
Castle: Causal Cascade Updates in Relational Databases with Large
Language Models

Anonymous ACL submission

Abstract001

This work introduces Castle, the first frame-002
work for schema-only cascade update genera-003
tion using large language models (LLMs). De-004
spite recent advances in LLMs for Text2SQL005
code generation, existing approaches focus pri-006
marily on SELECT queries, neglecting the chal-007
lenges of SQL update operations and their rip-008
ple effects. Traditional CASCADE UPDATE con-009
straints are static and unsuitable for modern,010
denormalized databases, which demand dy-011
namic, context-aware updates. Castle enables012
natural language instructions to trigger multi-013
column, causally consistent SQL UPDATE state-014
ments, without revealing table content to the015
model. By framing UPDATE SQL generation016
as a divide-and-conquer task with LLMs’ rea-017
soning capacity, Castle can determine not only018
which columns must be directly updated, but019
also how those updates propagate through the020
schema, causing cascading updates — all via021
nested queries and substructures that ensure022
data confidentiality. We evaluate it on real-023
world causal update scenarios, demonstrating024
its ability to produce accurate SQL updates,025
and thereby highlighting the reasoning ability026
of LLMs in automated DBMS.027

1 Introduction028

Relational Database Management Systems029

(RDBMS) are the foundation of modern infor-030

mation systems, providing reliable storage and031

efficient retrieval for critical business data. Natural032

language interfaces to databases, such as Text2SQL033

approaches, have enabled users to pose complex034

questions and retrieve answers via generated SQL035

queries (Zhong et al., 2017; Xu et al., 2017; Yu036

et al., 2018; Guo et al., 2019; Wang et al., 2019;037

Scholak et al., 2021). However, these efforts have038

primarily focused on generating retrieval-focused039

(SELECT) queries.040

To create a complete natural language interface,041

it is essential to also generate SQL UPDATE com-042

mands. While accuracy challenges persist (Yao 043

et al., 2025; Pourreza and Rafiei, 2023), recent 044

work by Li et al. (2024) has pushed towards a more 045

comprehensive Text2SQL framework, incorporat- 046

ing a broader set of SQL commands, including 047

SQL UPDATEs. Nevertheless, a significant chal- 048

lenge arises with cascade updates, where a change 049

in one record requires automatic propagation of 050

modifications to related records, causing a “rip- 051

ple effect” in the database, particularly in high- 052

performance denormalized databases (Kimball and 053

Ross, 2013; Balmin and Papakonstantinou, 2005) 054

(see Table 1). The advent of massively distributed 055

systems and real-time analytics has increasingly led 056

designers to adopt denormalized schemas (Kim- 057

ball and Ross, 2013), where relational dimensions 058

are flattened to reduce expensive join operations 059

and meet performance targets. For instance, con- 060

sider a denormalized database of soccer players: in 061

a denormalized database, the table of players also 062

have records about the clubs, such as the club’s 063

name and coach. After a player joins a new club 064

(update club name), their coach name needs to be 065

updated, but this information resides in the table 066

of clubs. Thus, we need to update corresponding 067

table entities in a cascading fashion. 068

This work addresses the task of improving 069

Text2SQL UPDATEs, with a focus on cascade up- 070

dates. We create two cascade update benchmarks 071

using public datasets to test the ability of Text2SQL 072

methods to issue correct update commands under 073

cascades over more than 1 million records. We then 074

introduce Castle, a new framework designed to en- 075

able large language models (LLMs) to generate 076

SQL update commands that execute intended mod- 077

ifications and automatically handle causal-driven 078

cascade updates securely and efficiently. A key 079

challenge is uncovering real-world causal relation- 080

ships between updated fields and other fields. Our 081

approach also prioritizes preserving data confiden- 082

tiality by utilizing nested query construction in- 083

1

Scenario Denormalized Schema Normalized Schema

SELECT Query ✓ No joins required ✗ Requires multi-table joins

Update w/ Cascade ✗ Hard to trace and inconsistent updates risks ✓ Easy with relational foreign keys

Table 1: Comparison between denormalized and normalized schemas in practice, symbols indicate relative advan-
tages (✓) and disadvantages (✗).

stead of table data augmented generation. Our ex-084

perimental results demonstrate the effectiveness085

of our framework, achieving up to 85% correct086

updates in our benchmark tasks, consistently out-087

performing the best baselines, which reach at most088

80% correctness, and are often much lower (down089

to 52%) in complex scenarios.090

Our main contributions are as follows:091

• Castle is the first framework tailored specifically092

for SQL cascade update operations. It treats SQL093

cascade updates as causal reasoning tasks. With094

nested structured subqueries, Castle generates095

update commands without exposing raw table096

data, mitigating privacy risks inherent in current097

table-augmented approaches.098

• We propose two datasets for cascading updates099

that are 100% based on causal relationships from100

the real world with more than 1 million records.101

• Castle is the first work that systematically stud-102

ies and evaluates the LLM-assisted SQL Trigger103

management and generation.104

2 Castle105

Research Question Modern database designs106

often exhibit performance-driven redundancies,107

which complicate update operations. Specifically,108

we are interested in the question: Can Large Lan-109

guage Models generate accurate cascade up-110

date queries correctly given only the database111

schema? This research question gives rise to two112

fundamental challenges:113

Identifying Update Targets (C1). When generat-114

ing UPDATE queries, it is essential to determine the115

specific columns that require modification. From116

the perspective of LLMs, this involves not only117

identifying the target column(s) specified in the118

natural language instruction but also recognizing119

potential related updates to other columns, which120

can vary on a case-by-case basis.121

Determining Update Values (C2). After identi-122

fying the columns to update, the cascade update123

operation must determine the new values to assign124

to the corresponding columns. Since these values 125

are not explicitly provided in the natural language 126

instructions, they may need to be inferred from 127

other data entities, posing a significant challenge 128

for LLMs. 129

Motivating exampling using our Soccer Trans- 130

fer task. In order to illustrate the challenges, we 131

first introduce our Soccer Transfer dataset schema 132

in Appendix A. Consider the instruction: “Lionel 133

Messi has transferred from Barcelona (code: fc- 134

barcelona) to Paris Saint-Germain (code: fc-paris- 135

saint-germain), update his information.” In re- 136

sponse to this instruction, an LLM should not only 137

update the columns directly mentioned (e.g., up- 138

dating the club_name from “Barcelona” to “Paris 139

Saint-Germain”), but also infer and update causally 140

related columns. For instance, it should update the 141

coach_name from “Ronald Koeman” to “Mauricio 142

Pochettino”, reflecting the change in team affilia- 143

tion. This example highlights the need for LLMs 144

to capture complex causal relationships within the 145

data schema to generate accurate and comprehen- 146

sive updates. 147

Proposed Method. To enable LLMs to perform 148

causally-driven cascading updates from natural lan- 149

guage instructions, without sending table content 150

data to models that compromise data confiden- 151

tiality, in this section, we introduce Castle (see 152

Figure 1), a multi-stage workflow addressing the 153

aforementioned challenge via divide-and-conquer 154

chain-of-thoughts (DC-CoT) with zero-shot sam- 155

ples. Castle orchestrates the generation and exe- 156

cution of SQL UPDATE queries from natural lan- 157

guage instructions, maintaining data consistency 158

via causal reasoning and robust query construction. 159

The entire process is detailed in Algorithm 1 and 160

described in what follows. 161

2.1 Skeleton: Identifying Columns for Update 162

As the first critical step to update the data in tables, 163

Castle needs to accurately identify the columns 164

to be updated from a natural language instruction. 165

The expected result of this step is the skeleton 166

2

Algorithm 1 WORKFLOW OF C.A.S.T.L.E.
Require: Natural language update instruction x,

table schema S
1: C. Column Identification:
2: Based on S, extract directly mentioned tar-

get column(s) Cdirect and table from x
3: A. Attribute Dependency Analysis:
4: Use schema S and reasoning over Cdirect to

infer causally dependent columns Ccascade
5: S. Subquery Planning:
6: for each c ∈ Ccascade do
7: Generate subquery qc to retrieve correct

value for c based on S
8: end for
9: T. Trigger Maintenance:

10: for each derived aggregate column c ∈
Ccascade ∪ Cdirect do

11: Check trigger for maintaining derived c
12: if trigger is missing then
13: Generate SQL trigger tc (via schema-

based causal reasoning)
14: Deploy trigger tc into the database to

maintain real-time consistency
15: end if
16: end for
17: L. Logical Query Composition:
18: Combine Cdirect values from x and valid sub-

query qc into final SQL UPDATE query q
19: E. Execution:
20: Execute UPDATE query q on target data table.

of SQL UPDATE queries. Castle distinguishes be-167

tween two types of columns from the database table168

schema:169

Columns to be directly updated (Cdirect). Us-170

ing the given table schema and natural language171

instructions from general users, Castle identifies ex-172

plicitly mentioned columns that need to be updated173

with data provided by the users. For example, like174

shown in Figure 1, given the instruction “Lionel175

Messi has transferred club from Barcelona (code:176

fc-barcelona) to Paris Saint-Germain (code: fc-177

paris-saint-germain)” the directly related columns178

club_name and club_code are explicitly identified179

by Castle. This procedure corresponds to Line 1 in180

Algorithm 1.181

Causally-dependent columns to be cascade up-182

dated (Ccascade). Castle applies the causal rea-183

soning capabilities of LLMs via structured instruc-184

tion to identify implicitly affected columns in each185

transaction (e.g., UPDATE) in the database. For in- 186

stance, updating a player’s club may also require 187

updating dependent columns such as this player’s 188

coach or competition, as depicted in Figure 1. 189

This procedure corresponds to Line 3 in Algo- 190

rithm 1. 191

After the identification of the columns to be di- 192

rectly updated and/or cascade updated, a skeleton 193

of the SQL UPDATE query is ready as shown in 194

Code 1. Now the question remains to be “what to 195

update”. 196

197
UPDATE player_record 198
SET 199

"club_name" = 'Paris Saint -Germain', 200
-- directly update 201

"club_code" = 'psg', -- directly 202
update 203

... 204
"stadium_name" = ?, -- causally - 205

dependent column 206
"competition_country" = ?, -- 207

causally -dependent column 208
... 209
"foreigners_percentage" = ?, -- 210

aggregate and derived column 211
"squad_size" = ? -- aggregate and 212

derived column 213
... 214

WHERE 215
"player_code" = 'lionel -messi'; 216

Code 1: An example of generated SQL UPDATE skeleton
for table player_record. Question marks here serve as
placeholders for later subqueries or trigger maintenance.

2.2 Subquery Planning: Evidence-grounded 217

Updates 218

After identifying the columns to update, Castle 219

proceeds to handle causally-dependent updates se- 220

curely through structured subquery planning. In- 221

stead of exposing actual table content data to LLMs, 222

Castle only provides the table schema along with 223

system instructions as input to LLMs integrated 224

with the system. For each causally dependent col- 225

umn (c ∈ Ccascade) that needs to be updated, the 226

LLM generates SELECT subqueries to fetch the cor- 227

rect value to update. Each subquery expects a result 228

cardinality of at most one, guaranteeing legal and 229

precise updates without data exposure, shown as 230

an example in the dashed box in the middle of the 231

right column of Figure 1. 232

Moreover, prior to query composition and exe- 233

cution, each generated subquery undergoes syntax 234

checking to ensure its cardinality and compatibil- 235

ity with database-specific dialect rules, explicitly 236

validating clauses like LIMIT (e.g., PostgreSQL 237

3

Figure 1: A sample workflow of Castle illustrates how a single transaction with natural language instructions
as input is completed as a cascading update SQL transaction, incorporating the reasoning procedures of LLMs
alongside the database.

and MySQL) or TOP (e.g., Microsoft SQL Server),238

thereby minimizing syntax-related runtime errors.239

2.3 Trigger Verification and Generation240

Aggregate and derived columns (e.g., counts, aver-241

ages, or percentage metrics) or materialized tables242

in relational databases often reflect precomputed243

summarized information crucial for fast analytical244

retrieval (Jugel et al., 2016) in Business Intelli-245

gence (BI). When underlying data changes occur246

(e.g., player transfers or retail records change), tra-247

ditional ETL-based methods may rely on sched-248

uled batch data recomputing to maintain data con-249

sistency. Castle addresses this through automatic250

verification and generation of SQL TRIGGER, which251

efficiently maintains these derived metrics in real-252

time upon data modification events. This mech-253

anism provides robustness, consistency, and effi-254

ciency for event-driven causal cascade updates.255

Trigger Verification. Given columns identified256

either directly or via causal reasoning (Ccascade ∪257

Cdirect), Castle first checks existing SQL Triggers258

from the database. Checking the existence and259

syntax of triggers based on the current schema from260

the system’s maintained triggers table/view.261

Trigger Generation. If the verification reveals262

missing triggers, Castle utilizes the schema-263

based causal reasoning capability of LLMs to dy-264

namically generate efficient SQL trigger scripts265

with functions to maintain data consistency from266

events. The triggers are designed explicitly267

to accurately reflect updated derived (or aggre- 268

gate) metrics like squad_size, average_age, 269

and foreigners_percentage. Such one-time 270

effort can automatically and consistently prop- 271

agate changes without further manual interven- 272

tion, thereby enhancing data integrity across the 273

database. 274

In Castle, generated triggers are subsequently 275

deployed to the database and seamlessly integrated 276

into transaction workflows. This proactive trigger 277

management significantly reduces runtime compu- 278

tational overhead and LLM token usages, but also 279

guarantees consistency for aggregate and derived 280

data metrics in databases. 281

2.4 Compatibility with other systems 282

Castle is designed to be broadly compatible with 283

industry standard DBMS such as PostgreSQL 1, 284

MySQL 2, Microsoft SQL Server 3, and so on. On 285

the one hand, it runs purely at the schema level, 286

without requiring system-specific modules, exten- 287

sions, and configurations (e.g., indices, paging, 288

caching). Thus, it can be seamlessly integrated 289

into existing data infrastructure without requiring 290

modifications or additional extensions to the under- 291

lying database engine. 292

1https://www.postgresql.org/
2https://www.mysql.com/
3https://www.microsoft.com/en-us/sql-server

4

3 Experiments293

We run our experiment on PostgreSQL 17 hosted294

on Neon 4, a serverless database platform built on295

AWS Aurora Postgres, with different LLMs inte-296

grated in the system workflow, including ChatGPT-297

4o 5, LLaMA-3.1-8B-Instruct 6 and Qwen2.5-7B-298

Instruct 7 as SQL generators.299

3.1 Dataset300

To evaluate our approach to causally driven cas-301

cade updates in structured relational databases, we302

utilize two real-world datasets:303

Dataset Size #Columns Data Type

Soccer Transfer 1M+ 28 Date, Text, Numeric
UCI Retail 541K 12 Date, Text, Numeric

Table 2: Overview of relational datasets used in our
experiment evaluation.

Soccer Transfer Dataset. A complete and com-304

prehensive dataset recording over a million foot-305

ball player appearances and transfers worldwide306

yearly, including personal details, club and na-307

tional team affiliations, transfer histories, and per-308

formance statistics. The relational structure allows309

users to model complex dependencies. Our ground310

truth of one year’s update information is based on311

the following year’s player record. We compare312

every pair of adjacent year records and find out313

those players who changed their club, such differ-314

ence provides the club update information for us315

to extract the fact from the later year and evaluate316

LLM’s ability to perform causal cascade update on317

the earlier year’s record 8.318

UCI Online Retail II Dataset. This dataset con-319

tains over half a million transactional records from320

a UK-based online retailer to worldwide customers,321

covering sales and returns over two years. Each322

record includes attributes like invoice number, prod-323

uct code, quantity, invoice date, unit price, cus-324

tomer ID, and country (Chen, 2012). We augment325

this dataset by: (1) Deriving the Quarter from the326

invoice date, corresponding to the quarter report in327

a materialized view (table) for faster data retrieval.328

4https://www.neon.tech/
5https://openai.com/index/hello-gpt-4o/
6https://huggingface.co/meta-llama/Llama-3.1-8B-

Instruct
7https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
8https://www.kaggle.com/datasets/davidcariboo/player-

scores

(2) Mapping Country to Region for geographical 329

analysis. 330

3.2 Evaluation Metrics 331

In retrieval-focused Text2SQL, one of the met- 332

rics is Execution Accuracy, which measures how 333

close the results of the generated SQL query are 334

to the ground truth results. In MultiSQL (Li et al., 335

2024), the evaluation metric for update operations 336

in databases is state comparison, which directly 337

compares the whole content of two database states 338

(before and after update operation), returning a bi- 339

nary result of 0 (different) or 1 (same). Unlike the 340

metric in MultiSQL, according to our workflow de- 341

sign, while performing database update operations, 342

the first question is to identify the data to update. 343

Thus, for the update operations, given the causal 344

and ripple-effect nature of cascade updates, we 345

evaluate the model’s reasoning capability of the 346

causal cascade update scenario through recall (how 347

many of the truly needed updates were found), with 348

breakdown into those directly updated columns and 349

cascade updated columns. This metric assesses the 350

model’s ability to holistically reason about multiple 351

column dependencies within and outside the data 352

table, quantifying how many of the truly needed 353

updates were identified after the LLM reasoning 354

procedure, and corresponds to evaluating the pro- 355

posed "where to update" challenge in this work. 356

Recall =
|δIdentified Cell to Update |

|∆Total Cell Requiring Updates|
(1) 357

On the other hand, after we quantify the columns 358

identified by LLMs to update, we also need to know 359

the proportion of correctly updated causal columns 360

among those targeted for update by the model. For 361

example, after identifying columns to update, if 362

one model fails to update all required columns, it 363

has two kinds of errors: Type I (unnecessary up- 364

date) errors and Type II (missed update) errors, 365

either could happen when conducting updates to 366

the database. The F1-score summarizes both as- 367

pects, indicating the model’s overall effectiveness 368

in both identifying and accurately updating causally 369

dependent columns. 370

Besides, correctness is the final requirement in 371

our task settings, where correct results would jus- 372

tify the usability of our proposed workflow. Thus, 373

we introduce cell-wise correctness (CC), which 374

evaluates fine-grained correct rate on how accu- 375

rately the model updates each individual cell (i.e., 376

5

Method \ Model ChatGPT-4o LLaMA-3.1-8B-Instruct Qwen2.5-7B-Instruct

Castle(w/o data) 99.96 | 89.39 | 80.82 99.49 | 88.62 | 79.45 96.32 | 87.58 | 77.45
Multi-SQL (w/ data) 99.25 | 88.62 | 79.45 95.50 | 82.93 | 70.76 90.41 | 84.01 | 72.22
Baseline (w/ data) 99.18 | 88.35 | 79.00 99.32 | 88.19 | 78.76 96.10 | 83.41 | 71.98

Method \ Model ChatGPT-4o LLaMA-3.1-8B-Instruct Qwen2.5-7B-Instruct

Castle(w/o data) 95.93 | 86.45 | 83.55 91.25 | 84.32 | 81.63 89.23 | 84.03 | 81.90
Multi-SQL (w/ data) 93.68 | 85.83 | 81.68 79.87 | 71.83 | 73.39 81.34 | 73.47 | 75.90
Baseline (w/ data) 92.15 | 84.76 | 80.58 75.78 | 69.12 | 65.13 74.89 | 72.09 | 64.63

Table 3: Evaluation of update performance across models with methods on Soccer Transfer and Retail dataset,
respectively. Each cell reports: Recall, F1-score, and cell-wise correct rate of directly-updated columns.

Method \ Model ChatGPT-4o LLaMA-3.1-8B-Instruct Qwen2.5-7B-Instruct

Castle(w/o data) 99.95 | 85.25 | 85.21 80.84 | 81.24 | 80.43 75.52 | 72.01 | 67.93
Multi-SQL (w/ data) 52.21 | 68.58 | 52.16 50.31 | 68.97 | 52.17 52.39 | 68.73 | 55.39
Baseline (w/ data) 52.16 | 68.53 | 52.09 50.09 | 67.55 | 52.00 51.12 | 65.80 | 52.06

Method \ Model ChatGPT-4o LLaMA-3.1-8B-Instruct Qwen2.5-7B-Instruct

Castle(w/o data) 93.03 | 90.02 | 85.93 89.32 | 81.36 | 83.31 87.98 | 83.21 | 84.02
Multi-SQL (w/ data) 89.10 | 74.12 | 69.58 83.80 | 58.80 | 56.09 85.91 | 65.01 | 61.23
Baseline (w/ data) 88.45 | 76.16 | 70.15 82.42 | 55.14 | 53.76 85.04 | 66.10 | 70.49

Table 4: Evaluation of update performance across models with methods on Soccer Transfer and Retail dataset,
respectively. Each cell reports: Recall, F1-score, and cell-wise correct rate of causal cascade updated columns
(without derived values).

each column within each row) across the entire377

database after applying one natural language up-378

date instruction. The Cell-wise correctness (CC) is379

defined as follows:380

CC =
|δCorrect Cell Updated |

|∆Total Cell Requiring Updates|
(2)381

Last but not least, in order to further study how382

causal dependent columns are correctly updated383

aside from direct updates, we further break these384

metrics down into two complementary components:385

columns explicitly mentioned in the natural lan-386

guage instruction (Cdirect) and cascading columns387

inferred from causal or structural dependencies388

(Ccascade).389

3.3 Results390

While Castle does not provide a SELECT-like query391

result as output, we evaluated our update results392

by querying them and comparing them with the393

corresponding ground truth, as soon as the update 394

operation occurred in the database. In Table 3 and 395

Table 4, we present the evaluation results of update 396

performance for directly-updated columns (Cdirect) 397

and causal cascade-updated columns (Ccascade, but 398

without derived columns for TRIGGERs to main- 399

tain) across three representative LLMs and three 400

SQL generation methods: Castle (ours, schema- 401

only), MultiSQL (content-augmented), and base- 402

line method (content-augmented). 403

In addition to direct update commands, we also 404

evaluated the ability of LLMs to generate cor- 405

rect SQL TRIGGER statements within our workflow 406

that enforce ripple-effect data consistency with our 407

causal cascade UPDATE queries. The generated trig- 408

ger is considered correct if, once after deployment, 409

it consistently maintains the correctness of the sum- 410

mary table right after transactional updates, as com- 411

pared with ground truth using cell-wise correct- 412

ness. The result is shown in Table 5 alongside 413

6

Method / Model ChatGPT-4o LLaMA-3.1-8B-Instruct Qwen2.5-7B-Instruct
Castle (Trigger only) 83.31 79.37 77.29
Castle w/ trigger 83.84 79.91 73.53

Method / Model ChatGPT-4o LLaMA-3.1-8B-Instruct Qwen2.5-7B-Instruct

Castle (Trigger only) 87.64 77.90 81.01
Castle w/ trigger 86.81 79.51 81.78

Table 5: Evaluation of LLM-generated TRIGGER via cell-wise correctness, bottom row represents Castle’s average
cell-wise correctness over all data columns and tables with integrated trigger generation mechanism.

Castle having trigger generated in the system, both414

of their cell-wise correctness are the average rate415

of experiments conducted 100 times. Our exper-416

iments demonstrate that data consistency can be417

maintained automatically and robustly, even across418

complex, multi-row updates.419

3.4 Discussion420

In our evaluation, we measured "where to update"421

via the recall metric of cascade reasoning, and also422

"what to update" with F1-score and cell-wise cor-423

rectness metrics.424

The recall metric in our experiment directly425

evaluates the LLM’s ability to correctly identify426

where to update in the given table schema(s), i.e.,427

which columns (both direct and causal/cascade)428

should be updated based on natural language in-429

structions. Our schema-only approach, Castle,430

consistently achieves the highest recall across all431

models, particularly with GPT-4o, outperforming432

content-augmented baseline methods on both di-433

rectly and causally updated columns. This demon-434

strates Castle’s ability to reason over schema se-435

mantics and relationships without access to table436

content.437

F1-score and cell-wise correctness indicate the438

model’s proficiency in determining what values to439

update and producing the correct SQL subqueries440

filling the outer skeleton. We discover Castle per-441

forms consistently better, especially in scenarios442

with larger or more complex schemas, or hav-443

ing column interdependencies (as in the Retail444

dataset), where achieving high cell-wise correct-445

ness becomes more challenging.446

Table 5 presents the evaluation of LLM-447

generated triggers for maintaining aggregate or ma-448

terialized columns in real-time. The results show449

that triggers generated by Castle (both standalone450

and integrated) are comparable to LLM-generated451

complex SQL queries. However, triggers are in-452

stantly activated and only require one-time effort 453

that can provide long-term, automatic consistency 454

without requiring repetitive code generation or hu- 455

man intervention. This finding shows the potential 456

of integrating LLM-based trigger generation into 457

modern DBMS. 458

4 Related Work 459

4.1 Text2SQL 460

In general, Text2SQL (or NL2SQL) takes a given 461

natural language text query as a task, generates 462

the task-specific SQL queries (Mitsopoulou and 463

Koutrika, 2025; Liu et al., 2024; Ma et al., 2025), 464

and compares the query result table with the 465

groundtruth provided by baselines such as Spi- 466

der (Lei et al., 2024), BIRD (Li et al., 2023), and 467

CoSQL (Yu et al., 2019). However, until recently, 468

Text2SQL datasets contained almost exclusively 469

SELECT queries, and update operations have been 470

little investigated in Text2SQL research. The re- 471

cent MultiSQL approach (Li et al., 2024) sup- 472

ports generating simple direct update commands 473

with table content provided to LLMs for SQL 474

generation (Shen and Kejriwal, 2024; He et al., 475

2025). Moreover, the authors of MultiSQL pro- 476

vided a benchmark dataset that includes UPDATE 477

commands. However, those LLM-generated vir- 478

tual data lack quality and real-world verifiability 479

for causal relationships. In our work, two real verifi- 480

able datasets from different domains with different 481

structures are used to verify our proposed method 482

in causal cascade update. 483

In Text2SQL tasks, another common shortcom- 484

ing for accurate query generation is the need for 485

table context to understand natural language intents 486

better (Sun et al., 2018). If table content from the 487

actual query table is provided, it could significantly 488

increase the accuracy of the generated query (Mit- 489

sopoulou and Koutrika, 2025). However, such an 490

approach undermines data confidentiality. By con- 491

7

trast, our approach achieves schema-only reasoning492

without having to send table content to LLMs.493

Recent approaches, such as CHASE-SQL (Pour-494

reza et al., 2025), focus on improving SQL query495

generation via divide-and-conquer strategies and496

chain-of-thought (CoT) (Wei et al., 2022). Our497

approach also applies this reasoning strategy to498

address the challenges mentioned in the paper’s499

introduction section.500

4.2 LLM-Assisted Data Wrangling501

Recent research has expanded the role of LLMs502

from purely generating SQL statements to perform-503

ing broader data wrangling tasks. For instance,504

CodexDB (Trummer, 2022) leverages Codex mod-505

els to automate database interactions, demonstrat-506

ing LLM capabilities for diverse database opera-507

tions. TableLLM (Zhang et al., 2025) is a ded-508

icated model for document-level (lightweighted)509

spreadsheet manipulations, including insert, up-510

date, and delete operations. However, these op-511

erations require the whole table to be fed to the512

context window of LLMs. In addition, each opera-513

tion is generated in isolation, neglecting cascades514

or multi-record dependencies.515

Unlike these methods, Castle combines LLM-516

generated SQL code with a schema-driven reason-517

ing process, systematically managing those causal518

cascade updates in denormalized schemas.519

4.3 Ripple Effects in Knowledge Editing520

Knowledge editing (Mitchell et al., 2021; Meng521

et al., 2022a,b) in LLMs aims to update specific522

factual information within a model without neces-523

sitating retraining. However, such interventions524

often lead to “ripple effects” (Cohen et al., 2024),525

where modifications to one fact inadvertently in-526

fluence related or unrelated knowledge within the527

model. (Cohen et al., 2024) introduced the Rip-528

pleEdits benchmark to assess these effects, reveal-529

ing that current editing methods frequently fail to530

ensure consistent knowledge updates, thereby com-531

promising the model’s reliability. Further analysis532

in GradSim (Qin et al., 2024) identified gradient533

similarity (GradSim) as a key indicator of ripple534

effects, demonstrating a strong positive correlation535

between GradSim and the successful propagation536

of edits. To address these challenges, (Zhao et al.,537

2024) proposed RippleCOT, an in-context learning538

approach that integrates chain-of-thought reason-539

ing to enhance the accurate dissemination of edits540

across related facts. Collectively, these works un-541

derscore the complexities inherent in knowledge 542

editing for LLMs and highlight the necessity for 543

advanced methods to manage unintended ripple 544

effects. 545

While prior research has primarily examined rip- 546

ple effects within LLMs (Cohen et al., 2024; Qin 547

et al., 2024), our work shifts focus to the ripple 548

effects occurring in external databases that serve as 549

knowledge bases for LLMs. In retrieval-augmented 550

generation (RAG) pipelines, effectively managing 551

ripple effects during data retrieval by the DBMS 552

can significantly enhance the accuracy and reliabil- 553

ity of downstream LLM outputs (Shi et al., 2024; 554

Zhao et al., 2024). Our approach offers a comple- 555

mentary perspective to existing model-level inter- 556

ventions, emphasizing the importance of database- 557

level strategies in mitigating unintended ripple ef- 558

fects. 559

5 Conclusion 560

Castle addresses the challenge in causal-driven cas- 561

cade updates with respect to both “where to update” 562

and “what to update”. It also demonstrates that 563

general pre-trained LLMs can reason over schema 564

structures to perform cascade-consistent SQL up- 565

dates without requiring access to table contents, 566

thus providing a broader, trustworthy, structured 567

LLM reasoning for general data systems and code 568

generation. 569

Limitations 570

Like most practical analytical queries and business 571

intelligence (BI) workloads, we also assume the 572

scenarios where data and its derived values are 573

stored in a single unified database for optimized 574

query performance. We thus do not consider fed- 575

erated or multi-database environments. Addition- 576

ally, we do not consider multi-hop post-cascade 577

updates due to the absence of real-world, verifi- 578

able datasets that reliably capture such propagation 579

chains. Lastly, our work considers natural language 580

instructions for the database to be explicit, which 581

are generated via a unified script as part of input to 582

LLMs; our study does not consider instructions in 583

different languages aside from English. 584

References 585

Andrey Balmin and Yannis Papakonstantinou. 2005. 586
Storing and querying xml data using denormalized re- 587
lational databases. The VLDB Journal, 14(1):30–49. 588

8

https://doi.org/10.1007/s00778-003-0113-1
https://doi.org/10.1007/s00778-003-0113-1
https://doi.org/10.1007/s00778-003-0113-1

Daqing Chen. 2012. Online Retail II. UCI Machine589
Learning Repository.590

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,591
and Mor Geva. 2024. Evaluating the ripple effects592
of knowledge editing in language models. Transac-593
tions of the Association for Computational Linguis-594
tics, 12:283–298.595

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-596
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-597
wards complex text-to-sql in cross-domain database598
with intermediate representation. arXiv preprint599
arXiv:1905.08205.600

Mingqian He, Yongliang Shen, Wenqi Zhang, Qiuying601
Peng, Jun Wang, and Weiming Lu. 2025. Star-sql:602
Self-taught reasoner for text-to-sql. arXiv preprint603
arXiv:2502.13550.604

Uwe Jugel, Zbigniew Jerzak, Gregor Hackenbroich, and605
Volker Markl. 2016. Vdda: automatic visualization-606
driven data aggregation in relational databases. The607
VLDB Journal, 25(1):53–77.608

Ralph Kimball and Margy Ross. 2013. The data ware-609
house toolkit: The definitive guide to dimensional610
modeling. John Wiley & Sons.611

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng612
Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,613
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, and 1614
others. 2024. Spider 2.0: Evaluating language mod-615
els on real-world enterprise text-to-sql workflows.616
arXiv preprint arXiv:2411.07763.617

Chunhui Li, Yifan Wang, Zhen Wu, Zhen Yu, Fei Zhao,618
Shujian Huang, and Xinyu Dai. 2024. MultiSQL:619
A schema-integrated context-dependent Text2SQL620
dataset with diverse SQL operations. In Findings of621
the Association for Computational Linguistics: ACL622
2024, pages 13857–13867, Bangkok, Thailand. As-623
sociation for Computational Linguistics.624

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi625
Yang, Bowen Li, Bailin Wang, Bowen Qin, Ruiying626
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guo-627
liang Li, Kevin C. C. Chang, Fei Huang, Reynold628
Cheng, and Yongbin Li. 2023. Can llm already629
serve as a database interface? a big bench for630
large-scale database grounded text-to-sqls. Preprint,631
arXiv:2305.03111.632

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi633
Jiang, Yuxin Zhang, Ju Fan, Guoliang Li, Nan Tang,634
and Yuyu Luo. 2024. A survey of nl2sql with large635
language models: Where are we, and where are we636
going? arXiv preprint arXiv:2408.05109.637

Peixian Ma, Xialie Zhuang, Chengjin Xu, Xuhui Jiang,638
Ran Chen, and Jian Guo. 2025. Sql-r1: Training natu-639
ral language to sql reasoning model by reinforcement640
learning. arXiv preprint arXiv:2504.08600.641

Kevin Meng, David Bau, Alex Andonian, and Yonatan 642
Belinkov. 2022a. Locating and editing factual as- 643
sociations in gpt. Advances in neural information 644
processing systems, 35:17359–17372. 645

Kevin Meng, Arnab Sen Sharma, Alex Andonian, 646
Yonatan Belinkov, and David Bau. 2022b. Mass- 647
editing memory in a transformer. arXiv preprint 648
arXiv:2210.07229. 649

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea 650
Finn, and Christopher D Manning. 2021. Fast model 651
editing at scale. arXiv preprint arXiv:2110.11309. 652

Anna Mitsopoulou and Georgia Koutrika. 2025. Anal- 653
ysis of text-to-sql benchmarks: Limitations, chal- 654
lenges and opportunities. In Proceedings 28th Inter- 655
national Conference on Extending Database Tech- 656
nology, EDBT 2025, Barcelona, Spain, March 25-28, 657
2025, pages 199–212. OpenProceedings.org. 658

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, 659
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok 660
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and 661
Sercan O Arik. 2025. CHASE-SQL: Multi-path rea- 662
soning and preference optimized candidate selection 663
in text-to-SQL. In The Thirteenth International Con- 664
ference on Learning Representations. 665

Mohammadreza Pourreza and Davood Rafiei. 2023. 666
Din-sql: Decomposed in-context learning of text- 667
to-sql with self-correction. In Advances in Neural 668
Information Processing Systems, volume 36, pages 669
36339–36348. Curran Associates, Inc. 670

Jiaxin Qin, Zixuan Zhang, Chi Han, Manling Li, Pengfei 671
Yu, and Heng Ji. 2024. Why does new knowledge 672
create messy ripple effects in llms? arXiv preprint 673
arXiv:2407.12828. 674

Torsten Scholak, Nathan Schucher, and Dzmitry Bah- 675
danau. 2021. Picard: Parsing incrementally for 676
constrained auto-regressive decoding from language 677
models. arXiv preprint arXiv:2109.05093. 678

Ke Shen and Mayank Kejriwal. 2024. Select-sql: Self- 679
correcting ensemble chain-of-thought for text-to-sql. 680
arXiv preprint arXiv:2409.10007. 681

Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen 682
Zhong, Kaixiong Zhou, and Ninghao Liu. 2024. 683
Retrieval-enhanced knowledge editing for multi-hop 684
question answering in language models. arXiv e- 685
prints, pages arXiv–2403. 686

Yibo Sun, Duyu Tang, Nan Duan, Jianshu Ji, Guihong 687
Cao, Xiaocheng Feng, Bing Qin, Ting Liu, and Ming 688
Zhou. 2018. Semantic parsing with syntax- and table- 689
aware SQL generation. In Proceedings of the 56th 690
Annual Meeting of the Association for Computational 691
Linguistics (Volume 1: Long Papers), pages 361–372, 692
Melbourne, Australia. Association for Computational 693
Linguistics. 694

9

https://doi.org/10.24432/C5CG6D
https://doi.org/10.1007/s00778-015-0396-z
https://doi.org/10.1007/s00778-015-0396-z
https://doi.org/10.1007/s00778-015-0396-z
https://doi.org/10.18653/v1/2024.findings-acl.823
https://doi.org/10.18653/v1/2024.findings-acl.823
https://doi.org/10.18653/v1/2024.findings-acl.823
https://doi.org/10.18653/v1/2024.findings-acl.823
https://doi.org/10.18653/v1/2024.findings-acl.823
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://doi.org/10.48786/EDBT.2025.16
https://doi.org/10.48786/EDBT.2025.16
https://doi.org/10.48786/EDBT.2025.16
https://doi.org/10.48786/EDBT.2025.16
https://doi.org/10.48786/EDBT.2025.16
https://openreview.net/forum?id=CvGqMD5OtX
https://openreview.net/forum?id=CvGqMD5OtX
https://openreview.net/forum?id=CvGqMD5OtX
https://openreview.net/forum?id=CvGqMD5OtX
https://openreview.net/forum?id=CvGqMD5OtX
https://proceedings.neurips.cc/paper_files/paper/2023/file/72223cc66f63ca1aa59edaec1b3670e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/72223cc66f63ca1aa59edaec1b3670e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/72223cc66f63ca1aa59edaec1b3670e6-Paper-Conference.pdf
https://doi.org/10.18653/v1/P18-1034
https://doi.org/10.18653/v1/P18-1034
https://doi.org/10.18653/v1/P18-1034

Immanuel Trummer. 2022. Codexdb: synthesizing695
code for query processing from natural language in-696
structions using gpt-3 codex. Proc. VLDB Endow.,697
15(11):2921–2928.698

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr699
Polozov, and Matthew Richardson. 2019. Rat-sql:700
Relation-aware schema encoding and linking for text-701
to-sql parsers. arXiv preprint arXiv:1911.04942.702

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten703
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,704
and Denny Zhou. 2022. Chain-of-thought prompt-705
ing elicits reasoning in large language models. In706
Advances in Neural Information Processing Systems,707
volume 35, pages 24824–24837. Curran Associates,708
Inc.709

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sql-710
net: Generating structured queries from natural lan-711
guage without reinforcement learning. arXiv preprint712
arXiv:1711.04436.713

Shunyu Yao, Noah Shinn, Pedram Razavi, and714
Karthik R Narasimhan. 2025. τ -bench: A bench-715
mark for tool-agent-user interaction in real-world do-716
mains. In The Thirteenth International Conference717
on Learning Representations.718

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,719
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze720
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,721
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan722
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, and723
5 others. 2019. CoSQL: A conversational text-to-724
SQL challenge towards cross-domain natural lan-725
guage interfaces to databases. In Proceedings of726
the 2019 Conference on Empirical Methods in Natu-727
ral Language Processing and the 9th International728
Joint Conference on Natural Language Processing729
(EMNLP-IJCNLP), pages 1962–1979, Hong Kong,730
China. Association for Computational Linguistics.731

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,732
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-733
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir734
Radev. 2018. Spider: A large-scale human-labeled735
dataset for complex and cross-domain semantic pars-736
ing and text-to-SQL task. In Proceedings of the 2018737
Conference on Empirical Methods in Natural Lan-738
guage Processing, pages 3911–3921, Brussels, Bel-739
gium. Association for Computational Linguistics.740

Xiaokang Zhang, Sijia Luo, Bohan Zhang, Zeyao Ma,741
Jing Zhang, Yang Li, Guanlin Li, Zijun Yao, Kangli742
Xu, Jinchang Zhou, Daniel Zhang-Li, Jifan Yu, Shu743
Zhao, Juanzi Li, and Jie Tang. 2025. Tablellm: En-744
abling tabular data manipulation by llms in real office745
usage scenarios. Preprint, arXiv:2403.19318.746

Zihao Zhao, Yuchen Yang, Yijiang Li, and Yinzhi747
Cao. 2024. Ripplecot: Amplifying ripple effect of748
knowledge editing in language models via chain-749
of-thought in-context learning. arXiv preprint750
arXiv:2410.03122.751

Victor Zhong, Caiming Xiong, and Richard Socher. 752
2017. Seq2sql: Generating structured queries from 753
natural language using reinforcement learning. arXiv 754
preprint arXiv:1709.00103. 755

10

https://doi.org/10.14778/3551793.3551841
https://doi.org/10.14778/3551793.3551841
https://doi.org/10.14778/3551793.3551841
https://doi.org/10.14778/3551793.3551841
https://doi.org/10.14778/3551793.3551841
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://arxiv.org/abs/2403.19318
https://arxiv.org/abs/2403.19318
https://arxiv.org/abs/2403.19318
https://arxiv.org/abs/2403.19318
https://arxiv.org/abs/2403.19318

A Table Schema 756

Soccer Transfer Database Schema

CREATE TABLE IF NOT EXISTS {
table_name} (
player_id

SERIAL PRIMARY KEY ,
player_code

VARCHAR (100),
first_name

VARCHAR (100),
last_name

VARCHAR (100),
full_name

VARCHAR (255),
date_of_birth

VARCHAR (100),
age

NUMERIC ,
height

DECIMAL (4,2),
citizenship

VARCHAR (100),
position

VARCHAR (100),
foot

VARCHAR (20),
joined_date

VARCHAR (100),
contract_expires

VARCHAR (100),
social_media

JSONB ,
birthplace_city

VARCHAR (100),
birthplace_country

VARCHAR (100),
club_code

VARCHAR (100),
club_name

VARCHAR (255),
squad_size

NUMERIC ,
average_age

DECIMAL (4,2),
foreigners_number

NUMERIC ,
foreigners_percentage

DECIMAL (5,2),
national_team_players

NUMERIC ,
stadium_name

VARCHAR (255),
stadium_seats

VARCHAR (50),
net_transfer_record

VARCHAR (50),
coach_name

VARCHAR (255),
competition_code

VARCHAR (50),
competition_type

VARCHAR (50),
competition_country

VARCHAR (100),
competition_seasoned_href TEXT
);

757

11

UCI Retail Database Schema

CREATE TABLE IF NOT EXISTS {
table_name} (

stockcode TEXT ,
description TEXT ,
quantity INTEGER ,
country TEXT ,
region TEXT ,
y2010q4_quantity INTEGER ,
y2011q1_quantity INTEGER ,
y2011q2_quantity INTEGER ,
y2011q3_quantity INTEGER ,
y2011q4_quantity INTEGER ,
PRIMARY KEY(stockcode ,

country)
);

758

B Trigger759

SELECT event_object_table AS table_name ,760
trigger_name761

FROM information_schema.triggers762
GROUP BY table_name , trigger_name763
ORDER BY table_name , trigger_name;764

Code 2: An example query of listing Triggers names
and corresponding tables in a PostgreSQL database.

SELECT tgname765
FROM pg_trigger766
WHERE tgrelid = 'player_record'::767

regclass;768

Code 3: An example query of checking Trigger on table
player_record

CREATE OR REPLACE FUNCTION769
update_squad_size_transfer ()770

RETURNS TRIGGER AS $$771
BEGIN772

-- Decrement squad size from old773
club774

IF OLD.club_code IS NOT NULL THEN775
UPDATE player_record776
SET squad_size = squad_size - 1777
WHERE club_code = OLD.club_code;778

END IF;779
780

-- Increment squad size for new club781
IF NEW.club_code IS NOT NULL THEN782

UPDATE player_record783
SET squad_size = squad_size + 1784
WHERE club_code = NEW.club_code;785

END IF;786
787

RETURN NEW;788
END;789

Code 4: An example of trigger function on table
player_record

C LLM Prompts Examples 790

Castle Prompt

Database Schema:
{schema}

Instruction:
{instruction}

Generate an UPDATE SQL statement
to update the player's
club_name and club_code columns
, and do consider the ripple
effects via this update , since
this update may cause other
columns update. Other columns ,
if required , should be handled
via subqueries , you will never
know the content of the data
table except table schema.

Think about this step by step , and
you need just one SQL UPDATE

query (could be with subqueries
) as output.

1. First , what are the columns
needed to be updated for this
table schema? Come up with a
UPDATE skeleton with columns
need to update , no LIMIT is
needed in outer skeleton.

2. Second , query each column data
needed to be used for each
columns update , remember to use
the LIMIT clause in SUBQUERY

since the subquery is used to
fill the outer skeleton.

3. Combine the previous two
queries.

Carefully follow these rules for
SQL formatting:

- Use double quotes for all SQL
identifiers (table names ,
column names).

- Use single quotes around all
literal string values (such as
player codes or club names).

Think step -by-step and return
exactly one SQL UPDATE query as
output. Please only return the
SQL statement in a code block

and do not generate anything
else.

791

Soccer Transfer Instruction

Player '{first_name} {last_name}'
(code: {player_code }) changed
club from {from_club_code} to {
dest_club_code }. Update his/her
information.

792

12

Baseline Prompt

Database Schema:
{schema}

Instruction:
{instruction}

You need just one SQL UPDATE query
as output. Please only return

the SQL statement in a code
block and do not generate
anything else.

793

Multi-SQL Prompt

Database Schema:
{schema}

Instruction:
{instruction}

Sample table data:
{table_sample_content}

Generate an UPDATE SQL statement
to update the player's
club_name and club_code columns
,

Chain of Thought:
1. Identify which table and

columns to update.
2. Determine the WHERE clause to

target the correct rows.
3. Compute any needed values via

subqueries if necessary (e.g.,
aggregations).

4. Assemble into one valid UPDATE
statement.

Think step -by-step and return
exactly one SQL UPDATE query as
output. Please only return the
SQL statement in a code block

and do not generate anything
else.

794

UCI Retail Instruction

Now a return / refund case
happened , stockcode is '{
StockCode}', quantity in this
case is {Quantity}, and its
invoicedate is at {InvoiceDate
}, unitprice: {UnitPrice}, and
it happend in {Country }. Update
this transaction in the

summary table.

795

D LLM Generated SQL Examples 796

ChatGPT-4o with Castle on UCI Retail

UPDATE
online_retail_quarterly_summary

SET
"quantity" = "quantity" + (

SELECT SUM(" quantity ")
FROM (

SELECT -1 AS "quantity
"

WHERE "stockcode" = '
84978' AND "country
" = 'United Kingdom
' AND "invoicedate"
BETWEEN '

2011 -10 -01' AND '
2011 -12 -31'

LIMIT 1
) AS subquery_quantity

),
"y2011q4_quantity" = "

y2011q4_quantity" + (
SELECT SUM(" quantity ")
FROM (

SELECT -1 AS "quantity
"

WHERE "stockcode" = '
84978' AND "country
" = 'United Kingdom
' AND "invoicedate"
BETWEEN '

2011 -10 -01' AND '
2011 -12 -31'

LIMIT 1
) AS subquery_y2011q4

)
WHERE "stockcode" = '84978' AND "

country" = 'United Kingdom';

797

ChatGPT-4o with Multi-SQL on UCI Retail

UPDATE
online_retail_quarterly_summary

SET
quantity = quantity - 1,
y2011q4_quantity =

y2011q4_quantity - 1
WHERE

stockcode = '84978' AND
country = 'United Kingdom';

798

ChatGPT-4o with Baseline on UCI Retail

UPDATE
online_retail_quarterly_summary

SET y2011q4_quantity =
y2011q4_quantity - 1

WHERE stockcode = '84978' AND
country = 'United Kingdom';

799

13

	Introduction
	Castle
	Skeleton: Identifying Columns for Update
	Subquery Planning: Evidence-grounded Updates
	Trigger Verification and Generation
	Compatibility with other systems

	Experiments
	Dataset
	Evaluation Metrics
	Results
	Discussion

	Related Work
	Text2SQL
	LLM-Assisted Data Wrangling
	Ripple Effects in Knowledge Editing

	Conclusion
	Table Schema
	Trigger
	LLM Prompts Examples
	LLM Generated SQL Examples

