Under review as a conference paper at ICLR 2026

RANGER: REPOSITORY-LEVEL AGENT FOR
GRAPH-ENHANCED RETRIEVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

General-purpose automated software engineering (ASE) includes tasks such as
code completion, retrieval, repair, QA, and summarization. These tasks require a
code retrieval system that can handle specific queries about code entities, or code
entity queries (for example, locating a specific class or retrieving the dependen-
cies of a function), as well as general queries without explicit code entities, or
natural language queries (for example, describing a task and retrieving the cor-
responding code). We present RANGER, a repository-level code retrieval agent
designed to address both query types, filling a gap in recent works that have fo-
cused primarily on code-entity queries. We first present a tool that constructs a
comprehensive knowledge graph of the entire repository, capturing hierarchical
and cross-file dependencies down to the variable level, and augments graph nodes
with textual descriptions and embeddings to bridge the gap between code and
natural language. RANGER then operates on this graph through a dual-stage re-
trieval pipeline. Entity-based queries are answered through fast Cypher lookups,
while natural language queries are handled by MCTS-guided graph exploration.
We evaluate RANGER across four diverse benchmarks that represent core ASE
tasks including code search, question answering, cross-file dependency retrieval,
and repository-level code completion. On CodeSearchNet and RepoQA it outper-
forms retrieval baselines that use embeddings from strong models such as Qwen3-
8B. On RepoBench, it achieves superior cross-file dependency retrieval over base-
lines, and on CrossCodeEval, pairing RANGER with BM25 delivers the highest
exact match rate in code completion compared to other RAG methods.

1 INTRODUCTION

Retrieving relevant code snippets, functions, and classes from large repositories is central to modern
software engineering, as the quality of retrieved context underpins downstream tasks for Al agents
and large language models, including code generation, patch generation, automated program re-
pair, and intelligent code completion. While retrieval over natural language has seen rapid progress
(Karpukhin et al., [2020; [zacard et al., [2022)), code retrieval remains substantially more challenging.
Unlike natural language, code often contains long-range and multi-hop dependencies (Allamanis
et al.| [2018a), where the semantics of a program may depend on variables, function calls, or im-
ports that appear far apart in the source. These properties render simple flat indexing insufficient
for code retrieval, motivating the use of graph databases (Liu et al., 2024d) and multi-hop reasoning
to capture cross-file relationships, call graphs, and dependency chains (Guo et al.l [2022; [Ye et al.,
2022).

An additional challenge in code retrieval arises from query diversity. Code-entity queries ask ques-
tions about specific code-entities (e.g., “What are the dependencies of Calculator class?”). In
contrast, natural language queries, describe behaviors or constraints without naming symbols (e.g.,
“Where do we implement addition?”). Natural language queries (Mastropaolo et al.| [2021; |Zhang
et al.l 2022) are particularly difficult due to the semantic gap between natural and symbolic lan-
guages (Husain et al.,[2019;|Gu et al., | 2021b; |Liu et al., 20241; |L1 et al., 2025), as well as embedding
anisotropy and hubness in code representations (Li et al., 2022; (Gong et al., [2023).

Graph retrieval offers a promising direction by enabling multi-hop traversal while preserving hi-
erarchical relationships, in contrast to flat index RAG (Zhong et al., |2024; Wang et al., 2023a).

Under review as a conference paper at ICLR 2026

By modeling the repository as a graph, where nodes correspond to code entities and edges encode
hierarchical or dependency links, GraphRAG can resolve queries that require following transitive
dependencies, such as tracing a function call across multiple intermediate layers or modules. How-
ever, current graph-based code retrieval methods tend to perform well on code-entity or structure-
aware queries, but lack dedicated support for open-ended natural language queries (Cao et al.,[2024;
Ouyang et al., 2024} [Liu et al., [2024¢]).

To address these challenges, we develop an efficient knowledge graph construction procedure to-
gether with a Monte Carlo Tree Search (MCTS)-based graph traversal algorithm. Using an agentic
architecture, we integrate the knowledge graph with MCTS to enable a dual-stage retrieval sys-
tem capable of handling both symbolic code-entity queries and natural language queries. Our key
contributions are as follows:

* Efficient Knowledge Graph Construction for Code Retrieval: A tool to transform Python
repositories into an information-rich knowledge graph that captures hierarchical and cross-file
dependencies by parsing abstract syntax trees (AST). To mitigate the semantic gap between natural
and symbolic coding languages, we augment graph nodes with textual descriptions of code entities
and their corresponding embeddings.

* Monte Carlo Tree Search-Based Graph Traversal Algorithm: A graph traversal algorithm
inspired by Monte Carlo Tree Search that balances exploration and exploitation. Starting from a
source node, it quickly expands to promising candidates using a bi-encoder. During the simulation
phase, a cross-encoder computes reward scores for visited nodes. Over time, rollouts uncover the
most relevant node for retrieval.

* Router Retrieval Agent: A dual-stage retrieval pipeline that routes queries by type. Code-entity
queries are resolved through fast Cypher lookups on the graph database, while natural language
queries fall back to the MCTS-based graph traversal algorithm.

2 RELATED WORK

Code LLMs and Retrieval-Augmented Generation Early neural models for source code es-
tablished that structure-aware encoders using Abstract Syntax Tree (AST) paths (e.g., code2vec
(Alon et al., 2019b)), code2seq (Alon et al., |2019a)) or graph neural networks (Mou et al.l 2016)
(Allamanis et al., 2018b) could outperform lexical approaches. Subsequently, Transformer-based
pretraining became the dominant paradigm, with models like Codex (Chen et al., |2021)), CodeGen
(Nijkamp et al.| 2022), CodeLlama (Roziere et al., [2023)), StarCoder2 (Lozhkov et al., 2024), and
DeepSeek-Coder (Guo et al) 2024) demonstrating strong performance on function- and file-level
tasks. However, these models condition on local context and struggle to incorporate the cross-file
dependencies essential for reasoning in large repositories.

Early retrieval-augmented generation (RAG) systems such as RECODE (Wang et al.|[2023b)), RED-
CODER (Parvez et al.l [2021)), and TreeGen (Sun et al.| [2020) injected external code snippets into
prompts. These methods treated code as flat text, relying on lexical or vector similarity, which hin-
dered their ability to reason across multiple files. While later work improved recall, it remained
snippet-centric and failed to model the typed, multi-hop relationships that connect definitions and
uses across a codebase.

Natural Language Code Search Natural language—based code search has been extensively stud-
ied, beginning with large-scale benchmarks such as CodeSearchNet (Husain et al., [2019), which
enabled systematic evaluation of neural retrieval models. Subsequent work enriched code embed-
dings with structural signals, including program dependency graphs|Wang et al.| 2020, (Chen et al.,
2024])) and variable flow graphs (deGraphCS, Zhang et al., [2021)), while efficiency-focused meth-
ods like ExCS (Zhang et al., [2024a) improved scalability through offline code expansion. More
recently, repository-level approaches employ multi-stage pipelines that integrate commit metadata
with BERT re-rankers (Sun et al.| |2025)) or translate natural language queries into domain-specific
query languages (Liu et al., 2025). In parallel, query reformulation (Ye & Bunescu| 2018) and
LLM-driven paraphrasing(Wang et al.}[2023c) highlight the central challenge of aligning vague nat-
ural descriptions with precise code identifiers, especially in large and evolving repositories.

Under review as a conference paper at ICLR 2026

Graph-Based Retrieval and Agentic Frameworks Graph-centric methods address structural
limitations by explicitly encoding relationships like definitions, references, and calls, but they differ
significantly in scope, persistence, and query support. Some approaches build local graphs, for in-
stance, GraphCoder (Liu et al.,[2024e)) creates Code Context Graphs for snippets but omits cross-file
links. CatCoder (Pan et al., 2024) constructs on-the-fly type-dependency subgraphs for statically-
typed languages, sacrificing the persistent, long-range relationships needed at repository scale.

Repository-scale graphs improve coverage but introduce trade-offs. RepoGraph (Ouyang et al.,
2024) separates definitions and references into distinct nodes with basic invoke/contain edges, which
creates redundancy and lacks semantic embeddings for text-code alignment. CoCoMIC (Ding et al.,
2024) models cross-file relations at the file level through imports rather than direct function-to-
function edges, constraining multi-hop precision. RepoFuse (Cao et al.l [2024) uses Jedi-based
analysis to build an in-memory graph of imports, inheritance, and calls but focuses on rule-based
neighbor capture for completion. Similarly, DraCo (Zhang et al., [2024b) constructs a fine-grained,
variable-level dataflow graph with typed edges (Assigns, Refers, Typeof) but remains special-
ized for code completion tasks. CodeGraphModel (Tao et al., [2025) integrates a repository graph
into an LLM via a graph-adapter but relies on lightweight analysis and a simple retrieval method
based on entity extraction and string matching, limiting its support for non-entity and multi-hop
queries.

A growing line of work couples LLMs with code graphs in agentic frameworks. LocAgent (Chen
et al.| [2025) converts entire codebases into directed graphs and exposes tools like SearchEntity
and TraverseGraph, but its comprehensive traversals can be computationally expensive with-
out a persistent graph database. Orcal.oca (Yu et al., 2025) uses priority-based scheduling and
in-memory NetworkX graphs derived from ASTs but acknowledges that its incomplete reference
analysis can miss semantic dependencies. CodexGraph (Liu et al., 2024d) bridges LLM agents with
graph databases for structure-aware retrieval, but its workflows often rely on explicit identifiers,
making purely natural language queries challenging. MCTS-based agents like LingmaAgent (Ma
et al.| [2024) explore code graphs with LLM-based reward estimation, while related variants such
as RTSoG (Long et al., [2025) and REKG-MCTS (Zhang et al.l 2025) apply similar strategies to
document and text knowledge graphs, but the repeated high-fidelity LLM scoring incurs significant
inference cost and can introduce nondeterminism. These trends highlight a need for agents that
combine persistent, semantically augmented graphs with cost-aware planning to balance accuracy
and efficiency.

This work presents RANGER, a repository-level retrieval agent that integrates persistent graph
construction with query-type—aware retrieval. A repository-wide knowledge graph is built through
AST parsing and enriched with semantic descriptions and embeddings. At query time, RANGER
first converts the input into a Cypher query over this graph. For code-entity queries, these Cypher
lookups typically suffice for direct resolution. For natural language queries, which often fail to re-
turn direct matches, RANGER invokes an MCTS-based graph exploration that combines bi-encoder
expansion with selective cross-encoder scoring. This dual-path design enables efficient handling of
both symbolic and natural language queries, overcoming the limitations of flat embedding indices
and gaps of prior graph-based retrieval methods.

3 METHODOLOGY

3.1 OVERALL ARCHITECTURE

We propose a retrieval agent capable of processing both natural language and code-entity queries for
code retrieval. As mentioned earlier, natural language queries are challenging due to the semantic
gap between textual descriptions and code embeddings (Gu et al., 2021a; Husain et al.,|2019).

As illustrated in Figure [I] the system uses a two-stage pipeline with an offline indexing stage for
repository preprocessing and graph construction and an online query stage for retrieval and reason-
ing with RANGER. In the offline stage, a code repository is parsed into an entity graph stored in
a graph database (e.g., Neo4j). This includes AST parsing to build the knowledge graph, LLM-
assisted description generation for components and modules, and embedding computation for those
descriptions.

Under review as a conference paper at ICLR 2026

Online Agent Retrieval for 0ffline Codebase Indexing online Agent Retireval for
Natural Language Query Code Entity Query

User Query: @ .
== "Where is the code for Code Repository
addition" £l

|
i

Translation
to Cypher

User Query:
"Get me dependencies Of mm
function demo"

|
&

Translation
to Cypher

igits} places”| o

a, b):

Generated Cypher Query:
MATCH (n:Function|Method)
WHERE n.code CONTAINS
'addition'

RETURN n

Generated Cypher Query:
MATCH (f:Function {name:
"demo'})-[:USES]->(dep)
RETURN dep

I S
a oo o
No Router: Q d Router No
MCTS Are Nodes :Fle Nodeﬂi ceseg| MCTS
etrieve
path 2\etrieved? Path 2

Yes YPath 1 l Entity Descriptions and Embeddings

Yes| Path 1

v

v Description
Reponse: @ >@ >@ Reponse:
O A Member Descriptions
iptions

(e)

Figure 1: RANGER system architecture illustrated through a simple two-file repository example
containing base.py and extended.py. The offline stage constructs a comprehensive knowl-
edge graph from code repositories through AST parsing, LLM-assisted semantic description gener-
ation, and embedding computation. In the online stage RANGER first translates user queries into
Cypher queries using an LLM. For code-entity queries, this Cypher query is sufficient and provides
fast retrieval (Path 1). If retrieval results from the graph database return None, often in case of
natural language queries, the system invokes MCTS-based graph exploration (Path 2) to generate
the final response.

In the online stage, RANGER first converts the user query into a Cypher statement via zero-shot
LLM prompting (prompt in the Appendix). The Cypher query retrieves relevant code entities from
the graph database. For code-entity queries, these results typically suffice for direct response gener-
ation (Path 1). In contrast, natural language queries often do not match directly and return None.
In such cases, the agent follows Path 2, invoking a Monte Carlo Tree Search (MCTS) based graph
exploration to iteratively localize the most relevant code snippets. This dual-path design allows
RANGER to handle both query types robustly. The following subsections detail the components of
this architecture.

3.2 CODE PARSING AND KNOWLEDGE GRAPH CREATION

The repository-level knowledge graph is constructed through a two-stage process that first builds
isolated file-level graphs and then stitches them into a unified repository-level graph. This design
ensures that intra-file structures are captured accurately before resolving complex inter-file depen-
dencies. An illustrative example of this process, using the two-file repository from Figure [T} is
provided in Section[A2]

Stage 1: File-level parsing. Each file is processed using the t ree-sitter library (Brunsfeld
et al., 2013), which produces a detailed Abstract Syntax Tree (AST). This contrasts with existing
systems (Cao et al.| 2024; Liu et al.| |2024d) that rely on Python-specific tools like Jedi or Parso. We
traverse the AST to extract key code entities and relationships, which are organized into an inter-
mediate JSON object serving as a decoupled transfer representation. A database-specific ingestion
component then converts these objects into nodes and edges in the graph database. This separation
allows new programming languages to be supported by modifying only the AST parser, and new
graph backends by updating only the ingestion module. The node types include Module, Class,

Under review as a conference paper at ICLR 2026

Function, Method, Field, and GlobalVariable, offering finer granularity than related
approaches (Ma et al.| |2024; |Chen et al., 2025)). Within each file, structural edges are immediately
established, including CONTAINS edges from a Module to its classes and functions, HAS_METHOD
edges from a Class to its methods, and INHERITS edges to represent class inheritance. To han-
dle unresolved dependencies, temporary Import nodes are created, pointing to entities outside the
current file. Unlike existing approaches such as the Code Graph Model (Tao et al.| [2025), which
applies lightweight semantic analysis, or Orcal.oca (Yu et al.l 2025)), which omits static analysis,
this step explicitly preserves placeholders for cross-file references.

Stage 2: Repository-level consolidation. After all files are parsed, the system resolves the
temporary Import nodes. Each Import node is matched to its corresponding entity (Class,
Function, Module, etc.) elsewhere in the repository, and all incoming edges are redirected to the
resolved node. This “stitching” step ensures that cross-file dependencies are explicitly represented,
yielding broader coverage than prior approaches such as the lightweight cross-file analyses in the
Code Graph Model (Tao et al., 2025) or the limited function-call tracking in Lingma Agent (Ma
et al.; 2024). Once redirected, redundant Import nodes are deleted. The result is a repository-level
knowledge graph that completely represents both intra-file structure and inter-file dependencies.

3.3 LLM-ASSISTED SEMANTIC DESCRIPTION AND EMBEDDING

After constructing the knowledge graph, we add semantic attributes by generating natural language
descriptions for each code entity with an LLM using a hierarchical bottom up procedure. Following
Code2JSON (Singhal et al.), each entity receives two descriptions, a high level purpose summary
and a granular member level summary of important variables and behaviors. For small entities such
as functions and methods, whose source code fits within the context limit of the LLM, we generate
both descriptions directly from code, while for larger entities such as modules and large classes we
compose them from precomputed member summaries. We then concatenate the two descriptions,
encode them into a vector embedding, and store the text and embedding as node attributes. Prompts

are in Appendix[A.9]

3.4 MCTS-BASED GRAPH TRAVERSAL ALGORITHM

To efficiently search the code knowledge graph, we use Monte Carlo Tree Search (MCTS) to
balance retrieval efficiency and accuracy. A bi-encoder guides exploration and a cross-encoder
scores only the most promising candidates, which focuses computation where expected relevance is
highest (Wu et al.,2019). The process, formalized in Algorithm consists of Selection, Expansion,
Simulation, Backpropagation, and a final Extraction stage.

Selection. The selection phase balances exploration (searching new parts of the graph) with
exploitation (focusing on paths that have previously yielded high rewards). Starting from the root
of the search tree, we recursively select the child node with the highest Upper Confidence bound for

R, 2Inmax(1, Nparent(v))
Trees (UCT) score, defined as: UCT(v) = max(1, Ny) +c max(1, Ny) where R,
X I v X) v

is the total reward of a node v, IV, is its visit count, and c is an exploration parameter. We continue
until a leaf is reached. If that leaf is fully expanded, we backtrack to the nearest ancestor with
unexpanded neighbors.

Expansion. Once a leaf node is selected, the search tree is expanded by adding its neighbors from
the code graph as child nodes. To guide this expansion, the bi encoder ranks all neighbors based on
the cosine similarity of their embeddings with the query embedding. The top-k£ most similar and
previously unvisited neighbors are then added to the search tree. This bi-encoder driven expansion
serves as a fast and effective heuristic for candidate generation.

Simulation. This stage evaluates the relevance of newly expanded nodes. Unlike MCTS in
adversarial games (Silver et al.| |2017), where rollouts simulate sequences of actions to a terminal
state, our retrieval task lacks a discrete win/loss outcome. A random traversal from a node is

Under review as a conference paper at ICLR 2026

Selection Expansion Simulation Back Propagation

R=4.60, V=3 R=713V=5

S ? 60 ® 6 e 6 @

R=3.55, V=1 R=1.05, V=1

ge= o= e&

Iteration 2 R=0,V=1 R=2.53,V=1 R=0,V=1 R=2.53,V=1

Selection Expansion Simulation ——>Back Propagation

R=13.59 V=5 R=22.52V=7

R= |79| v=3
<
e
(Calcutaod Calculator quick add Calculator quick sdd (Calcuiator ndq_-m

R=0,V=1 R=8.99,V=2 R=6.46,V=1 R=0,V=1 R=6.46, V=1

&
Iteration 3 @ ‘ U =

R=8.92, V=1 R=8.92, V=1

Figure 2: The Monte Carlo Tree Search-based graph traversal algorithm. The diagram depicts
iterations 2 and 3 of a Monte Carlo Tree Search—based graph traversal on the simple two-file code
repository knowledge graph from Figure[I]in response to the query “Where is the code for addition?”
Iteration 2 expands the base module (adding precision and Calculator), simulates their
rewards, and back-propagates values to update selection scores. Iteration 3 then adds the method
node add and function node quick_add, both of which yield high rewards and are ultimately
selected during the extraction and ranking phase as the answer to the user’s query.

ill-suited for determining its relevance to a query. Therefore, we redefine the simulation step as a
direct relevance evaluation using a cross-encoder. The query and the node’s semantic content are
used as input to the cross-encoder, which produces a precise relevance score. This score serves
directly as the reward for the node. To maximize throughput, evaluations are processed in batches.

Backpropagation. After evaluation we propagate the reward up the tree. For every node on the
path to the root we increment its visit count (/V,) and add the reward to its total (R,). This update
guides subsequent selection toward promising regions of the code graph.

Extraction After a predefined number of iterations the search terminates and we extract a ranked

R,
list of relevant code nodes. The final score for each visited node is s(v) = - ———— + (1 —
max(1, N,)
a) - sim(E,, E,) which balances the learned MCTS reward with the initial bi encoder similarity to

yield a robust final ranking.

4 EXPERIMENTS

We evaluate RANGER on four diverse datasets spanning both code-entity and natural-language
query types and three practical scenarios covering repository-level code retrieval, code completion,
and question answering.

4.1 NATURAL LANGUAGE QUERY BASED RETRIEVAL
4.1.1 DATASETS & SETUP

CodeSearchNet Challenge (Python split) consists of 99 natural language queries with expert rel-
evance annotations over a large corpus of Python functions (Husain et al. [2019). We select 70

Under review as a conference paper at ICLR 2026

Metric RANGER Code Embedding Text Embedding
(MCTS iter) CodeT5-110M Qwen-3-8B Qwen-3-8B mxbai' (335M)
CodeSearchNet Dataset
NDCG@10 0.786 (200) 0.419 0.725 0.701 0.664
Recall@10 0.911 (200) 0.643 0.891 0.856 0.847
RepoQA Dataset
NDCG@10 0.741 (500) 0.718 0.722 0.709 0.706
Recall@10 0.890 (500) 0.810 0.850 0.810 0.810

Table 1: Performance comparison on CodeSearchNet and RepoQA. RANGER consistently out-
performs baseline embedding models across datasets. Iteration counts are shown in parentheses.
Best baseline results are bolded.

repositories with the highest query counts, build knowledge graphs from corresponding commits,
and prune nodes not present in the official corpus to align with ground truth annotations.

RepoQA originally evaluates long context code understanding via the Searching Needle Function
task where multiple functions are provided to an LLM as context along with a function description
and the LLM must return the corresponding function. To facilitate our evaluation we modify the task
so that all functions become our corpus and the function description becomes our natural language
query (Liu et al., 2024b).The function description includes Purpose, Input, Output, and Procedure
fields, but to better reflect realistic queries, we use only the Purpose field as the natural language
query. We use the Python split with ten repositories and ten descriptions per repository.

For both datasets we generate text descriptions and embeddings as detailed in Section [3|and run the
MCTS stage for retrieval.

4.1.2 BASELINES AND RESULTS

We compare to two vector search baselines. The first uses raw code embeddings indexed directly
from corpus chunks. The second uses embeddings of LLM generated semantic descriptions. This
isolates MCTS gains beyond gains from descriptive text.

Table [T] reports NDCG@10 and Recall@ 10 on CodeSearchNet and RepoQA. RANGER improves
both metrics over the baselines and also exceeds retrieval with Qwen-3-8B (Wang et al.| [2025)
embeddings which are currently top ranked on the MTEB leaderboard (Muennighoff et al., [2022).
The improvements stem from the use of cross-encoder scoring, which provides higher accuracy than
bi-encoder similarity but is too expensive to apply exhaustively. RANGER addresses this with an
MCTS-guided traversal, where the bi-encoder expands promising graph paths and the cross-encoder
is applied only to high-value candidates. This selective application preserves the accuracy benefits
of cross-encoders while keeping retrieval computationally tractable.

Figure [3] shows that NDCG@10 and Recall@ 10 improve steadily with additional MCTS iterations
before the rate of improvement slows. The curves exhibit clear knees that indicate the optimal
iteration range for practical deployment, balancing retrieval quality with computational cost.

4.2 CODE-ENTITY QUERY BASED RETRIEVAL

4.2.1 DATASET & SETUP

RepoBench (Liu et al., 2024c) evaluates repository-level retrieval via RepoBench-R, where the task
is selecting the most relevant cross-file snippet to support next-line prediction. We use the Python
v1.1 split and restrict to repositories with at least five data points (430 repositories). The prompt pro-
vides an incomplete in-file chunk with code entities, which RANGER converts into Cypher queries
to retrieve cross-file dependencies before ranking (example in Appendix). Because commit IDs
were not released and repositories changed after dataset creation, we use the latest commit as of De-

'mxbai-embed-large-v1

Under review as a conference paper at ICLR 2026

RepoQA
40 = 60

35 0.8

°
@

e
ey

°
S
@
&
Average MCTS runtime (s)

NDCG@10 / Recall@10

e~ NDCG@10 5 —e— NDCG@10
& Recall@10 = Recall@10
0.0 —&— Average MCTS runtime (s) 1 0 0.0 —&— Average MCTS runtime (s) | 0

1 100 200 500 1000 1 100 200 500 1000
Iteration Count Iteration Count

Figure 3: Performance metrics across MCTS iterations for natural language query datasets. Left
shows CodeSearchNet NDCG @ 10, Recall@ 10, and the average MCTS runtime per iteration across
repositories and queries. Right shows RepoQA NDCG @10, Recall@ 10, and corresponding average
runtimes. Both datasets show monotonic improvement followed by convergence, indicating practical
iteration ranges for deployment.

cember 31 2023 and re run baselines for consistency. Since all queries here are code entity queries
handled directly by Stage 1 we omit text descriptions which are mainly needed for Path 2 MCTS to
reduce compute.

4.2.2 BASELINES AND RESULTS

Following RepoBench-R setup, the baseline treats import statement snippets as candidate contexts
which captures file level linkage. Both RANGER and the baseline use the same rerankers and the
same top k protocol to isolate retrieval effects.

Our graph agent improves Accuracy @5, NDCG@5 and MRR @5 across rerankers which shows bet-
ter localization of fine grained dependencies than file level imports. Pure semantic retrieval performs
poorly which supports the need for cross-file graph traversal over linear index search. See Table[2]

Table 2: Performance comparison on the RepoBench benchmark for cross-file dependency retrieval.

Accuracy@5 NDCG@5 MRR@5
RANGER Baseline RANGER Baseline RANGER Baseline

Unixcoder-base (110M) 0.5446 0.4346 0.4120 0.3075 0.3601 0.2509
Qwen-3-8B (8B) 0.5471 0.4940 0.4120 0.3530 0.3577 0.2919

Reranker Model

4.3 CODE-ENTITY QUERY BASED CODE COMPLETION

4.3.1 DATASET & SETUP

CrossCodeEval (Ding et al.,2023)) tests cross file code completion across Python, Java, TypeScript
and C# using real repositories where the correct continuation depends on cross file context and not
just the current file. We use the Python split with 471 repositories, build knowledge graphs from
the dataset specified commits, and retrieve cross file context via RANGER. Same as Repobench, for
each repository, a code knowledge graph is constructed from the target commit, which is provided
in the datasets, without creating text descriptions.

4.3.2 BASELINES AND RESULTS

We compare RANGER against BM25 and several repository level retrievers. BM25 (Robertson
& Zaragoza, 2009) serves as a strong sparse lexical baseline by selecting top-k contexts via term-
frequency scoring. CGM MULTI (Tao et al.,[2025) constructs a one hop ego subgraph around the
active file and applies graph aware attention. RepoFuse (Cao et al., |2024) fuses analogy contexts
with rationale contexts. RLCoder (Wang et al.,|2024) learns a retrieval policy with perplexity based
rewards and a learned stopping rule. R2C2 (Liu et al., 2024a)) assembles repository aware prompts

Under review as a conference paper at ICLR 2026

by selecting candidate snippets with context conditioning. Inspired by RepoFuse, which shows that
fusing analogy and rationale contexts improves code generation, we also report RANGER+BM25
which pairs graph based cross file retrieval with BM25. Since some methods such as RepoFuse and
R2C2 use a limit of 4,096 tokens on the retrieved context we also present results with a 4,096 token
limit in the Appendix

Table [3| reports Exact Match and Edit Similarity across DeepSeek Coder 7B and CodeLlama 7B.
RANGER+BM25 achieves the highest Exact Match with DeepSeek Coder 7B and CodeLlama 7B
and competitive Exact Match with StarCoder 7B while consistently outperforming BM25. Edit
Similarity is mid to strong which reflects the tradeoff between precise dependency localization and
lexical similarity. These results underscore the value of explicit graph based retrieval in repository
level code completion.

Table 3: Performance comparison of retrieval methods on the CrossCodeEval benchmark for
Python.

DeepSeek-Coder-7B CodeLlama-7B StarCoder-7B

Retrieval Method
EM ES EM ES EM ES

RANGER + BM25 36.27 70.77 31.68 66.91 30.80 66.03
BM25 28.57 65.95 24.87 62.83 22.33 69.60
CGM-MULTI 33.88 71.19 31.03 73.90 31.00 71.66
RepoFuse 27.92 73.09 24.80 71.05 2420 70.82
RLCoder 30.28 74.42 26.60 72.27 25.82 7211
R2C2 32.70 54.00 23.60 42.90 3090 51.90

5 CONCLUSION

We introduced RANGER, a repository level agent for graph enhanced code retrieval that handles
both code entity queries and natural language queries. This capability is largely absent from existing
code retrieval methods. Our MCTS based graph exploration algorithm, most helpful for natural lan-
guage queries, uses a bi-encoder for expansion and a cross encoder as the reward. On CodeSearch-
Net and RepoQA we surpass strong semantic retrieval systems, including Qwen-3-8B embedding
baseline (Wang et al.,|2025) ranked number one on MTEB Leaderboard (Muennighoff et al., 2022),
while using smaller models for embedding and reranking mxbai-embed-large-v1 with 335M
parameters and bge—reranker-v2-m3 with 568M parameters. Because cross encoders are more
accurate but expensive and often infeasible to apply over the enitre repository, MCTS scores only
promising nodes, keeping quality close to exhaustive reranking at lower cost. For repository level
completion, where relevant code often lives in other files and is not semantically similar to the query,
our graph-guided traversal retrieves the necessary context by following structural relationships rather
than embedding proximity alone.

Although RANGER shows strong retrieval performance across multiple benchmarks, several limi-
tations remain. The use of static offline repository graphs limits applicability to dynamic or rapidly
evolving codebases where dependencies change frequently. The MCTS stage, while effective for
natural language queries, introduces additional inference latency and computational cost that may
hinder interactive developer workflows. Node scoring currently depends on cross encoder relevance
estimates, which may not be the best reward signal.

Future work will focus on adaptability, efficiency, and evaluation breadth. One direction is incremen-
tal graph maintenance that supports live repository updates with minimal recomputation. Another
direction is a multi stage retrieval agent in the ReACT style that can combine symbolic Cypher
queries with targeted MCTS starting from intermediate graph nodes. This can reduce rollout depth
and latency. Learned reward models, including a small language model trained for relevance scoring
or reinforcement learning approaches, may offer more robust signals than a fixed cross encoder. At
present RANGER supports Python repositories. Since we use the tree-sitter library, which
is not Python specific and supports many languages, we plan to extend the system to additional
languages. Code and resources will be released publicly upon acceptance.

Under review as a conference paper at ICLR 2026

REFERENCES

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey of machine
learning for big code and naturalness. ACM Computing Surveys, 51(4):1-37, 2018a.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. In ICLR, 2018b.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from struc-
tured representations of code. In ICLR, 2019a.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed repre-
sentations of code. In POPL, 2019b.

Max Brunsfeld et al. Tree-sitter: An incremental parsing system for programming tools.
urlhttps://github.com/tree-sitter/tree-sitter, 2013. Accessed: 2025-09-16.

Zixuan Cao, Yuxin Zhen, Gang Fan, and Shuo Gao. Repository-level code completion with fused
dual context. arXiv preprint arXiv:2402.14323, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pinto, Jared Kaplan, Harri Ed-
wards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Gursimar Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Barnabas Power, Lukas Kaiser, Mohammad Bavarian, Clemens Win-
ter, Phil Tillet, Felipe Petroski Such, David Cummings, Matthias Plappert, Fotios Chantzis, Eliz-
abeth Barnes, Ariel Herbert-Voss, William H Guss, Alex Nichol, Alex Paino, Nikolas Tezak,
Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse,
Andrew N Carr, Jan Leike, Joshua Achiam, Vedant Misra, Emy Morikawa, Alec Radford, Ilya
Sutskever, Dario Amodei, et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021.

Yifan Chen, Yang Liu, and Long Ge. Enhancing source code summarization with a hier-
archical structural-aware transformer based on program dependency graph. arXiv preprint
arXiv:2409.06208, 2024.

Zhaoling Chen, Xiangru Tang, Gangda Deng, Fang Wu, Jialong Wu, Zhiwei Jiang, Viktor Prasanna,
Arman Cohan, and Xingyao Wang. Locagent: Graph-guided llm agents for code localization. In
Proceedings of the 2025 Annual Meeting of the Association for Computational Linguistics (ACL),
2025.

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Krishna
Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, et al. Crosscodeeval: A diverse
and multilingual benchmark for cross-file code completion. Advances in Neural Information
Processing Systems, 36:46701-46723, 2023.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Murali Krishna Ramanathan, Ramesh Nallapati,
Parminder Bhatia, Dan Roth, and Bing Xiang. CoCoMIC: Code completion by jointly modeling
in-file and cross-file context. In Proceedings of the 2024 Joint International Conference on Com-
putational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), Torino, Italy,
May 2024. ELRA and ICCL. URL https://aclanthology.org/2024.lrec-main.
305

Yu Gong, Bowen Xu, Zheng Chen, and Miryung Kim. Multi-view contrastive learning for code
search. In Proceedings of the 45th International Conference on Software Engineering, 2023.

Xiaodong Gu, Shan Ren, Shuo Lou, Daniel Zhang, Alex Liu, Wei Huang, Ge Li, Zhi Jin Sun, and
Michael R Lyu Zhou. Codebert: A pre-trained model for programming and natural languages.
Neurocomputing, 453:293-301, 2021a.

Xiaodong Gu, Shuo Ren, Yao Zhang, and Sunghun Kim. Enriching query semantics for code search
with reinforcement learning. In Proceedings of the 43rd International Conference on Software
Engineering (ICSE), pp. 1550-1561. IEEE, 2021b. URL https://arxiv.org/abs/2105.
09630.

10

https://aclanthology.org/2024.lrec-main.305
https://aclanthology.org/2024.lrec-main.305
https://arxiv.org/abs/2105.09630
https://arxiv.org/abs/2105.09630

Under review as a conference paper at ICLR 2026

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Nan Duan, Long Zhou, Jian Yin,
Linjun Shou, Daxin Jiang, et al. UnixCoder: Unified cross-modal pre-training for code rep-
resentation. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics, 2022.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Lij, et al. Deepseek-coder: When the large language model meets programming—the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Gautier Izacard, Fabio Petroni, Seyed Mehran Kazemi Hosseini, Edouard Grave, and Sebastian
Riedel. Unsupervised dense information retrieval with contrastive learning. In Transactions of
the Association for Computational Linguistics, 2022.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Ledell Wu, Sergey Edunov, Danqgi Chen, and Wen-
tau Yih. Dense passage retrieval for open-domain question answering. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing, 2020.

Ming Li, Rui Zhao, and Wei Zhang. Sacl: Understanding and combating textual bias in text-to-code
retrieval, 2025. URL https://arxiv.org/pdf/2506.20081.

Yujia Li, David Choi, Martin Gerlach, Kirill Rybkin, Xinyun Chen, et al. Competition-level code
generation with AlphaCode. Science, 378(6624):1092—-1097, 2022.

Jiaheng Liu, Zihan Xu, Zeping Deng, Bo Yan, Qi Li, Yining Yin, Shiqing Wang, Zhipeng
Zeng, Shuo Wang, Xuying Wang, et al. R2c2-coder: Enhancing and benchmarking real-world
repository-level code completion abilities of code llms. arXiv preprint arXiv:2406.01359, 2024a.

Jiawei Liu, Jia Le Tian, Vijay Daita, Yuxiang Wei, Yifeng Ding, Yuhan Katherine Wang, Jun Yang,
and Lingming Zhang. Repoqa: Evaluating long context code understanding. arXiv preprint
arXiv:2406.06025, 2024b.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench v1.1 (python). Dataset on Hugging
Face, 2024c. URL https://huggingface.co/datasets/tianyang/repobench_
python_v1l.1, Python portion of RepoBench v1.1, covering GitHub data from Oct 6 to Dec
31 2023; associated paper: RepoBench: Benchmarking Repository-Level Code Auto-Completion
Systems (ICLR 2024).

X. Liu, Y. Zhang, J. Huang, and L. Zhao. Structural code search using natural language queries.
arXiv preprint arXiv:2507.02107, 2025.

Xiangyan Liu, Bo Lan, Zhiyuan Hu, Yang Liu, Zhicheng Zhang, Fei Wang, Michael Shieh, and
Wenmeng Zhou. Codexgraph: Bridging large language models and code repositories via code
graph databases, 2024d. URL https://arxiv.org/abs/2408.03910.

Yang Liu, Wen-Si Yu, Lemao Liu, Shuo-Yuan Chen, Shuirong Cao, Wei-Ying Ma, Huaguo Zhou,
and Hao-Tian Wang. Graphcoder: Enhancing repository-level code completion via code context
graph-based retrieval and language model, 2024e.

Zhiqiang Liu, Yongmin Chen, Jian Xu, and Jianfeng Gao. Excs: Accelerating code search with
code expansion. Scientific Reports, 14(1):12345, 2024f. doi: 10.1038/s41598-024-73907-6.
URL https://www.nature.com/articles/s41598-024-73907-6.

Xiao Long, Liansheng Zhuang, Chen Shen, Shaotian Yan, Yifei Li, and Shafei Wang. Enhancing
large language models with reward-guided tree search for knowledge graph question and answer-
ing, 2025.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

11

https://arxiv.org/pdf/2506.20081
https://huggingface.co/datasets/tianyang/repobench_python_v1.1
https://huggingface.co/datasets/tianyang/repobench_python_v1.1
https://arxiv.org/abs/2408.03910
https://www.nature.com/articles/s41598-024-73907-6

Under review as a conference paper at ICLR 2026

Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li, Fei Huang, and Yongbin Li. Alibaba ling-
maagent: Improving automated issue resolution via comprehensive repository exploration, 2024.

Antonio Mastropaolo, Gabriele Bavota, Mario Linares-Vasquez, Massimiliano Di Penta, Rocco
Oliveto, and Michele Lanza. An empirical study on the usage of code search in modern develop-
ment. In Proceedings of the 43rd International Conference on Software Engineering, 2021.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks over tree
structures for programming language processing. arXiv preprint arXiv:1409.5718, 2016.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. MTEB: Massive Text Em-
bedding Benchmark, 2022.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Siru Ouyang, Wenhao Yu, Kaixin Ma, Zilin Xiao, Zhihan Zhang, Mengzhao Jia, Jiawei Han, Hong-
ming Zhang, and Dong Yu. Repograph: Enhancing ai software engineering with repository-level
code graph. arXiv preprint arXiv:2410.14684, 2024.

Zhiyuan Pan, Xing Hu, Xin Xia, and Xiaohu Yang. Enhancing repository-level code generation with
integrated contextual information. arXiv preprint arXiv:2406.03283, 2024.

Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
Retrieval augmented code generation and summarization. arXiv preprint arXiv:2108.11601,
2021.

Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm?25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333-389, 2009.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354-359, 2017. doi: 10.1038/nature24270.

Aryan Singhal, Rajat Ghosh, Ria Mundra, Harshil Dadlani, and Debojyoti Dutta. Code2json: Can a
zero-shot 1lm extract code features for code rag? In ICLR 2025 Third Workshop on Deep Learning
for Code.

J. Sun, Y. Wang, and H. Chen. Repository-level code search with neural retrieval methods. arXiv
preprint arXiv:2502.07067, 2025.

Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. Treegen: A tree-based
transformer architecture for code generation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 8964-8971, 2020.

Hongyuan Tao, Ying Zhang, Zhenhao Tang, Hongen Peng, Xukun Zhu, Bingchang Liu, Yingguang
Yang, Ziyin Zhang, Zhaogui Xu, Haipeng Zhang, Linchao Zhu, Rui Wang, Hang Yu, Jianguo Li,
and Peng Di. Code graph model (cgm): A graph-integrated large language model for repository-
level software engineering tasks. arXiv preprint arXiv:2505.16901, 2025.

Ke Wang, Liang Chen, Xiang Ren, Yizhou Sun, and Yu Zhang. CodeRAG: Enhancing code large
language models with retrieval-augmented generation. arXiv preprint arXiv:2309.14509, 2023a.

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar,
Samson Tan, Baishakhi Ray, Parminder Bhatia, et al. Recode: Robustness evaluation of code gen-
eration models. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 13818—13843, 2023b.

12

Under review as a conference paper at ICLR 2026

Shitong Wang, Jianing Wang, Zexuan Niu, Yichao Lou, Hongjin Qian, Xinyu Wang, Ru Tanchang,
Chengyu Wang, Cen Chen, Jinmeng Chen, Ziyang Ma, Yiming Fan, Peng Li, Zheng Yuan,
Chang’an Wang, Zhaoye Fei, Ruobing Xie, Fuzhao Xue, Binyuan Hui, Yangfan Li, Jinze Li,
Zhenghao Liu, Qimin Qian, Jianxin Li, Yufeng Chen, Sinan Feng, Wenhao Chen, Yanxiang Li,
Jianhuang, Guisong Xia, Weilin Zhao, Xingzhang, and Jingren Zhou. Qwen3 Embedding: Ad-
vancing Text Embedding and Reranking Through Foundation Models, 2025.

Wen Wang, Guowei Li, Biao Ma, Xin Xia, and Zhi Jin. Ccgraph: a pdg-based code clone detector
with approximate graph matching. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
pp. 1115-1126, 2020.

Yanli Wang, Haoyang Liu, Yang Chen, Huan Liu, Yao Lu, Yansong Wang, Xueyu Liu, Ke Liu,
and Yaqin Zhang. Reinforcement learning for repository-level code completion. arXiv preprint
arXiv:2407.19487, 2024.

Yuxiang Wang, Jiaxin Zhang, Weinan Zhang, Yiming Chen, Ting Chen, Maosong Sun, and Yue
Zhang. Enhancing conversational search: Large language model-aided informative query rewrit-
ing. In Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 5937
5949, Singapore, December 2023c. Association for Computational Linguistics. URL https:
//aclanthology.org/2023.findings—emnlp.398.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer. Scalable zero-
shot entity linking with dense entity retrieval. arXiv preprint arXiv:1911.03814, 2019.

Xiang Ye and Razvan Bunescu. Learning to reformulate queries for code search. In Proceedings of
the 27th ACM International Conference on Information and Knowledge Management, pp. 1363—
1372. ACM, 2018.

Ziyang Ye, Yue Wang, Shufan Wang, Bin He, Yu Sun, Dayiheng Liu, Duyu Tang, Shujie Chen, Jian
Yin, Ming Zhou, et al. Retrieval-augmented code generation and summarization. In International
Conference on Learning Representations, 2022.

Zhongming Yu, Hejia Zhang, Yujie Zhao, Hanxian Huang, Matrix Yao, Ke Ding, and Jishen
Zhao. Orcaloca: An llm agent framework for software issue localization. arXiv preprint
arXiv:2502.00350, 2025.

Hongyu Zhang, Xin Wang, Bowen Xu, and Michael R Lyu. Enhancing code search with graph
neural networks. In 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), pp. 1607-1618. IEEE, 2021.

Jinhao Zhang, Zihan Chen, Xiaowei Song, and Shuhan Wang. REKG-MCTS: Reinforcing LLM
reasoning on knowledge graphs with monte carlo tree search. In Findings of the Association for
Computational Linguistics: ACL 2025, Bangkok, Thailand, July 2025. Association for Computa-
tional Linguistics. URL https://aclanthology.org/2025.findings-acl. 484,

Wen Zhang, Shu Wang, Kai Zhang, Hui Xu, and Zhongyuan Sun. Excs: Accelerating code search
with code expansion. Scientific Reports, 14(1):23976, 2024a.

Yifan Zhang, Zhen Liu, Li Kong, Xipeng Fu, Linqgi Song, and Jie Jiang. DraCo: Dataflow-guided
retrieval augmentation for repository-level code completion. In Findings of the Association
for Computational Linguistics: ACL 2024, pp. 1469-1484, Bangkok, Thailand, August 2024b.
Association for Computational Linguistics. URL https://aclanthology.org/2024.
findings—-acl.126.

Yue Zhang, Ge Wang, Shuo Wang, Xiaodong Ke, Shaowei Ma, Hongyu Xu, Ming Zhou, Xu Sun,
et al. CodeXGLUE: A machine learning benchmark dataset for code understanding and genera-
tion. In NeurIPS Datasets and Benchmarks Track, 2022.

Zexuan Zhong, Xi Victoria Lin, Jiaming Liu, Shuyan Zhou, and Danqi Chen. Retrieval-augmented
code generation and understanding. In Advances in Neural Information Processing Systems, 2024.

13

https://aclanthology.org/2023.findings-emnlp.398
https://aclanthology.org/2023.findings-emnlp.398
https://aclanthology.org/2025.findings-acl.484
https://aclanthology.org/2024.findings-acl.126
https://aclanthology.org/2024.findings-acl.126

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PSUEDOCODE OF MCTS ALGORITHM

Below we present the pesudocode for our Monte Carlo Tree Search - based graph traversal algorithm
as described in 3.4]

Algorithm 1 MCTS-based Graph Traversal Algorithm
Require: q (query), Code graph G = (V, &) where each u € V has description D,, and

embedding E, = fy(u), r € V (root repository node), g4 : @ x D — R (cross-
encoder), Kinits kmin € N (initial & min expansion width), ¢ > 0 (UCT exploration),
a € [0, 1] (score weighting), B € N (retrieval budget), T € N (iterations)

Ensure: Ranked node set TopK(Vis, B) ordered by retrieval score

)

Notation: For tree node v: visits NV, total reward R,,, simulation reward Rq(f , simulation visits

NS,

UCT(v) =

R, 2In maX(L Nparent(v))
max(1, N,) ¢ max(1, Ny) .

Similarity sim(E,, E,) denotes cosine similarity between embeddings.

1: Initialize search tree 7~ with root 7; set N, < 0, R, < 0, R 0, N« oforallve T
2: Set expansion width k < kj; initialize visited nodes Vyee < {1}

fort =1to T do

(A) Selection via UCT

e

4: CUIT <— T

5: while curr has children in 7" and not fully expanded do

6: CUIT $— arg MaXyechildren (curr) UCT (1)

7: if curr is over-visited leaf (/Vyy > 2 and no expandable neighbors) then

8: Traverse up to find expandable ancestor; if none exists, continue to next iteration

(B) Expansion

9: C < Neighborsg (curr) \ Viee > Non-duplicate children
10: S+ {(u,sim(E,, Ey)) : u € C, E, exists} b Valid embeddings
11: if S = @ then
12: Mark curr as fully expanded; continue

13: Sort S by similarity (descending); £ + TopK(S, k)
14: Add & as children of curr in 7 Viee < Vieee U E

15: Update expansion width: k <— max(kmin, k/2) > Reduce breadth over time
(C) Batched Cross-Encoder Simulation

16: P+ {(q,Dy) :ue&} > Query-description pairs

17: S < go (P) x 10 > Batched cross-encoder inference, scale to [0,10]

18: rewards < {u : clamp(s,,, 0,10) for u € £}
(D) Batched Backpropagation
19: for each (u,r,) € {(u,rewards[u]) : u € £} do

20: for each v on path from u to r in 7 do
21: Ny, N,+1,R, + R, + 1,
2 fvo=u RY « RY +r,; N « N +1

Final Retrieval Score & Ranking
23: Wy~ {veT: N, >0}
24: For each v € V4, compute retrieval score:
RS

s()=a ———
®) max(l,ngS))

+ (1 — «) - sim(Ey, E,) x 10

25: return TopK(Vy;, B) sorted by s(v) (descending)

14

Under review as a conference paper at ICLR 2026

A.2 KNOWLEDGE GRAPH CREATION

Figure [] illustrates the two-stage repository-level knowledge graph construction process using a
simple repository containing base . py and extended.py.

Stage 1 (File-Level Graph Creation): Individual source files undergo Abstract Syntax Tree
(AST) parsing using the tree-sitter library to extract granular code entities. For base.py,
this creates nodes for the base module, Calculator class, add and multiply methods,
format_result function, and precision global variable. Intra-file hierarchical relationships
are established through CONTAINS edges (e.g., base module contains Calculator class and
format_result function), HAS_.METHOD edges (e.g., Calculator class contains add and
multiply methods), and HAS_FIELD edges (e.g., base module contains precision variable).

Similarly, extended.py creates nodes for the extended module, Scientific class,
divide method, quick_add and demo functions. Cross-file dependencies that cannot be im-
mediately resolved are represented as temporary placeholder Import nodes, shown with dashed
lines indicating their eventual resolution targets (e.g., imports of Calculator, precision, and
format_result from base).

Stage 2 (Repository-Level Graph Consolidation): The system resolves these Import nodes through
multi-step resolution logic, redirecting all incoming relationships to their actual target entities.
For example, the Scientific class’s inheritance dependency is resolved by establishing a di-
rect INHERITS relationship to the Calculator class, and the quick_add function’s usage of
Calculator is connected via a USES relationship. After successful edge redirection, the re-
dundant Import nodes are deleted, resulting in a unified repository-level knowledge graph that
captures both hierarchical structure and cross-file dependencies at the variable level.

Files inside a repository —— > Create File Level Graph —— Merge Import Nodes

base.py
precision = 2 °

1

2

3

4 def format_result(): & :,V:

5 digits = precision H 5 O
6 & %
7 5
8

return f'rounded to {digits} places"

class Calculator:
9 def add(self, a, b):
10 return a + b

\ / sy
12 def multiply(self, a, b): i T . & i /[
13 return a % b v | Y
[| & scintic

extended.py

from base import Calculator, precision, format_result v ‘
4 ! @ Cocuma) | ovice

def quick_add(): % \
calc = Calculator() . ol § \
return calc.add(10, 5) i LQ P W

class Scientific(Calculator): y S % \ﬁ
9 def divide(self, a, b): & | sceac

10 places = precision | C\ 3 (aeuiator]
11 return round(a / b, places) 4]

13 def demo(): (— dvide.
14 sci = Scientific()

15 print(sci.multiply(3, 4))
16 print(format_result())

mutply

Figure 4: The two-stage graph construction process

15

Under review as a conference paper at ICLR 2026

A.3 CROSSCODEEVAL RESULTS WITH RETRIEVED CONTEXT LIMIT

DeepSeek-Coder-7B CodeLlama-7B StarCoder-7B

Retrieval Method
EM ES EM ES EM ES

RANGER + BM25 34.03 69.48 29.89 66.32 2694 64.01
BM25 28.57 65.95 24.87 62.83 22.33 69.60
CGM-MULTI 33.88 71.19 31.03 73.90 31.00 71.66
RepoFuse 27.92 73.09 24.80 71.05 2420 70.82
RLCoder 30.28 74.42 26.60 72.27 25.82 7211
R2C2 32.70 54.00 23.60 42.90 3090 51.90

Table 4: Performance comparison of retrieval methods on the CrossCodeEval benchmark for
Python with a limit on retrieved context of 4,096 tokens .

A.4 EXPERIMENTAL PARAMETERS

In this section, we provide the experimental parameters corresponding to the results reported in

Section
Parameter Specification
RepoBench
Cypher Generator hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4
CrossCodeEval
Cypher Generator hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4
CodeSearchNet
Query Embedding (MCTS) mxbai-embed-large-v1 (335 M Params)

Text Description Generation
MCTS Cross-Encoder

deepseek-coder-1.3B-instruct
bge-reranker-v2-m3 (568 M Params)

MCTS max number of iterations 200
Total number of ‘Module’ Nodes in graph N
MCTS Ek;pnit N//2
MCTS Eppin 20
: 1
MCTS c (exploration constant) S/
MCTS « 0.5
RepoQA
Query Embedding (MCTS) mxbai-embed-large-v1 (335 M Params)

Text Description Generation

MCTS Cross-Encoder

MCTS max number of iterations

Total number of ‘Module’ Nodes in graph
MCTS Ejpit

MCTS Epin

MCTS c (exploration constant)

MCTS o

deepseek-coder-1.3B-instruct
bge-reranker-v2-m3 (568 M Params)
500

N

N//2

20

I S
(v/In(4xN))
09

Table 5: Experimental parameters for batch/online processing and evaluation benchmarks.

16

Under review as a conference paper at ICLR 2026

A.5 EXAMPLES OF GENERATED CYPHER QUERIES
In this section, we provide examples of Cypher queries generated for different code completion and
search tasks across various datasets. Tables [6]and [7] demonstrate the query generation process

including entity identification, model reasoning, and the resulting Cypher queries.

Table 6: Natural language query and generated Cypher query example from CodeSearchNet dataset

Natural Language Query “how to get database table name”

Generated Cypher Query
1 MATCH (r:Repo)-[:CONTAINS]->(m:Module {name: ’database’})
2 —[:CONTAINS]->(c:Class)

3 RETURN c.name, c.code

Table 7: Entity query, model reasoning, and generated Cypher query for completing the
test_renderables function in RepoBench dataset

Entity Query Input: file name: tests.test_renderables
Fetch the most important dependencies from the repository to complete the following code:

Copyright (C) 2023 ETH Zurich, Manuel Kaufmann,

1

2 # Velko Vechev, Dario Mylonopoulos

3 @reference ()

4 def test_renderables (viewer: Viewer) :

5 grid_xz = np.mgrid[-1.5:1.5:0.3, -1.5:1.5:0.3]

6 n_lines = grid_xz.shape[l] * grid_xz.shape[2]

7 xz_coords = np.reshape(grid_xz, (2, -1)).T

8 line_starts = np.concatenate ([

9 xz_coords([:, 0:1],

10 np.zeros ((n_lines, 1)),

11 xz_coords[:, 1:2]

12 1, axis=-1)

13 line_ends = line_starts.copy ()

14 line_ends[:, 1] = 1.0

15 line_strip = np.zeros((2 * n_lines, 3))

16 line_strip[::2] = line_starts

17 line_strip[l::2] = line_ends
LLM Thoughts Incomplete element identified: function test_renderables.
Generated Cypher
Qllel‘y 1 MATCH (m:Module {name: ’'tests.test_renderables’})

2 —[:CONTAINS]-> (f:Function {name: ’test_renderables’})

3 OPTIONAL MATCH (f)-[:USES]->(dep)

4 RETURN DISTINCT dep.name AS name,

5 dep.signature AS signature,

6 dep.code AS code

A.6 SYSTEM PROMPT FOR CROSSCODEEVAL DATASET

The following system prompt is used for generating Cypher queries in the CrossCodeEval evaluation
setup. This prompt guides the model to generate precise queries for cross-file dependency analysis
while maintaining proper syntax and semantic correctness.

(= Y B N Ot

Neo4j Cypher Query Expert for Code Dependency Analysis
You are a Neo4j Cypher query expert. Your task is to generate concise

Cypher queries to find ALL cross file dependencies that will help to
complete the provided incomplete code based on the provided graph schema.

17

Under review as a conference paper at ICLR 2026

Graph Schema:

**Nodesxx: Repo (name), Module, Class (name, code, signature,
module_name), Function (name, code, signature, module_name),
Method (name, code, signature, module_name, class)

*xEdges+x: CONTAINS (Repo->Module, Module->Class/Function),
HAS_METHOD (Class—>Method), INHERITS (Class->Class),

USES (All->Dependencies)

Instructions:

— **CORRECTNESS*x: Use proper Cypher syntax. Ensure each UNION branch
in Cypher has a complete MATCH...RETURN with SAME COLUMN NAMES.

— x*GENERATE MINIMAL QUERIESx*: ONLY RETRIEVE THOSE NODES THAT YOU
WILL REQUIRE TO COMPLETE THE INCOMPLETE CODE. Use fewest UNION
clauses possible.

— **MANDATORY#*+: Return the entire nodes as xxxdep*** and their labels
as x*xxlabelxx* in the query. NOTE THE NAMES SHOULD BE ’dep’ and
"label’ ONLY.

— **IMPORTANTx*: PAY EXTRA ATTENTION TO THE LAST INCOMPLETE LINE, THE
FUNCTION/METHOD/CLASS BEING USED IN THE LAST INCOMPLETE LINE, AND
TRACE THEM TO WHERE THEY ARE INSTANTIATED/IMPORTED, TO FETCH
CORRECT DEPENDENCIES.

— x**IMPORTANTx*: PAY EXTRA ATTENTION TO IMPORT ALIASES, AND ONLY THE
GLOBAL VARIABLES BEING USED IN THE LAST INCOMPLETE LINE.

— *xIMPORTANT**: In the generated cypher query ONLY USE NAMES YOU ARE
CONFIDENT ABOUT OR ELSE DON’T USE THEM. For imports, avoid module
names as they may differ. It is fine if we get some false positives.

— **IMPORTANTx**: PAY ATTENTION TO THE PROVIDED GRAPH SCHEMA TO MAKE
CORRECT QUERIES.

Input Data Format:

Given repo_name: Repository name which can use to identify the Repo
Node in the graph.

Given file_name: File name which can use to identify the Module Node
in the graph.

Fetch the most important connected nodes from the graph to predict the
next line of the below code:

Incomplete code snippet to complete.

Your Task:
First provide a brief thought on your decision process, then generate
**ONLY THE CYPHER QUERYx*x*.

*xFormat : x x

**Thought : xx Incomplete element identified: <element_name>
(function/method)

xQuery: x

[Cypher query only]

AN

Example

Given repo_name: /Users/pratik.shahl/work/CrossCodeEval_repos/
google_alert-system

Given file_name: models.classes

Fetch the most important connected nodes from the graph to predict the
next line of the below code:

import numpy as np

from poptransformer import ops

from poptransformer.layers.layer _norm import BaseLayerNorm
from classes import BaseModule as base_module

class BaseRMSLayerNorm (BaseLayerNorm) :

def __init__ (self, input_size, eps=le-5, context='"'):
self.base_object = base_module ()

18

72
73
74
75
76
71
78
79
80
81
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

© ® N9 o L R W =

Under review as a conference paper at ICLR 2026

def collect_bind_ layer_weights (self) :
weight_key = 7.’ .join([self.context, ’'weight’])
weight_np = self.get_param_from_state_dict (weight_key,
[self.input_size])
self.weight_id = self.add_initialized_input_tensor (weight_np,
weight_key)

def __call__ (self, graph, x):
variance_epsilon = ops.constant (graph,
np.array (self.eps) .astype (np.
float32),
"variance_epsilon’)
variance = self.base_object.

**Thought : x* Incomplete method _ call in BaseRMSLayerNorm class,
remaining methods are not important. The last incomplete line uses
self.base_object, which calls base_module but that is an ALIAS of the
imported BaseModule class suggesting need for BaseModule. Also need
parent class BaseLayerNorm for inheritance context.

**Query: x*

‘Y 'cypher

MATCH (r:Repo {name: ’/Users/pratik.shahl/work/CrossCodeEval_repos/
google_alert-system’ })—-[:CONTAINS]-> (m:Module) —[:CONTAINS]—>
(c:Class {name: ’'BaseRMSLayerNorm’})-[:HAS_METHOD]->

(method {name: ’__call_"})-[:USES]—> (dep)
RETURN DISTINCT dep, labels(dep) as label

UNION
MATCH (r:Repo {name: ’/Users/pratik.shahl/work/CrossCodeEval_repos/
google_alert-system’ })—[:CONTAINS]—> (m:Module)—[:CONTAINS]—>

(c:Class {name: ’BaseModule’})
RETURN DISTINCT c as dep, labels(c) as label

UNION
MATCH (r:Repo {name: ’/Users/pratik.shahl/work/CrossCodeEval_repos/
google_alert-system’ })—-[:CONTAINS]-> (m:Module) - [:CONTAINS]—>

(c:Class {name: ’'BaseLayerNorm’})
RETURN DISTINCT c as dep, labels(c) as label

AN

A.7 SYSTEM PROMPT FOR REPOBENCH DATASET

The RepoBench system prompt is specifically designed for repository-level code completion tasks,
with enhanced decision-making logic for identifying incomplete code elements and generating ap-
propriate Cypher queries.

Neo4]j Cypher Query Expert for Code Dependency Analysis

You are a Neo4j Cypher query expert. Your task is to generate concise
Cypher queries to find dependencies for code snippets based on the
provided graph schema.

Decision Process:
1. »xANALYZE CODE COMPLETENESS*x: Check if there’s an incomplete element
near the bottom of the code snippet
2. xxIF COMPLETE=xx: Use global fallback approach for file-level
dependencies
3. »*xTO FIND INCOMPLETExx:
— 3a *xFor collections/lists/dicts**: Missing closing bracket ‘],
\}\, or \)\
- 3b *xFor functions/classes/methods+*: Missing body, incomplete
signature, or abrupt termination
4. xxCRITICALxx: Only use visible information. DO NOT GUESS incomplete
elements if their definitions aren’t clearly shown. **NEVER ASSUMExx

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7

7
73
74
75
76
77
78
79
80
81
82

Under review as a conference paper at ICLR 2026

- if unsure, always use global fallback.

— **ONLYx* identify incomplete elements if you see actual ‘def?,
‘class', or variable assignment with collections ‘[‘, ‘{‘

— Don’t identify based on function calls/usage or comments

Instructions:

— x*CRITICAL**: When you find an incomplete function/method/class/
collection, you MUST identify its name and use the specific template
for that element - BUT ONLY if the definition is clearly visible

— *%*NO GUESSINGxx: If the element definition is not clearly shown, use
global fallback instead

— *x*MUST SEEx#*: Actual ‘def function():‘, ‘class Name:‘, or
‘variable = [syntax to identify incomplete elements

— **INDENTATION MATTERS*x: Pay close attention to indentation to
distinguish functions (no indent) vs methods (indented) - this is
crucial for correct queries

— **GENERATE MINIMAL QUERIES**: Use fewest UNION clauses possible

— x*x*MANDATORY**: Return ONLY ’"name’, ’‘code’, ’signature’ attributes

— **IMPORTANT#**: Pay attention to complete file path including folder

names

- x*MODULE NODES#*+: Use ’'name’ for dotted names, ’local_name’ for
undotted names

— **xCORRECTINESS*x: Use proper Cypher syntax. Ensure each UNION branch
in Cypher has a complete MATCH...RETURN with identical column names
and orders

Graph Schema:

**Nodesxx: Module (name, local_name, code, signature),

Class (name, code, signature, module_name),

Function (name, code, signature, module_name),

Method (name, code, signature, module_name, class),

Field (name, class),

GlobalVariable (name, code, module_name)

*xEdges*x: CONTAINS (Module->Class/Function/GlobalVariable),
HAS_METHOD (Class—->Method), HAS_FIELD (Class->Field),
INHERITS (Class—->Class), USES (All->Dependencies)

Example Queries:

Example 1 - Incomplete Method
*xUser Query:xx
Given file name: src.alert.interference.reporting.admin.admin
Fetch dependencies for code:
def get_form_class(self, request, obj=None):
return ColumnTemplateForm(request)
def get_client_data(self, request):

AN

**Thought : «* Incomplete element identified: method ‘get_client_data'‘
(based on indentation) .

**xQuery: x*

‘Y 'cypher

MATCH (m:Module {name: ’src.alert.interference.reporting.admin.admin’})
—[:CONTAINS]->(c:Class {name: ’'ColumnTemplateAdmin’})
—[:HAS_METHOD] -> (method {name: ’"get_client_data’})

OPTIONAL MATCH (method)-[:USES]-> (dep)

RETURN DISTINCT dep.name AS name,
dep.signature AS signature,
dep.code AS code

Your Task:
First provide a brief thought on your decision process, then generate

20

83
84
85
86
87
88
89
90
91
92
93
94

e ® N R W =

21
22
23
24
25
26
27
28

29
30

31
32
33
34
35
36
37
38
39

40
41
42
43

Under review as a conference paper at ICLR 2026

ONLY THE CYPHER QUERY#.

**xFormat : x*

**Thought : #x [Incomplete element identified: <element_name> OR
No incomplete element identified]

**xQuery: xx

[Cypher query only]

AN

User Query:

AN

A.8 GRAPH SCHEMA

Graph Schema Description
Nodes and Attributes:

1. xxModulexx:
— xxAttributes:*x*
- ‘name‘ (String): Dotted module name
- ‘local_name‘' (String): Local module name (no path)
‘embedding' (Vector): Embedding from module description
- ‘description' (String): Summary of the module

2. xxClassx*x*:
- xxAttributes:*x
- ‘name‘ (String): Class name
- ‘signature' (String): Class signature
- ‘code' (String): Full class code
- ‘module_name' (String): Owning module name
- ‘embedding‘ (Vector): Embedding from description and
member_descriptions
— ‘description' (String): High-level summary of the class

- ‘member_descriptions' (String): Descriptions of constituent

members

3. xxFunctionxx:
- xxAttributes:*x
- ‘name‘ (String): Function name
- ‘code' (String): Full function code
— ‘signature‘' (String): Function signature
- ‘module_name' (String): Owning module name
— ‘embedding‘' (Vector): Embedding from description and
member_descriptions

— ‘description' (String): High-level summary of the function
- ‘member_descriptions' (String): Descriptions of constituent

elements

4. xxFieldxx:
- xxAttributes:*x
— ‘name‘ (String): Field name
- ‘code' (String): Definition code segment
- ‘class' (String): Owning class name
- ‘description' (String): Summary of the field
- ‘member_descriptions' (String): Details of field usage
- ‘embedding‘' (Vector): Embedding from description and
member_descriptions

5. xxMethodxx:

— xxAttributes:xx*
- ‘name‘ (String): Method name

21

44
45
46
47
48

49
50
51
52
53
54
55
56
57

58
59
60

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
9

92

Under review as a conference paper at ICLR 2026

- ‘class' (String): Owning class name
— ‘code' (String): Full method code
- ‘signature‘' (String): Method signature
- ‘module_name' (String): Owning module name
- ‘embedding‘ (Vector): Embedding from description and
member_ descriptions
— ‘description' (String): High-level summary of the method
- ‘member_descriptions' (String): Descriptions of method members

6. *xGlobalVariablexx:
- *x*xAttributes:*x
- ‘name‘ (String): Global variable name
- ‘code' (String): Definition code segment
- ‘module_name' (String): Owning module name
- ‘embedding‘ (Vector): Embedding from description and
member_descriptions
— ‘description' (String): Summary of the variable
- ‘member_descriptions' (String): Details of variable usage

7. xxRepoxx:
— xxAttributes:xx*

- ‘name‘ (String): Repository name
8. xxImport*x*: (temporary)
— *x*xAttributes:*x
- ‘name‘ (String): Imported item name

- 'module‘' (String): Source module name
- ‘alias‘' (String, optional): Alias used in import
— ‘dotted_folder_name‘' (String, optional): Submodule path

Edges and Relationships:

1. **CONTAINS**:
— *xxSource:xx ‘Module' or ‘Repo’
- xxTarget:xx ‘Module‘, ‘Class‘, ‘Function‘, or ‘GlobalVariable?®

2. *xHAS_METHODx* * :
- *xSource:xx ‘Class’
- x*xTarget:** ‘Method’

3. *xHAS_FIELD*x*:
- *xSource:xx ‘Class’
- x*xTarget:** ‘Field®

4, **INHERITSx*x*:
- *xSource:xx ‘Class’
- xxTarget:xx ‘Class‘' (base class)

5. **xUSESxx:
— *xSource:x* ‘Class‘, ‘Function‘, ‘Method‘, or ‘GlobalVariablel
- xxTarget:xx ‘Class‘, ‘Function‘, ‘Method‘, or ‘GlobalVariable?®

A.9 PROMPTS FOR GENERATION OF SEMANTIC DESCRIPTION OF ENTITIES
Below are the three prompt templates used to generate high-level and member-specific descriptions

for each code entity, as well as the summarization prompt for larger entities (e.g., summarizing the
descriptions of all constituent classes, functions, and variables for modules).

A.9.1 CODE SUMMARIZATION PROMPT

Task: Code Summarization

Summarize the code at a high level without referencing specific function

22

e ® N B

R - Y I N o

Under review as a conference paper at ICLR 2026

or variable names. Focus on its purpose, how it is implemented, and its
notable features. Use the following format:

**PURPOSE * %
Describe what the code is designed to achieve.

** IMPLEMENTATION %

Explain how the code accomplishes its purpose, including general

techniques or components used, without naming exact functions or
variables.

**xKEY FEATURES*x*
List significant capabilities, design patterns, or behaviors the code
exhibits.

Programming Language: Python
Code:

A.9.2 CODE MEMBERS DESCRIPTION PROMPT

Task: Code Members Description

Analyze the Python code and identify important variables (skip temporary
variables and trivial assignments), functions and classes (also function
calls and class instantiations). Use the following format:

name - description

List each important code member with its name followed by a dash and a
+%% one—-line short description *xx of its purpose or functionality.

If no important members are found, respond with: -—--None---

**x*DO NOT REPEAT MEMBERS. YOU CAN CONCLUDE EARLY ONCE ALL MEMBERS ARE
LISTED. x*xx*

Programming Language: Python
Code:

A.9.3 FILE SUMMARY FROM COMPONENT DESCRIPTIONS PROMPT

Task: File Summary from Component Descriptions

Create a high-level summary of a Python file based on the provided
component

descriptions. You are not given any code, but only the descriptions of

parts of the code given by various developers. You have to use ALL these

descriptions to summarize the code.

Guidelines:

1. Do not include any code in your response, or guess the code. Simply
try and summarize the descriptions provided to you.

2. Focus on the file’s overall purpose, architecture, key functionality,
and key members.

3. If no description is provided simply say ’No description found’.

4. Summarize the purpose of ALL components mentioned in the descriptions.

A.10 LLM USAGE

We used large language models solely for grammar and style polishing. We are fully accountable
for all ideas, analyses, and claims, which were authored and verified by us.

23

	Introduction
	Related Work
	Methodology
	Overall Architecture
	Code Parsing and Knowledge Graph Creation
	LLM-Assisted Semantic Description and Embedding
	MCTS-Based Graph Traversal Algorithm

	Experiments
	Natural Language Query Based Retrieval
	Datasets & Setup
	Baselines and Results

	Code-Entity Query Based Retrieval
	Dataset & Setup
	Baselines and Results

	Code-Entity Query Based Code Completion
	Dataset & Setup
	Baselines and Results

	Conclusion
	Appendix
	Psuedocode of MCTS algorithm
	Knowledge Graph Creation
	CrossCodeEval Results With Retrieved Context Limit
	Experimental parameters
	Examples of Generated Cypher Queries
	System Prompt for CrossCodeEval Dataset
	System Prompt for RepoBench Dataset
	Graph Schema
	Prompts for generation of Semantic Description of Entities
	Code Summarization Prompt
	Code Members Description Prompt
	File Summary from Component Descriptions Prompt

	LLM Usage

