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ABSTRACT

Though distribution shifts have caused growing concern for machine learning
scalability, solutions tend to specialize towards a specific type of distribution shift.
Methods for label shift may not succeed against domain or task shift, and vice
versa. We learn that constructing a Compressed Parameter Subspaces (CPS), a
geometric structure representing distance-regularized parameters mapped to a set
of train-time distributions, can maximize average accuracy over a broad range of
distribution shifts concurrently. We show sampling parameters within a CPS can
mitigate backdoor, adversarial, permutation, stylization and rotation perturbations.
We also show training a hypernetwork representing a CPS can adapt to seen tasks
as well as unseen interpolated tasks.

1 INTRODUCTION

20 30 40 50 60 70 80
Shifted Accuracy (Avg)

45

50

55

60

65

70

75

Cl
ea

n 
A
cc

ur
ac

y

A
dv

er
sa

ri
al

 T
ra

in
in

g

B
ac

kd
oo

r A
dv

er
sa

ri
al

 T
ra

in
in

g

CP
S 

- H
yp

er
ne

tw
or

k

CP
S 

(b
ac

kd
oo

r)
 - 

in
tp

.

CP
S 

(r
ot

at
io

n)
 - 

in
tp

.

CP
S 

(s
ty

liz
at

io
n)

 - 
in

tp
.

D
at

a 
A
ug

m
en

ta
ti

on

Fa
st

 G
eo

m
et

ri
c 
En

se
m

bl
in

g

H
yp

er
ne

tw
or

k

Figure 1: Shift-optimality: We plot the trade-
off frontier between methods performing
across a range of distribution shift types. For
single test-time distributions (Table 1), Clean
Accuracy is the accuracy w.r.t. Clean Test
Set; Shifted Accuracy is the average accuracy
across different shifts (Backdoor/Adversarial
Attack, Random Permutations, Stylization,
Rotation). For multiple test-time distributions
(Table 2), Clean Accuracy is the average ac-
curacy of the hypernetwork evaluated after
each task; Shifted Accuracy is the average
accuracy of the hypernetwork evaluated after
the last task.

Suppose your model is expecting distribution shift at
test-time. Is it task shift? Domain shift? Rotations?
What if it’s an adversarial attack, or even a backdoor
attack? Each strand of distribution shift research has
provided robust and adaptive techniques against their
respective types of shift, and achieved state-of-the-art
results. In this work, we take a step towards a method
that can adapt to multiple types of distribution shift
concurrently.

Recent work on the geometry of the loss landscape,
such as neural subspaces (Wortsman et al., 2021)
and mode connectivity (Fort & Jastrzebski, 2019;
Draxler et al., 2019; Garipov et al., 2018) discovered
properties of robustness between multiple parame-
ters. Departing from constructing subspaces w.r.t. a
single/unperturbed input distribution, we investigate
the construction of subspces w.r.t. multiple perturbed
distributions, and find improved mappability between
shifted distributions and low-loss parameters con-
tained in these subspaces.

Contributions. We share a method to construct a
compressed parameter subspace such that the likeli-
hood of a parameter sampled from this subspace can
be mapped to a shifted input distribution is higher.
We demonstrate a high average accuracy across distri-
bution shifts in single and multiple test-time settings
(Figure 1). We show improved robustness across per-
turbation types, reduced catastrophic forgetting on
Split-CIFAR10/100, and strong capacity for multi-
task solutions and unseen/distant tasks.

1



Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Change in parameter subspace dynamics: Landscape of unique lowest-loss parameters
mapped to interpolated inputs. Refer to Appendix A.3.3 for supplementary visualization.

2 PROBLEM: ADAPTATION TO DISTRIBUTION SHIFT

We first motivate the problem of adapting to distribution shifts from literature. Then we formulate the
different types of distribution shift into a generalized notation and problem setup.

2.1 RELATED WORK

Different aspects of distribution shift have been studied individually and methods of robust-
ness/adaptation have been proposed. More recently, there is work studying what happens when deep
learning architectures encounter test-time inputs manifesting multiple types of distribution shifts.
Qi et al. (2021) and Datta (2022) combine adversarial attacks with stylization and domain shift
Liu et al. (2021) combined adversarial perturbations with backdoor trigger perturbations to craft
stealthy triggers to perform backdoor attacks. However, methods of robustness/adaptation for a single
test-time distribution (e.g. adversarial/backdoor attacks) do not strongly overlap with that for multiple
test-time distributions (e.g. domain adaptation, meta/continual learning). Hence, these methods
generally require the distribution shift to be specified at train-time. For example, Weng et al. (2020)
found a trade-off between adversarial defenses optimized towards adversarial perturbations against
backdoor defenses optimized towards backdoor perturbations, where the adoption of one defense
worsened robustness to the other’s attack. Though data augmentation (Yun et al., 2019b; Borgnia
et al., 2020) and adversarial training (Goodfellow et al., 2015; Geiping et al., 2021) as a technique can
mitigate adversarial attacks and backdoor attacks, they need to be trained on one of the perturbation
types to manifest robustness. To retain adversarial robustness in few-shot learning, Goldblum et al.
(2020) and Wang et al. (2021) investigated methods of integrating adversarial training into MAML.
As such, we are motivated to contribute a method of adaptation/robustness that can multiple types of
distribution shifts concurrently.

2.2 PRELIMINARIES

Let X , Y , K be denoted as the input space, coarse label space, and fine label space respectively.
Coarse labels are the higher-order labels of fine labels. A base learner function fwith parameters θ
accepts inputs x to return predicted labels ȳ = f(θ;x). θ is computed such that it minimizes the loss
between the ground-truth and predicted labels: L(θ;x,y) = 1

|x|
∑|x|

i (f(θ;x)− y)2.

Definition 1. A distribution shift is the divergence between a train-time distribution x0,y0 and a
test-time distribution x̂, ŷ, where x̂, ŷ is an interpolated distribution between x0,y0 and a target
distribution x∆

i ,y∆
i such that x̂ =

∑N
i αix

∆
i and ŷ = yi where i = argmaxi αi.

Definition 1.1 A disjoint distribution shift is a distribution shift of one target distribution
|{αi}|= 2 such that x̂ = αx∆ + (1− α)x0.
Definition 1.2 A joint distribution shift is a distribution shift of multiple target distributions
|{αi}|> 2 such that x̂ =

∑N
i αix

∆
i .

For N distributions {x0 7→ y0,x
∆
1 7→ y∆

1 , ...,x∆
N 7→ y∆

N} containing (N − 1) target distributions,
we sample interpolation coefficients αi ∼ [0, 1] s.t. αi 7→ xi and

∑N
i αi ≤ N . In CPS training,

N is the number of train-time distributions used in training the subspace; in task interpolation, N
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is the number of train/test-time distributions used in interpolating between task sets. Given a set
of valid interpolated input distributions (manifesting disjoint/joint shifts) and their corresponding
interpolation coefficients {{αi} 7→ x̂}, the primary objective of this work is to compute the set
of parameters {θ} that can be mapped to shifted distributions x̂ 7→ θ such that we minimize the
cumulative loss

∑{θ},{{αi}}
θ,{αi} L(θ;

∑|{αi}|
i αixi, ŷ).

3 COMPRESSED PARAMETER SUBSPACES (CPS)

3.1 SUBSPACE CONSTRUCTION

The CPS is constructed by training multiple parameters in parallel, where each parameter is trained
in a different, shifted distribution. Parameter point-estimates can be interpolated between the trained
parameters (which set the bounds of the subspace). In this section, we precisely define the method,
subsequently explain why we expect low-loss parameters to reside in this subspace that can be
mapped to shifted distributions in the input space, then finally share the inference techniques used.

Algorithm 1: CPS: Train

trainSpace (f, {θi}N , {Di}N , β, E)
Input : Model f , Parameters {θi}N , Train set

{Di}N , Distance coefficient β, Epochs
E

Output :Trained parameters {θi}N
Constant initialization {θinit ← θi}N

Train each parameter against their indexed train set
in parallel per epoch
foreach epoch e ∈ E do

foreach θi, Di ∈ {θi}N , {Di}N do
foreach batch x, y ∈ Di do

ŷ ← f(x, θi)
L ← ℓ(ŷ, y) + βcos({θi}N )
Backprop θi w.r.t. L

return {θi}N

Algorithm 2: CPS: Evaluate

evalSpace x, {θi}N , {αi}N
Input : Input x, Trained parameters {θi}N , In-

terpolation coefficients αi ∼ [0, 1] s.t.∑N
i αi ≤ N

Output :Predicted output ŷ
θ ←

∑N
i αiθi

ŷ ← f(x, θ)
return ŷ

Definition 2. The parameter space Θ ∈ RM is an M -dimensional space where parameter
point-estimates θ ∼ Θ are sampled and loaded into a base learner function f(θ; ·). A parameter
subspace ϑ is a bounded subspace contained in Θ such that:

ϑ =
{ N∑

i

αiθi ∈ Θ
∣∣∣0 ≤ αi ≤ 1, 0 ≤

N∑
i

αi ≤ N, {minL(θi;Xi, Yi)}i∈N
}

Definition 2.1 A compressed parameter subspace is a parameter subspace with the constraint that
the distance between the set of end-point parameters should be minimized (Algorithm 1) such that:

ϑ =
{ N∑

i

αiθi ∈ Θ
∣∣∣0 ≤ αi ≤ 1, 0 ≤

N∑
i

αi ≤ N, {minL(θi;Xi, Yi)}i∈N , min dist({θi}N )
}

From Theorem 2, we show that the end-point parameters converge towards a local region in the
parameter space; as the average distance between any end-point and the centre of these points is
lower upon loss convergence, this space is referred to as being compressed. From Theorem 1, we
show that the end-point parameters (and subsequently interpolated parameters within the subspace)
contain real-valued artifacts of opposing end-point parameters. Further, from Theorem 3, we show
that an interpolated input set x̂ has a lower expected distance towards any interpolated (or end-point)
parameter point-estimate in a compressed space than an uncompressed space. From these properties,
we empirically validate that interpolated input sets in single and multiple test-time distributions can
be mapped back to interpolated parameters in the CPS.
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Theorem 1. For N + 1 parameters trained in parallel, any individual parameter θi is a function
of its mapped data Xi 7→ Yi as well as the remaining parameters {θn}n∈N (and by extension,
Xn 7→ Yn). Hence, a linearly-interpolated parameter between θi and {θn}n∈N is a function of
{θn}n∈N and θi|{θn}n∈N .

Proof sketch. Denoting C =
∑N

n θn, computing L(θi) = L(θi, Xi, Yi) + dist(θi, {θn}n∈N ) such
that L(θi) = 0 leads to the property that:

θi :=
2C −Xi ±

√
−4XiC + 4NYi +X2

i

2N
This and subsequent results find that any end-point and interpolated parameter θi will be a function
of a nested {θn}n∈N . Refer to proof in Appendix A.1.

Theorem 2. For N + 1 parameters trained in parallel, for an individual parameter θi and another
parameter θn where n ∈ N , the change in loss per iteration of SGD with respect to each parameter
∂L(θi;Xi)

∂θi
, ∂L(θn;Xn)

∂θn
will both be in the same direction (i.e. identical signs), and will tend towards a

local region of the parameter space upon convergence of loss.

Proof sketch. By computing the incremental loss attributed to the distance regularization term upon
convergence ∆L(θi)e = 0, we find that:

∂L(θi;Xi)

∂θi
· ∂L(θn;Xn)

∂θn
≡ 1

2

[(
∂L(θn;Xn)

∂θn

)2

+

(
∂L(θi;Xi)

∂θi

)2]
Subsequently, we find the respective cumulative loss of (and consequently distance between) θi and
θn from iterations e = 0 to e = E − 1:∣∣∣∣E−1∑

e

∂L(θi,t=e;Xi)

∂θi,t=e

∣∣∣∣− ∣∣∣∣E−1∑
e

∂L(θn,t=e;Xn)

∂θn,t=e

∣∣∣∣
to be lower when ∂L(θi;Xi)

∂θi
· ∂L(θn;Xn)

∂θn
> 0 (i.e. active distance regularization) than when ∂L(θi;Xi)

∂θi
·

∂L(θn;Xn)
∂θn

≤ 0. Refer to proof in Appendix A.1.

Theorem 3. For N + 1 parameters trained in parallel, the expected distance between the optimal
parameter of an interpolated input x̂ 7→ θ̂ would be smaller with respect to sampled points in a
distance-regularized subspace than non-distance-regularized subspace.

Proof sketch. For the the ground-truth parameter of a sampled interpolated input distribution, in order
for the loss to converge L(θ̂) → 0, the product of the loss terms converges in the same direction
∂L(θ̂;Xi)

∂θ̂
· ∂L(θ̂;Xn)

∂θ̂
> 0. For iterations e = 0 to e = E − 1, the cumulative loss (and consequently

distance) between the ground-truth parameter and parameter end-points

E

[∣∣∣∣∣2
[
αi

∂L(θ̂t=e;xi)

∂θ̂t=e

+ αn
∂L(θ̂t=e;xn)

∂θ̂t=e

]
+

[
γn

∂L(θn,t=e;xn)

∂θn,t=e
− γi

∂L(θi,t=e;xi)

∂θi,t=e

]∣∣∣∣∣
]

is closer in the distance-regularized space than non-distance-regularized space. Refer to proof in
Appendix A.1.

Instead of a single distribution with multiple random initializations, we begin with a set of shifted dis-
tributions {xi}N and a single constant (randomized) initialization. For a single test-time distribution
(CIFAR10), we slice subsets of the train set and insert unique perturbations of a given type (backdoor
/ stylization / rotation) into each subset. For multiple test-time distributions (CIFAR100), we use
different task sets as each distribution. Each model is a ℓ-layer CNN trained with early-stopping at
loss 1.0 (to accommodate computational load for training, hence limiting accuracy). We load the
N sets in parallel. At the end of each epoch, we compute the loss of each model’s parameters with
respect to their train-time sets. We then compute the average cosine distance between each model’s
weight against all the other model’s weights. We add this distance multiplied by a distance coefficient
β = 1.0 to the total loss, and update each model’s weights with respect to this total loss.

3.2 SUBSPACE INFERENCE

There are capacity-efficient methods to query parameters from the CPS without explicitly/separately
storing large subsets of the CPS. We list the following three classes of test-time inference with a
subspace.
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3.2.1 UNBIASED SAMPLING

In this sampling scheme, we do not use any heuristics in selecting parameters.

• We can compute predictions ȳ = f(θ∗; x̂) given an input and the centre parameter point-estimate
θ∗ =

∑N
i

1
N θi (the average of the end-point parameters).

• We can compute a mean prediction ȳ = 1
M

∑M
j f(θ∗j ; x̂) given an input and an ensemble of M

randomly-sampled parameter point-estimates in the subspace; we randomly sample M = 1000
interpolation coefficients {αj,i}M×N to return an ensemble set of parameter point estimates
{θ∗j }M = {αj,i}M×N · {θi}N .

3.2.2 GUIDED SAMPLING

Guided sampling makes use of a heuristic in the selection of parameters to be used for inference.

• We can compute predictions ȳ = f(θj∗ ; x̂) given an input and a lowest-loss interpolated parameter
point-estimate, where j∗ := argminj∼M L(θj ;x,y). This is specifically a unique-task solution,
where the interpolated parameter maps back to one task/distribution x̂ 7→ θj∗ . For a multi-task
solution, an interpolated parameter is mapped back to a set of T task/distributions {x̂t}T 7→ θj∗ ,
where j∗ := argminj∼M

∑T
t L(θj ;xt,yt). To identify this interpolated parameter that returns the

lowest-loss (maximum-accuracy) for a given test-time distribution, we can actively and iteratively
sample parameters with respect to the centre of the subspace, or linearly enumerate through
interpolated parameters between the known boundary parameters. An example of a scheme would
be, given K-shots, we can sample parameters and use the parameter of lowest-loss for the task.
This could also be extended to construct an ensemble. In this work, we search for the lowest-loss
parameter to show that a compressed parameter subspace has a higher likelihood of containing a
shift-optimal parameters.

• We can compute predictions ȳ = f(θi∗ ; x̂) given an input and lowest-loss boundary parameter,
where the latter is the parameter from a set of N boundary or end-point parameters that returns
the lowest loss i∗ := argmini∼N L(θi;x,y). The boundary parameter may be used if the task
index is known. In this work, we use the boundary parameter as an ablation, and to check if the
lowest-loss interpolated parameter is simply returning a boudary parameter or not.

3.2.3 GENERALIZED FUNCTION

We can generalize or represent the subspace implicitly with a learning function. We evaluate CPS-
regularization in hypernetworks, an existing continual learning strategy. In-line with Zenke et al.
(2017) and von Oswald et al. (2020), we adopt the Split CIFAR10/100 benchmark, where we train on
CIFAR10 first, then train sequentially on the next 5 sets of 10-label CIFAR100. All tasks share the
same 10 coarse labels.

A hypernetwork h(x, I) = f(x;mf(θmf; I)) is a pair of learners, the base learner f : X 7→ Y
and meta learner mf : I 7→ Θf, such that for the conditioning input I of input x (where X 7→ I),
mf produces the base learner parameters θI = mf(θmf; I). The function mf(θmf; I) takes a
conditioning input I to returns parameters θI ∈ Θf for f. The meta learner parameters and each base
learner parameters reside in their distinct parameter spaces θmf ∈ Θmf and θf ∈ Θf. The learner
f takes an input x and returns an output ȳ = f(θI ;x) that depends on both x and the task-specific
input I . T is number of tasks, t is index of specific task being evaluated (t∗ being current task), ω is
task regularizer. θmf is the hypernetwork parameters at the current task’s training timestep, θ∗mf is
the hypernetwork parameters before attempting to learn task t∗, and ∆θmf is the candidate parameter
change computed by the optimizer (Adam). We do not use any separate conditioning input (i.e. task
embeddings), and use the test-time input as the primary argument, i.e. I ≡ X .

Lmf = Lt∗(mf(θmf;xt∗);xt∗ ,yt∗)

+
ω

t∗ − 1

t∗−1∑
t

∣∣∣∣∣∣∣∣f(mf(θ∗mf;xt);xt,yt)−f(mf(θmf+∆θmf;xt);xt,yt)

∣∣∣∣∣∣∣∣2

+
β

t∗ − 1

t∗−1∑
t

dist(θmf, θmf,t)

(1)
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Starting from a random initialization, we train the hypernetwork first on CIFAR10 (interpretable
as re-initializing the network with pre-trained weights, which findings in Neyshabur et al. (2020)
may indicate that subsequent task parameters may reside in a shared low-loss basin), and store these
parameters θmf,t in a parameter set {θmf,t}T . Then we train on a subsequent CIFAR100 task with
the Eqt. 1 loss function, where we compute loss w.r.t. the inputs and current timestep’s parameters,
change in loss w.r.t. a previous task between using the proposed parameters and the parameters last
updated at that task (stored in the parameter set; this is enumerated for all past tasks in sequence), and
the distance between the current parameters and all prior parameters. Unlike our prior (multi-task)
implementation, (i) we minimize the cosine distance between a current task’s parameters against
prior parameters sequentially, not in parallel (i.e. the subspace end-points are sequentially fixed in the
parameter space, we cannot dynamically move the subspace towards a different region), (ii) we do
not gain visibility to all task parameters at once, and (iii) we are computing distance w.r.t. multi-task
parameters (i.e. each task’s parameters is applicable to its own and prior tasks).

4 METHODOLOGY

We summarize our data processing and baseline methods, with additional details in Appendix A.2.

Test-time distributions. We evaluate on CIFAR10 and CIFAR100 (Krizhevsky, 2009) for single
(non-task-shift) and multiple test-time distributions (task-shift) respectively. For label shift w.r.t.
train-time perturbations, we implement backdoor attacks with Random-BadNet (Datta & Shadbolt,
2022), a variation of BadNet (Gu et al., 2019) to allow for multiple trigger patterns. For label shift
w.r.t. test-time perturbations, we implement adversarial attacks for targeted label shift with Projected
Gradient Descent (Madry et al., 2018), and implement random permutations for untargeted label
shift with Random-BadNet (in-line with PermuteCIFAR10). We implement stylization with Adaptive
Instance Normalization (Huang & Belongie, 2017). We rotate images in-line with RotateCIFAR10.
For task shift, where the tasks are pre-defined in the dataset with shared or non-shared label sets, we
evaluate on both the end-point tasks as well as interpolated tasks.

Task interpolation. Interpolation is an existing data/task augmentation technique. MLTI (Yao et al.,
2021) linearly interpolates the hidden state representations at the ℓth layer of a model when a set of
tasks are passed through it. Mixup (Zhang et al., 2017b) linearly interpolates raw inputs and labels
for data augmentation. We evaluate interpolated tasks by linearly interpolating a set of tasks: for
a set of tasks {X}N where each task X is a set of inputs x (and the number of inputs per task is
identical, i.e. {{x}M}N ), we linearly-interpolate between indexed inputs across a task set to return
an interpolated task: x̂ =

∑N
i

∑M
j αixi,j . In this work, we only interpolate between task sets with

identical labels (label-shared).

Baselines. We baseline with CutMix data augmentation (Yun et al., 2019a), adversarial training
with PGD (Goodfellow et al., 2015), and backdoor adversarial training (Geiping et al., 2021). We
additionally evaluate a subspace and ensembling method, Fast Geometric Ensembles (Garipov et al.,
2018). In a continual learning setting, we evaluate with hypernetworks (von Oswald et al., 2020).

5 EVALUATION

We summarize below the experiments evaluated (detailed configurations in Appendix A.2).

• Change in parameter subspace dynamics: We plot the changes in loss and cosine distance for
training CPS with 3 train-time distributions (Figure 2, Appendix A.3.1 ). We linearly-interpolate
between tasks and end-point parameters (Figure 2). We plot the individual tasks along interpolation
coefficients {αX

i }N , and unique lowest-loss parameters that can correspond to a task along interpo-
lation coefficients {αθ

i }N . We also render an alternative continuous cross-sectional plot (Appendix
A.3.3). The task end-points in these plots are: 3 tasks, 3 × same coarse label, train-time task set.

• CPS vs single test-time distributions: We evaluate baselines and CPS trained on 3 subsets of
perturbed CIFAR10 against a range of test-time perturbations (Table 1). We evaluate the relationship
between CPS, number of perturbed sets trained on, and model capacity (Appendix A.3.4).

• CPS vs multiple test-time distributions: We evaluate the insertion of a CPS-regularization term in
training hypernetworks for continual learning (Table 3). We evaluate the improvement in mapping
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low-loss parameters in CPS (Table 2). We evaluate CPS (varying for over-parameterization w.r.t.
number of tasks and model capacity) against seen/unseen tasks (varying for additional perturbation
types) (Appendix A.3.8). We also evaluate varying model width against train-time distribution
label set diversity (Appendix A.3.6). We also evaluate varying model depth against varying distinct
coarse label sets in train-time distributions (Appendix A.3.5). We also evaluate varying model depth
against varying task label set diversity (different fine and coarse labels) (Appendix A.3.7).

5.1 SINGLE TEST-TIME DISTRIBUTION

(Observation 1) A parameter subspace can be found where the distance between end-point pa-
rameters to the centre is reduced. The intended result from cosine distance minimization is not to
converge cosine distance to 0 (e.g. using a larger capacity model can result in lower cosine distance
between parameters); the intended result is to minimize the distance between parameters compared
to without regularization, and through this process find an interplotable subspace in the parameter
space. Comparing the distance w.r.t. opposing end-point parameters and the centre in Figure 2 and
Appendix A.3.1, we find that the distances have comparatively converged when β = 1 than β = 0 for
single test-time distributions, but the convergence in distance is not as apparent for multiple test-time
distributions; the latter may suggest a minimum distance (interference) is required between certain
tasks particularly if there is limited transferable features between them.

From Figure 2 and Appendix A.3.1, when training w.r.t. a single test-time distribution, we observe
that the cosine distance (w.r.t. subspace centre) first increases substantially before decreasing and
continuing to stay at a low level. As opposed to SGD performing point-estimate optimization, this
phenomenon can be interpreted as SGD performing subspace optimization, in-line with Theorem 2.
Without distance regularization, the trajectory taken by SGD tends to depend more on the initialization
point (Fort et al., 2020). In-line with Neyshabur et al. (2020), the parameters at peak cosine distance
may be interpreted as a second, albeit unshared, pre-trained weight initialization that propagate
parameters towards a same low-loss basin.

(Observation 2) Sampling parameter point-estimates in the CPS can attain a high average ro-
bustness accuracy across different perturbations or shifts. Evaluated against the clean test-time
distribution, we find that sampling point-estimates in the CPS can retain its accuracy across varying
perturbation types (Table 1, Appendix A.3.8). For a single test-time distribution (CIFAR10) with
varying perturbation types, we find that inference with the centre or ensemble can yield a higher
average accuracy across perturbed test-time distributions than wide-spectrum and/or niche defenses,
particularly CPS trained on backdoored subsets. We find that the increased low-loss parameter
mappings to the input space enables robustness for multiple perturbation types, in-line with Theorem
3. Though outperforming on average, CPS underperforms data augmentation with respect to test-time
stylization and rotation. Though a lowest-loss point-estimate can be found for most perturbation
types, we note that a comparably-accurate one cannot be found for test-time stylization. Though
CPS trained on rotated sets can contain lowest-loss point-estimates for rotational perturbations, an
averaging strategy (neither averaging the parameters to compute the centre, nor ensembling the
predictions of 1000 parameters) does not work as well as other perturbation types. We achieve
above-chance (CIFAR10 10%, CIFAR100 20%) performance on stylization and rotation, and show
that a lowest-loss parameter can be interpolated within the CPS for these cases. Other than a backdoor
attack, training a CPS on any perturbed type of subset can attain similar performance.

5.2 MULTIPLE TEST-TIME DISTRIBUTIONS

(Observation 3) Constructing a CPS can yield a subspace containing low-loss parameters for
corresponding inputs. Based on Table 2, compared to a non-CPS, we observe that more points
interpolated in the input space can be mapped to low-loss interpolated parameters in the parameter
space. We would expect a larger subspace to contain more low-loss parameters, yet counter-intuitively
a subspace compressed w.r.t. opposing boundary parameters contains more mappable low-loss
parameters (Theorem 3). We also note that the interpolated points perform better than reusing
boundary parameters. This result is visualized in Appendix A.3.3 (and Figure 2): more points in the
input space can be mapped with higher accuracy, and fewer, sparser yet more-accurate points can be
located in the parameter space that can map back to these inputs. In addition to these interpolated
parameters that can be mapped back to shifted distributions, the average (ensemble) accuracy of the
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Acc w.r.t. seen distributions Acc w.r.t. unseen shift distributions
Clean Test Set Backdoor Attack Adversarial Attack Random Permutations Stylization Rotation

Data Augmentation 55.6 49.0± 25.2 40.4 49.6± 23.2 49.0± 21.3 51.4± 23.7
Adversarial Training 55.1 37.2± 22.4 50.0 41.8± 22.4 40.0± 19.9 40.8± 23.3
Backdoor Adversarial Training 52.3 45.0± 23.5 31.2 36.2± 21.0 37.6± 21.5 39.2± 20.5
Fast Geometric Ensembling 55.4 32.0± 11.9 32.5 29.2± 18.7 25.2± 18.6 31.4± 18.5

CPS (backdoor)
centre 55.3± 15.8 55.3± 15.8 47.7± 2.5 54.7± 21.7 23.9± 4.0 28.2± 19.8

ens. (mean) 55.3± 15.7 55.5± 15.7 47.3± 2.2 54.2± 20.8 23.5± 3.6 28.2± 19.1
intp. (max) 57.5± 15.5 57.5± 15.5 60.5± 1.2 61.7± 19.8 27.0± 3.8 30.2± 19.1

CPS (stylization)
centre 57.5± 17.8 21.2± 1.4 50.6± 2.1 50.3± 19.4 24.2± 2.4 26.1± 19.5

ens. (mean) 57.3± 18.3 20.8± 1.4 50.4± 2.3 59.2± 19.3 24.1± 2.8 26.1± 19.5
intp. (max) 59.7± 18.2 22.7± 1.6 60.7± 1.8 60.1± 19.4 27.4± 3.4 29.1± 19.2

CPS (rotation)
centre 19.0± 1.8 18.1± 6.1 19.0± 1.4 19.3± 12.7 13.1± 1.1 27.4± 20.3

ens. (mean) 19.2± 1.8 25.3± 9.2 18.1± 1.2 19.2± 11.0 13.1± 1.5 26.9± 19.3
intp. (max) 59.6± 17.2 38.2± 1.2 58.1± 1.6 52.8± 18.9 23.7± 3.1 48.5± 26.6

Table 1: CPS vs single test-time distributions: Baselines and CPS trained on 3 subsets of perturbed
CIFAR10 (backdoor / stylization / rotation) against varying shifts w.r.t. test-time distributions (mean
± std w.r.t. number of test-time samples): clean test set (out of 3), backdoor attack (out of 3),
adversarial attack (out of 3), random permutations (out of 100), stylization (out of 100), and rotation
(out of 100). Base model is 3-layer CNN. The backdoor attack is evaluated w.r.t. clean samples
(higher accuracy is higher robustness), not w.r.t. poisoned labels.

Uniform interpo-
lation (of inputs)

CPS: β = 0.0
(independently-
trained)

boundary 47.2± 14.1
centre 28.5± 4.1

ens. (mean) 29.2± 6.8
intp. (max) 38.2± 7.8

CPS: 3 seen
tasks of same
coarse label,
low-capacity

boundary 49.4± 10.8
centre 33.4± 8.4

ens. (mean) 32.9± 6.1
intp. (max) 53.4± 8.5

Table 2: CPS vs multiple test-time distri-
butions: Between β = 0.0 and β = 1.0,
with respect to a set of 503 interpolated
tasks, we evaluate accuracy with respect to
the lowest-loss boundary parameter, centre
parameter, ensembling 1000 parameters
and averaging their predictions, and search-
ing for the lowest-loss interpolated param-
eter (excluding boundary parameters).

Test Accuracy CIFAR10 1 2 3 4 5
Trained from scratch 67.7 70.9 67.1 61.7 69.4 70.9

Standard Hypernetwork (von Oswald et al., 2020)
Hypernetwork, evaluated
after each task

63.7 63.2 60.1 62.4 61.7 62.4

Hypernetwork, evaluated
after task 5

61.8 61.9 58.9 59.3 59.2 59.9

CPS-regularized Hypernetwork
Hypernetwork, evaluated
after each task

65.6 68.2 64.4 68.7 64.8 64.9

Hypernetwork, evaluated
after task 5

63.6 65.0 60.7 62.9 61.6 61.7

Table 3: CPS vs multiple test-time distributions: Test
set accuracy in continual learnign setting on CIFAR10
and subsequent CIFAR100 splits of 10 classes. We
evaluate von Oswald et al. (2020)’s hypernetwork
and our CPS-regularized hypernetwork, and compare
between training on each task individually, evaluating
a task right after learning a new task, and evaluating a
task after learning all tasks.

parameter space is higher than β = 0.0. In-line with Observation 1, we find from Appendix A.3.8
that, compared to a clean test-time distribution, we retain a comparable accuracy (centre / ensemble /
interpolation) under different types of test-time perturbations.

To study improvements to task adaptation and meta learner capacity, we evaluate an additional CPS-
regularization term to von Oswald et al. (2020)’s hypernetwork to find reduced catastrophic forgetting
across tasks (Table 3). Though lowest-loss parameters are sparser in the compressed subspace, the
hypernetwork can map parameters to tasks within the bounds of the parameter end-points. Though
this is counter-intuitive as we would expect distant tasks to be located in distant subspaces in the
input space, by forcing the parameters to be co-located in a single (yet interpolatable) subspace, we
reduce the propensity for the hypernetwork to compute distant (β = 0.0) parameters with high-loss
regions in between computed parameters.

(Observation 4) Subspace capacity supports unseen tasks of different fine labels and different coarse
labels. From Appendix A.3.8, in addition to test set performance of seen tasks, we find that training
a CPS on seen tasks of constant coarse label set can retain above-chance accuracy on unseen tasks
of different fine labels as well as distinctly different coarse labels, supported by the high mean and
low standard deviation. Semantic features may transfer across tasks of identical coarse labels, which
can explain the performance with respect to unseen tasks of shared coarse labels. The performance
with respect to unseen tasks of unshared coarse labels could be interpreted as the CPS containing
large enough sets of (random) parameters that fit this task without training, in-line with Ramanujan
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Figure 3: Change in parameter subspace dynamics: Loss and cosine distance per epoch during
training of CPS with 3 train-time distributions (β = 1.0).

et al. (2019) where a randomly-initialized network contains low-loss subnetworks. These phenomena
indicate an extremely large and flexible capacity supported within the parameter subspace; it has
an increased number of low-loss parameters for shifted and unseen test-time distributions of shared
labels, but also contains random parameters that can arbitrarily fit random tasks.

(Observation 5) Sampled parameters can also be used as multi-task solutions. To evaluate how well
parameter point-estimates can operate as multi-task solutions, we consider over-parameterizaton of
the subspace with respect to (i) minimizing the number of train-time distributions (which, according
to Theorem 1, would reduce capacity per point-estimate allocated to an opposing end-point), and
(ii) increasing model capacity (depth and/or width). Considering varying over-parameterization
w.r.t. a single test-time distribution (Appendix A.3.4), though a larger capacity model can retain
higher centre/ensemble/interpolation accuracy than a smaller capacity model, accuracy w.r.t. the test
set of train-time distributions do not vary significantly when the number of train-time distributions
varies (i.e. a trained subspace can expand or change capacity to support more parameter end-points
accordingly). Similarly in Appendix A.3.7, when we vary the number of non-shared fine and coarse
label sets, though the centre/ensemble accuracy does not improve significantly, we find that the
accuracy of the lowest-loss interpolatable parameter increases with an increase in model capacity.

In Appendix A.3.8, unique-task solutions outperform multi-task solutions. From Appendices A.3.5
and A.3.6, we find that increasing model capacity and decreasing non-label-sharing tasks increases
performance for multi-task learning: an over-parameterized subspace yields high accuracy when
evaluated with the subspace centre or ensemble. An increase in centre/ensemble accuracy indicates
that a sampled point has a higher propensity of providing low-loss inference on a sampled input set.
As the number of non-label-shared tasks increases, the general performance decreases; increasing
the capacity helps mitigate this, though it only increases the ability to locate a linearly-interpolated
multi-task solution. When a subspace is over-parameterized for multi-task learning, though accuracy
is increased for centre / ensemble / interpolation, it does not linearly minimize the gap between them.

6 CONCLUSION

We learn that sampling points in the parameter subspace can return lower-loss mapped parameters if
the space was compressed during training, yield robust accuracy across various perturbation types,
and reduces catastrophic forgetting when adapted into a hypernetwork. We motivate further study into
enforcing geometric structure to parameter subspace construction and methods of test-time adaptation
towards (joint) distribution shifts.
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A APPENDIX

A.1 SUPPORTING THEORY

Definition 1. A distribution shift is the divergence between a train-time distribution x0,y0 and a
test-time distribution x̂, ŷ, where x̂, ŷ is an interpolated distribution between x0,y0 and a target
distribution x∆

i ,y∆
i such that x̂ =

∑N
i αix

∆
i and ŷ = yi where i = argmaxi αi.

Let X , Y , K, Θ be denoted as the input space, coarse label space, fine label space, and parameter
space respectively, such that X 7→ Y , X 7→ K, K 7→ Y , X 7→ Θ. Coarse labels are the super-class
/ higher-order labels of fine labels. f is a base learner function that accepts inputs x, θ to return
predicted labels ȳ = f(θ;x). The model parameters θ ∼ Θ are sampled from the parameter space,
for example with an optimization procedure e.g. SGD, such that it minimizes the loss between the
ground-truth and predicted labels: L(θ;x,y) = 1

|x|
∑|x|

i (f(θ;x)− y)2.

In-line with notation in Pan & Yang (2010), for a marginal (or feature) distribution P(X ) and a
conditional (or label) distribution P(Y|X ), a joint distribution shift is denoted as a joint transformation
in the marginal-conditional distributions. A covariate shift manifests as a change in the marginal
distribution P(X ) under constant conditional distribution P(Y|X ). A label shift manifests as a
change in the conditional distribution P(Y|X ) under constant marginal distribution P(X ). As
elaborated in Section 2.1, deep neural networks may not perform well under this joint shift setting,
and unifying robustness methods are limited. To simplify our language in discussion, we use a set of
points sampled in a space to pertain to a distribution.

To retain generality in notation and implementation, we re-iterate the aforementioned formalism
in terms of sampled points in their respective spaces. We sample mapped points in the input-label
spaces as x,y = {{x, y}|condition ∼ X ,Y}. We describe shift here with respect to a single target
label in order to highlight changes in the input-label mappings; the notation extends to non-singular
label sets. Suppose we sample a clean / source / train-time set of points, constrained by a mapped
target label y∗: x0,y0 = {{x, y}|y = y∗ ∼ X ,Y}.

A distribution shift is the divergence between a train-time distribution x0,y0 and a test-time distri-
bution x̂, ŷ, where x̂, ŷ is an interpolated distribution between x0,y0 and a target distribution
x∆
i ,y∆

i such that x̂ =
∑N

i αix
∆
i and ŷ = yi|i := argmaxi αi. For a set of distributions

{x0 7→ y0,x
∆
1 7→ y∆

1 , ...,x∆
N 7→ y∆

N} containing (N − 1) target distributions, we sample in-
terpolation coefficients αi ∼ [0, 1] s.t. αi 7→ xi and

∑N
i αi ≤ N . N is the number of distributions

being used; in CPS training, it is the number of train-time distributions used in training the subspace;
in task interpolation, it is the number of train/test-time distributions used in interpolating between
task sets. A disjoint distribution shift is a distribution shift of only one target distribution |{αi}|= 2
such that x̂ = αx∆ + (1− α)x0. A joint distribution shift is a distribution shift of multiple target
distributions |{αi}|> 2 such that x̂ =

∑N
i αix

∆
i .

Each distinct target distribution is varied by the type of perturbation (e.g. label, domain, task) and
the variation per type (e.g. multiple domains, multiple backdoor triggers). For a clean test-time
distribution where ||x∆

1 − x0||p→ 0 and y = y∗, no shift takes place. If x̂, ŷ manifests label shift
(y ̸= y∗, min||x∆

1 − x0||p), then x∆
1 ,y∆

1 = {{x, y}|y ̸= y∗ ∼ X ,Y}. If x̂, ŷ manifests covariate
shift (||x∆

2 − x0||p> 0), such as domain shift, then x∆
2 ,y∆

2 = {{x, y}|y = yambg ∼ X ,Y}, where
the sampled x may not correspond to a clearly-defined class (i.e. a random / ambiguous class yambg).
If x̂, ŷ manifests task shift (unrestricted ||x∆

3 − x0||p> 0); for label-shared task shift (identical
coarse labels y, non-identical fine labels k) x∆

3 ,y∆
3 = {{x, y}|y = y∗, k ̸= k∗ ∼ X ,Y,K}; for

non-label-shared task shift (non-identical coarse nor fine labels) x∆
3 ,y∆

3 = {{x, y}|y ̸= y∗, k ̸=
k∗ ∼ X ,Y,K}.

For interpolated input sets between x0 and x∆
i , we would expect 0 < α0, αi < 1, unless we expect

the shifted distribution to completely manifest the target distribution (e.g. rotated sets, end-point task
sets) such that αi = 1. The labels of the interpolated set is the label set with the larger corresponding
αi. In label shift, the perturbations are small enough that we retain the ground-truth labels. For
label-shared task shift, the ground-truth (coarse) labels between the end-point tasks are identical.
For non-label-shared task shift, we do not interpolate between non-identical label sets between the
end-point tasks.
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If we randomly-interpolate random input sets with random or ambiguous label assignments, we incur
the risk of (i) the perturbed input set as being as being perceptually inconsistent with the assigned
label, and (ii) the model overfitting towards random label assignments (Zhang et al., 2017a). To
mitigate these concerns and generate semantically-valid (perceptually-interpreted as belonging to
its assigned label) perturbations, we adopt existing perturbation generation methods that have also
been human-evaluated as perceptually consistent. The use of these methods can be interpreted as the
filtering of invalid points in the input space for the evaluation of mapping between X and Θ.

Corollary 1. Test-time distributions can be decomposed into a weighted sum between known
train-time distributions and computable interpolation coefficients.

We assume a given test-time distribution x̂ can be decomposed into a sum of parts x̂ :=
∑N

i αixi,
where N is the number of component distributions. For the component distributions {xi}N , if a
subset of the distributions exist in the set of train-time distributions, then the interpolation coefficient
value per train-time distribution lies in 0 < αi ≤ 1; if none of the distributions exist in the set of
train-time distributions, then the interpolation coefficient value per train-time distribution is 0.

Corollary 2. For an input interpolated between a set of input end-points with interpolation
coefficients {αi}N , the loss term per epoch can be decomposed into component/end-point loss terms
of equivalent interpolation coefficients {αi}N , but the parameters may or may not be decomposed
into component/end-point parameters of {αi}N .

The loss of an interpolated set with respect to a parameter updated till epoch e can be computed with
respect to the weighted sum of the loss with respect to the boundary input points and interpolation
coefficients for the interpolated input set.

∂L(θt=e; x̂)

∂θt=e
=

(θt=e

∑N
i αixi − y)− (θt=e−1

∑N
i αixi − y)

θt=e − θt=e−1

=

N∑
i

(θt=eαixi − y)− (θt=e−1αixi − y)

θt=e − θt=e−1

=

N∑
i

αi
∂L(θt=e;xi)

∂θt=e

(2)

θt=e is computed with respect to the total loss at epoch e−1. θt=e−1 updated with respect to multiple
xi may not be identical to θt=e−1 updated with respect to a single set x0. As a result, we cannot
claim that an interpolated input set must correspond to or be satisfied with a parameter composed of
the weighted sum of the interpolation coefficients and end-point parameters θ∗ ̸=

∑N
i αiθi.

Corollary 3. Training and inference with a single parameter point-estimate θ may face a trade-off
in loss w.r.t. Xi and Xn if interference exists between Xi and Xn.

At a given epoch e, if ∂L(θ;Xi)
∂θ · ∂L(θ;Xn)

∂θ < 0, then the decrease in loss w.r.t. one subset (either Xi

or Xn) would result in the increase in loss of the other during training, and consequently the same
during inference.

Assumptions/Constraints. We also note a few (non-exhaustive) assumptions or criteria for
interpreting the problem and evaluating the CPS.

1. Each parameter point-estimate in the parameter space Θ can be evaluated against more
than one input distribution.

2. The input space and parameter space are continuous, and interpolated points can be sampled
from both spaces.

3. A low-loss parameter point-estimate for a test-time distribution θ 7→ x̂ should be computable
with minimal storage and time complexity.

4. We assume no task index or conditioning input or meta-data of the test-time distribution.
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Theorem 1. For N + 1 parameters trained in parallel, any individual parameter θi is a function
of its mapped data Xi 7→ Yi as well as the remaining parameters {θn}n∈N (and by extension,
Xn 7→ Yn). Hence, a linearly-interpolated parameter between θi and {θn}n∈N is a function of
{θn}n∈N and θi|{θn}n∈N .

Proof. Suppose N + 1 parameters are trained in parallel, and the number of dimensions of each
parameter is M = |θ|. To simplify the analysis, we use the Euclidean norm distance, and make
relevant approximations.

First, we decompose the loss w.r.t. θi, in order to obtain θi in terms of Xi, Yi, and {θn}n∈N such
that L(θi) = 0. We denote C =

∑N
n θn. By the Cauchy-Schwarz ineuality, we apply the following

term replacement: (
∑N

n θn)
2 = (

∑N
n 1 · θn)2 ≤ N ·

∑N
n θ2n ⇒ C

N ≤
∑N

n θ2n.

L(θi) = L(θi, Xi, Yi) + dist(θi, {θn}n∈N )

= (θiXi − Yi) +

N∑
n

M∑
m

(θi,m − θn,m)2

≈ (θiXi − Yi) +

N∑
n

(θ2i − 2θiθn + θ2n)

≈ (θiXi − Yi) +Nθ2i − 2θiC +
C2

N

≈ Nθ2i + (Xi − 2C)θi + (
C2

N
− Yi)

θi :=
2C −Xi ±

√
(Xi − 2C)2 − 4N(C

2

N
− Yi)

2N
s.t. L(θi) = 0

θi :=
2C −Xi ±

√
−4XiC + 4NYi +X2

i

2N

(3)

Next, we compute the change in θi w.r.t. change in C, and find that the C term is persistent (non-
eliminated) and is retained in the gradient calculation and optimization procedure of θi.

∂θi
∂C =

1

2N

[
2± −4Xi

2
√
−4XiC + 4NYi +X2

i

]

=
1

N
± −2Xi

N
√
−4XiC + 4NYi +X2

i

(4)

In order for Eqt 4 to remain valid, Eqt 5 needs to be satisfied, which also shows that C is dependent or
contains artifacts from Xi 7→ Yi.

−4XiC + 4NYi +X2
i ≥ 0

C ≤ 4Xi

4NYi +X2
i

(5)

Further, suppose we linearly-interpolate a parameter θ within the bounded space of θi∪{θn}n∈N , and
the weighting per parameter is αn 7→ θn such that

∑N+1
n αn ≤ N + 1. We find that the interpolated

parameter θ has a non-eliminated term C regardless of set α or position in the bounded parameter
space.

θ = αiθi +

N∑
n,n̸=i

αnθn

∂θ

∂C ≈ αi
∂θi
∂C +

1

N

N∑
n,n̸=i

αn

(6)
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Theorem 2. For N + 1 parameters trained in parallel, for an individual parameter θi and another
parameter θn where n ∈ N , the change in loss per iteration of SGD with respect to each parameter
∂L(θi;Xi)

∂θi
, ∂L(θn;Xn)

∂θn
will both be in the same direction (i.e. identical signs), and will tend towards a

local region of the parameter space upon convergence of loss.

Proof. Suppose N + 1 parameters are trained in parallel, and the number of dimensions of each
parameter is M = |θ|. We evaluate the incremental loss per iteration ∀e ∈ E, which is the distance
regularization term.

∆L(θi)e =

N∑
n

M∑
m

(θi,m − θn,m)2

≈
N∑
n

(θi − θn)
2

:=

N∑
n

[(
θi −

∂L(θi;Xi)

∂θi

)
−

(
θn −

∂L(θn;Xn)

∂θn

)]2

=

N∑
n

[
(θi − θn) +

(
∂L(θn;Xn)

∂θn
− ∂L(θi;Xi)

∂θi

)]2

=

N∑
n

[
(θi − θn)

2 + 2(θi − θn)

(
∂L(θn;Xn)

∂θn
− ∂L(θi;Xi)

∂θi

)
+

(
∂L(θn;Xn)

∂θn
− ∂L(θi;Xi)

∂θi

)2]

(7)

Given that minimizing the last term can result in minimizing the loss min∆L(θi)e := min(θn −
∂L(θn;Xn)

∂θn
− ∂L(θi;Xi)

∂θi
), we next show that the gradient update (change in loss per iteration of SGD

with respect to each parameter) terms at iteration e must be positive and share the same direction
when loss converges to 0. For ∆L(θi)e ≥ 0 and ∀n where n ∈ N ,

(
∂L(θn;Xn)

∂θn

)2

+

(
∂L(θi;Xi)

∂θi

)2

− 2

(
∂L(θi;Xi)

∂θi

)(
∂L(θn;Xn)

∂θn

)
≥ 0

∂L(θi;Xi)

∂θi
· ∂L(θn;Xn)

∂θn
≤ 1

2

[(
∂L(θn;Xn)

∂θn

)2

+

(
∂L(θi;Xi)

∂θi

)2] (8)

For ∆L(θi)e ≡ 0,

∂L(θi;Xi)

∂θi
· ∂L(θn;Xn)

∂θn
≡ 1

2

[(
∂L(θn;Xn)

∂θn

)2

+

(
∂L(θi;Xi)

∂θi

)2]
≥ 0 (9)

Hence, ∂L(θi;Xi)
∂θi

· ∂L(θn;Xn)
∂θn

must be positive, and the component terms must be in the same direction
(identical signs).

To further simplify analysis, we evaluate loss updates from iteration e = 0 to e = E − 1 where loss
converges at iteration E, thus the component loss terms are non-zero. The two loss terms are thus
non-orthogonal, co-directional, and the angle between them is less than 90◦.

∂L(θi;Xi)

∂θi
· ∂L(θn;Xn)

∂θn
> 0 (10)

Given that θi and θn are initialized at the same constant random initialization θi,e=0 ≡ θn,e=0, the
change in each θ from iterations e = 0 to e = E − 1 is attributed to the difference in the summation
of the gradient updates.
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θi := θi,t=0 −

E−1∑
e

∂L(θi,t=e;Xi)

∂θi,t=e

(11)

θn := θn,t=0 −
E−1∑
e

∂L(θn,t=e;Xn)

∂θn,t=e

(12)

We show next, that through enforcing distance regularization, we can exert a tendency for the distance
between the summation of the loss term components to be smaller if they share the same direction,
than if they were orthogonal or opposing directions.

∣∣∣∣∣
[∣∣∣∣E−1∑

e

∂L(θi,t=e;Xi)

∂θi,t=e

∣∣∣∣− ∣∣∣∣E−1∑
e

∂L(θn,t=e;Xn)

∂θn,t=e

∣∣∣∣]∣∣∣∣ ∂L(θi;Xi)
∂θi

· ∂L(θn;Xn)
∂θn

>0

∣∣∣∣∣
<

∣∣∣∣∣
[∣∣∣∣E−1∑

e

∂L(θi,t=e;Xi)

∂θi,t=e

∣∣∣∣− ∣∣∣∣E−1∑
e

∂L(θn,t=e;Xn)

∂θn,t=e

∣∣∣∣]∣∣∣∣ ∂L(θi;Xi)
∂θi

· ∂L(θn;Xn)
∂θn

≤0

∣∣∣∣∣
(13)

Thus we show that θi and θn are closer in distance in the parameter space. This can result in θi
and θn sharing sub-matrices (intrinsic dimensions), and they may reside in the same or neighboring
subspace.

Theorem 3. For N + 1 parameters trained in parallel, the expected distance between the optimal
parameter of an interpolated input x̂ 7→ θ̂ would be smaller with respect to sampled points in a
distance-regularized subspace than non-distance-regularized subspace.

Informally, we conclude from Theorems 1 and 2 that, though non-linear and/or linear point-estimates
may exist in a non-compressed parameter subspace, a compressed parameter subspace contains less
interference attributed to changes in other dimensions; in other words, the CPS method reduces the
dimensions of interpolation. Practically, this can manifest as most values in the weights matrix being
relatively frozen or constant (and only few values or a submatrix being changed), or the range per
value in a weights matrix may be narrower.

Proof. Suppose we sample an interpolated input x̂ = αixi + αnxn. All trained parameters begin
with a constant and equal initialization at t = 0.

We would like to show here that any randomly interpolated input set of coefficients αi, αn would be
closer in distance to any parameter point-estimate interpolated between CPS-regularized parameter
end-points with coefficients γi, γn, compared to non-CPS-regularized.

First we state the loss terms for a ground-truth parameter θ̂ corresponding to x̂. Recall from Theorem 2
that the loss terms in the end-point parameters converge in the same direction ∂L(θi;Xi)

∂θi
· ∂L(θn;Xn)

∂θn
>

0. We find here a similarity to CPS, where in order for the loss to converge L(θ̂) → 0 the product of the
loss terms for the ground-truth parameter also converges in the same direction ∂L(θ̂;Xi)

∂θ̂
· ∂L(θ̂;Xn)

∂θ̂
> 0.

θ̂ := θ̂ −
E−1∑
e

[
∂L(θ̂t=e;αixi + αnxn)

∂θ̂t=e

]

= θ̂ −
E−1∑
e

[
αi

∂L(θ̂t=e;xi)

∂θ̂t=e

+ αn
∂L(θ̂t=e;xn)

∂θ̂t=e

]
(by Corollary 2)

(14)

Next, as the summation of loss per epoch indicates the region in the parameter space with respect to
a constant initialization (as in Theorem 2), we compute the distance in the summation of loss for θ̂
compared to the boundary or end-point parameters of an uncompressed space. As the component
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loss terms are not regularized with respect to each other, their product may or may not be greater than
0, i.e. their product is in the range [-1, 1].

E

[∣∣∣∣∣
[
αi

∂L(θ̂t=e;xi)

∂θ̂t=e

+ αn
∂L(θ̂t=e;xn)

∂θ̂t=e

− γi
∂L(θi,t=e;xi)

∂θi,t=e

∣∣∣∣ ∂L(θi;xi)
∂θi

· ∂L(θn;xn)
∂θn

∼[−1,1]

]

−
[
αi

∂L(θ̂t=e;xi)

∂θ̂t=e

+ αn
∂L(θ̂t=e;xn)

∂θ̂t=e

− γn
∂L(θn,t=e;xn)

∂θn,t=e

∣∣∣∣ ∂L(θn;xi)
∂θi

· ∂L(θn;xn)
∂θn

∼[−1,1]

]∣∣∣∣∣
]

= E

[∣∣∣∣∣2
[
αi

∂L(θ̂t=e;xi)

∂θ̂t=e

+ αn
∂L(θ̂t=e;xn)

∂θ̂t=e

]

+

[
γn

∂L(θn,t=e;xn)

∂θn,t=e

∣∣∣∣ ∂L(θn;xi)
∂θi

· ∂L(θn;xn)
∂θn

∼[−1,1]

− γi
∂L(θi,t=e;xi)

∂θi,t=e

∣∣∣∣ ∂L(θn;xi)
∂θi

· ∂L(θn;xn)
∂θn

∼[−1,1]

]∣∣∣∣∣
]

(15)

Then, we evaluate the summation of loss for θ̂ against the boundary or end-point parameters of a
compressed space.

E

[∣∣∣∣∣
[
αi

∂L(θ̂t=e;xi)

∂θ̂t=e

+ αn
∂L(θ̂t=e;xn)

∂θ̂t=e

− γi
∂L(θi,t=e;xi)

∂θi,t=e

∣∣∣∣ ∂L(θi;xi)
∂θi

· ∂L(θn;xn)
∂θn

>0

]

−
[
αi

∂L(θ̂t=e;xi)

∂θ̂t=e

+ αn
∂L(θ̂t=e;xn)

∂θ̂t=e

− γn
∂L(θn,t=e;xn)

∂θn,t=e

∣∣∣∣ ∂L(θn;xi)
∂θi

· ∂L(θn;xn)
∂θn

>0

]∣∣∣∣∣
]

= E

[∣∣∣∣∣2
[
αi

∂L(θ̂t=e;xi)

∂θ̂t=e

+ αn
∂L(θ̂t=e;xn)

∂θ̂t=e

]

+

[
γn

∂L(θn,t=e;xn)

∂θn,t=e

∣∣∣∣ ∂L(θn;xi)
∂θi

· ∂L(θn;xn)
∂θn

>0

− γi
∂L(θi,t=e;xi)

∂θi,t=e

∣∣∣∣ ∂L(θn;xi)
∂θi

· ∂L(θn;xn)
∂θn

>0

]∣∣∣∣∣
]

< E

[∣∣∣∣∣2
[
αi

∂L(θ̂t=e;xi)

∂θ̂t=e

+ αn
∂L(θ̂t=e;xn)

∂θ̂t=e

]
(by Theorem 2)

+

[
γn

∂L(θn,t=e;xn)

∂θn,t=e

∣∣∣∣ ∂L(θn;xi)
∂θi

· ∂L(θn;xn)
∂θn

∼[−1,1]

− γi
∂L(θi,t=e;xi)

∂θi,t=e

∣∣∣∣ ∂L(θn;xi)
∂θi

· ∂L(θn;xn)
∂θn

∼[−1,1]

]∣∣∣∣∣
]

(16)

We find that a ground-truth interpolated parameter is closer to a compressed space than an uncom-
pressed space. This motivates our work that a compressed subspace contains a higher density of
low-loss interpolated parameters than an uncompressed subspace.

A.2 EXPERIMENT CONFIGURATIONS

A.2.1 ADAPTATION METHODS

Data Augmentation (e.g., CutMix (Yun et al., 2019a) or MixUp (Zhang et al., 2018)) is a common
method to robustify models against domain shift (Huang et al., 2018), adversarial attacks (Zeng et al.,
2020), and backdoor attacks (Borgnia et al., 2020). We implement CutMix (Yun et al., 2019a), where
augmentation takes place per batch, and training completes in accordance with aforementioned early
stopping. In the case of CutMix, for example, instead of removing pixels and filling them with black
or grey pixels or Gaussian noise, we replace the removed regions with a patch from another image,
while the ground truth labels are mixed proportionally to the number of pixels of combined images.
50% of the defender’s allocation of the dataset is assigned to augmentation.
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Adversarial Training is a method that increases model robustness by injecting adversarial examples
into the training set, and commonly used against adversarial attacks (Goodfellow et al., 2015),
backdoor attacks (Geiping et al., 2021), and domain adaptation (Ganin et al., 2016a). We retain the
same adversarial configurations as in the adversarial attack (PGD, ε = 0.4). At each epoch, 50% of
the defender’s allocation of the dataset is adversarially-perturbed.

Backdoor Adversarial Training (Geiping et al., 2021) extend the concept of adversarial training on
defender-generated backdoor examples to insert their own triggers to existing labels. We implement
backdoor adversarial training (Geiping et al., 2021), where the generation of backdoor perturbations
is through Random-BadNet (Datta & Shadbolt, 2022)), where 50% of the defender’s allocation of the
dataset is assigned to backdoor perturbation, p, ε = 0.4, and 20 different backdoor triggers used (i.e.
allocation of defender’s dataset for each backdoor trigger pattern is (1− 0.5)× 0.8× 1

20 ).

Fast Geometric Ensembles (Garipov et al., 2018) train multiple networks to find their respective
modes such that a high-accuracy path is formed that connects the modes in the parameter space. The
method collects parameters at different checkpoints, which can subsequently be used as an ensemble.
We retain the same model configurations as the clean setting (3-layer CNN), train 5 ensembles on
randomly-sampled random initializations until the early-stopping condition.

CPS: Sampling

• Inferencing w.r.t. the centre of the subspace is denoted as computing a prediction ȳ = f(θ∗; x̂)

with respect to a given input and the centre parameter point-estimate θ∗ =
∑N

i
1
N θi (the average

of the end-point parameters). This form of inference has also been used in Wortsman et al. (2021).
• Inferencing w.r.t. an ensemble in the subspace is denoted as computing a mean prediction
ȳ = 1

M

∑M
j f(θ∗j ; x̂) with respect to a given input and M randomly-sampled parameter point-

estimates in the subpace (we randomly sample M = 1000 interpolation coefficients {αj,i}M×N

to return an ensemble set of parameter point estimates {θ∗j }M = {αj,i}M×N · {θi}N . For our
ensemble, we evaluate against the mean prediction. This form of inference has also been used in
Wortsman et al. (2021); Garipov et al. (2018); Fort et al. (2020).

• Inferencing w.r.t. the maximum-accuracy (lowest-loss) interpolated point-estimate in the subspace
is denoted as computing a prediction ȳ = f(θj∗ ; x̂) with respect to a given input and the lowest-loss
parameter point-estimate where j∗ := argminj∼M L(θj ;x,y); this is specifically a unique-task
solution, where a low-loss parameter maps back to one task/distribution x̂ 7→ θj∗ . For a multi-task
solution, a low-loss parameter is mapped back to a set of T task/distributions {x̂t}T 7→ θj∗ , where
j∗ := argminj∼M

∑T
t L(θj ;xt,yt). We linearly-space 50 segments per parameter end-point

pair (resulting in 503 point-estimates to evaluate). There is enough distance between parameter
end-points such that the interpolated points are not close approximations of the end-point (further
verifiable from Figure 2). Inferencing w.r.t. interpolated points has also been used in Neyshabur
et al. (2020).

• An additional baseline used in Table 2 is inferencing w.r.t. the lowest-loss boundary parameter in
the subspace, denoted as computing a prediction ȳ = f(θi∗ ; x̂) with respect to a given input and
lowest-loss boundary parameter, where the latter is the parameter from a set of N boundary or end-
point parameters that returns the lowest loss i∗ := argmini∼N L(θi;x,y). This baseline informs
us whether the lowest-loss interpolated parameter can outperform an uninterpolated SGD-trained
parameter. In Table 2 specifically, we do not include the boundary parameters in the interpolated
parameters set (interpolation coefficients: [0,0,1],[0,1,0],[1,0,0]), so as to ensure the 2 sets are
mutually-exclusive and avoid the reuse of the boundary parameter as the lowest-loss interpolated
parameter; for example, in case there is another point that can also achieve similar accuracy.

CPS: Hypernetworks A hypernetwork h(x, I) = f(x;mf(θmf; I)) is a pair of learners, the
base learner f : X 7→ Y and meta learner mf : I 7→ Θf, such that for the conditioning input
I of input x (where X 7→ I), mf produces the base learner parameters θI = mf(θmf; I). The
function mf(θmf; I) takes a conditioning input I to returns parameters θI ∈ Θf for f. The meta
learner parameters and base learner (of each respective distribution) parameters reside in their distinct
parameter spaces θmf ∈ Θmf and θf ∈ Θf. The learner f takes an input x and returns an output
ȳ = f(θI ;x) that depends on both x and the task-specific input I . T is number of tasks, t is index
of specific task being evaluated (t∗ being current task), ω is task regularizer (from von Oswald et al.
(2020) implementation). We retain all other implementation configurations, such as the use of Adam
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optimizer, setting task regularizer ω = 0.01. θmf is the hypernetwork parameters at the current task’s
training timestep, θ∗mf is the hypernetwork parameters before attempting to learn task t∗, and ∆θmf

is the candidate parameter change computed by the optimizer (Adam). Our base learner is the 6-layer
CNN. Unlike von Oswald et al. (2020), we wish to retain the assumption of the rest of the paper
where we do not require conditioning inputs; hence we do not use any separate conditioning input
(i.e. task embeddings), and use the test-time input as the primary argument, i.e. I ≡ X . As such, the
lack of use of task embeddings is one of the primary changes to our hypernetworks baseline based on
von Oswald et al. (2020). In terms of parameter storage, only the weights of the hypernetwork (and
not individual weights of points in the CPS) would need to be stored. As we only adapt von Oswald
et al. (2020)’s hypernetwork implementation, we use this as our primary baseline, and recommend
comparison to other baselines listed in von Oswald et al. (2020).

Starting from a random initialization, we train the hypernetwork first on CIFAR10 (this can be
interpreted as re-initializing the network with pre-trained weights, which based on findings in
Neyshabur et al. (2020) may indicate that subsequent task parameters may reside in a shared low-loss
basin), and store these parameters θmf,t in a parameter set {θmf,t}T . Then we train on a subsequent
CIFAR100 task with the Eqt. 1 loss function, where we compute loss w.r.t. the inputs and current
timestep’s parameters, change in loss w.r.t. a previous task between using the proposed parameters
and the parameters last updated at that task (stored in the parameter set; this is enumerated for all
past tasks in sequence), and the distance between the current parameters and all prior parameters.
Unlike our prior (multi-task) implementation, (i) we minimize the cosine distance between a current
task’s parameters against prior parameters sequentially, not in parallel (i.e. the subspace end-points
are sequentially fixed in the parameter space, we cannot dynamically move the subspace towards
a different region), (ii) we do not gain visibility to all task parameters at once, and (iii) we are
computing distance w.r.t. multi-task parameters (i.e. each task’s parameters is applicable to its own
and prior tasks).

No conditioning inputs Adaptation without conditioning inputs is a more difficult scenario; though it
is used in adapt model parameters when the target distribution changes, it is not commonly used when
the source distribution is constant (i.e. not used in adversarial/backdoor defenses). Detecting when
shift has occurred is a major implementation hurdle in most work tackling domain shift and task shift.
Conditioning inputs are not used w.r.t. a single test-time distribution (adversarial/backdoor attacks),
but are usually provided in meta/continual learning, or domain adaptation. Many implementations use
support sets in domain adaptation (Ganin et al., 2016b; Hoffman et al., 2017; Peng et al., 2019; Sun
et al., 2015) and meta/continual learning (Finn et al., 2017) literature. The implementations assume a
task/domain Ti is sampled from a task/domain distribution p(T ) associated with a dataset Di, from
which we sample a support set Ds

i = (Xs
i , Y

s
i ) and a query set Dq

i = (Xq
i , Y

q
i ), where a meta learner

computes the optimal model parameters θ with respect to Ds
i in order to predict accurately on Dq

i .
The support set distribution approximates the query set distribution here. Other than support/query
sets, conditioning inputs can manifest as known/seen embeddings: Cheung et al. (2019) learns a
set of parameters for each of the K tasks, where these parameters are stored in superposition with
each other. The task-specific models are accessed using task-specific “context” information Ck that
dynamically “routes” an input towards a specific model retrieved from this superposition. The context
vectors Ck are the headers for each task, and they are all orthogonal to each other, hence making no
assumption of a metric that can connect or predict these vectors on new or unseen tasks. While there
is work that aims to perform unsupervised domain adaptation (Ganin et al., 2016b; Zhou et al., 2021),
domain generalization (Arpit et al., 2021; Cha et al., 2021) and unsupervised meta learning (Hsu
et al., 2019; Khodadadeh et al., 2019) without explicit conditioning inputs, there is a gap between
their performance in an unsupervised setting compared to methods in supervised or settings with
conditioning inputs. To exemplify the difficulty of inference without conditioning inputs at test-time,
we can refer to the gap between correctly detecting near-OOD (inputs that are near but not i.i.d to
the input distribution) and far-OOD (inputs that are far from the input distribution) inputs as being
outliers. For far-OOD, an AUROC close to 99% is attainable on CIFAR-100 (in) vs SVHN (out)
(Sastry & Oore, 2020). However, the AUROC for near-OOD is around 85% for CIFAR-100 (in)
vs CIFAR-10 (out) (Zhang et al., 2020). In other modalities, such as genomics, the AUROC of
near-OOD detection can fall to 66% (Ren et al., 2019). Thus, though removing the conditioning input
assumption limits the maximum adaptation performance, it is a practical and realistic assumption we
retain in our evaluation.
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A.2.2 DISTRIBUTION SHIFTS

Training regime Given that a large number of models are trained to evaluate this work (i.e. 3 models
are trained in parallel per CPS configuration across all results), except for Figure 2 and Appendix
A.3.1 which were trained to the full 5000 epochs, all models trained in this work (including CPS
and baselines) are early-stopped when training loss reaches 1.0 (test set accuracy ranging from
55-65%). Though further convergence is possible, we make note of this computational constraint, and
recommend evaluating the results in the context of clean test set accuracy presented in tables/figures.
All train-time procedures use a seed of 1. All test-time procedures use a seed of 100. The exception
to both is any use of Random-BadNet (backdoor perturbations used in CPS, backdoor attack, random
permutations and labels), where the seed is the index of perturbation set starting from 1. The defender
uses a train-test split of 80-20%. For backdoor attack settings, the attacker uses a traintime-runtime
split of 80-20%; this means the attacker contributes 80% of their private dataset (of which p, ε = 0.4
is poisoned) to the defender’s dataset, and we evaluate the backdoor attack on the remaining 20% at
test-time (of which 1.0 is poisoned). All experiments were performed with respect to the constraints
of 1× NVIDIA GeForce RTX 3070.

Models In-line with work in loss landscape analysis (Fort et al., 2020), we opt to use the minimum
model required to fit/generalize a model to a test set. In-line with the implementation of Snoek et al.
(2015) (to ensure the minimum CNN capcity to fit CIFAR100 test sets), we train each CNN with a
cross entropy loss function and SGD optimizer for the following depth and width variations: 3-layer
[16, 16, 16], 6-layer [16, 16, 16, 32, 32, 32], 9-layer [16, 16, 16, 32, 32, 32, 32, 32, 32], 6-layer-wide
[256, 256, 256, 512, 512, 512].

Adversarial Attack We use the Projected Gradient Descent (PGD) attack (Madry et al., 2018). With
this attack method, adversarial perturbation rate εa = 0.1. can sufficiently bring down the attack
success rate comparable and similar to that of εa = 1.0. Hence, we scale the perturbation against an
upper limit 1.0 in our experiments, i.e. ε

′

a = 0.4× εa. We computes perturbations with respect to the
gradients of the defender’s model (a more pessimistic, white-box attack).

Backdoor Attack & Random Permutations As we would like different trigger perturbations
and target poison labels, such as when sampling 100 non-identical random permutations/labels or
constructing 3 backdoored sets for CPS training, we implement Random-BadNet (Datta & Shadbolt,
2022), a variant of the baseline dirty-label backdoor attack algorithm, BadNet (Gu et al., 2019). Alike
to BadNet and many existing backdoor implementations in literature, Random-BadNet constructs
a static trigger. Instead of a single square in the corner as in the case of BadNet, Random-BadNet
generates randomized pixels to return unique trigger patterns. Attackers need to specify a set of inputs
mapped to target poisoned labels {Xi : Y

poison
i } ∈ Di to specify the intended label classification,

backdoor perturbation rate εi to specify the proportion of an input to be perturbed, and the poison rate

pi =
|Xpoison|

|Xclean|+|Xpoison|
to specify the proportion of the private dataset to contain backdoored inputs, to

return Xpoison = bi(Xi, Y
poison
i , εi, pi). In this work, the target poison labels are randomly-sampled,

the perturbation rate and poison rate are p, ε = 0.4.

Stylization We use the Adaptive Instance Normalization (AdaIN) stylization method (Huang &
Belongie, 2017), which is a standard method to stylize datasets such as stylized-ImageNet (Geirhos
et al., 2019). Dataset stylization is considered as texture shift or domain shift in different literature.
We randomly sample a distinct (non-repeating) style for each attacker. α is the degree of stylization
to apply; 1.0 means 100% stylization, 0% means no stylization; we set α = 0.5. We follow the
implementation in Huang & Belongie (2017) and Geirhos et al. (2019) and stylize CIFAR-10 with the
Paintings by Numbers style dataset. We adapt the method for our attack, by first randomly sampling a
distinct set of styles for each attacker, and stylizing each attacker’s sub-dataset before the insertion of
backdoor or adversarial perturbations. This shift also contributes to the realistic scenario that different
agents may have shifted datasets given heterogenous sources.

Rotation At train-time we rotate the N sets according to their respective index out of N : [90, 0, 270,
180, 45, 135, 61, 315, 60, 315, 20, 75]. These rotation degrees were hand-picked and intended to be
diverse and varied. With seed 3407, At test-time, we randomly-sampled 100 seeded rotations: [20,
47, 77, 109, 304, 87, 304, 254, 146, 94, 98, 39, 306, 114, 267, 42, 231, 120, 40, 339, 352, 14, 264,
288, 203, 175, 308, 355, 324, 76, 213, 209, 167, 4, 170, 234, 120, 87, 43, 337, 300, 358, 29, 237, 107,
62, 84, 95, 9, 327, 203, 331, 1, 27, 59, 122, 52, 294, 64, 128, 263, 39, 141, 291, 25, 39, 176, 79, 104,
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243, 265, 166, 270, 113, 23, 65, 297, 19, 196, 134, 119, 169, 42, 178, 250, 253, 276, 354, 291, 298,
20, 0, 343, 263, 164, 246, 217, 184, 163, 98].

Task Interpolation We evaluate interpolated tasks by linearly interpolating a set of tasks: for a set of
tasks {X}N where each task X is a set of inputs x (and the number of inputs per task is identical, i.e.
{{x}M}N ), we linearly-interpolate between indexed inputs across a task set to return an interpolated
task: x̂ =

∑N
i

∑M
j αixi,j . In this work, we only interpolate between task sets with identical coarse

labels (label-shared). We do not interpolate batches, meaning we do not take a subset of one batch in
a task and merge it with another subset of another batch in a task (i.e. all inputs are unperturbed, but
each interpolated task contains distinct subsets of different task). We do not implement this setting,
as we present results on multi-task solutions, which are evaluated on multiple unperturbed tasks with
a single parameter point-estimate, thus an interpolated batch setting is already evaluatable.

We linearly-space the range [0,1] into 5 segments (returning 53 different tasks). We ignore the [0,0,0]
case, as this results in a black image set, containing no identifiable task-specific features, and thus
likely to return random labels - we leave this case out of our evaluation to filter out this noise. For
each interpolated image, we clip the colour values per pixel in the range [0, 255]. We keep the [1,1,1]
case as, even though it could be all white theoretically, it would only be all white if each and every
pixel exceeded 255; in practice (for example, as shown in Appendix A.2.1, pixels may contain colour
channel values whose weighted sum per channel may still be less than 255.

We do not interpolate batches, meaning we do not take a subset of one batch in a task and merge it
with another subset of another batch in a task (i.e. all inputs are unperturbed, but each interpolated
task contains distinct subsets of different task). We do not implement this setting, as we present
results on multi-task solutions, which are evaluated on multiple unperturbed tasks with a single
parameter point-estimate, thus an interpolated batch setting is already evaluatable.
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Appendix A.2.1: Samples of interpolated images. The label of the variations of interpolated image
across tasks is 4. The task end-points are: 3 tasks, 3 × same coarse label, train-time task set.

Single Test-time Distribution Dataset We use the CIFAR10 dataset, which contains 10 classes,
60,0000 inputs, and 3 colour channels (Krizhevsky, 2009). For test-time perturbations, we evaluate
on 100 different examples and tabulate the mean and standard deviation. For train-time perturbations
(backdoor), we insert a single backdoor trigger into the defender set before CPS initiated.

Multiple Test-time Distributions Dataset We use CIFAR100 dataset, a common baseline for
meta/continual learning settings (Krizhevsky, 2009). Similar to CIFAR10 except in that it contains
100 classes containing 600 images each. There are 500 training images and 100 testing images
per class. The 100 classes in the CIFAR100 are grouped into 20 superclasses. Each image comes
with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which
it belongs). There are at most 5 tasks of the same coarse label (given there are 5 fine labels per
class) per coarse label set. For 5-label-per-set tasks, there are at most 5 different coarse label sets
available (for 10-label-per-set tasks, there are at most 2). To evaluate the use of CPS-regularization in
hypernetworks for continual learning, the dataset is used in-line with the Split-CIFAR10/100 setting
as described in Zenke et al. (2017) and von Oswald et al. (2020). N-label-set per task refers to the
number of coarse labels contained/mapped in the task; 5(10)-label-set per task means we have 5(10)
coarse labels mapped within the task, while 2 × 5(10)-label-set per task means we have 5(10) coarse
labels mapped within the task but of 2 different fine label sets. Distinctively-different coarse labels
(per task) is a distinction from different coarse labels (of the same set), where the former has a unique
coarse label set assigned per task (no shared coarse labels across the tasks), while the latter has a
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different set of tasks that share coarse labels (but different fine labels). We provide a breakdown of
the labels (both coarse and fine) used per task; each task (as a self-contained training set/dataloader)
is indicated by the square brackets [].

• (Appendix A.3.8) Seen tasks (3 tasks, 3 × same coarse label, train-time task set): [4 (aquatic mammals → beaver), 1 (fish → aquarium fish), 54
(flowers → orchids), 9 (food → containers), 0 (fruit and vegetables → apples)], [30 (aquatic mammals → dolphin), 32 (fish → flatfish), 62 (flowers
→ poppies), 10 (food → bottles), 51 (fruit and vegetables → mushrooms)], [55 (aquatic mammals → otter), 67 (fish → ray), 70 (flowers → roses),
16(food → bowls), 53 (fruit and vegetables → oranges)]

• (Appendix A.3.8) Unseen tasks (2 tasks, 2 × same coarse label but unseen fine label): [72 (aquatic mammals → seal), 73 (fish → shark), 82 (flowers
→ sunflowers), 28 (food → cups), 57 (fruit and vegetables → pears)], [95 (aquatic mammals → whale), 91 (fish → trout), 92 (flowers → tulips), 61
(food → plates), 83 (fruit and vegetables → sweet peppers)]

• (Appendix A.3.8) Unseen tasks (5 tasks, 1 × 5-label-set per task, 3 × same coarse label but unseen fine label, 2 × distinctly different coarse label): [22
(household electrical devices → clock), 5 (household → furniture), 6 (insects → bee), 3 (large carnivores → bear), 12 (large man-made outdoor things
→ bridge)], [39 (household electrical devices → computer keyboard), 20 (household → bed), 7(insects → beetle), 42 (large carnivores → leopard), 17
(large man-made outdoor things → castle)], [40 (household electrical devices → lamp), 25 (household → chair), 14 (insects → butterfly), 43 (large
carnivores → lion), 37 (large man-made outdoor things → house)], [23 (large natural outdoor scenes → cloud), 15 (large omnivores and herbivores
→ camel), 34 (medium-sized mammals → fox), 26 (non-insect invertebrates → crab), 2 (people → baby)], [27 (reptiles → crocodile), 36 (small
mammals → hamster), 47 (trees → maple), 8 (vehicles 1 → bicycle), 41 (vehicles 2 → lawn-mower)]

• (Appendix A.3.6) 2 tasks, 2 × same coarse label: [4 (aquatic mammals → beaver), 1 (fish → aquarium fish), 54 (flowers → orchids), 9 (food →
containers), 0 (fruit and vegetables → apples)], [30 (aquatic mammals → dolphin), 32 (fish → flatfish), 62 (flowers → poppies), 10 (food → bottles),
51 (fruit and vegetables → mushrooms)]

• (Appendix A.3.6) 2 tasks, 2 × different coarse label: [4 (aquatic mammals → beaver), 1 (fish → aquarium fish), 54 (flowers → orchids), 9 (food →
containers), 0 (fruit and vegetables → apples)], [22 (household electrical devices → clock), 5 (household → furniture), 6 (insects → bee), 3 (large
carnivores → bear), 12 (large man-made outdoor things → bridge)]

• (Appendix A.3.5) 2 tasks (2 × 5-label-set per task, 2 × same coarse label per task, 0 × distinctly different coarse label per task): [4 (aquatic mammals
→ beaver), 30 (aquatic mammals → dolphin), 1 (fish → aquarium fish), 32 (fish → flatfish), 54 (flowers → orchids), 62 (flowers → poppies), 9 (food
→ containers), 10 (food → bottles), 0 (fruit and vegetables → apples), 51 (fruit and vegetables → mushrooms)], [55 (aquatic mammals → otter), 72
(aquatic mammals → seal), 67 (fish → ray), 73 (fish → shark), 70 (flowers → roses), 82 (flowers → sunflowers), 16 (food → bowls), 28 (food →
cups), 53 (fruit and vegetables → oranges), 57 (fruit and vegetables → pears)]

• (Appendix A.3.5) 3 tasks (2 × 5-label-set per task, 2 × same coarse label per task, 1 × distinctly different coarse label per task): [4 (aquatic mammals
→ beaver), 30 (aquatic mammals → dolphin), 1 (fish → aquarium fish), 32 (fish → flatfish), 54 (flowers → orchids), 62 (flowers → poppies), 9 (food
→ containers), 10 (food → bottles), 0 (fruit and vegetables → apples), 51 (fruit and vegetables → mushrooms)], [55 (aquatic mammals → otter), 72
(aquatic mammals → seal), 67 (fish → ray), 73 (fish → shark), 70 (flowers → roses), 82 (flowers → sunflowers), 16 (food → bowls), 28 (food →
cups), 53 (fruit and vegetables → oranges), 57 (fruit and vegetables → pears)], [22 (household electrical devices → clock), 39 (household electrical
devices → clock), 5 (household → furniture), 20 (household → furniture), 6 (insects → bee), 7 (insects → bee), 3 (large carnivores → bear), 42
(large carnivores → bear), 12 (large man-made outdoor things → bridge), 17 (large man-made outdoor things → bridge)]

• (Appendix A.3.5) 4 tasks (2 × 5-label-set per task, 2 × same coarse label per task, 2 × distinctly different coarse label per task): [4 (aquatic mammals
→ beaver), 30 (aquatic mammals → dolphin), 1 (fish → aquarium fish), 32 (fish → flatfish), 54 (flowers → orchids), 62 (flowers → poppies), 9 (food
→ containers), 10 (food → bottles), 0 (fruit and vegetables → apples), 51 (fruit and vegetables → mushrooms)], [55 (aquatic mammals → otter), 72
(aquatic mammals → seal), 67 (fish → ray), 73 (fish → shark), 70 (flowers → roses), 82 (flowers → sunflowers), 16 (food → bowls), 28 (food →
cups), 53 (fruit and vegetables → oranges), 57 (fruit and vegetables → pears)], [22 (household electrical devices → clock), 39 (household electrical
devices → clock), 5 (household → furniture), 20 (household → furniture), 6 (insects → bee), 7 (insects → bee), 3 (large carnivores → bear), 42 (large
carnivores → bear), 12 (large man-made outdoor things → bridge), 17 (large man-made outdoor things → bridge)], [23 (large natural outdoor scenes
→ cloud), 33 (large natural outdoor scenes → forest), 15 (large omnivores and herbivores → camel), 19 (large omnivores and herbivores → cattle), 34
(medium-sized mammals → fox), 63 (medium-sized mammals → porcupine), 26 (non-insect invertebrates → crab), 45 (non-insect invertebrates →
lobster), 2 (people → baby), 11 (people → boy)]

• (Appendix A.3.7) 3 tasks (1 × 5-label-set per task, 3 × same coarse label): [4 (aquatic mammals → beaver), 1 (fish → aquarium fish), 54 (flowers →
orchids), 9 (food → containers), 0 (fruit and vegetables → apples)], [30 (aquatic mammals → dolphin), 32 (fish → flatfish), 62 (flowers → poppies),
10 (food → bottles), 51 (fruit and vegetables → mushrooms)], [55 (aquatic mammals → otter), 67 (fish → ray), 70 (flowers → roses), 16(food →
bowls), 53 (fruit and vegetables → oranges)]

• (Appendix A.3.7) 3 tasks (1 × 5-label-set per task, 2 × same coarse label, 1 × different coarse label): [4 (aquatic mammals → beaver), 1 (fish →
aquarium fish), 54 (flowers → orchids), 9 (food → containers), 0 (fruit and vegetables → apples)], [30 (aquatic mammals → dolphin), 32 (fish →
flatfish), 62 (flowers → poppies), 10 (food → bottles), 51 (fruit and vegetables → mushrooms)]], [22 (household electrical devices → clock), 5
(household → furniture), 6 (insects → bee), 3 (large carnivores → bear), 12 (large man-made outdoor things → bridge)]

• (Appendix A.3.7) 3 tasks (1 × 5-label-set per task, 3 × distinctly different coarse label): [4 (aquatic mammals → beaver), 1 (fish → aquarium fish), 54
(flowers → orchids), 9 (food → containers), 0 (fruit and vegetables → apples)], [22 (household electrical devices → clock), 5 (household → furniture),
6 (insects → bee), 3 (large carnivores → bear), 12 (large man-made outdoor things → bridge)], [23 (large natural outdoor scenes → cloud), 15 (large
omnivores and herbivores → camel), 34 (medium-sized mammals → fox), 26 (non-insect invertebrates → crab), 2 (people → baby)]

• (Appendix A.3.7) 5 tasks (1 × 5-label-set per task, 5 × same coarse label): [4 (aquatic mammals → beaver), 1 (fish → aquarium fish), 54 (flowers →
orchids), 9 (food → containers), 0 (fruit and vegetables → apples)], [30 (aquatic mammals → dolphin), 32 (fish → flatfish), 62 (flowers → poppies),
10 (food → bottles), 51 (fruit and vegetables → mushrooms)], [55 (aquatic mammals → otter), 67 (fish → ray), 70 (flowers → roses), 16(food →
bowls), 53 (fruit and vegetables → oranges)], [72 (aquatic mammals → seal), 73 (fish → shark), 82 (flowers → sunflowers), 28 (food → cups), 57
(fruit and vegetables → pears)], [95 (aquatic mammals → whale), 91 (fish → trout), 92 (flowers → tulips), 61 (food → plates), 83 (fruit and vegetables
→ sweet peppers)]

• (Appendix A.3.7) 5 tasks (1 × 5-label-set per task, 2 × same coarse label, 3 × distinctly different coarse label): [4 (aquatic mammals → beaver), 1
(fish → aquarium fish), 54 (flowers → orchids), 9 (food → containers), 0 (fruit and vegetables → apples)], [30 (aquatic mammals → dolphin), 32 (fish
→ flatfish), 62 (flowers → poppies), 10 (food → bottles), 51 (fruit and vegetables → mushrooms)]], [22 (household electrical devices → clock), 5
(household → furniture), 6 (insects → bee), 3 (large carnivores → bear), 12 (large man-made outdoor things → bridge)], [23 (large natural outdoor
scenes → cloud), 15 (large omnivores and herbivores → camel), 34 (medium-sized mammals → fox), 26 (non-insect invertebrates → crab), 2 (people
→ baby)], [27 (reptiles → crocodile), 36 (small mammals → hamster), 47 (trees → maple), 8 (vehicles 1 → bicycle), 41 (vehicles 2 → lawn-mower)]

• (Appendix A.3.7) 5 tasks (1 × 5-label-set per task, 2 × same coarse label, 3 × different coarse label of same set): [4 (aquatic mammals → beaver), 1
(fish → aquarium fish), 54 (flowers → orchids), 9 (food → containers), 0 (fruit and vegetables → apples)], [30 (aquatic mammals → dolphin), 32 (fish
→ flatfish), 62 (flowers → poppies), 10 (food → bottles), 51 (fruit and vegetables → mushrooms)], [22 (household electrical devices → clock), 5
(household → furniture), 6 (insects → bee), 3 (large carnivores → bear), 12 (large man-made outdoor things → bridge)], [39 (household electrical
devices → clock), 20 (household → furniture), 7 (insects → bee), 42 (large carnivores → bear), 17 (large man-made outdoor things → bridge)], [40
(household electrical devices → lamp), 25 (household → chair), 14 (insects → butterfly), 43 (large carnivores → lion), 37 (large man-made outdoor
things → house)]
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A.3 SUPPORTING RESULTS
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Appendix A.3.1: Change in parameter subspace dynamics: Loss and cosine distance per epoch
during training of CPS with 3 train-time distributions (β = 0.0). Perturbation type of train-time
subsets are backdoor (column 1), stylization (column 2), rotation (column 3), and task (column 4).
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Appendix A.3.2: Change in parameter subspace dynamics: Loss and cosine distance per epoch
during training of CPS with 3 train-time distributions (β = 1.0). Perturbation type of train-time
subsets are backdoor (column 1), stylization (column 2), rotation (column 3), and task (column 4).
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Appendix A.3.3: Change in parameter subspace dynamics: 3D plot of interpolated input space (left)
and interpolated parameter space (right) for parameter spaces trained with β = 0.0 (a) and β = 1.0
(b). The cross-sectional diagrams reflect the corresponding points in 2D. All colours correspond to
the color bar in the figure. We only plot the first-instance (i.e. there may be multiple) lowest-loss /
maximum-accuracy mappable parameter in the parameter subspace for each interpolated task.
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3-layer CNN
Type / # sets 2 3 5 10

CPS (backdoor)
centre 29.6± 7.8 55.3± 15.8 49.9± 14.2 49.9± 13.6

ens. (mean) 33.7± 8.7 55.5± 15.7 49.7± 14.4 49.9± 13.7
intp. (max) 55.1± 14.9 57.5± 15.5 52.7± 15.6 55.7± 15.5

CPS (stylization)
centre 13.6± 2.0 57.5± 17.8 39.3± 1.8 34.4± 4.9

ens. (mean) 20.9± 3.8 57.3± 18.3 39.8± 2.0 33.8± 4.3
intp. (max) 64.0± 20.2 59.7± 18.2 52.5± 2.8 52.9± 5.0

CPS (rotation)
centre 19.4± 0.6 19.0± 1.8 17.2± 2.7 9.9± 3.0

ens. (mean) 19.6± 0.4 19.2± 1.8 17.1± 2.2 15.7± 2.7
intp. (max) 21.7± 0.5 59.6± 17.2 49.7± 1.6 50.5± 5.6

6-layer CNN
Type / # sets 2 3 5 10

CPS (backdoor)
centre 60.2± 13.0 48.4± 2.4 50.7± 2.1 52.7± 4.7

ens. (mean) 59.3± 12.8 48.6± 2.9 49.3± 1.7 52.2± 4.7
intp. (max) 61.9± 12.9 51.8± 2.4 52.8± 1.7 56.7± 4.6

CPS (stylization)
centre 22.6± 0.8 47.9± 1.1 48.2± 2.2 52.6± 3.9

ens. (mean) 29.6± 1.1 47.4± 1.0 47.7± 2.5 51.8± 3.5
intp. (max) 53.4± 1.4 50.0± 0.8 51.1± 2.9 55.9± 3.5

CPS (rotation)
centre 15.9± 0.1 19.4± 1.2 21.2± 3.1 24.8± 3.4

ens. (mean) 17.3± 0.5 19.8± 1.2 20.8± 2.3 24.2± 3.0
intp. (max) 48.1± 2.5 51.4± 1.5 49.5± 4.0 51.3± 3.7

Appendix A.3.4: CPS vs single test-time distributions: The relationship between the type of trained
perturbations (backdoor / stylization / rotation), number of perturbed sets, and model capacity.

layers ℓ
3 6 9

2 tasks (2 × 5-label-set per task, 2 × same
coarse label per task, 0 × distinctly differ-
ent coarse label per task)

centre 48.0± 12.1 20.0± 1.2 30.1± 3.2
ens. (mean) 68.0± 32.0 24.0± 2.4 35.4± 0.0
intp. (max) 86.6± 9.1 65.7± 34.2 91.0± 9.0

3 tasks (2 × 5-label-set per task, 2 × same
coarse label per task, 1 × distinctly differ-
ent coarse label per task)

centre 29.5± 4.8 20.6± 2.0 20.6± 1.1
ens. (mean) 29.3± 5.3 23.6± 1.7 19.9± 0.8
intp. (max) 83.4± 12.0 74.1± 36.3 53.8± 32.7

4 tasks (2 × 5-label-set per task, 2 × same
coarse label per task, 2 × distinctly differ-
ent coarse label per task)

centre 17.7± 1.9 19.2± 2.1 20.1± 0.6
ens. (mean) 19.6± 0.6 19.4± 0.8 21.8± 1.5
intp. (max) 38.5± 27.5 64.0± 36.2 49.3± 26.7

Appendix A.3.5: CPS vs multiple test-time dis-
tributions: Model depth against distinct coarse
label sets.

6-layer CNN
narrow wide

2
ta

sk
s same

centre 17.5 ± 2.1 37.9 ± 4.6
ens. (mean) 24.2 ± 5.6 43.2 ± 2.2
intp. (max) 62.1 ± 37.9 82.7 ± 3.5

different
centre 23.5 ± 6.9 21.7 ± 0.8

ens. (mean) 30.9 ± 10.8 31.0 ± 11.4
intp. (max) 62.9 ± 37.1 60.8 ± 39.2

Appendix A.3.6: CPS vs multiple test-time dis-
tributions: Tasks (same/different coarse labels)
against model width.

layers ℓ
3 6 9

3 tasks (1 × 5-label-set per task, 3
× same coarse label)

centre 21.7± 2.2 31.0± 8.4 25.1± 2.2
ens. (mean) 23.3± 4.6 31.0± 4.9 26.8± 1.3
intp. (max) 89.7± 7.0 88.5± 4.5 93.9± 7.8

3 tasks (1 × 5-label-set per task, 2
× same coarse label, 1 × different
coarse label)

centre 20.7± 5.2 24.2± 1.4 22.5± 2.7
ens. (mean) 24.3± 9.3 26.9± 3.0 21.2± 1.1
intp. (max) 87.4± 3.1 83.9± 4.5 57.8± 31.4

3 tasks (1 × 5-label-set per task, 3
× distinctly different coarse label)

centre 19.0± 6.5 21.7± 1.2 21.9± 3.8
ens. (mean) 21.2± 6.9 25.0± 3.5 22.4± 1.2
intp. (max) 91.4± 8.3 89.0± 5.6 74.0± 36.7

5 tasks (1 × 5-label-set per task, 5
× same coarse label)

centre 20.2± 1.3 23.2± 6.6 20.2± 1.3
ens. (mean) 20.2± 1.3 26.3± 3.6 21.2± 1.2
intp. (max) 21.8± 0.7 87.7± 24.7 61.1± 32.0

5 tasks (1 × 5-label-set per task, 2
× same coarse label, 3 × distinctly
different coarse label)

centre 20.2± 1.3 19.9± 1.5 23.5± 5.4
ens. (mean) 20.2± 1.3 21.4± 1.5 21.6± 2.4
intp. (max) 21.6± 0.5 84.8± 30.3 55.8± 36.3

5 tasks (1 × 5-label-set per task, 2
× same coarse label, 3 × different
coarse label of same set)

centre 20.2± 1.3 23.7± 3.5 20.0± 1.9
ens. (mean) 20.2± 1.3 23.2± 1.9 21.0± 2.1
intp. (max) 21.6± 0.5 73.7± 32.3 60.6± 33.0

Appendix A.3.7: CPS vs multiple test-time distri-
butions: Varying model depth against varying
task label set diversity (different fine labels, dif-
ferent coarse labels).

CPS: 3 tasks, 3 × same
coarse label, 6-layer CNN,
unique-task solution

CPS: 3 tasks, 3 × same
coarse label, 6-layer CNN,
multi-task solution

CPS: 2 tasks, 2 × same
coarse label, 6-layer-wide
CNN, unique-task solution

CPS: 2 tasks, 2 × same
coarse label, 6-layer-wide
CNN, multi-task solution

-

Seen tasks (3 tasks, 3 × same coarse label,
train-time task set)

centre 33.9± 5.7 27.2± 0.0 38.9± 4.8 37.2± 0.0
ens. (mean) 31.0± 4.8 28.6± 0.0 36.3± 3.2 35.9± 0.0
intp. (max) 59.4± 9.1 43.3± 0.0 57.2± 8.6 40.6± 0.0

Unseen tasks (2 tasks, 2 × same coarse label
but unseen fine label)

centre 34.8± 2.7 33.8± 0.0 31.0± 0.2 30.0± 0.0
ens. (mean) 29.4± 0.2 29.3± 0.0 32.2± 3.8 31.3± 0.0
intp. (max) 42.9± 5.8 41.7± 0.0 40.4± 5.4 35.2± 0.0

Unseen tasks (5 tasks, 1 × 5-label-set per
task, 3 × same coarse label but unseen fine
label, 2 × distinctly different coarse label)

centre 18.4± 3.5 18.0± 0.0 23.3± 4.3 23.0± 0.0
ens. (mean) 18.8± 2.4 18.9± 0.0 23.1± 3.1 22.2± 0.0
intp. (max) 30.9± 1.1 28.0± 0.0 30.3± 2.2 32.0± 0.0

+ Adversarial Attack

Seen tasks (3 tasks, 3 × same coarse label,
train-time task set)

centre 29.4± 6.1 25.0± 0.0 36.7± 3.6 31.7± 0.0
ens. (mean) 30.0± 4.7 27.9± 0.0 36.5± 4.1 32.2± 0.0
intp. (max) 55.6± 5.2 42.8± 0.0 52.8± 5.7 37.8± 0.0

Unseen tasks (2 tasks, 2 × same coarse label
but unseen fine label)

centre 33.3± 11.7 32.5± 0.0 31.7± 5.0 38.3± 0.0
ens. (mean) 30.9± 6.1 27.1± 0.0 31.8± 0.5 34.4± 0.0
intp. (max) 42.5± 2.5 37.5± 0.0 38.3± 3.3 42.5± 0.0

Unseen tasks (5 tasks, 1 × 5-label-set per
task, 3 × same coarse label but unseen fine
label, 2 × distinctly different coarse label)

centre 15.0± 3.8 19.0± 0.0 21.0± 4.7 20.0± 0.0
ens. (mean) 18.6± 3.1 18.9± 0.0 23.9± 3.1 22.3± 0.0
intp. (max) 25.3± 2.9 22.3± 0.0 33.0± 6.9 29.0± 0.0

+ Random Permutations

Seen tasks (3 tasks, 3 × same coarse label,
train-time task set)

centre 33.3± 4.9 27.8± 0.0 39.4± 5.5 37.8± 0.0
ens. (mean) 31.6± 4.6 28.7± 0.0 37.2± 3.8 35.6± 0.0
intp. (max) 60.8± 21.7 43.3± 0.0 58.9± 7.5 40.6± 0.0

Unseen tasks (2 tasks, 2 × same coarse label
but unseen fine label)

centre 34.8± 2.7 33.1± 0.0 31.3± 0.0 29.6± 0.0
ens. (mean) 29.4± 0.0 28.8± 0.0 32.7± 3.1 31.1± 0.0
intp. (max) 42.7± 6.0 41.9± 0.0 41.5± 4.4 35.6± 0.0

Unseen tasks (5 tasks, 1 × 5-label-set per
task, 3 × same coarse label but unseen fine
label, 2 × distinctly different coarse label)

centre 18.5± 3.7 18.3± 0.0 22.9± 4.4 21.7± 0.0
ens. (mean) 18.5± 2.2 19.0± 0.0 23.1± 2.7 22.7± 0.0
intp. (max) 30.8± 1.1 28.0± 0.0 30.3± 2.1 29.3± 0.0

+ Stylization

Seen tasks (3 tasks, 3 × same coarse label,
train-time task set)

centre 28.3± 11.6 25.0± 0.0 27.2± 0.8 31.7± 0.0
ens. (mean) 27.0± 6.1 25.8± 0.0 27.5± 2.0 30.9± 0.0
intp. (max) 48.3± 5.9 36.7± 0.0 36.7± 6.2 35.6± 0.0

Unseen tasks (2 tasks, 2 × same coarse label
but unseen fine label)

centre 33.1± 1.5 38.5± 0.0 32.1± 4.2 29.0± 0.0
ens. (mean) 29.5± 0.2 30.1± 0.0 30.3± 2.0 30.3± 0.0
intp. (max) 42.3± 0.6 41.5± 0.0 36.3± 3.3 35.6± 0.0

Unseen tasks (5 tasks, 1 × 5-label-set per
task, 3 × same coarse label but unseen fine
label, 2 × distinctly different coarse label)

centre 19.4± 3.9 16.0± 0.0 23.9± 4.6 19.7± 0.0
ens. (mean) 20.5± 1.5 18.2± 0.0 25.3± 3.2 22.2± 0.0
intp. (max) 32.8± 3.3 31.0± 0.0 32.8± 2.5 33.3± 0.0

+ Rotation

Seen tasks (3 tasks, 3 × same coarse label,
train-time task set)

centre 33.3± 6.2 26.1± 0.0 32.2± 5.5 32.8± 0.0
ens. (mean) 30.7± 5.1 27.3± 0.0 32.8± 3.9 32.9± 0.0
intp. (max) 54.4± 3.4 37.2± 0.0 52.8± 7.5 35.6± 0.0

Unseen tasks (2 tasks, 2 × same coarse label
but unseen fine label)

centre 33.5± 4.0 34.2± 0.0 30.4± 0.8 35.0± 0.0
ens. (mean) 28.5± 1.0 29.1± 0.0 31.5± 4.9 34.8± 0.0
intp. (max) 41.3± 7.5 40.8± 0.0 39.6± 6.3 37.9± 0.0

Unseen tasks (5 tasks, 1 × 5-label-set per
task, 3 × same coarse label but unseen fine
label, 2 × distinctly different coarse label)

centre 17.8± 3.2 19.7± 0.0 21.7± 3.1 18.7± 0.0
ens. (mean) 18.4± 2.6 17.9± 0.0 21.5± 1.1 19.6± 0.0
intp. (max) 31.4± 1.5 25.3± 0.0 28.6± 3.3 30.3± 0.0

Appendix A.3.8: CPS vs multiple test-time distributions: Evaluating seen/unseen tasks (varying
perturbation types) with CPS of varying over-parameterization (number of tasks and model width).
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