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ABSTRACT

Bayesian Optimization critically depends on the choice of acquisition function,
but no single strategy is universally optimal; the best choice is non-stationary
and problem-dependent. Existing adaptive portfolio methods often base their
decisions on past function values while ignoring richer information like remaining
budget or surrogate model characteristics. To address this, we introduce
LMABO, a novel framework that casts a pre-trained Large Language Model
(LLM) as a zero-shot, online strategist for the BO process. At each iteration,
LMABO uses a structured state representation to prompt the LLM to select the
most suitable acquisition function from a diverse portfolio. In an evaluation
across 50 benchmark problems, LMABO demonstrates a significant performance
improvement over strong static, adaptive portfolio, and other LLM-based
baselines. We show that the LLM’s behavior is a comprehensive strategy that
adapts to real-time progress, proving its advantage stems from its ability to process
and synthesize the complete optimization state into an effective, adaptive policy.

1 INTRODUCTION

Bayesian Optimization (BO) is a preeminent methodology for the global optimization of expensive-
to-evaluate, black-box functions, a pervasive challenge across science and engineering (Shahriari
et al., 2015). Its framework uses a surrogate model (often a Gaussian Process (GP)) to approximate
the objective function and an acquisition function (AF) to intelligently select the next point to
evaluate, balancing the trade-off between exploration and exploitation. A core challenge in BO is the
selection of the AF. It is well-established that no single, fixed AF offers optimal performance across
all problems (Hoffman et al., 2011); the best strategy is highly contingent on the characteristics
of the objective function and can even change dynamically throughout a single optimization run.
This has spurred the development of adaptive strategies that move beyond static AF selection to
dynamically choose different AFs from a portfolio every iteration (Hoffman et al., 2011).

Existing adaptive portfolio methods, however, suffer from a critical limitation: their decisions are
guided almost exclusively by a narrow view of the optimization process, typically relying on the
history of observed function values. Portfolio-based strategies (Hoffman et al., 2011; Vasconcelos
et al., 2019; 2022) operate on a reward signal derived from the past performance of each AF, utilizing
only the function evaluations and the surrogate model’s output. These methods largely ignore a
wealth of other critical state information, such as the remaining optimization budget, the distance
between evaluated points, and insights about the function’s complexity encoded in the surrogate
model’s own hyperparameters (e.g., GP lengthscales). The core challenge is that designing a
principled, algorithmic approach that can effectively reason over such a diverse and complex set
of strategic, tactical, and landscape-related information has proven immensely difficult.

This paper bridges this gap by leveraging a Large Language Model (LLM) as a dynamic optimization
strategist. We are motivated by the fact that modern LLMs, trained on immense corpora of scientific
literature and code, possess a rich, nuanced, and implicitly encoded understanding of optimization
principles. Instead of hand-crafting a complex policy covering all state information, we tap into this
pre-trained knowledge, as well as the reasoning capabilities of the LLM to guide the exploration-
exploitation balance in an optimization process. We introduce a new formulation of adaptive BO:
casting acquisition function selection as an in-context decision-making problem solved by a pre-
trained LLM, supported by a novel state serialization design. At each iteration, the complete, multi-
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faceted optimization state is serialized into a structured textual prompt. The LLM then analyzes this
rich state and select the most appropriate AF from a diverse portfolio for the immediate next step.

Experiments show LMABO consistently outperforms the baselines across diverse optimization
problems. Ablation studies confirm the LLM leverages all components of the state summary, with
performance dropping when any part is removed. A behavior analysis reveals a comprehensive
strategy: LMABO prefers exploration when progress has stagnated, heavily exploits with low
remaining budget, and aggresively switches between AFs; during early stages of optimization, the
LLM is sensitive to all information; during middle stages, the performance history and process status
are influential and towards the end, sensitive to only incumbent values. This proves that LMABO’s
success stems from its ability to reason over a complete set of strategic and tactical information and
to successfully mirror the established best practices in BO similar to the intuition of a human expert.

The contributions of this work can be summarized as follows:

• We recast BO’s acquisition function selection as an in-context decision-making task with
an LLM as a closed-loop strategist to select the most appropriate AF.

• We propose a structured representation of the BO state, shown via ablations to be essential
for effective zero-shot decision-making.

• On 50 benchmarks, LMABO outperforms static, adaptive, and LLM-based baselines, with
analysis revealing emergent, state-aware strategies beyond simple heuristics.

2 BACKGROUND

Bayesian Optimization is a sample-efficient framework for optimizing expensive-to-evaluate
black-box functions (Frazier, 2018). Formally, let f : X → R be an unknown objective function
defined over X ⊂ Rd. BO constructs a probabilistic surrogate model, typically a Gaussian Process
(Rasmussen & Williams, 2005), to approximate f and quantify uncertainty in unexplored regions. At
each iteration, given the set of previously observed evaluationsDt−1, BO selects the next query point
xt ∈ X by maximizing an acquisition function α(x;Dt−1), which balances exploration (sampling in
uncertain regions) and exploitation (sampling near low predicted values (for minimization)). There
are many well-studied and effective AFs, including Expected Improvement (EI) (Mockus, 1998),
Thompson Sampling (TS) (Chowdhury & Gopalan, 2017), and Upper Confidence Bound (UCB)
(Srinivas et al., 2010), and each of them has their own advantages and disadvantages. Some AFs
like TS and UCB (given appropriate hyperparameters) are more explorative, while others like EI
are more exploitative. However, no single AF performs optimally across all problems (Hoffman
et al., 2011), and achieving sample efficiency often requires dynamically prioritizing exploration or
exploitation at the appropriate stages of the optimization process. Therefore, using the right AF with
the right focus on exploration or exploitation at the right time can be a key to better BO performance.
More details about AFs used in this paper and their grouping are provided in Appendix A.

A Gaussian Process is a nonparametric prior over functions, defined such that any finite collection
of function values follows a joint Gaussian distribution. A GP is fully specified by its mean function
m(x) and covariance kernel k(x, x′), where the kernel encodes assumptions about the smoothness
and structure of the underlying function. An example of a kernel is the squared exponential kernel:

k(x, x′) = σ2
f exp

(
− 1

2

d∑
i=1

(xi − x′
i)

2

ℓ2i

)
,

where ℓi are the lengthscales, controlling function variation along each input dimension, and σ2
f is

the outputscale, determining the overall variance of the function values. A small lengthscale means
the function varies rapidly with input changes, and a small outputscale keeps predictions close to the
mean with little variation. These hyperparameters are typically learned by maximizing the marginal
likelihood of observed data, enabling GPs to adapt their complexity to the underlying objective.

3 RELATED WORKS

Portfolio-Based Strategies These methods treated AF selection as a portfolio allocation problem.
GP-Hedge (Hoffman et al., 2011) framed the task as a multi-armed bandit problem, selecting AFs
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by first computing a reward signal derived from their past performance then randomly sampling
an AF according to a probability distribution weighted by these rewards. Subsequent methods
like No-PASt-BO (Vasconcelos et al., 2019) and SETUP-BO (Vasconcelos et al., 2022) sought to
improve upon this by introducing memory factors to discount distant evaluations, but they still rely
on the same fundamental reward mechanism. Shahriari et al. (2014) used an information-theoretic
approach with Entropy Search Portfolio (ESP), which shifted the selection criterion to a forward-
looking measure of utility: the expected reduction in uncertainty about the location of the global
optimum. However, a key limitation unites these strategies: their decisions are guided by a narrow
view of the optimization state, focusing primarily on function values and uncertainty while ignoring
other critical information like the remaining budget or characteristics of the surrogate model itself.

Learning-Based Strategies MetaBO (Volpp et al., 2020) and FSAF (Hsieh et al., 2021) meta-
learn a state-dependent policy, formalizing AF selection as a reinforcement learning problem.
Though related, these are not applicable to our setting, as they are designed for a transfer learning
scenario, where a policy is learned on a distribution of source tasks and adapted to a new target task.

LLM-Based Bayesian Optimization With the recent success of LLMs, efforts have emerged to
incorporate them into the BO process, though their functional roles differ fundamentally from our
approach. FunBO (Aglietti et al., 2025) uses the LLM as an offline algorithm generator to discover
new AFs with a few function evaluations, but it does not participate in the adaptive process of AF
selection. Other recent methods have integrated LLMs more directly into the optimization loop as
component replacements. For instance, LLMP (Requeima et al., 2024) focuses on enhancing the
surrogate model with natural language priors, while LLAMBO (Liu et al., 2024) uses the LLM for
multiple steps in the optimization process including generating initial samples, surrogate modeling,
and proposing candidate points. These approaches rely on the LLM’s inductive biases regarding
numerical function shapes, effectively treating the text-based model as a numerical regression
engine. LMABO establishes a distinct paradigm: the semantic controller. Unlike FunBO, LMABO
operates online to adapt to real-time feedback. Unlike LLAMBO/LLMP, it does not replace the
rigorous mathematical backbone (Gaussian Processes) with LLM predictions. Instead, it recasts
the AF selection itself as a sequential decision-making task solvable by in-context reasoning,
representing a new paradigm for adaptive BO.

4 METHODOLOGY

4.1 LANGUAGE MODEL-ASSISTED ADAPTIVE BAYESIAN OPTIMIZATION (LMABO)

Our proposed method LMABO uses a pre-trained LLM to dynamically select the most appropriate
acquisition function at each iteration of the BO process. The framework operates as a closed-loop
system, where the LLM is prompted at each iteration with a rich representation of the optimization
state to infer the most effective AF for evaluation. The entire process is detailed in Algorithm 1.

Algorithm 1 The LMABO Framework

Require: Objective function f(x); Initial dataset D0 = {(x0, y0), . . . }; Optimization budget T ;
Portfolio of acquisition functions A = {α1, α2, . . . , αK}; Large Language Model Ψ.

1: Construct an initial prompt P0 that defines the LLM’s role as a BO expert and provides the set
of available acquisition functions A. ▷ See Appendix C

2: Send P0 to Ψ to establish context. ▷ See Sec. 4.2
3: for t = 1, 2, . . . , T do
4: Fit a Gaussian Process model GPt−1.
5: Generate state summary St from GPt−1 and optimization history. ▷ See Sec. 4.3
6: Construct the update prompt Pt from St.
7: Obtain the next acquisition function αt ← Ψ(Pt). ▷ See Sec. 4.2
8: Optimize αt to find the next point to evaluate: xt ← argmaxx αt(x).
9: Evaluate the true objective function: yt = f(xt) + ηt with noise ηt.

10: Dt ← Dt−1 ∪ {(xt, yt)}.
11: end for
12: return The point x∗ corresponding to the best function value in DT .
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4.2 THE LLM AS A ZERO-SHOT STRATEGIST

A core tenet of our LMABO framework is to leverage the reasoning capabilities of a large, pre-
trained LLM in a zero-shot setting. This approach requires no task-specific fine-tuning to the LLM’s
weights. Instead, the model’s strategic behavior is guided entirely through in-context learning,
conditioned on an initial prompt, P0, that structures the entire decision-making task. The initial
prompt, P0, is a static instruction set that establishes the context for the entire optimization run. It is
composed of several key components designed to elicit an expert-like decision-making process:

1. Role-playing Instruction: The prompt begins by providing the LLM with an instruction to
act as an “expert in Bayesian Optimization”. This contextual framing is used to condition
the model, leveraging the patterns it learned during pre-training to emulate the decision-
making process that a human expert might follow when presented with similar data.

2. Available Actions: We explicitly define the portfolio of available acquisition functions,
A. Each function is listed with its abbreviation (e.g., EI, UCB) and full name. We refrain
from giving a description for each AF to avoid biased interpretations and instead rely on the
LLM’s encoded knowledge. Note that we default to UCB if the LLM’s output is invalid.

3. State Information Schema: The prompt describes the structure of the state summaries,
St, that it will receive at each subsequent step, explaining what each piece of information
(e.g., GP lengthscales, current performance) represents.

4. Output Formatting Constraint: Finally, the prompt specifies a strict output format
(“Acquisition abbreviation: Justification”) to ensure responses can be reliably parsed.

P0 is sent once at the beginning of the optimization to set the stage. At each iteration t, the
update prompt Pt is formed by appending the new state summary, St (see the next section), to
the established context of P0. The full text for P0 is provided in Appendix C for reproducibility.

4.3 OPTIMIZATION STATE REPRESENTATION

A key component of our LMABO framework is the translation of the high-dimensional, numerical
state of the BO process into a concise, human-readable textual summary, St. This summary
is designed to provide the LLM with a comprehensive, multi-faceted view of the optimization
landscape and progress. The state summary St at each iteration t is composed of the following
elements:

• Process Status: To contextualize the current step within the overall process, we provide
the number of evaluations performed so far (N ), the remaining budget (Nrem), and the
problem dimensionality (D). The remaining budget, in particular, is critical for balancing
the long-term need for exploration against the short-term need for exploitation.

• Performance History: To provide context on the optimization’s progress, we include
several performance indicators. These are the incumbent objective value (fmin), the
observed function value range, and the shortest distance from the last evaluated point
to any previous point (as an indicator of the last evaluation’s exploration tendency).

• GP Model Characteristics: To inform the LLM about the current understanding of
the function landscape, we provide key hyperparameters from the fitted surrogate model
GPt−1. This includes the kernel’s outputscale and summary statistics of the lengthscales
(minimum, maximum, mean, and standard deviation).

These components are formatted into a structured string that becomes the core of the prompt Pt sent
to the LLM at each iteration. See examples of these state summaries in Appendix C. The design
of St balances compactness with completeness, enabling the LLM to leverage domain-specific
signals (budget, GP hyperparameters, exploration metrics) without requiring training. Our ablation
results (Table 2) demonstrate that omitting any of these elements significantly degrades performance,
underscoring the importance of the representation.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Baselines We employ a comprehensive set of 19 baselines spanning three categories:

• Static Acquisition Functions: These are standard and popular BO methods that use a
single, fixed AF throughout the process. We include all 12 AFs that constitute the portfolio
from which LMABO can select (see Appendix A for details).

• Simple Meta-strategies: These methods use simple, non-adaptive strategies to select
among multiple AFs. They first include the naive strategy of uniformly random selection
within a portfolio of: 1) all 12 AFs, 2) most popular AFs in practice (EI, TS, UCB,
PosMean), and 3) AFs that are commonly selected by LMABO (i.e. EI, LogEI, and TS,
as shown later in Figure 2a). We also include strategies that alternate between exploration
(TS) and exploitation (EI) (i.e. Alt-EI-TS-k with k = 1, 3, 5) and a strategy that explores
first then exploits (i.e. TwoPhases-TS-EI).

• Adaptive Acquisition Functions: These methods adapt their AF based on the optimization
state, including GP-Hedge (Hoffman et al., 2011), No-PASt-BO (Vasconcelos et al., 2019),
SETUP-BO (Vasconcelos et al., 2022), and ESP (Shahriari et al., 2014).

• LLM-based Methods: State-of-the-art baselines that incorporate LLMs into the BO
process, including LLAMBO (Liu et al., 2024) and LLMP (Requeima et al., 2024).

Benchmark Problems The evaluation is performed on a broad set of 50 problems to test for
robustness and general applicability. These includes 30 synthetic benchmark functions from the
COCO platform (Hansen et al., 2021) and the BoTorch library (Balandat et al., 2020). In addition,
we use 20 real-world hyperparameter optimization problems from Bayesmark (Uber, 2020). This
benchmark evaluates the practical applicability of LMABO on a common and important task in
machine learning. Details of these benchmark problems are provided in Appendix B.

Implementation Details We implement LMABO with Gemini-2.5 Flash. For surrogate modeling
of GP-based methods, we use a GP with a Matérn 5/2 kernel, and the implementations are built
using standard modules from the BoTorch library. Each optimization run is initialized with 2D + 1
points, where D is the dimensionality of the problem. The optimization budget is set to 50 iterations
for problems with fewer than 10 dimensions and 100 iterations for problems with 10 or more
dimensions. More implementation details are provided in Appendix B.

Evaluation Each experiment is repeated 10 times with different random seeds. For each method
on each problem, we averaged the Areas Under the Simple Regret Curves (AUCs) over all 10
repetitions. We then compute Relative Performance (RP): for each problem, the method with the
lowest (best) total AUC receives an RP of 1.0, and all other methods are assigned an RP equal to their
total AUC divided by the best total AUC for that problem. This ensures aggregation across problems
is not affected by different absolute scales of AUCs. A rank of each method on each problem is
determined by sorting all methods by their total AUC (lower is better), assigning rank 1 to the best.
Note that the ranking includes 25 baselines, 8 ablation variants of LMABO, and 4 adaptive portfolio
variants, resulting in a maximum rank of 38. RP and rank help provide a clear and concise summary
of comparative performance across all methods and problems instead of plotting all regret curves
for 38 methods on 50 problems. Experimental results will undergo a rigorous statistical analysis to
ensure the validity of our findings. Details about the statistical tests are provided in Appendix B.3.

5.2 MAIN RESULTS

The results, summarized in Table 1, demonstrate that LMABO achieves a substantial performance
improvement over all baseline categories. Averaged across problems, LMABO’s total AUC is 9.7%
lower than the best static AF, 14.8% lower than the best simple meta-strategies, 54.7% lower than the
best LLM-based method, and 16.6% lower than the best adaptive portfolio method; consequently,
LMABO ranks among the top four methods on average. LMABO’s relatively low variation (CV =
0.37) indicates high consistency across different seeds. A 50-iteration run with LMABO uses a total

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Overall performance comparison of LMABO against all baselines across 50
optimization problems. P-values from Friedman tests in the last row indicate statistically
significant differences among methods for both RP and rank. The third and fifth columns show
p-values of post-hoc pairwise comparisons between LMABO and each method, which confirm that
the differences in performance between LMABO and all methods are significant. Exploitative AFs
are marked in blue and explorative AFs are marked in magenta (see Appendix A for details).

Method Mean RP
(Interquartile Range)

P-value
(RP)

Mean Rank
(Min - Max)

P-value
(Rank)

CV of
AUC

Static Acquisition Functions
PI 1.53 (1.08–1.53) 3.71e-03 15.80 (1–36) 1.54e-04 0.45
LogPI 1.40 (1.10–1.47) 7.40e-03 14.52 (1–37) 3.89e-04 0.47
EI 1.34 (1.11–1.52) 2.85e-04 13.08 (1–34) 3.87e-05 0.44
LogEI 1.36 (1.15–1.48) 8.24e-06 13.92 (1–35) 1.49e-06 0.42
PosMean 1.42 (1.08–1.51) 1.05e-02 14.70 (1–37) 5.06e-04 0.45
PosSTD 7.02 (2.12–5.51) 3.37e-08 34.78 (3–38) 3.47e-08 0.48
UCB 1.75 (1.23–2.02) 2.59e-07 23.94 (1–37) 1.32e-07 0.37
TS 2.07 (1.32–1.92) 1.10e-07 25.46 (1–37) 7.05e-08 0.35
KG 1.66 (1.24–1.78) 7.19e-08 23.96 (4–36) 5.09e-08 0.40
PES 2.93 (1.68–3.24) 2.80e-08 31.92 (10–38) 2.74e-08 0.38
MES 2.80 (1.22–1.66) 5.16e-07 20.54 (1–37) 2.04e-07 0.40
JES 1.62 (1.30–1.70) 4.30e-08 24.64 (1–36) 4.79e-08 0.39

Simple Meta-strategies
Random (Full portfolio) 1.43 (1.23–1.54) 5.16e-07 17.36 (2–31) 1.91e-07 0.41
Random 1.45 (1.19–1.55) 1.82e-07 17.62 (1–34) 2.07e-07 0.42
(EI, TS, UCB, PosMean)
Random (EI, LogEI, TS) 1.42 (1.18–1.54) 7.91e-06 15.62 (1–33) 3.60e-06 0.40
Alt-EI-TS-1 1.50 (1.27–1.54) 7.94e-08 18.72 (4–35) 1.38e-07 0.40
Alt-EI-TS-3 1.62 (1.28–1.56) 1.27e-07 21.50 (2–33) 6.32e-08 0.38
Alt-EI-TS-5 1.58 (1.28–1.58) 7.78e-08 21.16 (3–35) 1.10e-07 0.39
TwoPhases-TS-EI 1.86 (1.30–1.63) 6.62e-08 24.06 (2–35) 6.32e-08 0.37

LLM-based Methods
LLAMBO 2.67 (1.14–2.65) 1.55e-04 23.74 (1–38) 1.49e-06 0.43
LLMP 2.78 (1.59–2.49) 3.70e-08 31.30 (1–38) 3.52e-08 0.33

Adaptive Portfolio Methods
GP-Hedge 1.45 (1.22–1.52) 1.82e-07 16.96 (1–34) 1.65e-07 0.42
No-PASt-BO 1.53 (1.20–1.74) 1.27e-07 19.08 (1–37) 1.65e-07 0.37
SETUP-BO 1.56 (1.21–1.62) 1.11e-07 19.06 (1–37) 8.91e-08 0.42
ESP 1.62 (1.29–1.67) 4.30e-08 22.98 (1–38) 5.53e-08 0.42

LMABO 1.21 (1.06–1.25) – 5.62 (1–19) – 0.37

P-values of Friedman Tests 1.380e-106 1.380e-106

of about 6000 tokens (≈$0.01); both this expense and the LLM call latency of roughly 1 second per
iteration are negligible relative to the cost of evaluating expensive black-box functions (which often
takes minutes or hours per evaluation) and are justified by the resulting performance gains.

Static AFs are inherently unreliable. While strong heuristics like EI or LogEI are among the best
in this class with relatively low RPs and ranks, their performance is brittle; on some problems,
their rank drops to as low as 35th, highlighting the risk of a fixed strategy. In addition, adaptive
portfolio methods, though achieving competitive results, frequently exhibit higher variability and
are less robust across the heterogeneous problem suite. These approaches depend on heuristics
for weighting past acquisition performance and thus can be slow to adapt when the task-specific
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Table 2: Ablation study on the components of LMABO. We analyze the contribution of LMABO’s
key components by comparing the full model to multiple ablated versions. LMABO-8B/30B uses
open-source LLMs (Qwen3-8B and Qwen3-30B-A3B-Thinking-2507 (Team, 2025)). LMABO-
120B uses the open-weight model gpt-oss-120b (OpenAI, 2025). The Mean RP and Mean Rank are
calculated using the same global ranking of all baseline and ablation methods as in Table 1.

Method Mean RP↓
(Interquartile Range)

P-value
(RP)

Mean Rank↓
(Min - Max)

P-value
(Rank)

CV of
AUC

LMABO without:
Remaining budget 1.40 (1.17–1.54) 4.25e-07 15.72 (3–34) 2.61e-07 0.39
GP model characteristics 1.50 (1.21–1.59) 4.30e-08 20.04 (4–34) 3.47e-08 0.40
Shortest distance information 1.50 (1.23–1.65) 1.62e-07 19.76 (1–33) 7.60e-08 0.39
Instruction to avoid 1.92 (1.45–1.91) 3.07e-08 28.30 (3–37) 3.02e-08 0.43ineffective AFs

LMABO using other LLMs
LMABO-8B 1.48 (1.24–1.62) 2.48e-07 18.94 (1–34) 1.72e-07 0.38
LMABO-30B 1.29 (1.15–1.35) 3.21e-04 10.70 (2–25) 6.28e-05 0.39
LMABO-120B 1.22 (1.07–1.24) 1.00e+00 6.64 (1–31) 3.99e-01 0.39
LMABO (GPT-4o mini) 1.21 (1.11–1.26) 1.00e+00 7.16 (1–21) 1.84e-01 0.37

LMABO 1.21 (1.06–1.25) – 5.62 (1–19) – 0.37

landscape changes or when surrogate uncertainty dynamics differ across problems. Given the
same AF portfolio, LMABO mitigates this shortcoming by considering other important factors
including the process status, performance history and surrogate model characteristics, which enables
faster, more consistent adaptation and yields significantly better average performance. LLM-based
methods, while occasionally ranking among the top performers (e.g., LLAMBO is in the top three on
12 out of 50 problems), generally exhibit inconsistent results and often fall behind other approaches.
This highlights that simply incorporating an LLM is not sufficient; effective navigation of the
exploration-exploitation trade-off is crucial for robust BO. LMABO addresses this by explicitly
framing AF selection as a decision-making task in which the LLM can make informed, context-
aware decisions to balance the trade-off effectively.

Similar to the aforementioned baselines, simple meta-strategies also struggle to maintain consistent
performance across diverse problems. Figures 2a and 2b show that LMABO uses EI, LogEI, and TS
more frequently than other AFs and often switches between these three options. However, simple
meta-strategies that mimic these behaviors (e.g., random selection between the three or alternating
between EI and TS) fail to deliver robust performance. Therefore, these results demonstrate that
LMABO’s behavior cannot be reduced to a simple heuristic.

5.3 ABLATION STUDIES

Our ablation studies confirm that each component of the LMABO framework is crucial for achieving
its superior performance, with statistically significant degradation in performance compared to
the full model once a component is removed, as shown in Table 2. However, these studies also
demonstrate the robustness of our core framework, as the ablated versions still achieve respectable
results, often performing on par with or better than many established baselines.

Firstly, LMABO’s performance is inherently coupled with the underlying LLM. With a small open-
source model in our LMABO-8B experiment, we observed a noticeable performance drop, though
it still achieves competitive results. LMABO-30B, using a larger model with improved thinking
capabilities, recovers much of this drop, approaching that of the full LMABO with Gemini-2.5
Flash and outperforming all baselines. Both LMABO-120B and LMABO with GPT-4o mini achieve
performance comparable to the vanila version, demonstrating that LMABO’s effectiveness is not tied
to a specific LLM, but rather benefits from the general reasoning capabilities of strong LLMs.

Removing the remaining budget leads to the smallest performance drop, which means that this
information is the least critical of the three ablated inputs. GP model characteristics and shortest
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Figure 1: Impact of task-specific context on LMABO performance. Results are averaged over 10
runs with standard deviation shown as shaded regions.

distance information are equivalently impactful on the effectiveness of the LMABO. The large drop
in LMABO-AB4 demonstrates that instructing the LLM to avoid AFs that failed to improve the
incumbent is essential. Without this guidance, we find that the LLM repeatedly selects ineffective
AFs, leading to significantly worse optimization performance.

In addition to these ablation studies, we attempted to inject task-specific context into the initial
prompt P0 on 4 benchmark problems, such as characteristics of the synthetic functions or
hyperparameter optimization tasks. The hypothesis is that by exploiting prior knowledge about
the problem domain, the LLM could make more informed AF selections, potentially enhancing
the optimization performance. Details about these contexts are provided in Appendix C.1. The
results, shown in Figure 1, suggest that providing context acts as a safeguard against stagnation
in local optima, a benefit observed across both synthetic and real-world landscapes. Vanila
LMABO may stall at a sub-optimal plateau after the initial progress (e.g. between iterations
10 and 30 on HolderTable); however, being warned of “many local minima”, the context-aware
variant successfully identified this trap and bypassed it early, converging to the global minimum
significantly faster. Based on these findings, we recommend providing a textual description of the
objective function whenever such knowledge is available. In hyperparameter optimization scenarios
involving well-known algorithms (e.g. Decision Tree or AdaBoost), this semantic warmstarting can
significantly reduce the computational budget required to reach competitive performance (which
was also reported in Liu et al. (2024) albeit for point initialization).

6 ANALYSIS

To understand LMABO’s strategy, we performed an in-depth analysis of its AF selection behavior,
which reveals a multi-faceted strategy with clear preferences, following distinct temporal patterns,
and, most importantly, adapting its behavior in response to the real-time optimization state. Our
findings provide strong evidence that LMABO effectively synthesizes the state information to
execute a dynamic, context-aware policy that mirrors established practices in BO. Note that this
section’s results are aggregated across all repetitions on all problems from experiments in Section 5.

Overall Preferences In Figure 2a, we observe that LMABO exhibits a clear preference for certain
AFs (e.g. EI, LogEI, and TS). EI’s usage often increases slightly at the beginning as a response to
early improvements, while TS’s usage decreases gradually near the end as the need for exploration
diminishes. PosMean is heavily used near the end for LMABO as a last effort to find improvements.
Another surprising observation is the high usage of MES and PES in the first few iterations, but
this seems to align with the initial goal of quickly reducing uncertainty about the global optimum.
However, the strong performance of LMABO also involves other factors, as discussed later. On
other adaptive portfolio methods, there is no clear preference for any AF, and the selection is
more uniformly distributed. The only exception is No-PASt-BO with an increasing preference for
PosMean as the budget runs out. From this figure, a first insight is that LMABO’s success partly
stems from a well-calibrated preference for strong AFs, rather than a uniform exploration of all
options, as well as a dynamic adjustment of these preferences over time.

On a separate note, the adaptive portfolio baselines can be at a disadvantage without knowing the
strengths of EI and LogEI. We conducted an additional experiment where these methods operate on

8
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(c) AF selection frequency by improvement/stagnation status. “Stagnation” is defined as no improvement in
the incumbent, and “Improvement” is defined as any change in the incumbent.

Figure 2: LMABO’s acquisition function selection behaviors. Note that these behaviors are
aggregated across all runs on all problems.

only a curated subset comprising of EI, LogEI, and TS - the three most frequently selected AFs by
LMABO. We indeed observe a performance improvement for these methods except for GP-Hedge
(detailed results in Appendix E), but the curated versions are still strictly outperformed by LMABO.

Switching the AF in Response to the Optimization State In Figure 2b, a notable difference is
observed between LMABO and the adaptive portfolio baselines in terms of AF switching. LMABO
is the only method to perform a high number of switches between the group of explorative AFs (i.e.
the first five AFs) and exploitative AFs (i.e. the remaining seven AFs) throughout the optimization
process, as seen in the bottom left and top right of the figures. The dynamic adjustment mentioned
earlier is more evident here, as LMABO frequently switches between exploration and exploitation.
Figure 2c shows increased usage of exploitative AFs during improvement phases for all methods,
which aligns with the goal of refining the search around promising areas. However, combined with
the findings from Figure 2b, the adaptive portfolio baselines seem to demonstrate a passive, one-
directional learning by using more exploitative functions after success, but their sparse switching
patterns reveal a “sticky” policy that is slow to abandon a strategy, even when it is failing. This
is likely because of their reliance on past successes to guide future choices, which can lead to
overcommitment to a single AF. In contrast, LMABO employs an active, bi-directional strategy, not
only learning to exploit on improvement but also decisively switching back to exploratory functions
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to escape stagnation. This demonstrates that LMABO’s core advantage lies not just in identifying
a good heuristic, but in its superior, more agile policy for knowing when that heuristic is no longer
effective and a different approach is required.
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Figure 3: Word frequency in
justifications. Red box (bottom
left) is the explorative group.
Blue box (top right) is the
exploitative group.

Linking AF Selection to Justification To verify a consistent
link between the LLM’s AF choices and its justifications, we
analyzed keywords appeared in the justifications across different
AFs. In Figure 3, explorative AFs are strongly associated
with terms like “exploration” or “stagnation”, and exploitative
AFs are strongly associated with terms like “exploitation” or
“improvement”. This confirms that the LLM’s selections are
consistent with its justification, and that it is possible to use these
justfication to understand the decision of the LLM.

Information Sensitivity Analysis To assess the sensitivity of
LMABO to the information provided in the prompt, we conducted
a sensitivity analysis by perturbing the values fed to the LLM in
the state representation across early, middle and late stages. Due
to space constraints, we summarize the key findings here (detailed
results are in Appendix G). During the early stage, the LLM is
highly reactive to all information changes, including the process
status, performance history, and GP model characteristics. During
the middle stage, performance history and process status are most influential. In the late stage,
the LLM is less sensitive to perturbations and is mostly changing its decision in response to new
incumbent values where it exhibits a strong preference for exploitative AFs. While perturbing the
values presents inherent limitations (e.g. the perturbed values may be unrealistic or inconsistent with
other state variables), the results still provide valuable insights into the LLM’s decision-making
process. Overall, we find that LMABO is highly sensitive to tactical variables like performance
history with evident signs of stagnation/improvement and process status, while correctly showing
robustness to changes in secondary GP parameters that do not alter the overall strategic context.
This demonstrates that the LLM is synthesizing the state summary to weigh the relative importance
of different inputs, a key feature of its effective, state-aware policy.

7 CONCLUSION

We introduced LMABO, a novel framework that successfully utilizes a pre-trained LLM as a zero-
shot, online strategist for selecting acquisition functions in Bayesian Optimization. By prompting
the LLM with a comprehensive, real-time summary of the optimization state, LMABO dynamically
controls the exploration-exploitation trade-off. Our extensive experiments on 50 benchmarks show
that this approach significantly outperforms strong static, adaptive, and other LLM-based baselines.
Ablation studies and analysis of the LLM’s behavior confirm its success stems from a well-rounded
state-aware strategy that adapts well to the optimization’s progress, demonstrating patterns that align
closely with established BO best practices.

This paper focused on standard BO with Gaussian Processes, and future work could adapt LMABO
to other surrogate models and optimization settings. For instance, in constrained BO, the LLM
could be leveraged to dynamically balance objective improvement against constraint satisfaction.
Overall, LMABO opens new avenues for integrating LLMs into adaptive optimization frameworks,
leveraging their reasoning capabilities for decision-making in complex tasks.

REPRODUCIBILITY STATEMENT

We submitted the code as a supplementary material. The code includes the implementation of our
method, baselines, and scripts to reproduce the main experiments. We also provide details of the
experimental setup and datasets used in the experiments in the appendix. Upon acceptance, we will
make the code publicly available.
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LLM USAGE

Large Language Models were used for correcting grammar and improving writing clarity along with
updating the related works. We used Gemini Pro and ChatGPT for these purposes.
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José M Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive entropy
search for efficient global optimization of black-box functions. Advances in neural information
processing systems, 27, 2014.

Matthew Hoffman, Eric Brochu, and Nando de Freitas. Portfolio allocation for bayesian
optimization. In Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence, pp. 327–336, 2011.

Bing-Jing Hsieh, Ping-Chun Hsieh, and Xi Liu. Reinforced few-shot acquisition function learning
for bayesian optimization. Advances in Neural Information Processing Systems, 34:7718–7731,
2021.

Carl Hvarfner, Erik O Hellsten, and Luigi Nardi. Vanilla bayesian optimization performs great in
high dimensions. In Proceedings of the 41st International Conference on Machine Learning, pp.
20793–20817, 2024.

Harold J. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. Journal of Basic Engineering, 86:97–106, 1964.

Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language
models to enhance bayesian optimization. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=OOxotBmGol.

J. Mockus. The application of bayesian methods for seeking the extremum, 1998.

OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025. URL https://arxiv.org/abs/
2508.10925.

C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning series. MIT Press, 2005. ISBN 9780262182539.

James Requeima, John Bronskill, Dami Choi, Richard Turner, and David K Duvenaud. Llm
processes: Numerical predictive distributions conditioned on natural language. Advances in
Neural Information Processing Systems, 37:109609–109671, 2024.

11

http://arxiv.org/abs/1910.06403
https://openreview.net/forum?id=OOxotBmGol
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bobak Shahriari, Ziyu Wang, Matthew W Hoffman, Alexandre Bouchard-Côté, and Nando
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A LIST OF ACQUISITION FUNCTIONS

The acquisition function α(x;D) guides the selection of query points in BO by quantifying the utility
of evaluating f at x. By maximizing α(x;D) over the search space, we identify points that balance
exploration (sampling where uncertainty is high) and exploitation (sampling where the surrogate
predicts low function values). Details of the AFs used in our experiments are as follows:

• Probability of Improvement (PI) (Kushner, 1964):

αPI(x) = Φ

(
µ(x)− τ

σ(x)

)
,

where Φ is the standard normal CDF, µ(x) and σ(x) are the posterior mean and standard
deviation, and τ is a target (e.g., the incumbent solution). PI selects points with high
probability of improving upon τ .
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• Expected Improvement (EI) (Mockus, 1998):

αEI(x) = (µ(x)− τ) Φ(z) + σ(x)ϕ(z), z =
µ(x)− τ

σ(x)
,

where ϕ is the standard normal PDF. EI measures the expected magnitude of improvement.
• Log Probability of Improvement (LogPI) (Balandat et al., 2020) and Log Expected

Improvement (LogEI) (Ament et al., 2023): These are numerically stable variants of PI and
EI, respectively, that operate in the log domain to handle vanishing values and gradients.

• Upper Confidence Bound (UCB) (Srinivas et al., 2010):

αUCB(x) = µ(x) + κσ(x),

where κ > 0 controls the exploration weight. UCB explicitly balances exploitation (mean)
and exploration (uncertainty).

• Thompson Sampling (TS) (Chowdhury & Gopalan, 2017): Draws a sample f̃ ∼ p(f | D)
and selects x maximizing f̃(x). TS provides a randomized exploration strategy consistent
with the posterior.

• Posterior Mean (PosMean) and Posterior Standard Deviation (PosStd): Using αmean(x) =
µ(x) yields pure exploitation, while αstd(x) = σ(x) performs pure exploration.

• Knowledge Gradient (KG) (Wu & Frazier, 2016): This look-ahead function quantifies the
expected increase in the maximum value of the function that results from collecting a new
observation at a candidate point x.

• Information-theoretic AFs:
– Predictive Entropy Search (PES) (Hernández-Lobato et al., 2014): Selects points that

maximize the expected reduction in entropy of the distribution over the location of the
global optimum.

– Max-value Entropy Search (MES) (Wang & Jegelka, 2017): Focuses on reducing
uncertainty about the maximum function value rather than its location.

– Joint Entropy Search (JES) (Tu et al., 2022): A recent AF that generalizes PES and
MES by considering the joint entropy of both the location and value of the optimum.

We use the implementations of these AFs from the BoTorch library (Balandat et al., 2020) in our
experiments. For KG, PES, MES, and JES, we use their available batch implementations with a
batch size of 1. We consider PosSTD, UCB, TS, KG, PES, MES, and JES to be in the exploratory
category, while the exploitative AFs include PosMean, PI, LogPI, EI, and LogEI.

B EXPERIMENTAL DETAILS

B.1 LIST OF BENCHMARKS

We evaluate LMABO on a diverse suite of 50 benchmark problems, including synthetic functions
and real-world hyperparameter optimization tasks. The synthetic benchmarks are isted in Table 3,
with 15 functions from the COCO suite (Hansen et al., 2021) and 15 from BoTorch (Balandat et al.,
2020). For hyperparameter optimization tasks, we follow the practice of Liu et al. (2024) and use
datasets and ML models available on Bayesmark (Uber, 2020) to form 20 dataset-model pairs. The
datasets include Breast, Digits, Wines and Diabetes, and the ML models include Decision Tree,
Random Forest, SVM, AdaBoost, and MLPSGD. The dimensionality of these search spaces ranges
from 2 to 8. We use the empirical optimum found by all methods (as the true optima are unknown
for many problems) to compute the simple regret at each iteration. See Appendix D.1 of Liu et al.
(2024) for full details about the hyperparameter optimization tasks.

B.2 IMPLEMENTATION DETAILS

We follow the standard practice to optimize the GP hyperparameters by maximizing the log marginal
likelihood at each iteration. We use the default implementation of GP regression in BoTorch
(Balandat et al., 2020) which has hyperparameter priors from (Hvarfner et al., 2024) to enhance
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Table 3: COCO and BoTorch synthetic benchmark functions used in our experiments.

COCO benchmarks (15) BoTorch synthetic benchmarks (15)
Name Dimensionality Name Dimensionality
BucheRastrigin 5 Ackley 50
LinearSlope 5 Beale 2
AttractiveSector 5 Bukin 2
StepEllipsoid 5 Cosine8 8
Discus 5 DixonPrice 15
BentCigar 5 DropWave 2
SharpRidge 5 EggHolder 2
DifferentPowers 5 Griewank 9
Weierstrass 5 Hartmann 6
SchaffersIllCond 5 HolderTable 2
CompositeGriewankRosenbrock 10 Levy 13
Gallagher21 5 Michalewicz 10
Gallagher101 5 StyblinskiTang 21
Katsuura 5 Shekel 4
LunacekBiRastrigin 5 SixHumpCamel 2

performance on high-dimensional tasks. All acquisition functions are optimized using multi-start
LBFGS-B, except for TS and PES. For both TS and PES, we use discrete optimization over a finite
set of randomly sampled candidates due to the high computational cost of evaluating the acquisition
functions. This practice of AF optimization applies to running experiments with all static acquisition
functions, all adaptive portfolio baselines, and LMABO.

For all experiments, the LLMs were queried with a temperature of 0.0. Again, for invalid or failed
LLM responses, we fall back to UCB. The fallback rate is extremely small at only about 0.11% of
all queries (i.e. out of 10,000 queries, only 11 of them do not follow the “Acquistion abbreviation:
justfication” format). This indicates that LLM failures are rare and have minimal impact on overall
optimization performance. All adaptive portfolio baselines, such as GP-Hedge, were implemented
using their standard configurations as described in their respective publications, except that the
portfolio of acquisition functions was expanded to include all 12 AFs listed in Appendix A.

B.3 STATISTICAL TESTS

Results in Tables 1, 2 and 6 follow a standardized statistical analysis to ensure the significance of
the results. This statistical analysis is conducted separately for both mean RPs and ranks (across
10 repetitions) of 38 methods on 50 benchmarks. Firstly, to assess the significance of performance
differences between the methods, we first apply the Friedman test (a non-parametric test for data
that is not normally distributed) on the matrix of mean RPs (or ranks). The null hypothesis of
the Friedman test is that all methods perform equally, while the alternative hypothesis is that at
least one method performs differently. If the Friedman test indicates significant differences, we
follow up with post-hoc pairwise comparisons using the Wilcoxon signed-rank test with Holm-
Bonferroni correction to control for multiple comparisons, specifically comparing each baseline
method against LMABO. The null hypothesis for each pairwise comparison is that there is no
difference in performance between LMABO and a baseline, while the alternative hypothesis is that
the performances of LMABO and the baseline differ. We set a significance level of 0.05 for all
statistical tests.

C PROMPTS

Figure 1 shows the complete, unabridged initial prompt (P0) used to instruct the LLM in our
experiments. This prompt was developed through a very brief iterative process of 6-7 trials. The
refinements were not aimed at tuning for performance on a specific benchmark, but rather to ensure
accurate formatting of the LLM’s responses and to encourage a full consideration of all information
in the optimization state representation. Examples of follow up prompts during the optimization
process are shown in Table 8. For KG, PES, MES, and JES, we denote them by qKG, qPES,
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Table 4: Additional contexts provided to the LLM to verify the benefit of prior knowledge on
LMABO.

Problem Context
HolderTable This is to optimize a black-box synthetic function defined on a 2-

dimensional bounded domain. The landscape is highly complex and
non-convex, featuring a wavy pattern with many local minima. My
prior analysis strongly suggests that the global minimum is not unique.

Shekel This is to optimize a black-box synthetic function defined on a 4-
dimensional bounded domain. The landscape should be mostly flat,
but it is punctuated by a small number of sharp, narrow, and deep
hollows at some locations. The main challenge is not finding the
general region of these minima, but precisely pinpointing the ’needle
in a haystack’ global minimum at the very bottom of one of these steep
basins.

hpt digits DecisionTree This is to optimize a 6-dimensional space for a Decision Tree
classifier on the Digits dataset, where the objective is to maximize
validation accuracy (by minimizing the negated values). The
landscape is relatively smooth but features several ridges and valleys
due to the complex interactions between parameters like max depth,
max features, and min samples split. The main challenge lies in
balancing these parameters to avoid overfitting while still capturing
the underlying patterns in the data. My analysis indicates that certain
combinations of these parameters can lead to similar accuracy levels,
suggesting multiple optimal regions in the parameter space.

hpt diabetes DecisionTree This is to optimize a 6-dimensional space for a Decision Tree regressor
on the Diabetes dataset, where the objective is to minimize mean
squared error. The landscape is relatively smooth but features several
ridges and valleys due to the complex interactions between parameters
like max depth, max features, and min samples split. The main
challenge lies in balancing these parameters to avoid overfitting while
still capturing the underlying patterns in the data. My analysis
indicates that certain combinations of these parameters can lead
to similar error levels, suggesting multiple optimal regions in the
parameter space.

qMES, and qJES, respectively, in the initial prompt to align with the naming conventions in BoTorch
(Balandat et al., 2020). In constructing the initial prompt, we observed the following phenomena
during preliminary experiments that informed the final design:

• A full history of past function values and AF choices was not necessary for each input
prompt, as the LLM seems capable of inferring relevant optimization history from previous
input prompts.

• Specific examples of AF choices (e.g. “UCB: brief justification”) in the prompt could bias
the LLM towards a particular choice, so we replaced them with placeholders. Before this
change, we found that Qwen3-8B often mimicked the exemplar choices if specific AFs
were mentioned as examples, and only stopped doing so when the examples were replaced
with placeholders.

• The LLM sometimes ignored certain details, such as the number of remaining iterations,
so we added an assurance in the prompt to consider all provided context.

C.1 ADDITIONAL CONTEXTS

Table 4 contains the task-specific contexts provided to the LLM to test how such prior knowledge
about the problem would affect LMABO’s performance. These contexts were added to the initial
prompt P0 between lines 3 and 5 in Figure 1.
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D RUNTIME COMPARISON

Table 5 shows the average runtime, in minutes, for 50 iterations of the methods across all tested
benchmarks. LMABO only incurs a moderate overhead compared to static AFs due to the LLM
query at each iteration, but it is significantly faster than adaptive portfolio methods that require
optimizing multiple AFs at each iteration. Since the curated versions of adaptive portfolio methods
only optimize 3 AFs instead of 12, they are much faster than their full versions while achieving
better performance (as shown in Table 6), suggesting that a smaller, well-chosen portfolio can be
beneficial for these methods. Among LLM-based methods, LLAMBO is comprable in speed to
LMABO, while LLMP is much slower due to inferring with an open-source model locally. This
higher runtime is also observed on LMABO-8B/30B/120B, the ablated versions of LMABO that
use an open-source model.

Table 5: Average runtime for 50 iterations of all methods across all benchmarks (in minutes).

Method Runtime Method Runtime
PosSTD 2.20 GP-Hedge-Curated 12.01
PosMean 2.06 No-PASt-BO 113.67
PI 2.62 No-PASt-BO-Curated 14.94
LogPI 2.09 SETUP-BO 104.42
EI 2.14 SETUP-BO-Curated 7.24
LogEI 2.15 ESP 50.61
UCB 2.07 ESP-Curated 6.01
TS 4.62 LMABO (with Gemini 2.5 Flash/GPT-4o mini) 7.42/7.36
KG 12.88 LMABO-AB1 6.69
PES 8.93 LMABO-AB2 8.17
MES 3.73 LMABO-AB3 7.79
JES 5.45 LMABO-AB4 6.46
LLAMBO 9.21 LMABO-8B 19.12
LLMP 29.35 LMABO-30B 14.87
GP-Hedge 109.18 LMABO-120B 15.61

E CURATED SET FOR ADAPTIVE PORTFOLIO BASELINES

In this experiment, the adaptive portfolio baselines (i.e. GP-Hedge, No-PASt-BO, SETUP-BO, and
ESP) are restricted to a curated subset of acquisition functions: EI, LogEI, and TS. The curated
methods also participated in the calculation of relative performance, rank, and statistical tests
mentioned in Section 5. No-PASt-BO, SETUP-BO, and ESP show a performance improvement
when using the curated set, while GP-Hedge shows a degradation.

F LLM RESPONSE EXAMPLES

F.1 RESPONSES TO THE INITIAL PROMPT

Table 7 shows the responses of Gemini-2.5 Flash to the initial prompt across some different
optimization problems. The responses confirm the LLM’s understanding of the task and readiness
to proceed with the optimization process.

F.2 RESPONSES DURING OPTIMIZATION

Table 8 shows example responses from Gemini-2.5 Flash at different stages of an optimization run of
the Weierstrass function. As seen on the table, the LLM adapts its acquisition function choices based
on all provided context, including the number of remaining iterations, the current best objective
value, the model’s lengthscales, and the shortest distance between points. Contrary to the popular
choice of TS in early iterations in other cases, the first response opts for EI when it observes a
wide range of function values. The second and fourth responses both select LogEI after a new best
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Table 6: Comparing adaptive portfolio methods between using a large portfolio (of 12 AFs) and a
curated portfolio (of 3 AFs). The curated methods are denoted with a ”-Curated” suffix.

Method Mean RP↓
(Interquartile Range)

P-value
(RP)

Mean Rank↓
(Min - Max)

P-value
(Rank)

CV of
(AUC)

GP-Hedge 1.422 (1.206–1.517) 1.239e-07 12.42 (1–25) 1.112e-07 0.418
GP-Hedge-Curated 1.487 (1.233–1.670) 3.126e-08 15.06 (2–28) 5.444e-08 0.372
No-PASt-BO 1.505 (1.186–1.722) 9.572e-08 14.06 (1–28) 1.112e-07 0.370
No-PASt-BO-Curated 1.469 (1.218–1.579) 7.656e-08 14.38 (1–24) 7.235e-08 0.409
SETUP-BO 1.536 (1.155–1.688) 8.609e-08 13.88 (1–28) 6.129e-08 0.420
SETUP-BO-Curated 1.503 (1.243–1.556) 3.126e-08 14.76 (1–26) 4.781e-08 0.374
ESP 1.601 (1.273–1.674) 3.126e-08 16.82 (1–29) 3.742e-08 0.419
ESP-Curated 1.506 (1.240–1.537) 9.572e-08 15.06 (2–26) 1.112e-07 0.422

Table 7: Responses to the initial prompt P0.

Problem Response
Cosine8 Yes, I understand the context. I am ready to receive the first

summary of the Bayesian Optimization process.
Weierstrass Okay, I understand. I am ready to receive the summary of the

Bayesian Optimization process and recommend the next acquisition
function. I will strictly follow the specified output format.

hpt wine MLPSGD Yes, I understand the task and the available acquisition functions. I
am ready to receive the first summary of the Bayesian Optimization
process.

value is found, showing the LLM’s ability to recognize when an improvement-focused acquisition is
appropriate. Although both EI and LogEI are suitable in these contexts (as well as other exploitative
AFs like PI), the LLM’s choice of LogEI is influenced by the wide range of function values and
the modest gain compared to the range (which were from -6.576 to -9.980 for the second response
and from -10.148 to -11.302 for the fourth response). This is helpful when the values of EI may
become very small, as LogEI is more numerically stable. The third response chooses TS to escape
a stagnation phase in response to failed improvements and over-exploration signs (demonstrated by
the smaller shortest distance). Finally, with only one iteration left, the LLM selects EI to maximize
the chance of a final improvement.

G INFORMATION SENSITIVITY ANALYSIS

Tables 9, 10, 11, and 12 show the results of our information sensitivity analysis at early, middle,
and late stages of optimization, respectively. For these experiments, we perturb each element of the
state representation St individually while keeping all other elements fixed to their original values at
iteration T in an optimization run. Input prompts from previous iterations were not modified, so the
LLM’s memory of the optimization history remains intact.

While perturbing the values may present some noises in the results, we still observe some clear
trends across all four tables. Firstly, information about the process status (e.g. number of points
evaluated, remaining budget) and the performance history (e.g. incumbent objective value, function
value range, shortest distance) have a significant impact on the LLM’s acquisition function choices.
Reducing the remaining budget or having a new incumbent objective value tends to shift the LLM’s
preference towards exploitative AFs. However, in Tables 9 and 10, we observe that a very small
improvement in the incumbent objective value (e.g. from 1.24 to 1.244 in Table 9 and from -
9.98 to -9.982 in Table 10) can lead to a switch back to an explorative AF. This suggests that the
LLM is sensitive to the magnitude of improvement relative to the overall function value range.
Secondly, information about the model state (e.g. lengthscales, outputscale) appears to have a more
subtle influence on the LLM’s choices. While perturbing these elements does lead to some changes
in the selected AFs, the changes are less consistent and pronounced compared to the other state
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elements. This indicates that the LLM may prioritize information about the optimization progress
and performance over the surrogate model’s internal parameters when making decisions.
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1 You are an expert in Bayesian Optimization, specifically tasked with
recommending the most suitable acquisition function for the next
iteration to minimize an objective function.

2

3 For context, we use a Gaussian Process as the surrogate model with a
Matern 5/2 kernel with ARD.

4

5 I will provide you with a summary of the Bayesian Optimization process at
each step. This summary will include the following information:

6 - **N:** The total number of points evaluated so far.
7 - **Remaining iterations:** The number of iterations left in the

optimization process.
8 - **D:** The dimensionality of the search space (number of input

parameters).
9 - **f_range:** The range of the objective function values observed so far

.
10 - **f_min:** The current best (lowest) observed objective value.
11 - **Shortest distance:** The shortest distance from the last point to any

other point, indicating whether it is exploiting too much.
12 - **Model lengthscales:** These are crucial hyperparameters of the

Gaussian Process model’s kernel.
13 They describe how the model perceives the smoothness and relevance of

each input dimension to the objective function.
14 You will receive their range (min/max), mean, and standard deviation.
15 - **Model outputscale:** It defines the overall magnitude or amplitude of

the function’s variation.
16

17 Available acquisition functions you can choose from, with brief
descriptions of their primary uses:

18 1. PI (Probability of Improvement)
19 2. LogPI (Log Probability of Improvement)
20 3. EI (Expected Improvement)
21 4. LogEI (Log Expected Improvement)
22 5. UCB (Upper Confidence Bound)
23 6. PosMean (Posterior Mean):
24 7. PosSTD (Posterior Standard Deviation)
25 8. TS (Thompson Sampling)
26 9. qKG (Knowledge Gradient)
27 10. qPES (Predictive Entropy Search)
28 11. qMES (Max-value Entropy Search)
29 12. qJES (Joint Entropy Search)
30

31 At each step:
32 - **Review the provided summary of the optimization process and consider

the current state of the optimization.**
33 - **Select the acquisition function that you believe will be best for the

optimization process.**
34 - **Avoid reusing acquisition functions that failed to improve the

objective function in previous iterations.**
35

36 When responding, select the acquisition function you deem most
appropriate.

37 Your justification should briefly explain why that function is suitable
given the provided optimization summary, referencing relevant aspects
like exploration/exploitation balance, remaining iterations, or model
characteristics.

38 The response must strictly follow the format "Acquisition abbreviation:
justification", similar to these examples:

39 - ’AF_ABBREVIATION: Your justification for choosing this specific
function.’

40 - ’XXX: A brief reason explaining why XXX is the optimal choice now.’
41 Firstly, just give a brief confirmation that you understand the task and

the available acquisition functions.

Listing 1: The unabridged initial prompt (P0) provided to the LLM.
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Input Prompt Response
Current optimization state:
- N: 11
- Remaining iterations: 50
- D: 5
- f range: Range [-5.982, 83.765], Mean
26.466 (Std Dev 35.075)
- f min: -5.982
- Shortest distance: 0.455
- Lengthscales: Range [0.261, 59.707],
Mean 27.581 (Std Dev 24.557)
- Outputscale: 0.898

EI: Given the early stage (N=11, 50 iterations remaining)
and the wide range of observed function values and
varying lengthscales, there is still significant uncertainty
and potential for discovering better regions. EI
provides a robust balance between exploration (considering
areas of high uncertainty) and exploitation (seeking
expected improvement over the current best, f min),
making it an excellent choice for building a better
global understanding of the objective function while still
prioritizing improvement.

Current optimization state:
- N: 21
- Remaining iterations: 40
- D: 5
- f range: Range [-9.980, 106.046], Mean
23.896 (Std Dev 34.093)
- f min: -9.980
- Shortest distance: 0.427
- Lengthscales: Range [0.513, 399.250],
Mean 154.676 (Std Dev 188.785)
- Outputscale: 1.212

LogEI: Thompson Sampling successfully discovered a new
f min. With this new best observation and 40 iterations
remaining, LogEI is a strong choice. It is effective for
finding further significant improvements, especially when
dealing with a potentially wide range of objective values (as
indicated by f range) or when the current best is challenging
to beat. LogEI provides a more robust measure of
improvement compared to standard EI, by focusing on the
log of the improvement, which can help in navigating the
complex landscape suggested by the varying lengthscales
and ensure continued progress.

Current optimization state:
- N: 40
- Remaining iterations: 21
- D: 5
- f range: Range [-10.148, 132.117], Mean
15.999 (Std Dev 33.416)
- f min: -10.148
- Shortest distance: 0.204
- Lengthscales: Range [0.449, 3.865], Mean
1.786 (Std Dev 1.159)
- Outputscale: 1.618

TS: Both JES and PES failed to improve f min.
The lengthscales have drastically shortened and become
concentrated, indicating the model believes the function
is very localized, yet this hasn’t yielded improvements.
The shortest distance is also very small (0.20), suggesting
potential over-exploitation. With 21 iterations remaining,
Thompson Sampling is the best choice to break this
persistent stagnation and localized search. By sampling a
new function from the posterior, TS can explore regions
that the current model might be overlooking or prematurely
discarding, offering a fresh, diverse exploration strategy to
find new global optima.

Current optimization state:
- N: 50
- Remaining iterations: 11
- D: 5
- f range: Range [-11.302, 132.117], Mean
12.749 (Std Dev 30.799)
- f min: -11.302
- Shortest distance: 0.346
- Lengthscales: Range [0.494, 2.198], Mean
1.532 (Std Dev 0.611)
- Outputscale: 2.069

LogEI: EI successfully improved f min! With a new best
value found and only 11 iterations remaining, it’s crucial
to build on this success with an improvement-focused
acquisition function. LogEI is an excellent choice as it
continues to seek expected improvement, but its logarithmic
scaling makes it particularly robust to the magnitude of
objective function values. This allows it to efficiently
pinpoint further significant improvements or refine the
search around the new f min, ensuring we maximize the
chances of finding an even better optimum in these final,
critical iterations.

Current optimization state:
- N: 60
- Remaining iterations: 1
- D: 5
- f range: Range [-12.135, 132.117], Mean
11.070 (Std Dev 29.387)
- f min: -12.135
- Shortest distance: 0.503
- Lengthscales: Range [0.548, 2.468], Mean
1.615 (Std Dev 0.653)
- Outputscale: 2.821

EI: With only 1 iteration remaining, the primary goal is to
make the absolute best attempt to improve the current f min.
EI (Expected Improvement) is the most robust and direct
improvement-focused acquisition function. It directly
optimizes for the expected gain over the current best
observed value, offering the most pragmatic strategy to find
a final, better optimum, especially since it demonstrated
success in finding the most recent f min just a few iterations
ago.

Table 8: Example responses from the LLM during an optimization run of the Weierstrass function.
The left column includes the input prompts fed to the LLM. Each response includes the LLM’s
selected acquisition function along with its justification.
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Table 9: Information Sensitivity Analysis for Early Stage (T = 5). We perturb the values of each
element in the state representation St and observe the resulting changes in the output AF chosen by
the LLM. The highlighted values indicate the original state element values at T = 5 in a Griewank
optimization run. We show explorative AFs in blue and exploitative AFs in magenta for better
tracking of AF changes between the two groups. The original input prompt and response are shown
at the bottom of the table.

State element Output AF given element value

# points evaluated
Value 5 9 20 40 50 500
AF PES LogEI LogEI PosSTD PosSTD PES

Remaining budget
Value 1 10 40 46 50 100
AF PosMean LogEI PES LogEI PES PES

Incumbent objective value
Value -100 -10 0 1 1.24 1.244
AF LogEI EI EI EI KG LogEI

Maximum function value
Value 2 100 190 194.081 200 1000
AF LogEI LogEI UCB LogEI LogEI PES

Mean of function value
Value 2 20 50 56.326 60 100
AF PosSTD UCB LogEI LogEI LogEI LogEI

Std Dev of function value
Value 1 10 60 63.145 70 100
AF JES PES PES LogEI PES PES

Shortest distance
Value 0.01 0.05 0.06 0.07 0.1 0.5
AF PES LogEI LogEI LogEI LogEI MES

Minimum of lengthscales
Value 0.01 0.1 0.2 0.231 0.3 0.45
AF LogEI PES LogEI LogEI LogEI PES

Maximum of lengthscales
Value 0.25 0.4 0.452 0.5 1.0 10.0
AF LogEI EI LogEI PES LogEI EI

Mean of lengthscales
Value 0.24 0.3 0.342 0.4 0.45
AF MES LogEI LogEI LogEI LogEI

Std Dev of lengthscales
Value 0.01 0.1 0.110 0.2 1.0 10.0
AF PES PES LogEI LogEI LogEI JES

Outputscale
Value 0.01 0.1 0.8 0.865 0.9 10.0
AF LogEI LogEI LogEI LogEI EI KG

Original input prompt Original response
Current optimization state:
- N: 9
- Remaining iterations: 46
- D: 2
- f range: Range [1.244, 194.081],
Mean 56.326 (Std Dev 63.145)
- f min: 1.244
- Shortest distance: 0.060
- Lengthscales: Range [0.231,
0.452], Mean 0.342 (Std Dev
0.110)
- Outputscale: 0.865

LogEI: ‘f min‘ has stalled for two iterations and the
shortest distance is again very low (0.060), indicating
potential over-exploitation or getting stuck in a flat
region. LogEI is suitable here because it is less
sensitive to the absolute magnitude of improvement
and focuses on relative improvements, which helps to
escape local minima or flat regions where small absolute
improvements are still valuable, while also maintaining a
strong exploration component given the many remaining
iterations. We also need to avoid reusing EI which was
used 2 iterations ago and did not improve f min.
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Table 10: Information Sensitivity Analysis for Middle Stage (T = 25). This table follows the same
format as Table 9 but for T = 25 in a CompositeGriewankRosenbrock optimization run.

State element Output AF given element value

# points evaluated
Value 5 20 40 45 50 100
AF PI PI KG TS JES LogPI

Remaining budget
Value 1 5 20 26 30 100
AF PI LogEI KG TS TS LogPI

Incumbent objective value
Value -1000 -200 -100 -92 -91.2 -91.176
AF PosMean PI LogPI JES JES TS

Maximum function value
Value 1 20 200 208.249 210 1000
AF JES TS KG TS JES UCB

Mean of function value
Value -90 -50 -40.161 -40 0 200
AF PES PES TS PES TS TS

Std Dev of function value
Value 1 10 50 55.658 60 100
AF JES TS TS TS JES KG

Shortest distance
Value 0.01 0.1 0.7 0.714 0.8 1.0
AF UCB TS JES TS UCB TS

Minimum of lengthscales
Value 0.01 0.1 0.9 0.989 1.0 10.0
AF JES JES JES TS KG KG

Maximum of lengthscales
Value 30.0 100.0 200.0 208.249 210 1000.0
AF JES PES JES TS JES TS

Mean of lengthscales
Value 1.0 10.0 20.0 29.547 30.0 200.0
AF JES JES JES TS PES JES

Std Dev of lengthscales
Value 0.1 10.0 60.0 62.256 70.0 200.0
AF KG TS KG TS KG JES

Outputscale
Value 0.1 3.0 3.731 4.0 10.0 100.0
AF UCB PES TS KG JES PES

Original input prompt Original response

Current optimization state:
- N: 45
- Remaining iterations: 26
- D: 10
- f range: Range [-91.176,
208.249], Mean -40.161 (Std Dev
55.658)
- f min: -91.176
- Shortest distance: 0.714
- Lengthscales: Range [0.989,
204.500], Mean 29.547 (Std Dev
62.256)
- Outputscale: 3.731

TS: ‘f min‘ remains stagnant for four iterations, and
‘qMES‘ did not yield an improvement, despite the
refined lengthscales. The lengthscales have slightly
widened again, indicating some lingering uncertainty.
With a significant number of remaining iterations and
persistent stagnation, ‘TS‘ (Thompson Sampling) is a
strong choice. It provides a robust, probabilistic, and
fundamentally different exploration strategy by sampling
from the GP posterior. This approach is excellent
for escaping local optima and discovering genuinely
new, high-potential regions, especially when other more
deterministic or information-theoretic methods have
struggled to find a better ‘f min‘, and the model still has
some uncertainty in its overall landscape understanding.
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Table 11: Information Sensitivity Analysis for Late Stage (T = 45) - Part 1. This table follows the
same format as Table 9 but for T = 45 in a hpt breast MLPSGD optimization run.

State element Output AF given element value

# points evaluated
Value 5 20 50 54 60 100
AF LogPI JES JES JES JES JES

Remaining budget
Value 1 5 6 10 50 100
AF EI KG JES JES JES JES

Incumbent objective value
Value -100 -10 -1 -0.92 -0.917 -0.916
AF EI EI EI EI LogEI JES

Maximum function value
Value -0.7 -0.4 -0.360 -0.3 -0.1 0.0
AF JES KG JES JES JES JES

Mean function value
Value -0.9 -0.8 -0.738 -0.7 -0.4
AF JES JES JES KG JES

Std Dev function value
Value 0.01 0.1 0.152 0.2 0.5 1.0
AF JES JES JES JES JES JES

Shortest distance
Value 0.01 0.1 0.4 0.459 0.5 1.0
AF JES JES JES JES KG JES
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Table 12: Information Sensitivity Analysis for Late Stage (T = 45) - Part 2. Continuation of Table
11.

State element Output AF given element value

Minimum of lengthscales
Value 0.001 0.004 0.01 0.1 1.0 10.0
AF JES JES KG JES JES JES

Maximum of lengthscales
Value 1600 2000 4000 4234.465 5000 10000
AF JES KG JES JES JES JES

Mean of lengthscales
Value 1.0 100.0 1500.0 1514.580 1600 4000
AF JES JES JES JES JES KG

Std Dev of lengthscales
Value 10.0 100.0 1600.0 1683.459 1700.0 4000.0
AF JES JES JES JES JES JES

Outputscale
Value 0.01 0.1 0.8 0.818 0.9 10.0
AF JES JES JES JES JES JES

Original input prompt Original response

Current optimization state:
- N: 54
- Remaining iterations: 6
- D: 6
- f range: Range [-0.916, -0.360],
Mean -0.738 (Std Dev 0.152)
- f min: -0.916
- Shortest distance: 0.459
- Lengthscales: Range [0.004,
4234.465], Mean 1514.580 (Std
Dev 1683.459)
- Outputscale: 0.818

qJES: ‘f min‘ remains unchanged, meaning qMES
did not immediately lead to an improvement. The
lengthscales are still extremely large and variable (Range
[0.004, 4234.465], Mean 1514.580, Std Dev 1683.459),
indicating persistent, profound uncertainty in the GP
model’s understanding of the objective function. With
only 6 iterations remaining (N=54), and ‘f min‘ still
stagnant despite various information-theoretic methods,
a comprehensive information-gathering strategy is
needed to make the best final decision. qJES (Joint
Entropy Search) is an advanced acquisition function
that directly aims to reduce the entropy of the *joint*
posterior distribution of the optimal value *and* its
location. In these very late stages with high model
uncertainty, a holistic understanding of both the value
and location of the optimum is crucial for making the
final, most informed decision. qJES provides a more
complete information gain than qPES or qMES alone,
making it ideal for the limited remaining budget to
resolve uncertainty about the true optimum. (qJES was
used at N=32, and its strength in holistic uncertainty
reduction makes it appropriate for this critical, late-stage,
high-uncertainty scenario).
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