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Abstract
Temporal networks have been widely used to model real-world complex systems
such as financial systems and e-commerce systems. In a temporal network, the joint
neighborhood of a set of nodes often provides crucial structural information useful
for predicting whether they may interact at a certain time. However, recent represen-
tation learning methods for temporal networks often fail to extract such information
or depend on online construction of structural features, which is time-consuming.
To address the issue, this work proposes Neighborhood-Aware Temporal network
model (NAT). For each node in the network, NAT abandons the commonly-used
one-single-vector-based representation while adopting a novel dictionary-type
neighborhood representation. Such a dictionary representation records a down-
sampled set of the neighboring nodes as keys, and allows fast construction of struc-
tural features for a joint neighborhood of multiple nodes. We also design a dedicated
data structure termed N-cache to support parallel access and update of those dic-
tionary representations on GPUs. NAT gets evaluated over seven real-world large-
scale temporal networks. NAT not only outperforms all cutting-edge baselines by
averaged 1.2%↑ and 4.2%↑ in transductive and inductive link prediction accuracy,
respectively, but also keeps scalable by achieving a speed-up of 4.1-76.7× against
the baselines that adopt joint structural features and achieves a speed-up of 1.6-4.0×
against the baselines that cannot adopt those features. The link to the code: https:
//github.com/Graph-COM/Neighborhood-Aware-Temporal-Network.

1 Introduction
Temporal networks are widely used as abstractions of real-world complex systems [1]. They model
interacting elements as nodes, interactions as links, and when those interactions happen as timestamps
on those links. Temporal networks often evolve by following certain patterns. Ranging from triadic
closure [2] to higher-order motif closure [3–6], the interacting behaviors between multiple nodes have
been shown to strongly depend on the network structure of their joint neighborhood. Researchers
have leveraged this observation and built many practical systems to monitor and make prediction on
temporal networks such as anomaly detection in financial networks [7–9], friend recommendation in
social networks [10], and collaborative filtering techniques in e-commerce systems [11].

Recently, graph neural networks (GNNs) have been widely used to encode network-structured
data [12] and have achieved state-of-the-art (SOTA) performance in many tasks such as node/graph
classification [13–15]. However, to predict how nodes interact with each other in temporal networks,
a direct generalization of GNNs may not work well. Traditional GNNs often learn a vector represen-
tation for each node, and predict whether two nodes may interact (aka. a link) based on a combination
(e.g. the inner product) of the two vector representations. This link prediction strategy often fails
to capture the structural features of the joint neighborhood of the two nodes [16–19]. Consider a
toy example with a temporal network in Fig. 1: Node w and node v share the same local structure
before t3, so GNNs including their variants on temporal networks (e.g., TGN [20]) will associate w
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Figure 1: A toy example to predict how a temporal network evolves. Given the historical temporal network
as shown in the left, the task is to predict whether u prefers to interact with v or w at timestamp t3. If this is a
social network, (u, v) is likely to happen because u, v share a common neighbor a and follow the principle of
triadic closure [2]. However, traditional GNNs, even for their generalization on temporal networks fail here as
they learn the same representations for node v and node w due to their common structural contexts, as shown in
the middle. In the right, we show a high-level abstraction of joint neighborhood features based on N-caches of u
and v: In the N-caches for 1-hop neighborhoods of both node u and node v, a appears as the keys. Joining these
keys can provide a structural feature that encodes such common-neighbor information at least for prediction.

and v with the same vector representation. Hence, GNNs will fail to make a correct prediction to tell
whether u will interact with w or v at t3. Here, GNNs cannot capture the important joint structural
feature that u and v have a common neighbor a before t3. This issue makes almost all previous works
that generalize GNNs for temporal networks provide only subpar performance [20–29].

Some recent works have been proposed to address such an issue on static networks [18, 19, 30].
Their key ideas are to construct node structural features to learn the two-node joint neighborhood
representations. Specifically, for two nodes of interest, they either label one linked node and construct
its distance to the other node [31, 32], or label all nodes in the neighborhood with their distances to
these two linked nodes [18, 33]. Traditional GNNs can afterward encode such feature-augmented
neighborhood to achieve better inference. Although these ideas are theoretically powerful [18, 19]
and provide good empirical performance on small networks, the induced models are not scaled up to
large networks. This is because constructing such structural features is time-consuming and should
be done separately for each link to be predicted. This issue becomes even more severe over temporal
networks, because two nodes may interact many times and thus the number of links to be predicted is
often much larger than the corresponding number in static networks.

In this work, we propose Neighborhood-Aware Temporal network model (NAT) that can address the
aforementioned modeling issue while keeping good scalability of the model. The key novelty of NAT
is to incorporate dictionary-type neighborhood representations in place of one-single-vector node
representation and a computation-friendly neighborhood cache (N-cache) to maintain such dictionary-
type representations. Specifically, the N-cache of a node stores several size-constrained dictionaries
on GPUs. Each dictionary has a sampled collection of historical neighbors of the center node as
keys, and aggregates the timestamps and the features on the links connected to these neighbors as
values (vector representations). With N-caches, NAT can in parallel construct the joint neighborhood
structural features for a batch of node pairs to achieve fast link predictions. NAT can also update
the N-caches with new interacted neighbors efficiently by adopting hash-based search functions that
support GPU parallel computation.

NAT provides a novel solution for scalable temporal network representation learning. We evaluate
NAT over 7 real-world temporal networks, among which, one contains 1M+ nodes and almost 10M
temporal links to evaluate the scalability of NAT. NAT outperforms cutting-edge baselines by averaged
1.2%↑ and 4.2%↑ in transductive and inductive link prediction accuracy respectively. NAT achieves
4.1-76.7× speed-up compared to the baseline CAWN [34] that constructs joint neighborhood features
based on random walk sampling. NAT also achieves 1.6-4.0× speed-up of the fastest baselines that do
not construct joint neighborhood features (and thus suffer from the issue in Fig. 1) on large networks.

2 Related works
Neighborhood structure often governs how temporal networks evolve over time. Early-time temporal
network prediction models count motifs [35, 36] or subgraphs [37] in the historical neighborhood
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of two interacting objects as features to predict their future interactions. These models cannot use
network attributes and often suffer from scalability issues because counting combinatorial structures
is complicated and hard to be executed in parallel. Network-embedding approaches for temporal
networks [38–42] suffer from the similar problem, because the optimization problem used to compute
node embeddings is often too complex to be solved again and again as the network evolves.

Recent works based on neural networks often provide more accurate and faster models, which benefit
from the parallel computation hardware and scalable system support [43, 44] for deep learning. Some
of these works simply aggregate the sequence of links into network snapshots and treat temporal
networks as a sequence of static network snapshots [21–26]. These methods may offer low prediction
accuracy as they cannot model the interactions that lie in different levels of time granularity.

Move advanced methods deal with link streams directly [20, 27–29, 45–48]. They generalize GNNs
to encode temporal networks by associating each node with a vector representation and update it
based on the nodes that one interacts with. Some works use the representation of the node that
one is currently interacting with [27, 28, 45]. Other works use those of the nodes that one has
interacted with in history [20, 29, 46, 47]. However, in either way, these methods suffer from the
limited power of GNNs to capture the structural features from the joint neighborhood of multiple
nodes [17, 19]. Recently, CAWN [34] and HIT [4], inspired by the theory in static networks [18, 19],
have proposed to construct such structural features to improve the representation learning on temporal
networks, CAWN for link prediction and HIT for higher-order interaction prediction. However,
their computational complexity is high, as for every queried link, they need to sample a large group
of random walks and construct the structural features on CPUs that limit the level of parallelism.
However, NAT addresses these problems via neighborhood representations and N-caches.

3 Preliminaries: Notations and Problem Formulation
In this section, we introduce some notations and the problem formulation. We consider temporal
network as a sequence of timestamped interactions between pairs of nodes.

Definition 3.1 (Temporal network) A temporal network E can be represented as E =
{(u1, v1, t1), (u2, v2, t2), · · · }, t1 ≤ t2 ≤ · · · where ui,vi denote interacting node IDs of the ith link,
ti denotes the timestamp. Each temporal link (u, v, t) may have link feature etu,v . We also denote the
entire node set as V. Without loss of generality, we use integers as node IDs, i.e., V = {1, 2, ...}.

A good representation learning of temporal networks is able to efficiently and accurately predict how
temporal networks evolve over time. Hence, we formulate our problem as follows.

Definition 3.2 (Problem formulation) Our problem is to learn a model that may use the historical
information before t, i.e., {(u′, v′, t′) ∈ E|t′ < t}, to accurately and efficiently predict whether there
will be a temporal link between two nodes at time t, i.e., (u, v, t).

Next, we define neighborhood in temporal networks.

Definition 3.3 (k-hop neighborhood in a temporal network) Given a timestamp t, denote a static
network constructed by all the temporal links before t as Gt. Remove all timestamps in Gt. Given
a node v, define k-hop neighborhood of v before time t, denoted by N t,k

v , as the set of all nodes u
such that there exists at least one walk of length k from u to v over Gt. For two nodes u, v, their joint
neighborhood up-to K hops refers to ∪Kk=1(N t,k

v ∪N t,k
u ).

4 Methodology
In this section, we introduce NAT. NAT consists of two major components: neighborhood representa-
tions and N-caches, constructing joint neighborhood features and NN-based encoding.

4.1 Neighborhood Representations and N-caches

In NAT, a node representation is tracked by a fixed-sized memory module, i.e., N-cache over time as
the temporal network evolves. Fig. 2 Left gives an illustration. In contrast to all previous methods
that adopt a single vector representation for each node u, NAT adopts neighborhood representations
(Z

(0)
u (t), Z

(1)
u (t), ..., Z

(K)
u (t)), where Z

(k)
u (t) denotes the k-hop neighborhood representation, for
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No. Notations Definitions
1. Z

(k)
u A dictionary (with values Z(k)

u,a, of size Mk) denoting the k-hop neighborhood representation for node u.
2. Z

(k)
u,a A vector (of length F for k ≥ 1) in the values of Z(k)

u representing node a as a k-hop neighbor of u.
3. s

(k)
u An auxiliary array to record the node IDs who are currently recorded as the keys of Z(k)

u .
4. DEt

u(a) The distance encoding of node a based on the keys of N-caches of node u at time t (Eq. (1)).
5. hash(a) The hash function mapping a node ID a to the position of Z(k)

u,a in the k-hop N-cache of any node u.
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Figure 2: Neighborhood representations and Joining Neighborhood Features & Representations to make
predictions. Left: Neighborhood representations of a node. Node u interacts with v at t3 in the example in
Fig. 1. The 0-hop (self) representation and 1-hop representations will be updated based on Z

(0)
v . The 2-hop

representations will be updated by inserting Z
(1)
v . Z(k)

u ’s are maintained in N-caches. Right: In the example
of Fig. 1, to predict the link (u, v, t3), the neighborhood representations of node u and node v will be joined:
The structural feature DE is constructed according to Eq. (1); The representations are sum-pooled according to
Eq. (2). Then, an attention layer (Eq. (3)) is adopted to make the final prediction. ⊕ denotes vector concatenation.

k = 0, 1, ...,K. Note that these representations may evolve over time. For notation simplicity, the
timestamps in these notations are ignored while they typically can be inferred from the context.
The main goal of tracking these neighborhood representations is to enable efficient construction of
structural features, which will be detailed in Sec. 4.2. Next, we first explain these neighborhood
representations from the perspective of modeling and how they evolve over time. Then, we introduce
the scalable implementation of N-caches.

Modeling. For a node u, the 0-hop representation, or termed self-representation Z
(0)
u sim-

ply works as the standard node representation for u. It gets updated via an RNN Z
(0)
u ←

RNN(Z
(0)
u , [Z

(0)
v , t3, eu,v]) when node u interacts with another node v as shown in Fig. 2 Left.

The rest neighborhood representations are more complicated. To give some intuition, we first
introduce the 1-hop representation Z

(1)
u . Z

(1)
u is a dictionary whose keys, denoted by key(Z(1)

u ),
correspond to a down-sampled set of the (IDs of) nodes in the 1-hop neighborhood of u. For a
node a in key(Z(1)

u ), the dictionary value denoted by Z
(1)
u,a is a vector representation as a summary

of previous interactions between u and a. Z(1)
u will be updated as temporal network evolves. For

example, in Fig. 1, as v interacts with u at time t3 with the link feature eu,v, the entry in Z
(1)
u that

corresponds to v, Z(1)
u,v will get updated via an RNN Z

(1)
u,v ← RNN(Z

(1)
u,v, [Z

(0)
v , t3, eu,v]). If Z(1)

u,v

does not exist in current Z(1)
u (e.g., in the first v, u interaction), a default initialization of Z(1)

u,v is used.
Once updated, the new value Z

(1)
u,v paired with the key (node ID) v will be inserted into Z

(1)
u .

One remark is that for the input timestamps ti, we adopt Fourier features to encode them be-
fore filling them into RNNs, i.e., with learnable parameter ωi’s, 1 ≤ i ≤ d, T-encoding(t) =
[cos(ω1t), sin(ω1t), ..., cos(ωdt), sin(ωdt)], which has been proved to be useful for temporal net-
work representation learning [4, 20, 29, 34, 49, 50].

The large-hop (>1) neighborhood representation Z
(k)
u is also a dictionary. Similarly, the keys of

Z
(k)
u correspond to the nodes who lie in the k-hop neighborhood of u. The update of Z(k)

u is as
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Algorithm 1: N-caches construction and update (V , E , α)
1 for k from 0 to 2 (consider only two hops) do
2 for u in V , in parallel, do
3 Initialize fixed-size dictionaries Z(k)

u in GPU with key spaces s(k)u and value spaces;

4 for (u, v, t, e) in each mini-batch (u,v, t, e) of E , in parallel, do
5 Z

(0)
u ← RNN(Z

(0)
u , [Z

(0)
v , t, e]) // update 0-hop self-representation

6 Zprev ← Z
(1)
u,v if s(1)u [hash(v)] equals v, else 0 // check if Z(1)

u,v is recorded in Z
(1)
u or not;

7 if s(1)u [hash(v)] equals (v or EMPTY) or rand(0, 1) < α then
8 s

(1)
u [hash(v)]← v, Z(1)

u,v ← RNN(Zprev, [Z
(0)
v , t, e]); // update 1-hop nbr. representation

9 for w in s
(1)
v , in parallel, do

10 if s(2)u [hash(w)] equals (w or EMPTY) or rand(0, 1) < α then
11 s

(2)
u [hash(w)]← w, Z(2)

u,w ← Z
(1)
v,w; // update 2-hop nbr. representations

12 repeat lines 5-11 with (v, u, t, e)

follows: If u interacts with v, v’s (k − 1)-hop neighborhood by definition becomes a part of k-hop
neighborhood of u after the interaction. Given this observation, Z(k)

u can also be updated by using
Z

(k−1)
v . However, we avoid using an RNN for the large-hop update to reduce complexity. Instead,

we directly insert Z(k−1)
v into Z

(k)
u , i.e., setting Z

(k)
u,a ← Z

(k−1)
v,a for all a ∈ key[Z(k−1)

v ]. If Z(k)
u,a has

already existed before the insertion, we simply replace it.

Next, we will introduce the implementation of the above representations via N-caches. Readers who
only care about the learning models can skip this part and directly go to Sec. 4.2. The maintenance of
N-caches (aka. neighborhood representations) as the network evolves is summarized in Alg. 1.

Scalable Implementation. Neighborhood representations cannot be directly implemented via built-
in hash tables such as python dictionary to achieve scalable maintenance. To maximize memory
efficiency and parallelism, we adopt the following three design techniques: (a) Setting size limit; (b)
Parallelizing hash-maps; (c) Addressing collisions.

(a) Limiting size: In a real-world network, the size of the neighborhood of a node typically follows
a long-tailed distribution [51, 52]. So, it is irregular and memory inefficient to record the entire
neighborhood. Instead, we set an upper limit Mk to the size of each-hop representation Z

(k)
u , which

means Z(k)
u may record only a subset of nodes in the k-hop neighborhood of node u. This idea is

inspired by previous works that have shown structural features constructed based on a down-sampled
neighborhood is sufficient to provide good performance [34, 53]. To further decrease the memory
overhead, we only set each representation Z

(k)
u,a, k ≥ 1 as a vector of small dimension F . Overall, the

memory overhead of the N-cache per node is O(
∑K

k=1 Mk × F ). In our experiments, we consider
at most K = 2 hops, and set the numbers of tracked neighbors M1, M2 ∈ [2, 40] and the size of
each representation F ∈ [2, 8], which already gives a very good performance. Based on the above
design, the overall memory overhead is just about hundreds per node, which is comparable to the
commonly-used memory cost of tracking a big single-vector representation for each node.

(b) The hash-map: As NAT needs to frequently access N-caches, a fast implementation of using
node IDs to search within N-caches in parallel is needed. To enable the parallel search, we design
GPU dictionaries to implement N-caches. Specifically, for every node u, we pre-allocate O(Mk ×F )

space in GPU-RAM to record the values in Z
(k)
u . A hash function is adopted to access the values in

Z
(k)
u . For some node a, we compute hash(a) ≡ (q ∗ a) (modMk) for a fixed large prime number

q to decide the row-index in Z
(k)
u that records Z(k)

u,a. Such a simple hashing allows NAT accessing
multiple neighborhood representations in N-caches in parallel.

However, as the size Mk of each N-cache is small, in particular smaller than the corresponding
neighborhood, the hash-map may encounter collisions. To detect such collisions, we also pre-allocate
O(Mk) space in each N-cache Z(k)

u for an array s
(k)
u to record the IDs of the nodes who are the most
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recent ones recorded in Z
(k)
u . Specifically, we use s

(k)
u [hash(a)] to check whether node a is a key

of Z(k)
u . If s(k)u [hash(a)] is a, Z(k)

u,a is recorded at the position hash(a) of Z(k)
u . If s(k)u [hash(a)] is

neither a nor EMPTY, the position hash(a) of Z(k)
u records the representation of another node.

(c) Addressing collisions: If encountering a collision when NAT works on an evolving network, NAT
addresses that collision efficiently with replacement in a random manner. Specifically, suppose we
are to write Z(k)

u,a into Z
(k)
u . If another node b satisfies hash(a) = hash(b) = p and Z

(k)
u,b has occupied

the position p of Z(k)
u , then, we replace Z

(k)
u,b by Z

(k)
u,a (and s

(k)
u [hash(a)]← a simultaneously) with

probability α. Here, α ∈ (0, 1] is a hyperparameter. Although the above random replacement strategy
sounds heuristic, it is essentially equivalent to random-sampling nodes from the neighborhood without
replacement (random dropping↔ random sampling). Note that random-sampling neighbors is an
effective strategy used to scale up GNNs for static networks [54–56], so here we essentially apply an
idea of similar spirit to temporal networks. We find a small size Mk (≤ 40) can give a good empirical
performance while keeping the model scalable, and NAT is relatively robust to a wide range of α.

4.2 Joint Neighborhood Structural Features and Neural-network-based Encoding

As illustrated in the toy example in Fig. 1, structural features from the joint neighborhood are critical
to reveal how temporal networks evolve. Previous methods in static networks adopt distance encoding
(DE) (or called labeling tricks more broadly) to formulate these features [18, 19]. Recently, this
idea has got generalized to temporal networks [34]. However, the model CAWN in [34] uses online
random-walk sampling, which cannot be parallelized on GPUs and is thus extremely slow. Our
design of N-caches allows for addressing such a problem. Fig. 2 Right illustrates the procedure.

NAT generates joint neighborhood structural features as follows. Suppose our prediction is made
for a temporal link (u, v, t). For every node a in the joint neighborhood of u and v decided by their
N-caches at timestamp t, i.e., a ∈

[
∪Kk=0key(Z(k)

u )
]
∪
[
∪Kk′=0key(Z(k′)

v )
]
, we associate it with a DE

DEt
uv(a) = DEt

u(a)⊕ DEt
v(a), where DEt

w(a) =
[
χ[a ∈ Z(0)

w ], ..., χ[a ∈ Z(K)
w ]

]
, w ∈ {u, v}. (1)

Here, χ[a ∈ Z
(i)
w ] is 1 if a is among the keys of N-cache Z

(i)
w or 0 otherwise. ⊕ denotes vector

concatenation. As for the example to predict (u, v, t3) in Fig. 1, the DEs of four nodes u, a, v, b are
as shown in Fig. 2 Right. Note that DEt3

uv(a) = [0, 1, 0]⊕ [0, 1, 0] because a appears in the keys of
both Z

(1)
u and Z

(1)
v , which further implies a as a common neighbor of u and v.

Simultaneously, NAT also aggregates neighborhood representations for every node a in the common
neighborhood of u and v. Specifically, for node a, we aggregate the representations via a sum pool

Qt
uv(a) =

K∑
k=0

∑
w∈{u,v}

Z(k)
w,a × χ[a ∈ Z(k)

w ]. (2)

Here, if a is not in the neighborhood Z
(k)
w , χ[a ∈ Z

(k)
w ] = 0 and thus Z(k)

w,a does not participate in
the aggregation. Both DE (Eq (1)) and representation aggregation (Eq (2)) can be done for multiple
node pairs in parallel on GPUs. We detail the parallel steps in Appendix A. After joining DE
and neighborhood representations, for each link (u, v, t) to be predicted, NAT has a collection of
representations Ωt

u,v =
{

DEt
uv(a)⊕Qt

uv(a)|a ∈ N t
u,v

}
.

Ultimately, we propose to use attention to aggregate the collected representations in Ωt
u,v to make the

final prediction for the link (u, v, t). Let MLP denote a multi-layer perceptron and we adopt

logit = MLP(
∑

h∈Ωt
u,v

αhMLP(h)), where {αh} = softmax({wT MLP(h)|h ∈ Ωt
u,v}), (3)

where w is a learnable vector parameter and the logit can be plugged in the cross-entropy loss for
training or compared with a threshold to make the final prediction.

5 Experiments
In this section, we evaluate the performance and the scalability of NAT against a variety of baselines
on real-world temporal networks. We further conduct ablation study on relevant modules and
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Measurement Wikipedia Reddit Social E. 1 m. Social E. Enron UCI Ubuntu Wiki-talk
nodes 9,227 10,985 71 74 184 1,899 159,316 1,140,149
temporal links 157,474 672,447 176,090 2,099,519 125,235 59,835 964,437 7,833,140
static links 18,257 78,516 2,457 4486 3,125 20,296 596,933 3,309,592
node & link attributes 172 & 172 172 & 172 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0
bipartite true true false false false true false false

Table 1: Summary of dataset statistics.

Task Method Wikipedia Reddit Social E. 1 m. Social E. Enron UCI Ubuntu Wiki-talk

In
du

ct
iv

e

CAWN 98.52 ± 0.04 98.19 ± 0.03 84.42 ± 1.89 87.71 ± 3.26 93.28 ± 0.01 93.67 ± 0.65 50.00 ± 0.00 80.21 ± 7.49
JODIE 95.58 ± 0.37 95.96 ± 0.29 80.61 ± 1.55 81.13 ± 0.52 81.69 ± 2.21 86.13 ± 0.34 56.68 ± 0.49 65.89 ± 4.72
DyRep 94.72 ± 0.14 97.04 ± 0.29 81.54 ± 1.81 52.68 ± 0.11 77.44 ± 2.28 68.38 ± 1.30 53.25 ± 0.03 51.87 ± 0.93
TGN 98.01 ± 0.06 97.76 ± 0.05 86.00 ± 0.70 67.01 ± 10.3 75.72 ± 2.55 83.21 ± 1.16 62.14 ± 3.17 56.73 ± 2.88
TGN-pg 94.91 ± 0.35 94.34 ± 3.22 63.44 ± 3.54 88.10 ± 4.81 69.55 ± 1.62 86.36 ± 3.60 79.44 ± 0.85 85.35 ± 2.96
TGAT 97.25 ± 0.18 96.69 ± 0.11 54.66 ± 0.66 50.00 ± 0.00 57.09 ± 0.89 70.47 ± 0.59 54.73 ± 4..94 71.04 ± 3.59
NAT 98.55 ± 0.09 98.56 ± 0.21 91.82 ± 1.91 95.16 ± 0.66 94.94 ± 1.15 92.58 ± 1.86 90.35 ± 0.20 93.81 ± 1.16

Tr
an

sd
uc

tiv
e

CAWN 98.62 ± 0.05 98.66 ± 0.09 85.42 ± 0.19 92.81 ± 0.58 91.46 ± 0.35 94.18 ± 0.16 50.00 ± 0.00 85.50 ± 9.70
JODIE 96.15 ± 0.36 97.29 ± 0.05 77.02 ± 1.11 69.30 ± 0.21 83.42 ± 2.63 91.09 ± 0.69 60.29 ± 2.66 75.00 ± 4.90
DyRep 95.81 ± 0.15 98.00 ± 0.19 76.96 ± 4.05 51.14 ± 0.24 78.04 ± 2.08 72.25 ± 1.81 52.22 ± 0.02 62.07 ± 0.06
TGN 98.57 ± 0.05 98.70 ± 0.03 88.72 ± 0.65 69.39 ± 10.50 80.87 ± 4.37 89.53 ± 1.49 53.80 ± 2.23 66.01 ± 4.79
TGN-pg 97.26 ± 0.10 98.62 ± 0.07 66.39 ± 6.90 64.03 ± 8.97 80.85 ± 2.70 91.47 ± 0.29 90.56 ± 0.44 94.16 ± 0.09
TGAT 96.65 ± 0.06 98.19 ± 0.08 58.10 ± 0.47 50.00 ± 0.00 61.25 ± 0.99 77.88 ± 0.31 55.46 ± 5.47 78.43 ± 2.15
NAT 98.68 ± 0.04 99.10 ± 0.09 90.20 ± 0.20 94.43 ± 1.67 92.42 ± 0.09 94.37 ± 0.21 93.50 ± 0.34 95.82 ± 0.31

Table 2: Performance in average precision (AP) (mean in percentage ± 95% confidence level). Bold font and
underline highlight the best performance and the second best performance on average.

hyperparameter analysis. Unless specified for comparison, the hyperparameters of NAT (such as
M1,M2, F, α) are detailed in Appendix C and Table 7 (in the Appendix).

5.1 Experimental setup

Datasets. We use seven real-world datasets that are available to the public, whose statistics are listed
in Table 1. Further details of these datasets can be found in Appendix B. We preprocess all datasets by
following previous literatures. We transform the node and edge features of Wikipedia and Reddit to
172-dim feature vectors. For other datasets, those features will be zeros since they are non-attributed.
We split the datasets into training, validation and testing data according to the ratio of 70/15/15. For
inductive test, we sample the unique nodes in validation and testing data with probability 0.1 and
remove them and their associated edges from the networks during the model training. We detail the
procedure of inductive evaluation for NAT in Appendix C.1.

Baselines. We run experiments against 6 strong baselines that give the SOTA approaches for modeling
temporal networks. Out of the 6 baselines, CAWN [34], TGAT [29] and TGN [20] need to sample
neighbors from the historical events, while JODIE [28], DyRep [27], keep track of dynamic node
representations to avoid sampling. CAWN is the only model that constructs neighborhood structural
features. As we are interested in both prediction performance and model scalability, we include an
efficient implementation of TGN sourced from Pytorch Geometric (TGN-pg), a library built upon
PyTorch including different variants of GNNs [57]. TGN is slower than TGN-pg because TGN
in [20] does not process a batch fully in parallel while TGN-pg does. Additional details about the
baselines can be found in appendix C. Finally, we note that there is one concurrent work named
TGL [47], and we study it in appendix E.

Regarding hyperparameters, if a dataset has been tested by a baseline, we use the set of hyperparame-
ters that are provided in the corresponding paper. Otherwise, we tune the parameters such that similar
components have sizes in the same scale. For example, matching the number of neighbors sampled
and the embedding sizes. We also fix the training and inference batch sizes so that the comparison of
training and inference time can be fair between different models. For training, since CAWN uses 32
as the default while others use 200, we decide on using 100 that is between the two. For validation
and testing, we use batch size 32 over all baselines. We also apply the early stopping strategy for all
models to record the number of epochs to converge and the total model running time to converge. We
also set a time limit of 10 hours for training. once that time is reached, we will use the best epoch so
far for evaluation. More detailed hyperparameters are provided in Appendix C.

Hardware. We run all experiments using the same device that is equipped with eight Intel Core
i7-4770HQ CPU @ 2.20GHz with 15.5 GiB RAM and one GPU (GeForce GTX 1080 Ti).
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Method Train Test Total RAM GPU Epoch

W
ik

ip
ed

ia

CAWN 1,006 174 11,845 30.2 58.0 6.7
JODIE 28.8 30.6 1,482 28.3 17.9 19.1
DyRep 32.4 32.5 1,681 28.3 17.8 21.5
TGN 37.1 33.0 2,047 28.3 19.3 23.1
TGN-pg 24.2 6.04 624.8 30.8 18.1 15.6
TGAT 225 63.0 3,657 28.5 24.6 12.0
NAT 21.0 6.94 154.4 29.1 12.1 2.6

R
ed

di
t

CAWN 2,983 812 17,056 38.8 41.2 16.3
JODIE 234.4 176 8,082 36.4 23.7 15.3
DyRep 252.9 184 7,716 33.3 24.3 12.7
TGN 271.7 189 8,487 33.7 25.4 15.3
TGN-pg 155.1 27.1 2,142 39.2 23.6 6.6
TGAT 1,203 291 16,462 37.2 31.0 8.4
NAT 90.6 28.5 771.3 37.7 18.5 3.0

Method Train Test Total RAM GPU Epoch

U
bu

nt
u

CAWN 1,066 222 5,385 38.9 17.4 1.0
JODIE 6,670 2,860 76,220 35.3 18.7 5.5
DyRep 2,195 2,857 39,148 38.5 16.6 1.0
TGN 5,975 2,391 73,633 39 19.6 5.5
TGN-pg 188.7 36.5 3,682 37.0 32.1 11.4
TGAT 887 330 18,431 47.3 17.0 2.5
NAT 125.8 41.2 1,321 28.9 10.1 5.4

W
ik

i-
ta

lk

CAWN 13,685 2,419 34,368 99.1 19.4 1.0
JODIE 284,789 145,909 566,607 58.2 20.9 1.0
DyRep 280,659 135,491 514,621 84.4 49.6 1.0
TGN 281,267 136,780 534,827 77.9 24.1 1.0
TGN-pg 1,236 311.5 12,761 60.9 59.0 5.1
TGAT 6,164 2,451 186,513 65.0 17.6 16.0
NAT 833.1 280.1 7,802 37.1 22.3 2.7

Table 3: Scalability evaluation on Wikipedia, Reddit, Ubuntu and Wiki-talk.

Evaluation Metrics. For prediction performance, we evaluation all models with Average Precision
(AP) and Area Under the ROC curve (AUC). In the main text, the prediction performance in all tables
is evaluated in AP. The AUC results are given in the appendix. All results are summarized based on 5
time independent experiments. For computing performance, the metrics include (a) average training
and inference time (in seconds) per epoch, denoted as Train and Test respectively, (b) averaged total
time (in seconds) of a model run, including training of all epochs, and testing, denoted as Total, (c)
the averaged number of epochs for convergence, denoted as Epoch, (d) the maximum GPU memory
and RAM occupancy percentage monitored throughout the entire processes, denoted as GPU and
RAM, respectively. We ensure that there are no other applications running during our evaluations.

5.2 Results and Discussion

Overall, our method achieves SOTA performance on all 7 datasets. The modeling capacity of NAT
exceeds all of the baselines and the time complexities of training and inference are either lower or
comparable to the fastest baselines. Let us provide the detailed analysis next.

Prediction Performance. We give the result of AP in Table 2 and AUC in Appendix Table 6.

On Wikipedia and Reddit, a lot of baselines achieve high performance because of the valid attributes.
However, NAT still gains marginal improvements. On Wikipedia, Reddit, Enron and UCI, CAWN
outperforms all baselines on inductive study and most baselines on transductive. We believe the
reason is that it captures neighborhood structural information via its temporal random walk sampling.
However, it is not performing as well on Ubuntu. Because of the sparsity of the Ubuntu network,
we suspect that CAWN’s sampling method would do worse in capturing common neighbors, which
might be the cause of its under-performance.

TGN and its efficient implementation TGN-pg are strong baselines without constructing structure
features. On both large-scale datasets Ubuntu and Wiki-talk, TGN-pg gives impressive results on
transductive learning. However, NAT still outperforms it consistently. Furthermore, TGN-pg performs
poorly for inductive tasks on both datasets, while NAT gains 8-11% lift for these tasks.

On Social Evolve, NAT significantly outperforms all baselines that do not construct neighborhood
structural features by at least 25% on transductive and 7% on inductive predictions. From Table 1,
we can see that Social Evolve has a small number of nodes but many interactions. This highlights
one of the advantages of NAT on dense temporal graphs. NAT keeps the neighborhood representation
for a node’s every individual neighbor separately so the older interactions are not squashed with the
more recent ones into a single representation. Pairing with N-caches, NAT can effectively denoise the
dense history and extract neighborhood features.

Scalability. Table 3 shows that NAT is always trained much faster than all baselines. The inference
speed of NAT is significantly faster than CAWN that can also constructs neighborhood structural
features, which achieves 25-29 times speedup on inference for attributed networks. NAT also
achieves at least four times faster inference than TGN, JODIE and DyRep. Compared to TGN-pg,
NAT achieves comparable inference time in most cases while achieves about 10% speed up over the
largest dataset Wiki-talk. This is because when the network is large, online sampling of TGN-pg
may dominate the time cost. We may expect NAT to show even better scalability for larger networks.
Moreover, on the two large networks Ubuntu and Wiki-talk, NAT requires much less GPU memory.
Note that albeit with just comparable or slightly better scalability, over all datasets, NAT significantly
outperform TGN-pg in prediction performance.
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Figure 3: Convergence v.s. wall-clock time on Reddit
(left) and Wiki-talk (right). Each dot on the curves gets
collected per epoch.

Figure 4: Sensitivity (mean) of the overwriting
probability α for hash-map collisions on Ubuntu
(Left) & Reddit (Right).

Ablation Dataset Inductive Transductive Train Test GPU

original
method

Social E. 95.16 ± 0.66 91.75 ± 0.37 281.0 89.0 8.88
Ubuntu 90.35 ± 0.20 93.50 ± 0.34 125.8 41.2 10.1

Wiki-talk* 93.81 ± 1.16 95.00 ± 0.31 833.1 280.1 22.3
remove 2-hop

N-cache
Social E. 94.30 ± 0.90 90.77 ± 0.26 253.1 75.9 8.87
Ubuntu 89.45 ± 1.04 93.48 ± 0.34 111.3 35.7 9.95

remove
1-&-2-hop

N-cache

Social E. 55.10 ± 11.54 62.12 ± 3.53 212.9 64.0 8.46
Ubuntu 85.11 ± 0.23 91.89 ± 0.09 98.1 29.5 9.07

Wiki-talk 86.54 ± 3.87 94.89 ± 1.83 409.5 125.4 16.2

Table 4: Ablation study on N-caches. *Original method
for Wiki-talk does not use the second-hop N-cache.

Param Size Inductive Transductive Train Test GPU

M1

4 92.95 ± 2.95 95.26 ± 0.49 834.9 281.4 18.4
8 93.96 ± 0.91 95.39 ± 0.28 806.3 274.9 19.9

12 92.67 ± 0.82 95.05 ± 0.58 818.2 277.6 21.0
16 93.81 ± 1.16 95.82 ± 0.31 833.1 280.1 22.3
20 93.40 ± 0.50 95.83 ± 0.44 841.3 284.8 23.8

M2

0 93.81 ± 1.16 95.82 ± 0.31 833.1 280.1 22.3
2 92.91 ± 1.01 96.08 ± 0.34 960.5 330.9 22.7
4 94.26 ± 0.89 96.29 ±0.09 935.3 322.9 23.8
8 94.53 ± 0.51 95.90 ± 0.07 943.3 325.3 26.0

F
2 90.86 ± 2.52 95.74 ± 0.27 843.6 284.0 18.5
4 93.81 ± 1.16 95.82 ± 0.31 833.1 280.1 22.3
8 93.55 ± 0.93 95.63 ± 0.30 828.7 281.1 26.2

Table 5: Sensitivity of N-cache sizes on Wiki-
talk.

Across all datasets, NAT does not need larger model sizes than baselines to achieve better perfor-
mances. More impressively, we observe that NAT uniformly requires fewer epochs to converge than
all baselines, especially on larger datasets. It can be attributed to the inductive power given by the
joint structural features. Because of this, the total runtime of the model is much shorter than the
baselines on all datasets. Specifically, on large datasets, Ubuntu and Wiki-talk, NAT is more than
three times as fast as TGN-pg. We also plot the curves on the model convergence v.s. CPU/GPU
wall-clock time on Reddit and Wiki-talk for comparison in Fig. 3.

5.3 Further Analysis

Ablation study. We conduct ablation studies on the effectiveness of the N-caches. Table 4 shows the
results of removing the second-hop N-caches Z(2)

u and removing both the first-hop and second-hop
N-caches Z(1)

u , Z
(2)
u . As expected, dropping the N-caches reduces the training, inference time and

the GPU cost. However, it also results in prediction performance decay. Just removing Z
(2)
u can hurt

performance by up to 1%. By removing Z
(1)
u and Z

(2)
u but keeping only the self representation, the

performance drops significantly, especially on inductive settings. Keeping only self representation
is analogous to some baselines such as TGN which keeps a memory state. However, since we use
a smaller dimension usually between 32 to 72, the self representation itself cannot be generalized
well on these datasets. Ablation studies on other components including joint neighborhood structural
features, T-encoding, RNNs, and DE are detailed in Table 8 (in the appendix).

Sensitivity of the sizes of N-cache. Since N-caches induce the major consumption of the GPU
memory, we study how the memory size correlates with the model performance on Wiki-talk. We
compare the performances between different values of M1, M2 and F of N-caches. The baseline has
M1 = 16, M2 = 0 and F = 4 and we study each parameter by fixing the other two. Table 5 details
the changes in the model performance. We also study for the ubuntu dataset in Appendix Table 9.

We can see that GPU memory cost scales close to a linear function for all param changes. However,
increasing the model size does not necessarily improve the performance. Changing M1 to either a
smaller or a larger value may decrease both the transductive and the inductive performance. Increasing
M2 could boost the performance, but in general, changing M2 is less sensitive than changing M1.
Lastly, a larger F could overfit the model as we can see a slight drop in the inductive prediction with
the largest F . Overall, training and inference time remains stable because of the parallelization of
NAT. Interestingly, with larger M1 and M2, we sometimes even see a decrease in running time. We
hypothesize it is because it avoids hash collisions and short-circuits N-cache overwriting steps.
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Sensitivity of overwriting probability α. We also experiment on α to study whether N-cache refresh
frequency is related to the prediction quality. Here, we use a large dataset Ubuntu and a medium
dataset Reddit. Results can be found in Fig. 4. For Ubuntu, we update from the original sizes to
M1 = 4, M2 = 1, F = 4 and for Reddit, we change to M1 = 16, M2 = 2, F = 8 to increase the
number of potential collisions so that the effect of α can be better observed. On both datasets, we
can see an overall trend that a larger α gives a better transductive performance. However, if α = 1
and we always replace old neighbors, it is slightly worse than the optimal α. This pattern shows
that the neighborhood information has to keep updated in order to gain a better performance. Some
randomness can be useful because it preserves more diverse time ranges of interactions. The inductive
performance is relatively more sensitive to the selection of α. We do not find a case when having two
different probabilities for replacing Z

(1)
u and Z

(2)
u significantly benefits model performance, so we

use a single α for N-caches of different hops to keep it simple.

6 Conclusion and Future Works
In this work, we proposed NAT, the first method that adopts dictionary-type representations for nodes
to track the neighborhood of nodes in temporal networks. Such representations support efficient
construction of neighborhood structural features that are crucial to predict how temporal network
evolves. NAT also develops N-caches to manage these representations in a parallel way. Our extensive
experiments demonstrate the effectiveness of NAT in both prediction performance and scalability. In
the future, we plan to extend NAT to process even larger networks that the GPU memory cannot hold
the entire networks.
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Figure 5: The procedure to find unique node IDs and the indices for pooling, which are used for parallel
construction of DEs and joint representations.

Algorithm 2: Construct Joint Neighborhood Features (Z(k)
u , Z

(k)
v for k ∈ {0, 1, 2})

1 KEYuv ← concat(s(k)u for k ∈ {0, 1, 2}, s(k)v for k ∈ {0, 1, 2});
2 VALUEuv ← concat(value(Z(k)

u ) for k ∈ {0, 1, 2}, value(Z(k)
v ) for k ∈ {0, 1, 2});

3 suv ← Remove EMPTY from KEYuv;
4 Remove the corresponding EMPTY entries from VALUEuv;
5 Nuv ← unique(suv), ϕuv ← the index in Nuv for each of suv;
6 Initialize Quv with length(Nuv) vectors as seen in Eq (2); // to aggregate nbr. representations.
7 Scatterly add VALUEuv into Quv according to indices ϕuv;
8 Initialize DEu, DEv with length(Nuv) vectors;
9 for i from 0 to length(Nuv), in parallel (implement with scatter add using indices ϕuv), do

10 for w ∈ u, v do
11 DEw[i]← [if Nuv[i] is one of s(k)w then 1 else 0 for k ∈ {0, 1, 2}];

12 Return concat(DEu, DEv , Quv) along the last dimension;

A Efficient Joint Neighborhood Features Implementation
Here, we detail the efficient implementation that generates joint neighborhood structural features
based on N-Caches as introduced in Sec. 4.2. This implementation is summarized in Alg. 2.

Both DE (Eq (1)) and representation aggregation (Eq (2)) can be done for multiple nodes in
parallel on GPUs using PyTorch built-in functions. Specifically, for a mini-batch of temporal links
B = {..., (u, v, t), ...}, NAT first collects the union of the current neighborhoods for each end-node
su = ⊕K

k=1s
(k)
u , sv = ⊕K

k=1s
(k)
v for all (u, v, t) ∈ B. Then, NAT follows the steps of Fig. 5: (1)

Remove the empty entries in the joint neighborhood su ⊕ sv with PyTorch function nonzero,
denoted as suv. (2) Find unique nodes Nuv in the joint neighborhood suv. (3) Generate array ϕuv

which stores the index in Nuv for each node in suv. The last two steps can be computed using
PyTorch function unique with parameter return_inverse set to true. (4) Compute DE features and
aggregation neighborhood features via the scatter_add operation with indices recorded in ϕuv. All
these operations support GPU parallel computation.

B Dataset Description
The following are the detailed descriptions of the seven datasets we tested.
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Task Method Wikipedia Reddit Social E. 1 m. Social E. Enron UCI Ubuntu Wiki-talk

In
du

ct
iv

e

CAWN 98.16 ± 0.06 97.97 ± 0.01 86.19 ± 2.94 89.32 ± 3.29 94.29 ± 0.15 90.89 ± 0.48 50.00 ± 0.00 80.03 ± 7.14
JODIE 95.16 ± 0.42 96.31 ± 0.16 85.16 ± 1.24 86.14 ± 0.67 82.56 ± 1.88 85.02 ± 0.38 52.41 ± 5.80 65.94 ± 4.26
DyRep 93.97 ± 0.18 96.86 ± 0.29 84.38 ± 1.69 49.84 ± 0.35 76.69 ± 2.64 67.36 ± 1.47 53.22 ± 0.03 50.37 ± 0.42
TGN 97.84 ± 0.06 97.63 ± 0.09 88.43 ± 0.38 70.86 ± 10.30 75.28 ± 1.81 81.65 ± 1.44 62.98 ± 3.36 59.24 ± 2.34
TGN-pg 94.96 ± 0.33 94.53 ± 3.04 63.17 ± 4.69 90.24 ± 3.72 67.99 ± 1.78 86.02 ± 3.34 74.85 ± 1.44 83.25 ± 2.96
TGAT 97.25 ± 0.18 96.37 ± 0.10 51.23 ± 0.69 50.0 ± 0.00 55.86 ± 1.01 70.83 ± 0.58 55.73 ± 6.47 74.50 ± 3.71
NAT 98.27 ± 0.12 98.56 ± 0.21 92.62 ± 1.66 96.13 ± 0.46 95.25 ± 1.37 90.48 ± 1.30 87.72 ± 0.28 92.73 ± 1.35

Tr
an

sd
uc

tiv
e

CAWN 98.39 ± 0.08 98.64 ± 0.04 86.30 ± 0.11 90.44 ± 0.71 92.32 ± 0.26 92.01 ± 0.18 50.00 ± 0.00 82.83 ± 10.30
JODIE 96.05 ± 0.39 97.63 ± 0.05 82.36 ± 0.87 76.87 ± 0.32 85.28 ± 2.25 91.69 ± 0.40 52.61 ± 2.50 73.32 ± 4.37
DyRep 95.34 ± 0.18 97.93 ± 0.20 80.58 ± 3.55 50.05 ± 3.64 79.28 ± 1.84 72.62 ± 2.01 52.38 ± 0.02 69.89 ± 2.67
TGN 98.42 ± 0.05 98.65 ± 0.03 90.37 ± 0.40 73.08 ± 9.74 82.08 ± 4.36 89.54 ± 1.58 54.13 ± 2.52 76.07 ± 5.28
TGN-pg 97.06 ± 0.09 98.58 ± 0.08 66.89 ± 7.90 66.14 ± 10.7 81.23 ± 2.80 91.16 ± 0.30 89.59 ± 0.42 93.69 ± 0.06
TGAT 96.65 ± 0.06 98.07 ± 0.08 56.98 ± 0.53 50.00 ± 0.00 62.08 ± 1.08 79.85 ± 0.24 57.23 ± 6.55 81.82 ± 1.87
NAT 98.51 ± 0.05 99.01 ± 0.11 91.77 ± 0.19 93.63 ± 0.36 93.08 ± 0.18 93.16 ± 0.31 92.62 ± 0.10 95.33 ± 0.26

Table 6: Performance in AUC (mean in percentage ± 95% confidence level.) bold font and underline highlight
the best performance on average and the second best performance on average. Timeout means the time of
training for one epoch is more than one hour.

Params Wikipedia Reddit Social E. 1 m. Social E. Enron UCI Ubuntu Wiki-talk
M1 32 32 40 40 32 32 16 16
M2 16 16 20 20 16 16 2 0
F 4 4 2 2 2 4 4 4

(M1 +M2) ∗ F 192 192 120 120 96 192 72 64
Self Rep. Dim. 72 72 32 72 72 32 50 72

Table 7: Hyperparameters of NAT.

• Wikipedia2 logs the edit events on wiki pages. A set of nodes represents the editors and another set
represents the wiki pages. It is a bipartite graph which has timestamped links between the two sets.
It has both node and edge features. The edge features are extracted from the contents of wiki pages.

• Reddit3 is a dataset of the post events by users on subreddits. It is also an attributed bipartite graph
between users and subreddits.

• Social Evolution4 records physical proximity between students living in the dormitory overtime.
The original dataset spans one year. We also split out the data over a month, termed Social Evolve
1 m., and evaluate over all baselines.

• Enron5 is a network of email communications between employees of a corporation.

• UCI6 is a graph recording posts to an online forum. The nodes are university students and the edges
are forum messages. It is non-attributed.

• Ubuntu7 or Ask Ubuntu, is a dataset recording the interactions on the stack exchange web site Ask
Ubuntu 8. Nodes are users and there are three different types of edges, (1) user u answering user
v’s question, (2) user u commenting on user v’s question, and (3) user w commenting on user u’s
answer. It is a relatively large dataset with more than 100K nodes.

• Wiki-talk9 is dataset that represents the edit events on Wikipedia user talk pages. The dataset spans
approximately 5 years so it accumulates a large number of nodes and edges. This is the largest
dataset with more than 1M nodes.

C Baselines and the experiment setup
CAWN [34] with source code provided here is a very recent work that samples temporal random
walks and anonymizes node identities to achieve motif information. It backtracks historical events to
extract neighboring nodes. It achieves high prediction performance but it is both time-consuming and
memory-intensive. We pull the most recent commit from their repository. When measuring the CPU

2http://snap.stanford.edu/jodie/wikipedia.csv
3http://snap.stanford.edu/jodie/reddit.csv
4http://realitycommons.media.mit.edu/socialevolution.html
5https://www.cs.cmu.edu/~./enron/
6http://konect.cc/networks/opsahl-ucforum/
7https://snap.stanford.edu/data/sx-askubuntu.html
8http://askubuntu.com/
9https://snap.stanford.edu/data/wiki-talk-temporal.html
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No. Ablation Task Social E. Ubuntu

1.
remove

T-encoding
inductive -0.74 ± 1.01 -1.54 ± 0.10

transductive -1.10 ± 0.31 -1.25 ± 0.54

2. remove RNN inductive -1.18 ± 0.87 -1.19 ± 0.86
transductive -1.26 ± 0.50 -5.68 ± 4.45

3. remove attention
inductive -0.77 ± 1.14 -0.28 ± 0.16

transductive -0.39 ± 0.43 -0.01 ± 0.20

4. remove DE
inductive -3.78 ± 2.14 -5.67 ± 2.87

transductive -3.43 ± 1.64 -1.55 ± 0.16

Table 8: Ablation study with other modules of NAT (changes recorded w.r.t Table 2).

Param Size Inductive Transductive Train Test GPU

M1

8 89.50 ± 0.37 93.56 ± 0.30 124.4 41.1 9.85
16 90.35 ± 0.20 93.50 ± 0.34 125.8 41.2 10.1
24 88.39 ± 0.46 93.37 ± 0.46 123.5 41.1 11.0

M2

2 90.35 ± 0.20 93.50 ± 0.34 125.8 41.2 10.1
4 89.86 ± 0.46 93.46 ± 0.27 125.7 41.5 10.2
8 89.33 ± 0.40 93.50 ± 0.27 124.7 40.9 10.5

F
2 88.82 ± 1.64 93.51 ± 0.17 124.6 41.3 9.69
4 90.35 ± 0.20 93.50 ± 0.34 125.8 41.2 10.1
8 90.29 ± 0.33 93.42 ± 0.18 125.2 41.2 11.0

Table 9: Sensitivity of N-cache sizes on Ubuntu.

usage, we also notice a garbage collection bug. It causes the CPU memory consumption to keep on
increasing after every batch and every epoch without any decrease. We fix the bug such that CPU
memory remains constant. Our metrics in Table 3 is recorded based on our bug fix. We tune with
walk length either 1 or 2. For Wikipedia, Reddit and SocialEvolve we use walk length of two, and
others with only first-hop neighbors. We tune sampling sizes of the first walk between 20 and 64, and
the second between 1 and 32.

JODIE [28] with source code provided here is a method that learns the embeddings of evolving
trajectories based on past interactions. Its backbone is RNNs. It was proposed for bipartite networks,
so we adapt the model for non-bipartite temporal networks using the TGN framework. We use a time
embedding module, and a vanilla RNN as the memory update module. We use 100 dimensions for
its dynamic embedding which gives around the same scale as the other models and provide a fair
comparison on both performance and scalability.

DyRep [27] with source code provided here proposes a two-time scale deep temporal point process
model that learns the dynamics of graphs both structurally and temporally. We use 100 gradient
clips, and hidden size and embedding size both 100 for a fair comparison on both performance and
scalability.

TGN [20] with source code provided here is a very recent work as well. It does not perform as well
as CAWN on certain datasets but it runs much more efficiently. It keeps track of a memory state for
each node and update with new interactions. We train TGN with 300 dimensions in total for all of
memory module, time feature and node embedding, and we only consider sampling the first-hop
neighbors because it takes much longer to train with second-hop neighbors and the performance does
not have significant improvements.

TGN-pg with source code is provided in the PyTorch Geometric library10 here. This link gives an
example use of the library code. This is the same model design as TGN. However, it is much more
efficient than TGN because it is more parallelized. Like TGN, we use 300 dimensions in total for all
datasets except the largest dataset Wiki-talk. Given the limited GPU memory (11 GB), we have to
tune it to 75 dimensions in total such that it can fit the GPU memory.

TGAT with source code provided here is an analogy to GAT [58] for static graph, which leverages
attention mechanism on graph message passing. TGAT incorporates temporal encoding to the pipeline.
Similar to CAWN, TGAT also has to sample neighbors from the history. We use 2 attention heads
and and 100 hidden dimensions. We tune with either 1 or 2 graph attention layers and the samping
sizes between 20 and 64.

NAT Since our model can provide the trade-off between performance and scalability, we tune
the model with an upperbound on the GPU memory we consider acceptable. Thus, the major

10https://github.com/pyg-team/pytorch_geometric
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Method Wikipedia Reddit Social E. 1 m. Social E. Enron UCI Ubuntu Wiki-talk
TGN-TGL 99.18 ± 0.26 99.67 ± 0.05 83.51 ± 1.20 86.14 ± 1.45 70.96 ± 2.98 86.99 ± 2.69 81.15 ± 0.55 86.60 ± 0.32
NAT-2-hop 98.68 ± 0.04 99.10 ± 0.09 90.20 ± 0.20 91.75 ± 0.37 92.42 ± 0.09 93.92 ± 0.15 93.50 ± 0.34 -
NAT-1-hop 98.60 ± 0.04 98.94 ± 0.08 88.07 ± 0.13 90.77 ± 0.26 90.67 ± 0.13 93.28 ± 0.17 93.48 ± 0.34 95.82 ± 0.31

Table 10: Comparison on the transductive average precisions between TGN with TGL and NAT.

Method Train Test Total RAM GPU Epoch

Ubuntu
TGN-TGL 100.5 38.3 1,506 40.8 19.0 7.0
NAT-2-hop 125.8 41.2 1,321 28.9 10.1 5.4
NAT-1-hop 111.3 35.7 927 21.9 9.95 3.0

Wiki-talk TGN-TGL 809.7 310.0 9,157 43.8 26.5 3.7
NAT-1-hop 833.1 280.1 7,802 37.1 22.3 2.7

Table 11: Scalability evaluation on Ubuntu and Wiki-talk between TGN with TGL and NAT.

parameters we tuned are related to the N-caches size: M1, M2 and F . During tuning, we try to keep
(M1 +M2) ∗ F the same. We make sure that NAT’s GPU consumption has to be at the same level
as the baselines for all datasets. For example, for the large scale dataset Wiki-talk, the estimated
upperbound for GPU is based on the consumption of other baselines as presented in Table 3. The
resulting hyperparameter values are given in Table 7. We tune the attention head in the final output
layer from 1 to 8 and the overwriting probability for hashing collision α from 0 to 1. We eventually
keep α = 0.9 as it gives the good results for all datasets. Regarding the choice of RNN, we test both
GRU and LSTM, but GRU performs better and runs faster.

C.1 Inductive evaluation of NAT

Our evaluation pipeline for inductive learning is different from others with one added process. For
other sampling methods such as TGN [20] and TGAT [29], when they do inductive evaluations,
the entire training and evaluation data is available to be accessed, including events that are masked
for inductive test. They sample neighbors of test nodes based on their historical interactions to
get neighborhood information. However, NAT does not depend on sampling. Instead NAT adopts
N-caches for quick access of neighborhood information. Hence, NAT cannot build up the N-caches
for the masked nodes during the training stage for inductive tasks. By the end of the training, even all
historical events become accessible, NAT cannot leverage them unless they have been aggregated
into the N-caches. Therefore, to ensure a fair comparison, after training, NAT processes the full train
and validation data with all nodes unmasked, and then processes the test data. Note that in this last
pass over the full train and validation data, we do not perform training anymore.

D Additional Experiments
Further Ablation study. We further conduct ablation experiments on other components related to
modeling capability, as shown in Table 8. For Ab. 1, 2, 3, and 4, we remove temporal encodings,
replace RNN with a linear layer, replace the final attention layer with mean aggregation, and remove
distance encoding respectively. All the ablations generate worse results. For both datasets, removing
distance encoding shows significant impact as it fails to learn from joint neighborhood structures.
Removing RNN generally has worse performance than removing temporal encoding. We think this is
because RNN is critical in encoding temporal dependencies and is able to implicitly encode temporal
information given a series of edges. Overall, we conclude that these modules are helpful to some
extent for achieving a high performance.

More on Sensitivity of N-cache sizes. We further test the sensitivity of N-cache sizes with the
Ubuntu dataset as shown in Table 9. Similar to the study on Wiki-talk, the GPU memory cost scales
almost linearly while the model running time fluctuates. It also shows more evidence that a larger
model size does not guarantee a better prediction performance. Similar to the study on Wiki-talk,
Ubuntu only needs a tiny F for the model to be successful.

E One Concurrent Work
TGL [47] is a concurrent work of this work where it has got published very recently. TGL proposes
a general framework for large-scale Temporal Graph Neural Network training. It aims to maintain
the same level of prediction accuracy as baseline models while providing speedups on training and
evaluation. Its major contribution is to support parallelization on multiple GPUs, which enables
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training on billion-scale data. The models that this framework can support include TGN [20],
JODIE [28], TGAT [29], etc. However, it neither supports the joint neighborhood features nor it is
extendable to our dictionary type representations. We conduct some experiments to compare TGL
with our model.

We pull the TGL framework from this repo. We compare NAT with TGN implemented with the
framework as it is the best performing model they provided. Similar to TGN, we use embedding
dimensions 100 and we follow the same setup as described in Sec. 5.1. We tune the sampling neighbor
size to be around 10 to 40. If different sizes generate similar accuracy, we use the smaller size for
scalability comparison. We run TGN-TGL on single GPU for a fair comparison with our model.
Since TGL does not support inductive learning, we only evaluate the transductive tasks. Finally, we
compare TGN-TGL with not only our baseline model, but also NAT with only the 1-hop N-cache.
We document the prediction performances in Table 10 and the scalability metrics in Table 11.

Although TGN-TGL gives marginally better scores on Wikipedia and Reddit, NAT performs much
better on all other datasets (5.6−21.5%). Even with only 1-hop N-cache, NAT achieves 4.63−19.71%
better performance on non-attributed datasets. We think the reason is that given that both Wikipedia
and Reddit have node and edge features, the ambiguity issue in the toy example of Fig. 1 is reduced.
However, for other datasets, TGN-TGL still suffers from missing capturing the structural features in
the joint neighborhood.

In terms of scalability, TGN-TGL runs faster than NAT on training for both Ubuntu and Wiki-talk,
though TGN-TGL still uses a greater number of epochs and therefore longer total time. On Ubuntu,
when 2-hop N-cache is involved, NAT has longer inference time than TGN-TGL. However, when only
1-hop N-cache is used, TGN-TGL takes 7% and 11% longer time compared to NAT on Ubuntu and
Wiki-talk respectively. TGN-TGL performs almost all training procedures in the GPU and TGN-TGL
leverages the multi-core CPU to parallelize the sampling of temporal neighbors. However, because it
still has to sample neighbors, TGN-TGL is slower than NAT on large networks in testing procedures.
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