acquisition functions that failed to improve the
 1020 49 objective function in previous iterations.****
 1021 50
 1022 51 When responding, select the acquisition function you deem most
 1023 52 appropriate.
 1024 53 Your justification should briefly explain why that function is suitable
 1025 54 given the provided optimization summary, referencing relevant aspects
 1026 55 like exploration/exploitation balance, remaining iterations, or model
 1027 56 characteristics.
 1028 57 The response must strictly follow the format "Acquisition abbreviation:
 1029 58 justification", similar to these examples:
 1030 59 - 'AF_ABBREVIATION: Your justification for choosing this specific
 1031 60 function.'
 1032 61 - 'XXX: A brief reason explaining why XXX is the optimal choice now.'
 1033 62 Firstly, just give a brief confirmation that you understand the task and
 1034 63 the available acquisition functions.
 1035 64

Listing 1: The unabridged initial prompt (P_0) provided to the LLM.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

Input Prompt	Response
Current optimization state: - N: 11 - Remaining iterations: 50 - D: 5 - f_range: Range [-5.982, 83.765], Mean 26.466 (Std Dev 35.075) - f_min: -5.982 - Shortest distance: 0.455 - Lengthscales: Range [0.261, 59.707], Mean 27.581 (Std Dev 24.557) - Outputscale: 0.898	EI: Given the early stage (N=11, 50 iterations remaining) and the wide range of observed function values and varying lengthscales, there is still significant uncertainty and potential for discovering better regions. EI provides a robust balance between exploration (considering areas of high uncertainty) and exploitation (seeking expected improvement over the current best, f_min), making it an excellent choice for building a better global understanding of the objective function while still prioritizing improvement.
Current optimization state: - N: 21 - Remaining iterations: 40 - D: 5 - f_range: Range [-9.980, 106.046], Mean 23.896 (Std Dev 34.093) - f_min: -9.980 - Shortest distance: 0.427 - Lengthscales: Range [0.513, 399.250], Mean 154.676 (Std Dev 188.785) - Outputscale: 1.212	LogEI: Thompson Sampling successfully discovered a new f_min. With this new best observation and 40 iterations remaining, LogEI is a strong choice. It is effective for finding further significant improvements, especially when dealing with a potentially wide range of objective values (as indicated by f_range) or when the current best is challenging to beat. LogEI provides a more robust measure of improvement compared to standard EI, by focusing on the log of the improvement, which can help in navigating the complex landscape suggested by the varying lengthscales and ensure continued progress.
Current optimization state: - N: 40 - Remaining iterations: 21 - D: 5 - f_range: Range [-10.148, 132.117], Mean 15.999 (Std Dev 33.416) - f_min: -10.148 - Shortest distance: 0.204 - Lengthscales: Range [0.449, 3.865], Mean 1.786 (Std Dev 1.159) - Outputscale: 1.618	TS: Both JES and PES failed to improve f_min. The lengthscales have drastically shortened and become concentrated, indicating the model believes the function is very localized, yet this hasn't yielded improvements. The shortest distance is also very small (0.20), suggesting potential over-exploitation. With 21 iterations remaining, Thompson Sampling is the best choice to break this persistent stagnation and localized search. By sampling a new function from the posterior, TS can explore regions that the current model might be overlooking or prematurely discarding, offering a fresh, diverse exploration strategy to find new global optima.
Current optimization state: - N: 50 - Remaining iterations: 11 - D: 5 - f_range: Range [-11.302, 132.117], Mean 12.749 (Std Dev 30.799) - f_min: -11.302 - Shortest distance: 0.346 - Lengthscales: Range [0.494, 2.198], Mean 1.532 (Std Dev 0.611) - Outputscale: 2.069	LogEI: EI successfully improved f_min! With a new best value found and only 11 iterations remaining, it's crucial to build on this success with an improvement-focused acquisition function. LogEI is an excellent choice as it continues to seek expected improvement, but its logarithmic scaling makes it particularly robust to the magnitude of objective function values. This allows it to efficiently pinpoint further significant improvements or refine the search around the new f_min, ensuring we maximize the chances of finding an even better optimum in these final, critical iterations.
Current optimization state: - N: 60 - Remaining iterations: 1 - D: 5 - f_range: Range [-12.135, 132.117], Mean 11.070 (Std Dev 29.387) - f_min: -12.135 - Shortest distance: 0.503 - Lengthscales: Range [0.548, 2.468], Mean 1.615 (Std Dev 0.653) - Outputscale: 2.821	EI: With only 1 iteration remaining, the primary goal is to make the absolute best attempt to improve the current f_min. EI (Expected Improvement) is the most robust and direct improvement-focused acquisition function. It directly optimizes for the expected gain over the current best observed value, offering the most pragmatic strategy to find a final, better optimum, especially since it demonstrated success in finding the most recent f_min just a few iterations ago.

1075

1076

1077

1078

1079

Table 8: Example responses from the LLM during an optimization run of the Weierstrass function. The left column includes the input prompts fed to the LLM. Each response includes the LLM's selected acquisition function along with its justification.

1080

1081

Table 9: Information Sensitivity Analysis for Early Stage ($T = 5$). We perturb the values of each element in the state representation S_t and observe the resulting changes in the output AF chosen by the LLM. The highlighted values indicate the original state element values at $T = 5$ in a Griewank optimization run. We show explorative AFs in **blue** and exploitative AFs in **magenta** for better tracking of AF changes between the two groups. The original input prompt and response are shown at the bottom of the table.

1087

State element	Output AF given element value						
	Value	5	9	20	40	50	500
# points evaluated	Value AF	PES	LogEI	LogEI	PosSTD	PosSTD	PES
Remaining budget	Value AF	1 PosMean	10 LogEI	40 PES	46 LogEI	50 PES	100 PES
Incumbent objective value	Value AF	-100 LogEI	-10 EI	0 EI	1 EI	1.24 KG	1.244 LogEI
Maximum function value	Value AF	2 LogEI	100 LogEI	190 UCB	194.081 LogEI	200 LogEI	1000 PES
Mean of function value	Value AF	2 PosSTD	20 UCB	50 LogEI	56.326 LogEI	60 LogEI	100 LogEI
Std Dev of function value	Value AF	1 JES	10 PES	60 PES	63.145 LogEI	70 PES	100 PES
Shortest distance	Value AF	0.01 PES	0.05 LogEI	0.06 LogEI	0.07 LogEI	0.1 LogEI	0.5 MES
Minimum of lengthscales	Value AF	0.01 LogEI	0.1 PES	0.2 LogEI	0.231 LogEI	0.3 LogEI	0.45 PES
Maximum of lengthscales	Value AF	0.25 LogEI	0.4 EI	0.452 LogEI	0.5 PES	1.0 LogEI	10.0 EI
Mean of lengthscales	Value AF	0.24 MES	0.3 LogEI	0.342 LogEI	0.4 LogEI	0.45 LogEI	
Std Dev of lengthscales	Value AF	0.01 PES	0.1 PES	0.2 LogEI	0.2 LogEI	1.0 LogEI	10.0 JES
Outputsscale	Value AF	0.01 LogEI	0.1 LogEI	0.8 LogEI	0.865 LogEI	0.9 EI	10.0 KG
Original input prompt		Original response					
Current optimization state:		LogEI: ‘f_min’ has stalled for two iterations and the shortest distance is again very low (0.060), indicating potential over-exploitation or getting stuck in a flat region. LogEI is suitable here because it is less sensitive to the absolute magnitude of improvement and focuses on relative improvements, which helps to escape local minima or flat regions where small absolute improvements are still valuable, while also maintaining a strong exploration component given the many remaining iterations. We also need to avoid reusing EI which was used 2 iterations ago and did not improve f_min.					
- N: 9							
- Remaining iterations: 46							
- D: 2							
- f_range: Range [1.244, 194.081], Mean 56.326 (Std Dev 63.145)							
- f_min: 1.244							
- Shortest distance: 0.060							
- Lengthscales: Range [0.231, 0.452], Mean 0.342 (Std Dev 0.110)							
- Outputsscale: 0.865							

1132

1133

1134
 1135
 1136 Table 10: Information Sensitivity Analysis for Middle Stage ($T = 25$). This table follows the same
 1137 format as Table 9 but for $T = 25$ in a CompositeGriewankRosenbrock optimization run.
 1138

State element	Output AF given element value						
	Value	5	20	40	45	50	100
# points evaluated	Value AF	PI	PI	KG	TS	JES	LogPI
Remaining budget	Value AF	1 PI	5 LogEI	20 KG	26 TS	30 TS	100 LogPI
Incumbent objective value	Value AF	-1000 PosMean	-200 PI	-100 LogPI	-92 JES	-91.2 JES	-91.176 TS
Maximum function value	Value AF	1 JES	20 TS	200 KG	208.249 TS	210 JES	1000 UCB
Mean of function value	Value AF	-90 PES	-50 PES	-40.161 TS	-40 PES	0 TS	200 TS
Std Dev of function value	Value AF	1 JES	10 TS	50 TS	55.658 TS	60 JES	100 KG
Shortest distance	Value AF	0.01 UCB	0.1 TS	0.7 JES	0.714 TS	0.8 UCB	1.0 TS
Minimum of lengthscales	Value AF	0.01 JES	0.1 JES	0.9 JES	0.989 TS	1.0 KG	10.0 KG
Maximum of lengthscales	Value AF	30.0 JES	100.0 PES	200.0 JES	208.249 TS	210 JES	1000.0 TS
Mean of lengthscales	Value AF	1.0 JES	10.0 JES	20.0 JES	29.547 TS	30.0 PES	200.0 JES
Std Dev of lengthscales	Value AF	0.1 KG	10.0 TS	60.0 KG	62.256 TS	70.0 KG	200.0 JES
Outputscale	Value AF	0.1 UCB	3.0 PES	3.731 TS	4.0 KG	10.0 JES	100.0 PES
Original input prompt	Original response						
Current optimization state:	TS: ‘f_min’ remains stagnant for four iterations, and ‘qMES’ did not yield an improvement, despite the refined lengthscales. The lengthscales have slightly widened again, indicating some lingering uncertainty. With a significant number of remaining iterations and persistent stagnation, ‘TS’ (Thompson Sampling) is a strong choice. It provides a robust, probabilistic, and fundamentally different exploration strategy by sampling from the GP posterior. This approach is excellent for escaping local optima and discovering genuinely new, high-potential regions, especially when other more deterministic or information-theoretic methods have struggled to find a better ‘f_min’, and the model still has some uncertainty in its overall landscape understanding.						
- N: 45							
- Remaining iterations: 26							
- D: 10							
- f_range: Range [-91.176, 208.249], Mean -40.161 (Std Dev 55.658)							
- f_min: -91.176							
- Shortest distance: 0.714							
- Lengthscales: Range [0.989, 204.500], Mean 29.547 (Std Dev 62.256)							
- Outputscale: 3.731							

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203

1204 Table 11: Information Sensitivity Analysis for Late Stage ($T = 45$) - Part 1. This table follows the
 1205 same format as Table 9 but for $T = 45$ in a hpt_breast_MLPSGD optimization run.

State element	Output AF given element value						
	Value	5	20	50	54	60	100
# points evaluated	Value	LogPI	JES	JES	JES	JES	JES
	AF						
Remaining budget	Value	1	5	6	10	50	100
	AF	EI	KG	JES	JES	JES	JES
Incumbent objective value	Value	-100	-10	-1	-0.92	-0.917	-0.916
	AF	EI	EI	EI	EI	LogEI	JES
Maximum function value	Value	-0.7	-0.4	-0.360	-0.3	-0.1	0.0
	AF	JES	KG	JES	JES	JES	JES
Mean function value	Value	-0.9	-0.8	-0.738	-0.7	-0.4	
	AF	JES	JES	JES	KG	JES	
Std Dev function value	Value	0.01	0.1	0.152	0.2	0.5	1.0
	AF	JES	JES	JES	JES	JES	JES
Shortest distance	Value	0.01	0.1	0.4	0.459	0.5	1.0
	AF	JES	JES	JES	JES	KG	JES

1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

Table 12: Information Sensitivity Analysis for Late Stage ($T = 45$) - Part 2. Continuation of Table 11.

State element	Output AF given element value						
	Value	0.001	0.004	0.01	0.1	1.0	10.0
Minimum of lengthscales	Value	JES	JES	KG	JES	JES	JES
AF	AF						
Maximum of lengthscales	Value	1600	2000	4000	4234.465	5000	10000
AF	AF	JES	KG	JES	JES	JES	JES
Mean of lengthscales	Value	1.0	100.0	1500.0	1514.580	1600	4000
AF	AF	JES	JES	JES	JES	JES	KG
Std Dev of lengthscales	Value	10.0	100.0	1600.0	1683.459	1700.0	4000.0
AF	AF	JES	JES	JES	JES	JES	JES
Outputscale	Value	0.01	0.1	0.8	0.818	0.9	10.0
AF	AF	JES	JES	JES	JES	JES	JES
Original input prompt		Original response					
		qJES: ‘f_min’ remains unchanged, meaning qMES did not immediately lead to an improvement. The lengthscales are still extremely large and variable (Range [0.004, 4234.465], Mean 1514.580, Std Dev 1683.459), indicating persistent, profound uncertainty in the GP model’s understanding of the objective function. With only 6 iterations remaining (N=54), and ‘f_min’ still stagnant despite various information-theoretic methods, a comprehensive information-gathering strategy is needed to make the best final decision. qJES (Joint Entropy Search) is an advanced acquisition function that directly aims to reduce the entropy of the *joint* posterior distribution of the optimal value *and* its location. In these very late stages with high model uncertainty, a holistic understanding of both the value and location of the optimum is crucial for making the final, most informed decision. qJES provides a more complete information gain than qPES or qMES alone, making it ideal for the limited remaining budget to resolve uncertainty about the true optimum. (qJES was used at N=32, and its strength in holistic uncertainty reduction makes it appropriate for this critical, late-stage, high-uncertainty scenario).					

1289
1290
1291
1292
1293
1294
1295