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Abstract

Data-driven learning of partial differential equations’ solution operators has recently emerged
as a promising paradigm for approximating the underlying solutions. The solution operators
are usually parameterized by deep learning models that are built upon problem-specific
inductive biases. An example is a convolutional or a graph neural network that exploits
the local grid structure where functions’ values are sampled. The attention mechanism,
on the other hand, provides a flexible way to implicitly exploit the patterns within inputs,
and furthermore, relationship between arbitrary query locations and inputs. In this work,
we present an attention-based framework for data-driven operator learning, which we term
Operator Transformer (OFormer). Our framework is built upon self-attention, cross-attention,
and a set of point-wise multilayer perceptrons (MLPs), and thus it makes few assumptions
on the sampling pattern of the input function or query locations. We show that the proposed
framework is competitive on standard PDE benchmark problems and can flexibly be adapted
to different types of grids. 1

1 Introduction

Many of the phenomena in different fields of science and engineering are modeled by Partial Differential
Equations (PDEs). Formulating and solving the governing PDEs help us understand, predict, and control
complex systems in physics, engineering, etc. Various numerical schemes approach the problem of solving
the PDEs via discretizing the solution space and solving a finite-dimensional problem. However, solving
complex spatiotemporal PDEs demands a high-resolution discretization in both time and space which is
computationally expensive.

A group of data-driven PDE solvers aim to directly learn the solution from the data observations without
any prior knowledge of the underlying PDE. These methods usually rely on a supervised deep learning
architecture which imposes an inductive bias that can suit the problem in hand. The use of convolutional
layers for structured grids (Khoo et al., 2021; Zhu & Zabaras, 2018; Bhatnagar et al., 2019; Pant et al., 2021),
and graph layers for learning unstructured local relations in a system (de Avila Belbute-Peres et al., 2020;
Iakovlev et al., 2021; Li & Farimani, 2022; Li et al., 2022; Ogoke et al., 2021) are just two instances of these

1Code is available at: https://github.com/BaratiLab/OFormer.
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models. Learning such function mappings, however, is restricted to the specific resolution and the geometry
observed in the training phase.

The pioneering work DeepONet (Lu et al., 2021a) introduces a new data-driven modeling paradigm that
aims to learn the solution operator of PDEs and provides a practical realization of the general universal
nonlinear operator approximation theorem (Chen & Chen, 1995). Concurrent work Graph Neural Operator
(Anandkumar et al., 2020) proposes another operator learning architecture that leverages learnable iterative
kernel integration. The promising features of data-driven operator learning, in particular the generalization
capability within a family of PDE and the potential adaptivity to different discretizations, have given rise to a
wide array of recent research works (Li et al., 2020b; 2021a; Wen et al., 2022; Rahman et al., 2022; Cao, 2021;
Kissas et al., 2022; Lu et al., 2022; Cai et al., 2021; Bhattacharya et al., 2021; Nelsen & Stuart, 2021; Gupta
et al., 2021). The training of data-driven operator can also be augmented with physics prior to regularize the
search space of optimal model, bridging the physics-informed machine learning (Raissi et al., 2019; Sun et al.,
2020) with data-driven operator learning (Wang et al., 2021a; Li et al., 2021b; Wang et al., 2021b).
In practice, the data-driven operators are trained based on the finite-dimensional approximation of the input
and output functions, where functions are sampled on some discretization grids. Many of the learned operators,
despite showing promising performance on solving PDEs, are limited to have the same discretizations for the
input and output (Anandkumar et al., 2020; Li et al., 2020b), fixed input grids (Lu et al., 2021a) or to have
equi-spaced grid points (Li et al., 2021a; Gupta et al., 2021; Cao, 2021). As stated in Cao (2021), attention
(Vaswani et al., 2017) can be viewed as certain types of learnable integral operators and its inference is
equivalent to calculating the integral using input points as the quadrature points, which poses few constraints
on the underlying discretization grid. Leveraging this property, we propose a flexible attention-based operator
learning framework. Concretely, our main contribution includes: (i) A cross-attention module that enables
discretization-invariant query of output function; (ii) A latent time-marching scheme that reduces time-
dependent PDE into latent ODE (ordinary differential equation) with a fixed time interval; (iii) A flexible
Transformer architecture that can take a varying number of input points and can handle both uniform and
non-uniform discretization grids.

2 Related works

Learned PDE Solvers In the past decade, there have been a number of studies on applying deep learning
architectures for solving PDEs (Lu et al., 2021b; Karniadakis et al., 2021; Brunton et al., 2020). Physics-
informed methods (Raissi et al., 2019; Sun et al., 2020; Sirignano & Spiliopoulos, 2018; E & Yu, 2018)
exploit the PDE supervision to approximate the solution (usually parameterized by a neural network) in an
aggregated space-time domain. They are accurate and generally mesh-agnostic, yet require retraining across
different instances of a PDE (e.g. change of coefficient). Without knowledge of the PDE, the solutions can
also be learned purely from the data. A common strategy for such task is to first spatially encode the data
and then use various schemes to evolve in time. Convolutional layers (Stachenfeld et al., 2022; Wang et al.,
2020; Bhatnagar et al., 2019; Kochkov et al., 2021), kernels (Saha & Mukhopadhyay, 2021), and graph-based
layers (de Avila Belbute-Peres et al., 2020; Iakovlev et al., 2021; Li & Farimani, 2022; Li et al., 2022) are
some of the common architectures for learning the spatial relations in a PDE. In this study, we show that
transformers can be pliable yet effective spatial encoders.

Time-marching in the latent space Learning the temporal component of the spatio-temporal PDEs can
be challenging. A common and straightforward approach is to follow an Encoder-Process-Decoder (EPD)
scheme to map the input solution at time t to the solution at next time step (Brandstetter et al., 2022;
Stachenfeld et al., 2022; Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020; Pant et al., 2021; Hsieh et al., 2019).
An alternative approach which can significantly reduce the computational complexity and memory usage
is to propagate the dynamics in the latent space (Lee & Carlberg, 2021; Wiewel et al., 2019). Therefore,
once the encoding from observation space to the latent space is done, the system can evolve in time using
Recurrent Neural Networks (RNNs) such as LSTM (Wiewel et al., 2019) or even linear propagators based
on the assumptions of learning Koopman operator (Morton et al., 2018; Li et al., 2020a; Lusch et al., 2018;
Takeishi et al., 2017; Pan & Duraisamy, 2020). In this work, we design a latent time-marching architecture
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that brings about scalability of the model’s attention encoder and allows the model to unroll for the future
time steps during training.

Neural Operators The pioneering work DeepONet (Lu et al., 2021a) introduces the first practical
realization of universal operator approximation theorem (Chen & Chen, 1995), which can further be integrated
with prior knowledge of the system (Wang et al., 2021a;b). In another group of works, the infinite-dimensional
solution operators are approximated by iterative learnable integral kernels Anandkumar et al. (2020). Such
kernel can be parameterized by message-passing (Gilmer et al., 2017) neural networks (Anandkumar et al.,
2020; Li et al., 2020b) or convolution in the Fourier domain (Li et al., 2021a). Kovachki et al. (2021) further
provide a theoretical analysis of the approximation capacity of kernel-integral-based learning framework.
Fourier Neural Operator (FNO) (Li et al., 2021a) and its variants (Li et al., 2021b; Guibas et al., 2022;
Tran et al., 2021) have shown promising results in various applications (Pathak et al., 2022; Wen et al.,
2022). These integral kernels can also be learned in the multiwavelet domain (Gupta et al., 2021; Tripura
& Chakraborty, 2022). Furthermore, other than Fourier bases or multiwavelet bases, the bases needed for
approximating the solution operator can be learned and composed via attention (Cao, 2021).

Transformer for physical system After the groundbreaking success in natural language processing
(Vaswani et al., 2017; Devlin et al., 2018), attention has also been demonstrated as a promising tool for
various other machine learning tasks (Dosovitskiy et al., 2021; Tunyasuvunakool et al., 2021; Veličković et al.,
2017). Following the success in these fields, several previous works (Geneva & Zabaras, 2022; Han et al.,
2022; Shao et al., 2022; Cao, 2021; Kissas et al., 2022) have explored using attention to model and simulate
physical system, which can generally be divided into two orthogonal lines. In the first group, attention layers
are used to capture the structures and patterns lie in the PDEs’ spatial domain (Cao, 2021; Kissas et al.,
2022; Shao et al., 2022). On the contrary, in the second group, the attention is used to model the temporal
evolution of the system while the spatial encoding is done by other mechanisms like CNNs or GNNs (Geneva
& Zabaras, 2022; Han et al., 2022). Our model lies in the former group where attention-based layers are used
for encoding the spatial information of the input and query points, while the time marching is performed in
the latent space using recurrent MLPs.

3 Method

3.1 Attention mechanism

Standard attention The standard attention (Vaswani et al., 2017; Bahdanau et al., 2014; Graves et al.,
2014; Luong et al., 2015) is an operation defined upon three sets of vectors, namely the query vectors {qj},
key vectors {kj}, and value vectors {vj}. Concretely, for each query qi, the corresponding output zi is
calculated as a weighted sum (assuming number of vectors in each set is n):

zi =
n∑

j=1
αijvj , αij = exp (h(qi,kj))∑n

s=1 exp (h(qi,ks)) . (1)

The most common choice for the weight function h(·) is the scaled dot-product (Vaswani et al., 2017):
h(qi,kj) = (qi · kj)/

√
d, with d being the channel of vectors qi and kj . The scaled dot-product can be

written in matrix representation as: Z = softmax
(
QKT /

√
d
)

V, where zi,qi,ki,vi are the i-th row vectors
of matrices Z,Q,K,V respectively. Due to the presence of the softmax, the multiplication QKT must be
evaluated explicitly, resulting in overall complexity of O(n2d), which is prohibitively expensive when applying
to long sequences.

Attention without softmax In natural language processing and computer vision tasks, the i-th row
vector of query/key/value matrices, qi/ki/vi, are usually viewed as the latent embedding of a token (e.g. a
word or an image patch). Other than the "row-wise" interpretation of attention, Cao (2021) proposes that
each column in the query/key/value matrices, can potentially be interpreted as the evaluation of a learned
basis function at each point. For instance, Vij (also the i-th element of the j-th column vector: (vj)i) can be
viewed as the evaluation of the j-th basis function on the i-th grid point xi, i.e. Vij = vj(xi), and similarly
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for the matrices Q,K (with each column represent the sampling of basis function qj(·), kj(·)). Facilitated by
the learnable bases interpretation, Cao (2021) proposes two types of attention that can be viewed as the
numerical quadrature of different forms of integrals:

Fourier type: (zi)j = 1
n

n∑
s=1

(qi · ks)(vj)s ≈
∫

Ω
κ (xi, ξ) vj(ξ)dξ, (2)

Galerkin type: (zj)i =
d∑

l=1

(kl · vj)
n

(ql)i ≈
d∑

l=1

(∫
Ω

(kl(ξ)vj(ξ))dξ
)
ql(xi), (3)

where Ω denotes the spatial domain that is discretized by n points {xi}n
i=1, and the dot product qi · ks

in equation 2 approximates the learnable kernel function κ (·, ·) at (xi, xj). The approximation capability
of Fourier type attention and Galerkin type attention are studied theoretically at (Kovachki et al., 2021;
Choromanski et al., 2020) and (Cao, 2021) respectively. Inspired by the Gram-Schmidt process, Cao (2021)
heuristically chooses layer normalization (Ba et al., 2016) to normalize qi,ks in equation 2 and kl,vj in
equation 3. But if we further exploit the basis function property of these column vectors, it is also reasonable
to impose non-learnable instance normalization (Ulyanov et al., 2016) on each column vector such that their
L2 norm equals to one, i.e.

∣∣|vj |
∣∣
2

= 1. In practice, we find this slightly improves the model’s performance,
and thus we adopt instance normalization throughout the model. Equipped with the normalization schemes,
equation 2 and equation 3 in matrix multiplication form write as:

Fourier type: Z = 1
n

Q̂K̂T V; Galerkin type: Z = 1
n

Q(K̂T V̂), (4)

where ·̂ denotes a column-wise normalized (via instance normalization) matrix. The above integral-based
attention mechanisms serve as simple but powerful building blocks for PDE operator learning model. The
softmax-free property allows both Fourier type and Galerkin type to be computed efficiently in the form
(omitting the normalization scheme): Z = Q(KT V)/n, since matrix multiplication is associative.

Cross-attention While the aforementioned attention mechanisms are flexible with respect to the dis-
cretization of input domain, the fact that Q,K,V are essentially different linear projections of the same input
feature embedding H makes the input H and output Z = Q(KT V)/n locked to the same fixed grid {xi}n

i=1.
To decouple the output domain from the input domain and allow for arbitrary query locations, we extend the
above attention mechanisms from self-attention to cross-attention, where the query matrix Q is encoded from
a different input. To be more specific, the i-th row vector qi in the query matrix Q is the latent encoding of
query point yi, where {yi}m

i=1 denotes the discretization of the output domain and is not necessarily same as
the input grid points {xi}n

i=1. Hence, leveraging the cross-attention mechanism, we can query at arbitrary
locations which are independent of the input grid points. If we adopt the learned bases interpretation from
previous section, the cross-attention mechanism can also be viewed as a weighted sum of three sets of basis
functions: {kl(·), vl(·), ql(·)}d

l=1 with kl(·), vl(·) defined on the input discretization grid D(x) : {xi}n
i=1 and ql(·)

defined on the query discretization grid D(y) : {yi}m
i=1, which serves as the finite-dimensional approximation

space’s basis for the final target function:

zs(yj) =
d∑

l=1

∑n
i=1 kl(xi)vs(xi)

n
ql(yj). (5)

If we drop the point-wise feed forward network (FFN) after the attention layer, which is a MLP with two
layers (omitting the bias term): x← σ

(
xW(1)) W(2), where W(1),W(2) ∈ Rd×d are learnable weight matrices

and σ(·) is a non-linear activation function, and then directly make zs(yj) as output, the cross attention in
the equation 5 is a special case of the universal operator approximator proposed in DeepONet (Lu et al.,
2021a) with

∑n
i=1 kl(xi)vs(xi)/n as the output of branch net and ql(yj) as the output of trunk net. But in

practice, we find that appending FFN after attention improves the model’s performance and a propagating
MLP is necessary for time-dependent PDEs (see Figure 2). Another notable difference is that the number of
parameters in the attention layer does not depend on the input’s discretization and thus it is applicable to
samples with varying grids without re-training. More broadly speaking, the query matrix Q, whose column
space is spanned by the learnable query basis functions {ql(·)}d

l=1, loosely resembles the induced points in Set
Transformer (Lee et al., 2018) and the latent array in Perceiver (Jaegle et al., 2021).
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Figure 1: Attention-based encoder architecture. Top row: Input encoder that encodes input function
information based on locations ({xi}n

i=1) where input function is sampled and the sampled function value.
Bottom row: Query encoder that encodes the coordinates of query locations ({yi}m

i=1) and uses encoded
coordinates to aggregate information from input encoding via cross-attention. Rotary positional encodings
Θ(·)(equation 9) are used in both self-attention and cross-attention.

3.2 Model architecture

The proposed model has an Encoder-Decoder architecture that is similar to the original Transformer (Vaswani
et al., 2017), where the input is first processed by several self-attention blocks and then attended to the
output. However, we only use cross-attention to derive the latent embeddings sampled on query locations
and then use recurrent MLPs to propagate dynamics instead of masked attention as in typical Transformer
decoder.

Encoder The encoder comprises three components (Figure 1), an input encoder ϕX (·) that takes the input
function’s sampling a(xi) and coordinates of sampling positions {xi}n

i=1 as input features, a query encoder
ϕY(·) that takes the coordinates of query locations {yi}m

i=1 as input features, and a cross-attention module to
pass system information from input locations to the query locations.

The input encoder first uses a point-wise MLP that is shared across all locations to lift input features into
high-dimensional encodings f (0) and the encodings are then fed into stacked self-attention blocks. The update
protocol inside each self-attention block is similar to the standard Transformer (Vaswani et al., 2017):

f (l′) = LayerNorm
(

f (l) + Attn(f (l))
)
, f (l+1) = LayerNorm

(
f (l′) + FFN(f (l′))

)
, (6)

where Attn(·) denotes the linear attention mechanisms discussed in the previous sub-section, LayerNorm(·)
denotes the layer normalization (Ba et al., 2016). When input and output data are not normalized, we drop
the LayerNorm to allow the scaling to propagate through layers.

The query encoder consists of a shared point-wise MLP, whose first layer is a random Fourier projection layer
(Tancik et al., 2020; Rahimi & Recht, 2007). The random Fourier projection γ(·) using Gaussian mapping is
defined as:

γ(Y) = [cos (2πYB), sin (2πYB)], (7)
where Y = [y1,y2, . . . ,yn]T , yi is the Cartesian coordinates of the i-th query point, B ∈ Rd1×d2 (with d1
the dimension of input coordinates and d2 the output dimension) is a matrix with elements sampled from
Gaussian distribution N (0, σ2) with predefined σ. The random Fourier projection γ(·) alleviate the spectral
bias of coordinate-based neural networks (Tancik et al., 2020; Mildenhall et al., 2020), which has also been
introduced into physics-informed machine learning in Wang et al. (2021c).
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Figure 2: Decoder and propagator architecture. Given the latent encoding, for steady state system, a
point-wise MLP is used to map the latent encoding z to the output function value. For time-dependent
system, a point-wise MLP with skip connection is used to march states temporally in the latent space.

At the cross-attention module, by attending the latent encoding of the last (L-th) attention layer’s output
f (L) of input function with the learned encoding z(0) of query locations, we pass the information of input
function to the query points. The cross-attention process is defined as:

z′ = z(0) + Cross-Attn(z(0), f (L)), z = z′ + FFN(z′). (8)

Compared to equation 6, we drop the LayerNorm at each sub-layer to preserve the scale (variance) of z(0).

Latent propagator for time-dependent system A direct way to approach the time-dependent problem
would be by extending the degrees of freedom and introducing temporal coordinates for each grid point as
Raissi et al. (2019), which requires the model to learn the entire space-time solution at once. As analyzed in
Krishnapriyan et al. (2021), for certain problems such as reaction-diffusion equation, this could lead to poor
performance. In addition, this usually requires the model to have larger number of parameters in order to
model the extra degree of freedom (Li et al., 2021a; Gupta et al., 2021).

Another direction would be using a time-marching scheme to autoregressively solve the entire state space
with a fixed time discretization (resembles the Method of lines (Schiesser, 1991)), which is adopted by many
neural-network based solvers as it is easier to train. A common architecture of learned time-marching solvers
is the Encoder-Processor-Decoder (EPD) architecture (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020;
Brandstetter et al., 2022; Stachenfeld et al., 2022), which takes state variable ut as input, project it into latent
space, then processes the encoding with neural networks and finally decodes it back to the observable space:
ût+∆t. Such model is trained by minimizing the per-step prediction error, with input ut and target ut+∆t

sampled from ground truth data. In fact, if we unroll the learned per-step solver fNN(·) to predict the full
trajectory (û1 = fNN(u0), û2 = fNN(û1), . . .), the unrolled solver can be viewed as a recurrent neural network
(RNN) with no hidden states, and thus the standard per-step training pipeline is essentially a recast of the
Teacher Forcing (Williams & Zipser, 1989). Therefore, the learned per-step solvers face similar problems as
RNNs trained with Teacher Forcing, the accumulated prediction error leads to the shift of the input data
distribution and thus makes model perform poorly. Such data distribution shift can be alleviated by injecting
noise during training (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020; Stachenfeld et al., 2022). Alternatively,
Brandstetter et al. (2022) propose to unroll the solver for several steps and let the gradient flow through the
last step to train the model on the shifted data. For operator learning problem where time horizon is fixed,
Li et al. (2021a) push this further by fully unrolling the trajectory during training. However, fully unrolled
training has a memory complexity of O(tn) (with t the length of time horizon and n the number of model
parameters), which can be prohibitively expensive if the model is large.
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Here we approach the space-time modeling as a sequence-to-sequence (Sutskever et al., 2014) learning task
and propose a recurrent architecture to propagate the state in the time dimension. Different from the standard
EPD model, we forward the dynamics in the latent space instead of the observable space, and thus encoder
only needs to be called once throughout the whole process, which reduces the memory usage and allows
scalable fully unrolled training. Given the latent encoding z from equation 8, we set it as the initial condition
z0 and recurrently forward the latent state with a propagator N(·) that predicts the residuals (He et al., 2015)
between each step: zt+1 = N(zt) + zt. There are many suitable choices for parametrizing the propagator (e.g.
self-attention, message-passing layer), but in practice, we found a point-wise MLP shared across all the query
locations and all the time steps suffice, which indicates that the our model can effectively approximate the
original time-dependent PDE with a fixed-interval ODE in the latent space.

After reaching target time step in the latent space, we use another point-wise MLP to decode the latent
encodings zt(x) back to the output function values u(x, t).

Relative positional encoding The attention mechanism is generally position-agnostic if no positional
information is present in the input features. Galerkin/Fourier Transformer (Cao, 2021) approaches this
problem by concatenating the coordinates into input features and latent embedding inside every attention
head, and adds spectral convolutional decoder (Li et al., 2021a) on top of the attention layers. Instead of using
convolutional architecture which is usually tied to the structured grid, we use Rotary Position Embedding
(RoPE) (Su et al., 2021) to encode the positional information, which is originally proposed for encoding
word’s relative position.

Given the 1D Cartesian coordinate xi of a point and its d-dimensional embedding vector qi ∈ Rd×1, the
RoPE ψ(·) is defined as:

ψ (qi, xi) = Θ (xi) qi, Θ (xi) = Diag(R1,R2, . . . ,Rd/2), (9)

where: Rl =
[
cos (λxiθl) − sin (λxiθl)
sin (λxiθl) cos (λxiθl)

]
, (10)

where Diag(·) denotes stacking sub-matrices along the diagonal, λ is wavelength of the spatial domain
(e.g. λ = 2048 for a spatial domain discretized by 2048 equi-distant points), θl is set to 10000−2(l−1)/d, l ∈
{1, 2, . . . , d/2} following Vaswani et al. (2017); Su et al. (2021). Leveraging the property of the rotation
matrix, the above positional encoding injects the relative position information when attending a query vector
qi with a key vector kj : ψ (qi, xi) · ψ (kj , xj) = (Θ(xi)qi) · (Θ(xj)kj) = qT

i Θ(xi − xj)kj . RoPE can be
extended to arbitrary degrees of freedom as proposed in (Biderman et al., 2021) by splitting the query and
key vectors. Suppose the spatial domain is 2D, the attention of query qi with coordinate xi = (αi, βi) and
key kj with xj = (αj , βj) write as:

ψ (qi,xi) · ψ (kj ,xj) =
ψ1

(
(qi):d/2, αi

)
· ψ1

(
(kj):d/2, αj

)
+ ψ2

(
(qi)d/2:, βi

)
· ψ2

(
(kj)d/2:, βj

)
,

(11)

where (qi):d/2 denotes the first d/2 dimensions of vector qi and (qi)d/2: denotes the rest d/2 dimensions,
similarly for kj , and ψ1(·), ψ2(·) is the 1D RoPE as defined in equation 9.

Training setting The general training framework of this work is similar to the previous data-driven
operator learning models (Gupta et al., 2021; Li et al., 2021a; Cao, 2021; Anandkumar et al., 2020; Lu et al.,
2021a). Given the input function a ∈ A, and target function u ∈ U , our goal is to learn an operator Gθ : A 7→ U .
The model parameter θ is optimized by minimizing the empirical loss Ea∼µ [L(Gθ(a), u)], where µ is a measure
supported on A, and L(·) is the appropriate loss function. In practice, we evaluate this loss numerically based
on the sampling of {a(j)

D(x), u
(j)
D(y)}

N
j=1 on discrete grid points D(x) : {xi}n

i=1, D(y) : {yi}m
i=1, and choose L(·) as

relative L2 norm: 1
B

∑B

j=1
||û(j)−u(j)||2

||u(j)||2
, given B samples with û(j) being the model prediction. Different from

several previous works (Li et al., 2021a; 2020b; Cao, 2021; Gupta et al., 2021), D(x), D(y) does not need
to be the same discretization of the PDE spatial domain Ω and can vary across different training samples
{a(j)

D(x), u
(j)
D(y)}.
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4 Experiment

In this section, we first present the benchmark results on the standard neural operator benchmark problems
from Li et al. (2021a) and compare our model with several other state-of-the-art operator learning frameworks,
including Galerkin/Fourier Transformer (G.T. / F.T.) from Cao (2021) and Multiwavelet-based Operator
(MWT) (Gupta et al., 2021). Then we showcase the model’s application to irregular grids where above
frameworks cannot be directly applied to, and compare model to a graph neural network baseline (Lötzsch
et al., 2022). We also perform an analysis on the model’s latent encoding. Finally, we present an ablation
study of key architectural choices. (The full details of model architecture on different problems and training
procedure are provided in the Appendix A. More ablation studies of hyperparameter choices are provided in
Appendix C.)

4.1 Benchmark problems

Below we provide a brief description of investigated PDEs. Full details of these equations’ definition and
dataset generation are provided in the Appendix D.

Problems on uniform grid The first kind of problems considered include 1D viscous Burgers’ equation, 2D
Darcy flow, and 2D imcompressible Navier-Stokes equation. In these problems, the data are represented on a
uniform equi-spaced grid, where discrete Fourier transformation (FNO, G.T./F.T.) and wavelet transformation
(MWT) can be efficiently applied to.

The objective solution operators G aimed to learn are defined as (T is the time horizon, u denotes solution
function of interest, a denotes the coefficient function):

Burgers’ : G : u(·, t)|t=0 7→ u(·, t)|t=1, (12)
Darcy flow: G : a 7→ u, (13)

Navier-Stokes: G : u(·, t)|t∈[0,10] 7→ u(·, t)|t∈(10,T ]. (14)

On Navier-Stokes equation, following prior work (Li et al., 2021a), we adopt 3 datasets NS1, NS2, NS3 with
different viscosities, and we generate a more challenging and diverse dataset (denoted as NS-mix) where ν is
not constant, and it is uniformly sampled: ν ∼ U([0.4, 1])× 10−4, corresponding to Reynolds numbers roughly
ranging from 200 to 500. For the size of each Navier-Stokes dataset, NS2-full contains 9800/200 (train/test)
samples; NS-mix is a larger dataset consisting of 10000/1000 samples; each of the rest datasets contains
1000/200 samples. For Burgers’ equation and Darcy flow, the dataset splitting is same as in Cao (2021).

Problems on non-uniform grid Other than uniform grid, the second kind of problems considered are
based on unstructured non-uniform grid. We first investigate the 2D Poisson equation of magnetic/electric
field on different geometries, the objective is to find the solution of field given boundary conditions and
source-terms. We use the shape extrapolation dataset from Lötzsch et al. (2022). The training set contains
grids of four shapes (square, circle with or without hole, L-shape) with 8000 samples, while testing set has
2000 samples consisting of U-shape grids that model has never seen during training. This experiment tests
model’s generalization capability to different solution domain. In addition, we study the 2D time-dependent
compressible flow around the cross-section of airfoils using the dataset from Pfaff et al. (2020). In this
problem, the underlying grid is highly irregular, as the distance between two closest points ranges from 2e− 4
to 3.5. The dataset contains 1000/100 sequences of different inflow speed (Mach number) and angles of
attack.

The objective solution operators G with respect to these problems are defined as:

Poisson: G : f 7→ u, u = 0 on ∂Ω, (15)
Airfoil: G : u(·, t)|t∈[0,0.576] 7→ u(·, t)|t∈(0.576,4.800], (16)
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where Ω is the solution spatial domain and f is the source term of the Poisson equation. For Poisson equation
we predict the field vector in addition to the scalar potential 2. For compressible flow we predict velocity,
density and pressure jointly.

4.2 Results and discussion

For benchmark results of all baselines, we report the evaluation results from original paper when applicable.
When not applicable, we train and evaluate the model following the suggested setting in the original paper,
and mark the results with "*". The best version of Galerkin/Fourier Transformer is reported for each problem.
Details of baseline models’ implementation and comparison of calculation time can be found in the Appendix
B.

Data settings Relative L2 norm
Case ν, T FNO-2D FNO-3D MWT G.T.* OFormer
NS1 1 × 10−3, 50 0.0128 0.0086 0.0062 0.0098 0.0104 ± 0.0005

NS2-part 1 × 10−4, 30 0.1559 0.1918 0.1518 0.1399 0.1755 ± 0.0059

NS2-full 1 × 10−4, 30 0.0834 0.0820 0.0667 0.0792 0.0645 ± 0.0011

NS3 1 × 10−5, 20 0.1556 0.1893 0.1541 0.1340 0.1705 ± 0.0007

NS-mix* [0.4, 1]× 10−4, 30 0.1650 0.1654 0.1267 0.1462 0.1402 ± 0.0016

# of parameters (M) 0.41/2.37 6.56 179.18 1.56 1.85

Table 1: Benchmark on 2D Navier-Stokes equation with fixed 64 × 64 grid. For large dataset (NS-mix) we
use a larger version of FNO-2D by increasing modes and width. We adopt Galerkin Transformer (G.T.) with
a larger hidden dimension (64 → 96) to match the size of other models.

Res. Relative L2 norm (×10−3)
FNO* FNO+* MWT F.T. OFormer

512 3.15 0.72 1.85 1.14 1.42 ± 0.03

2048 3.07 0.72 1.86 1.12 1.30 ± 0.07

8192 2.76 0.70 1.78 1.07 1.54 ± 0.10

Table 2: Benchmark on 1D Burgers’ equation with differ-
ent resolution. FNO uses ReLU (Nair & Hinton, 2010)
whereas FNO+ uses GELU. Both FNO variants remove
normalization compared to the original paper.

Res. Relative L2 norm (×10−2)
FNO G.T. OFormer

141 1.09 0.84 1.26 ± 0.03

211 1.09 0.84 1.28 ± 0.02

Table 3: Benchmark on 2D Darcy flow with
different resolution. MWT’s result is not re-
ported since its implementation requires reso-
lution to be power of 2 and thus it is trained
on a different data.

Performance on equi-spaced grid The comparison results with several state-of-the-art baselines are
shown in Table 1, 2, 3. We observe that for small data regime (NS2-part, NS3) and problems with relatively
smooth target function (viscid Burgers’, Darcy), OFormer generally does not show superiority over other
operator learning-frameworks. Architectures like spectral convolution (in FNO, Galerkin/Fourier Transformer)
are baked in helpful inductive bias when target is smooth and periodic. As shown in Table 2, equipped
with a smooth activation function, FNO+ outperforms all other methods significantly, as the target function
u(·, 1) is relatively smooth due to the presence of diffusion term, and has a periodic characteristic in the
spatial domain. For more complex instances like Navier-Stokes equation, we find that OFormer has strong
performance in data sufficient regime, where it is on par with MWT on NS2-full with substantially less
parameters. This highlights the learning capacity of attention-based architecture, which leverages flexible
basis learned from data. Moreover, our model performs similarly under different resolutions, indicating its
robustness to different resolution. (The temporal error trend can be found in Appendix C. Contour plot of
the prediction and corresponding error can be found in Appendix E.)

2The electric field E is defined as the negative gradient of electric potential (ϕ): E = −∇ϕ. For magnetic field B,
it is defined as the curl of magnetic potential A: B = rotA. In this problem Ax = Ay = 0, and therefore magnetic
potential reduces to: Bx = ∂Az/∂y,By = −∂Az/∂x. In the model we use a separate head to predict these fields.
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Training samples Testing samples

Figure 3: Visualization of train-
ing/testing samples in 2D Poisson
problem. Testing set contains new
geometries that never appeared in
the training set.

Mesh
aug. Model

Mean squared error (×10−3)
Electric Magnetic

Potential Field Potential Field

No OFormer 0.174 ± 0.083 1.690 ± 0.201 0.138 ± 0.021 1.470 ± 0.172

GNN 0.327 2.723 0.161 2.640

Yes OFormer 0.019 ± 0.004 0.328 ± 0.025 0.016 ± 0.002 0.195 ± 0.009

GNN 0.006 1.821 0.006 1.338

Table 4: Benchmark on electrostatics and magnetostatics’ Poisson equa-
tion. The train/evaluation protocol is adopted from Lötzsch et al. (2022).
Mesh augmentation comprises a set of random transformation on the
training meshes, including varying node density and size of hole/cutout.

Prediction Reference ErrorPrediction Reference Error
(b) Airfoil(a) Electric field

Figure 4: Samples of model’s prediction, reference simulation result and absolute error on: (a) Electric potential and
corresponding field; (b) Velocity field around airfoil, top/bottom: x/y component.

Application to irregular grids The comparison between OFormer and GNN baseline on the 2D Poisson
problem is shown in Table 4. Both OFormer and GNN have the capability to learn and extrapolate to new
geometries with reasonable accuracy under mesh augmentation. However, we can observe that OFormer
outperforms GNN by a margin when no mesh augmentation is applied. This highlights an essential difference
in the learning mechanism between OFormer and local graph convolution-based architecture. GNN that
exploits local mesh information such as edge distance and node connection is more prone to overfit on the
training geometries, while OFormer, leveraging global attention and not using any explicit graph information,
is more robust under the change of local mesh topology. Other than grid with relatively uniform point
distribution, OFormer is also applicable to highly irregular meshes. We showcase that OFormer is able to
predict the temporal evolution of compressible flow around the airfoil (exemplar visualization is shown in
Figure 4, more visualization results can be found in Appendix E). The test root mean squared error (at
region closed to airfoil) of the predicted momentum is 15.469±0.074 (relative error: 8.17±0.06%).

Another important property of OFormer is that it can handle variable number of input/query points with the
same set of weights. Here we showcase an application of such property. As shown in Figure 5, the model
can still predict reasonably accurate results on a full-resolution output grid based on sparse input. The
input is generated by randomly sampling 25% of the grid points in the spatial domain, which is 150% of
the maximum dropping ratio during training3. (More quantitative results on varying sampling grids can be
found in Appendix C.)

3During training, we randomly drop some of the input points with a ratio of r ∼ U([0, 0.5]), but still query at full resolution
and train on full resolution.
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T=0 Prediction: T=20 Ground truth: T=20

Randomly placed sensors Sensors’ observation Prediction: T=20

(a)

(b)

Error

Error

Figure 5: (a) Model’s prediction on dense uniform input points; (b) Model’s prediction on sparse randomly
sampled input points (25% of all grid points).

Learned spatio-temporal representation To inspect OFormer’s ability to learn meaningful represen-
tations of the PDEs, we perform an analysis on our model trained on a dataset of Navier-Stokes equation
where each sample has a random coefficient of log(ν) ∼ U([−3,−5.3]), which resulted in ν falls in the range
of (5e− 6, 1e− 3). The model is trained to predict the future time steps, where it has never been informed of
the coefficient values. After training, we examine the latent space of the input encoder.

A single d-dimensional representation vector f (k)
avg of k-th sample is obtained by applying average pooling on

the encodings f (k)
avg = Avg({f (k)

i }
n
i=1) over the input points. First, we project the representation vectors of all

training samples into a 2-dimensional space using Principal Component Analysis (PCA). We can observe the
evident trend of colors w.r.t. ν in Figure 6(a). Furthermore, we train a linear regression model on the latent
vectors from the training samples, and then we use it to predict the ν on testing samples. Figure 6(b) shows
that a linear model can effectively map the latent representations to the viscosity coefficients which indicates
the model’s capability of finding compact representations such that a nonlinear mapping has become linear.

Avg.

Training samples

Avg.

Trained 
Encoder

Testing samples

Train Linear Regression

Trained 
Encoder

Predict with learned model
(a) (b)

Figure 6: Learned representations of the model trained on Navier-Stokes equations with different viscosity
coefficients. (a) The 2-dimensional PCA on the latent vectors. (b) A linear regression model trained on the
latent vectors of training samples can accurately predict ν of testing samples.
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4.3 Ablation study

(b)(a)

Figure 7: Ablation study on (a) NS2-full dataset; (b) 1D Burgers’ equation with resolution 2048.
Light color denotes option we adopted.

Reference Use RoPE No RoPE

T=11
T=20

T=30

Use RoPE No RoPE

Vorticity Error

Figure 8: Influence of positional encoding, the visualized sequence is randomly chosen. Error is measured by
absolute error.

We study the influence of the following factors on the model’s performance: (i) The type of attention; (ii)
Model’s scaling performance; (iii) Positional encoding; (iv) Different normalization methods. The quantitative
ablation results are shown in Figure 7.

First of all, we find that the performance of a specific type of attention is problem-specific, which signifies
the importance of choosing normalization targets (query/key or key/value). In addition, we observe that on
a scale-sensitive problem (data are not normalized for Burgers’ equation to preserve the energy decaying
property), InstanceNorm which normalizes each column vector ||vj ||2 = 1, performs better than LayerNorm,
further facilitating the bases interpretation of two linear attention mechanisms. Scaling up the model’s size
(increasing the hidden dimension) can benefit the model’s performance in a data sufficient regime. On NS-full
dataset, the larger version of OFormer pushes the previous best result from 0.0667 (Gupta et al., 2021) to
0.0625. Lastly, we find that if RoPE is removed and replaced by concatenating coordinates into query and key
vectors (after projection), the model’s performance deteriorates significantly. As shown in Figure 8, without
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Rotary Position Embedding (RoPE), the model’s prediction becomes relatively blurrier and generally has
larger error. This signifies the importance of relative position information in PDE operator learning.

5 Conclusion

In this work, we introduce OFormer, a fully point-based attention architecture for PDEs’ solution operator
learning. The proposed model shows competitive performance on PDE operator learning and offers flexibility
with input/output discretizations. We also showcase that a trained data-driven model can learn to generalize to
diverse instances of PDEs without inputting system parameters (NS-mix) and learn meaningful representation
for system identification. The major limitation is that given few assumptions are made on the grid structure,
the model needs sufficient data to reach its optimal performance, and linear attention mechanism is still
relatively computationally expensive for higher resolution grids. In addition, just like most of the other
data-driven models, the accumulated error of the model’s prediction on long-term transient phenomena such
as turbulent fluids is unneglectable, unlike numerical solvers which are usually guaranteed to be stable.
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Appendix Summary

• Section A: Model implementation details;
• Section B: Baseline details;
• Section C: Further ablation study;
• Section D: Dataset details;
• Section E: Further results and visualization;

A Model implementation details

Below we provide the full implementation details of models used in different problems. All the models are
implemented in PyTorch (Paszke et al., 2019).

For notation, we use [d1, d2] to denote a linear/hidden layer with input dimension d1 and output dimension
d2, which corresponds to nn.Linear(d1, d2) in PyTorch. For attention layer, d× h indicates that there are h
attention heads each with a dimension of d.

A.1 Hyperparameter for equi-spaced grid problem

Problem Input encoder
top SA hidden dim SA FFN # SA Block Input encoder

bottom
1D Burgers [2, 96] 96×1 [96, 192, 96] 4 [96, 96]

2D Darcy flow [3, 96] 96×4 [96, 192, 96] 4 [96, 256]
2D Navier-Stokes [12, 128] 128×1 [128, 256, 128] 5 [128, 192]

Table 5: Architecture of input encoder. SA denotes self-attention, FFN denotes feed forward network.

Problem Query encoder
top CA hidden dim CA FFN Query encoder

bottom
1D Burgers [1, 96, 96] 96×8 [96, 192, 96] -

2D Darcy flow [2, 256, 256] 256×4 [256, 512, 256] -
2D Navier-Stokes [2, 192, 192] 192×4 [192, 384, 196] [192, 384]

Table 6: Architecture of query encoder. CA denotes cross-attention.
Problem Propagator Decoder Total # of params (M)

1D Burgers [96, 96, 96, 96]×3 [96, 48, 1] 0.67
2D Darcy flow - [256, 128, 64, 1] 2.51

2D Navier-Stokes [384, 384, 384, 384] [384, 192, 96, 1] 1.85

Table 7: Architecture of propagator and decoder. The number of parameters is the total number including
input/query encoders. For 1D Burgers’ equation we use 3 unshared MLPs for propagating the dynamics.

A.2 Hyperparameter for irregular grid problem

We use GELU (Hendrycks & Gimpel, 2016) as activation function for propagator and decoder, and opt for
Gated-GELU (Dauphin et al., 2016) for FFN. On 1D Burgers, we train the model for 20k iterations using a
batch size of 16. On Darcy flow, we train the model for 32K iterations using a batch size of 8. For small
dataset on Navier-Stokes (consisting of 1000 training samples), we train the model for 32k iterations using
a batch size of 16, and 128k iterations for large dataset (consisting of roughly 10k training samples). On
Electrostatics/Magnetostatics we train the model for 32k iterations using a batch size of 16. On Airfoil we
train model for 50k iterations using a batch size of 10.
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Problem Input encoder
top SA hidden dim SA FFN # SA Block Input encoder

bottom
2D Electrostatics [11, 64, 64] 64×1 [64, 128, 64] 2 [64, 64]

2D Magnetostatics [11, 96, 96] 96×1 [96, 128, 96] 2 [96, 96]
2D Airfoil [6, 128, 128]* 128×1 [128, 256, 128] 5 [128, 128]

Table 8: Architecture of input encoder. The input of 2D airfoil contains an additional time dimension of
length tin, so the very top layer is a Conv2D layer with kernel size (tin, 1) stride (tin, 1) and no padding.

Problem Query encoder
top CA hidden dim CA FFN SA hidden dim Query encoder

bottom
2D Electrostatics [3, 64, 64] 64×4 [64, 128, 64] 64×1 -

2D Magnetostatics [3, 96, 96] 96×4 [96, 192, 96] 96×1 -
2D Airfoil [2, 128, 128]* 128×4 [128, 256, 128] 128×1 [128, 256]

Table 9: Architecture of query encoder. On non-uniform grid, we add a self-attention layer after cross-attention
layer. For 2D airfoil, we introduce a learnable embedding for each node type (boundary, open area, airfoil)

Problem Propagator Decoder Total # of params (M)
2D Electrostatics - [64, 32, 32, 3] 0.17

2D Magnetostatics - [96, 48, 48, 3] 0.31
2D Airfoil [384, 256, 256, 256] [256, 128, 128, 4] 1.35

Table 10: Architecture of propagator and decoder. The number of parameters is the total number including
input/query encoders. For airfoil, before inputting into propagator block, node type embedding are concate-
nated together with other features.

For training on the 2D Navier-Stokes and Airfoil problem, we adopt a curriculum strategy to grow the
prediction time steps. During the initial stage, instead of predicting all the future states towards the end of
time horizon, e.g. ut0 , ut1 , . . . , uT , we truncate the time horizon with a ratio γ < 1 (heuristically we choose
γ ≈ 0.5), train the network to predict ut0 , ut1 , . . . , uγT . The motivation is that at the initial stage the training
dynamics is less stable and gradient is changing violently, we truncate the time horizon to avoid stacking very
deep recurrent neural network and thus alleviate the unstable gradient propagation. In practice, we found
this makes the training more stable and converge slightly faster.

As suggested in (Cao, 2021), for scaling-sensitive problem - the Burgers’ equation, the initialization of the
query/value projection layer has a great influence on the model’s performance. We use orthogonal initialization
(Saxe et al., 2013) with gain 1/d and add an additional constant 1/d to the diagonal elements (with d being
the dimension of latent dimension at each head). The orthogonal weights have the benefit of preserving the
norm of input and we found that with proper scaling it provides better performance than standard Xavier
uniform initialization. Please refer to the Appendix C for the study on the influence of initialization.

For most of the problems we studied, we use instance normalization in the attention and observe slight
improvement compared to layer normalization. However, for 2D Electrostatics/Magnetostatics’ Poisson
equation, we find that instance normalization is unstable as the grid points in this problem are much fewer
(60 - 250) than other problems, so we adopt layer normalization for this problem.
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B Baseline details

We use the open-sourced official implementation of Fourier Neural Operator (FNO)4 (Li et al., 2021a),
Multiwavelet Operator (MWT)5 (Gupta et al., 2021) and Galerkin/Fourier Transformer (G.T./F.T.)6 (Cao,
2021) to carry out the benchmark. The experiments on these baselines are carried out following the settings
in the official implementation with minimal changes.

For FNO, when applying to 2D Navier-Stokes problem with relatively large number of data samples, we
increase the number of modes in Fourier Transformation to 12 and increase the width (hidden dimension of
network) to 32. This notably improves FNO-2D’s performance. For G.T./F.T., on 2D Navier-Stokes problem
we increase the hidden dimension size from 64 to 96, and extend the training epochs from 100 to 200 (150 on
large dataset with 10000 training samples).

Below we provide a computational benchmark of different models’ training and inference efficiency on 2D
Navier-Stokes equation. The benchmark was conducted on a RTX-3090 GPU using PyTorch 1.8.1 (1.7 for
MWT) and CUDA 11.0. The number of training samples is 10000, with time horizon T = 30, and the batch
size is set to 10.

Model Iters / sec Memory (GB) # of params (M)
FNO-2D 9.71 0.33 2.37
FNO-3D 10.74 0.42 6.56
MWT 1.67 10.95 179.18
G.T. 1.79 16.65 1.56

OFormer 1.89 15.93 1.85

Table 11: Training computational cost of different models.

Model OFormer G.T. FNO-2D FNO-3D MWT Pseudo-spectral
Fine Coarse

Time (sec) 2.32 3.22 0.58 0.50 2.21 5735.74 3510.97

Table 12: Inference computational cost of different models and ground truth numerical solver. The time
indicates how long does it take for each model to finish simulating 200 sequences (data processing time is
excluded). The pseudo-spectral method is taken from (Li et al., 2021a), which is implemented in PyTorch.
Fine grid has a resolution of 256 × 256 while coarse grid has a resolution of 64 × 64.

Note that as many traditional numerical solvers do not support GPU or not optimized for GPU computation,
and they can trade-off accuracy for faster runtime (e.g. adopting a coarse grid and time step), so it is hard to
conclude the exact acceleration of learned solvers on different problems, but in general we can observe that
for time-dependent system learned solvers are highly efficient as they can tolerate a very large time step size
(usually 3-4 orders of magnitudes compared to solver).

C Further ablation study

In this section we present further ablation study for the model.

Sparse reconstruction and prediction We study the model’s performance under different discretization
settings. At the training stage, if some of the input points (with probability p = 0.2 and dropping ratio
r ∼ U([0, 0.5])) are randomly dropped, the model’s performance are observed to deteriorate on most of
the datasets. This indicates that while attention is flexible with respect to the input discretization, its
best performances are usually obtained by exploiting the very specific grid structures. But for dataset that
contains more diverse system parameters, like NS-mix and NS-mix2, the random dropping has little influence

4https://github.com/zongyi-li/fourier_neural_operator
5https://github.com/gaurav71531/mwt-operator
6https://github.com/scaomath/galerkin-transformer
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on model’s performance. While models trained with random dropping usually tend to perform worse than
models trained with fixed grid points, they are much more robust on irregular discretization as shown in the
Table 14 and can still generate reasonable prediction based on 25% of the input points.

Dataset No random drop Random drop Performance diff.
NS1 0.0104 0.0133 0.0029 (27.9%)

NS2-part 0.1702 0.1773 0.0071 (4.2%)
NS2-full 0.0646 0.0672 0.0026 (4.0%)

NS3 0.1697 0.1747 0.0050 (2.9%)
NS-mix 0.1400 0.1413 0.0013 (0.9%)

1D Burgers 0.00126 0.00142 0.00016 (12.7%)

Table 13: Influence of randomly dropping some input grid points during the training process. No random
drop indicates during training input and output grids are fixed at 64 × 64; random drop indicates that some
are the input grid points are randomly dropped during training, while output grid is still fixed at 64 × 64.
Error is measured by relative L2 norm. The resolution of Burgers’ equation is 2048.

Training strategy All 95% 75% 50% 25%
Random drop 0.0672 0.0687 0.0772 0.0939 0.1294

No random drop 0.0646 0.0795 0.1293 0.2065 0.3774

Table 14: Performance of models on NS2-full’s test set with randomly sampled input points. Percentage on
the top row indicates the ratio of sampled points’ amount with respect to total number of all points. Error is
measured by relative L2 norm on comparing full-resolution (64 × 64) prediction with ground truth.

Influence of initialization On Burgers’ equation, to emulate the energy decaying scheme and preserve
the magnitude of how much the energy has decayed, no data normalization or normalization layer (except for
the instance normalization inside every attention layer) is used. While this improves model’s performance,
it also makes the model very sensitive to the initialization of projection matrix inside each attention layer,
especially for the matrix where no instance normalization is applied (for Fourier type attention, it’s the value
matrix; for Galerkin type attention, it’s the query matrix).

Figure 9: Influence of different initialization on scaling sensitive problem (1D Burgers’ equation), using
Fourier-type attention.

We modulate the initialization process of the weight of query (or value if using Fourier type attention)
projection matrices (W(q) ∈ Rd×d) in Galerkin type attention as:

W(q) = σB + δI, (17)
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where σ is a scaling factor which we set to 1/d, B is the original weight matrix (initialized either via orthogonal
initialization (Saxe et al., 2013) or Xavier uniform (Glorot & Bengio, 2010)), and similar to Cao (2021) we
add diagonal bias δI to the matrix. The orthogonal initialization initializes a weight matrix that is norm
preserving and projects the input feature vectors onto orthogonal embedding vectors. As shown in Figure 9,
due to presence of skip connection: z′ = z + Attn(z) and there is no normalization layer, both initialization
methods blow up and have much worse performance when no scaling is applied. Orthogonal initialization
tend to perform the best when both scaling (set gain to 1/d) and diagonal bias are applied.

Influence of data OFormer’s performance is highly correlated with the amount of data available, especially
for relatively complicated problem like Navier-Stokes equation. As shown in Figure 10, the performance of
the trained OFormer improves almost linearly as data size grow exponentially. At low data regime (500-5000),
OFormer benefits significantly from increasing the data amount. This indicates that data is crucial for
OFormer to unlock its optimal approximation power and also demonstrates OFormer’s strong capacity to
assimilate large data. However, this also hints a potential bottleneck of OFormer that it might not have
satisfactory performance when there is limited data.

Figure 10: Performance of OFormer on NS2 when trained with different amount of data.

(a) Basis learned with a MLP that does not contain any transformation on the top layer.

(b) Basis learned with a MLP that has RFF on the top layer.

Figure 11: Visualization of bases learned (the output of coordinate-based network in the decoder part) on 2D
Darcy flow. The visualized bases are randomly chosen.

Influence of Random Fourier Feature We study the influence of Random Fourier Features (RFF)
(Tancik et al., 2020; Rahimi & Recht, 2007) on 3 different problems - 1D Burgers, 2D Darcy flow and
Navier-Stokes. As shown in Figure 12, applying RFF to the input coordinates boosts the performance on all
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three problems. We hypothesize the main reason is the original MLP tends to learn a set of bases with lower
frequency while RFF broadens the spectrum of these earned bases (Tancik et al., 2020). As an example,
Figure 11 reveals that without RFF, learned bases have a relatively smoother pattern than those with RFF.

(a) Performance on Burgers’ equation
with 2048 resolution.

(b) Performance on Darcy flow with
141× 141 resolution.

(c) Performance on NS2-full.

Figure 12: Ablation on the influence of RFF.

(a) Error trend on NS1. (b) Error trend on NS2-part.

(c) Error trend on NS2-full. (d) Error trend on NS3.

Temporal trend of error We investigate the temporal trend of OFormer’s prediction error on time-
dependent system (Figure 13) by computing the mean error of model’s prediction across all test sequences
at a particular time step. In general, we observe that the error will accumulate exponentially as time grew.
The compressible flow’s error (Figure 13f) exhibits some levels of periodicity due to the intrinsic periodic
property of the flow. Increasing the number of training samples alleviate the error, but does not change the
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(e) Error trend on NS-mix. (f) Error trend on Compressible flow around airfoil.

Figure 13: Error trend on different time-dependent systems.

exponential trend. How to alleviate the compounding prediction error for neural operator/PDE solver can be
an interesting and important future venue.

D Dataset details

D.1 Data generated on equi-spaced mesh

Following datasets7 are used as benchmark in Li et al. (2021a); Cao (2021); Gupta et al. (2021), where the
data is generated using equi-spaced simulation grid, and then downsampled to create dataset with different
resolution.

Burgers’ Equation The nonlinear 1D Burgers’ equation with the following form is considered:

∂tu(x, t) = −u∂xu(x, t) + ν∂xxu(x, t), x ∈ (0, 1), t ∈ (0, 1], ν > 0,
u(x, 0) = u0(x),

(18)

where ν is viscosity coefficient, the equation is under periodic boundary conditions, and initial condition u0(x)
sampled from Gaussian Random Field prior. The viscosity coefficient is set to 0.1. The learning objective is
an operator mapping from initial condition u0(x) to the solution at time t = 1, i.e., G : u0 7→ u(·, 1). The data
is generated via a split step method on 8192 resolution grid. At each time step, the state of the system is
first advanced with the diffusion term and then the convection term (both calculated via Fourier transform),
using the forward Euler scheme.

Darcy Flow The steady-state 2D Darcy flow equation considered here takes the form:

−∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2,

u0(x) = 0, x ∈ ∂(0, 1)2,
(19)

where f(x) is the forcing function (set to constant 1) and we aim to learn the operator mapping diffusion
coefficient a(·) to the solution u(·), i.e., G : a 7→ u. The coefficient function is sampled from a Gaussian
Random Field prior with zero Neumann boundary conditions on the Laplacian kernel of the field. The data
is generated via second-order finite difference solver on a 421 × 421 resolution grid.

7Dataset and numerical solver courtesy: https://github.com/zongyi-li/fourier_neural_operator
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Navier-Stokes Equation The vorticity form of 2D Navier Stokes equation for the viscous, incompressible
fluid reads as:

∂tω(x, t) + u(x, t) · ∇ω(x, t) = ν∆ω(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ],
∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ (0, T ],

ω(x, 0) = ω0(x), x ∈ (0, 1)2,

(20)

where ω is vorticity, u represents velocity field, and ν is the viscosity, source term is set as: f(x) =
0.1 (sin(2π(x1 + x2)) + cos(2π(x1 + x2))), and initial condition ω0(x) sampled from a Gaussian random field.
The equation is under periodic boundary conditions. The goal is to learn an operator mapping the initial
states of the vorticity field to the future time steps, i.e., G : ω(·, t)|t∈[0,10] 7→ ω(·, t)|t∈(10,T ]. Generally, lower
viscosity coefficients ν result in more chaotic dynamics and makes the learning more challenging.

The data is generated by solving the stream-function (ψ : u = ∇ × ψ) formulation of above equation using
pseudo-spectral method on a 256 × 256 grid. At each time step, the stream function is first calculated
by solving a Poisson equation (∇2ψ = −ω). Then the non-linear term is calculated by differentiating
voriticity in the Fourier space, dealiased and then multiplied with velocities in the physical space. Lastly, the
Crank-Nicolson scheme is applied to update the state.

D.2 Data generated on non-equi-spaced mesh

Poisson equation The 2D Poisson equation for electrostatics and magnetostatics are defined as:

Electric: − ∇2U(x) = ρ(x)
ϵ(x) , x ∈ Ω

Magnetic: − ∇2Az(x) = µ(x)Iz(x), x ∈ Ω
(21)

where ρ is the charge density, ϵ is the permittivity of the material, U is the electric potential, µ is the
permeability of the material, Iz is the z component of current density vector and Az is the z component
of magnetic potential. The goal is to learn the solution operator of the Dirichlet boundary value problem:
G : {ρ, ϵ} 7→ U (U(x) = c for x ∈ ∂Ω) for electrostatics and G : {Iz, µ} 7→ Az (Az(x) = c for x ∈ ∂Ω) for
magnetostatics. In the problem we studied, ϵ(·), µ(·) are held constant.

The data is generated by solving the above equation using finite element method implemented with FEniCS
library (Alnæs et al., 2015) 8. The element used is a quadratic triangle element. We use the pre-generated
data from Lötzsch et al. (2022) for experiment.

Euler equation of compressible flow The Euler equation of compressible flow takes the form:
∂tρ+ ∇ · (ρu) = f1,

∂t(ρu) + ∇ · (ρu ⊗ u + pI) = f2,

∂t(ρE) + ∇ · (ρEu + pu) = f3,

ρ := ρ(x, t),u := u(x, t), p := p(x, t),
x ∈ Ω, t ∈ [0, T ],

(22)

where ρ is the density, u is the velocity field, p is the pressure, E is the total energy per unit mass (which
can be closed via p = (γ − 1)ρ [E − 0.5(u · u)]), and f1, f2, f3 are generic source terms. No-penetration
condition is imposed at the airfoil. The solution operator of interest is: G : {u, ρ, p}|x∈Ω,t∈[0,0.576] 7→
{u, ρ, p}|x∈Ω,t∈(0.576,4.800].

The dataset is generated by solving the above equation using finite volume method built in the SU2 library
(Palacios et al., 2013). We use the pre-generated dataset9 from Pfaff et al. (2020) to carry out the experiment.
Note that different from Pfaff et al. (2020), we formulate this problem as a non-Markovian initial value
problem and use a much large time step size (∆t = 0.192). In Pfaff et al. (2020), the learned solver is designed
to learn the mapping: ut 7→ ut+∆t with ∆t = 0.008 and then rollout the simulation with a Markovian setting.

8Dataset and numerical solver courtesy: https://github.com/merantix-momentum/gnn-bvp-solver
9Dataset courtesy: https://github.com/deepmind/deepmind-research/tree/master/meshgraphnets
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E Further results and visualization

In this section we present the visualization of model’s prediction on different problems. All error plots are
based on point-wise absolute error.

Figure 14: Model’s prediction on 1D Burgers’ equation, samples are randomly selected from test set. Green
dotted lines denote the ground truth, and red lines denote model’s prediction.
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Figure 15: Model’s prediction on 2D Darcy flow, samples are randomly selected from test set.
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Figure 16: Model’s prediction on NS1’s test set (ν = 1e− 3), with a Reynolds number around 20.
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Figure 17: Model’s prediction on NS2-full (ν = 1e− 4), with a Reynolds number around 200.
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Figure 18: Model’s prediction on NS3 (ν = 1e− 5), which has a Reynolds number around 2000.

30



Published in Transactions on Machine Learning Research (April/2023)

Velocity-x

Velocity-y

Pred.

Ref.

Pred.

Ref.

T=1.92s 2.88s 3.84s 4.8s

Err.

Err.

31



Published in Transactions on Machine Learning Research (April/2023)

Velocity-x

Velocity-y

Pred.

Ref.

Pred.

Ref.

T=1.92s 2.88s 3.84s 4.8s

Err.

Err.

32



Published in Transactions on Machine Learning Research (April/2023)

Velocity-x

Velocity-y

Pred.

Ref.

Pred.

Ref.

T=1.92s 2.88s 3.84s 4.8s

Err.

Err.

Figure 19: Model’s prediction of the compressible flow around airfoil. The test root mean squared error of
predicted momentum is 15.477 at plotted region (multiplying velocities with density on each node).
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Figure 20: Model’s prediction (interpolated from non-uniform grid points): (a) potential; (b) vector field’s x
component; (c)vector field’s y component.
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