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Abstract

The policies trained with deep reinforcement learning are being deployed in many
different settings from automated language assistants to biomedical applications.
Yet concerns have been raised regarding robustness and safety of deep reinforce-
ment learning policies. To target these problems several works focused on propos-
ing adversarial training methods for deep reinforcement learning and claimed
adversarial training achieves safe and robust deep reinforcement learning policies.
In this paper, we demonstrate that adversarial deep reinforcement learning is neither
safe nor is it robust. While robust deep reinforcement learning policies can be at-
tacked via black-box adversarial perturbations, our results further demonstrate that
standard reinforcement learning policies are more robust compared to robust deep
reinforcement learning under natural attacks. Furthermore, this paper highlights
that robust deep reinforcement learning policies cannot generalize even in the same
level with standard reinforcement learning.

1 Introduction

The performance of reinforcement learning algorithms has been boosted with the utilization of deep
neural networks as function approximators (Mnih et al., 2015; Wang et al., 2016). Currently, it is
possible to learn deep reinforcement learning policies that can operate in large state and/or action
space MDPs (Silver et al., 2017; Schrittwieser et al., 2020). From playing one of the most complicated
games to interacting with humans via language reinforcement learning is currently being used in
many different fields (Schrittwieser et al., 2020; Popova et al., 2018).

Although deep reinforcement learning policies achieved many successes in manifold fields, it has
been also observed that there are still many concerns and unanswered questions regarding their
safety and reliability (Huang et al., 2017; Korkmaz & Brown-Cohen, 2023; Korkmaz, 2024a). The
vulnerabilities of deep neural networks were discussed in many studies starting from the seminal
work of Goodfellow et al. (2015); Szegedy et al. (2014).

To target these vulnerabilities a line of work focused on robustifying deep reinforcement learning
policies via adversarial training, i.e. robust training, via regularizing the temporal difference loss with
worst-case perturbations. Studies that focus on adversarial training claim that via these techniques we
can obtain robust and safe deep reinforcement learning policies. In this paper we will challenge the
below acknowledged consensus in the field.

Adversarial robust deep reinforcement learning training ensures robustness and robust deep
reinforcement learning policies are safe and robust.

In this paper, we will show that the above acknowledged consensus on the robustness and safety
of adversarial robust deep reinforcement learning is in fact false. In particular, in this paper we
will highlight and summarize quite recent work on investigating robustness of adversarial training,
i.e. robust training, in deep reinforcement learning, and demonstrate that adversarial robust deep

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



reinforcement learning is neither robust nor safe. In particular the contributions of the paper as
follows:

• We demonstrate that while deep reinforcement learning policies are vulnerable to black-box
adversarial attacks, robust trained deep reinforcement learning policies are in fact not robust
and robust deep reinforcement learning policies can be attacked in a black-box setting
without having access to the training details of the policy (e.g. algorithm, neural network
architecture, training dataset).

• The results reported in our paper demonstrate that the generalization capabilities of standard
(i.e. "non-robust") deep reinforcement learning is substantially higher than robust deep
reinforcement learning policies.

This paper serves the purpose of concisely explaining and delivering the results stemming from
discovering several issues of robust training methods. The results reported in this paper are initially
discovered and published in (Korkmaz, 2024a, 2023, 2022a, 2021d). Please see these original papers
for more details.

2 Preliminaries and Background

Markov decision processes (MDPs) represented as a tuple of M ⟨S,A,R,P, γ, ρ0⟩ where s ∈ S
represents a state from the state space, a ∈ A represents an action from the action space, P represents
the transition probability distribution on S ×A× S, R : S ×A → R represents the reward function,
γ ∈ [0, 1) represents the discount factor, and the ρ0 represents the initial state distribution. The
objective in reinforcement learning is to learn an optimal policy via interacting with an environment
by observing states, taking actions and receiving rewards where a policy π : S → P(A) for an MDP
M represents a probability distribution on actions in each s ∈ S. The objective is to maximize the
rewards

R = Eat∼π(st,·)
∑
t

γtR(st, at, st+1),

where at ∼ π(st). In Q-learning the learned policy is parametrized by a state-action value function
Q : S × A → R, which represents the value of taking action a in state s. Learning the optimal
state-action value function is achieved via iterative Bellman update

Q(st, at) = R(st, at) + γ
∑
st

P(st+1|st, at)V (st+1).

For more details on adversarial optimization techniques in deep reinforcement learning see Korkmaz
(2020).

3 Robust Deep Reinforcement Learning Learns Non-Robust Features

In this section we will reiterate the results reported in Korkmaz (2021d). For more details please see
the original paper (Korkmaz, 2021d). In particular, the results reported in Figure 1 demonstrates that
adversarially robust trained policies still have vulnerabilities compared to vanilla trained policies.
Furthermore, robust deep reinforcement learning policies learn a new set of non-robustness compared
to vanilla trained deep reinforcement learning policies. This non-robustness is clearly outlined in
detail in Figure 1. The bright colors in Figure 1 demonstrates the non-robust regions of these policies1.
Furthermore, this paper reveals that it is possible to compute adversarial perturbations for robust
deep reinforcement learning models Korkmaz (2021d), and these adversarial perturbations computed
from robust models are concentrated in lower frequencies (Korkmaz, 2021b). To see the detailed
evaluation visit the original paper (Korkmaz, 2021d).

Robust deep reinforcement learning learns a new set of non-robust features compared
to standard deep reinforcement learning.

1See the main study for non-robustness mapping (Korkmaz, 2021d,a)
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Robust Training Vanilla Training
Figure 1: Heatmap results of deep reinforcement learning policy vulnerabilities. Left: Certified robust
trained. Right: Vanilla trained deep reinforcement learning policy.

4 Black-Box Vulnerability of Robust Deep Reinforcement Learning

In this section we will provide results for the adversarial vulnerabilities of robust deep reinforcement
learning policies. In particular, we will reiterate the results regarding robust deep reinforcement
learning reported in (Korkmaz, 2022a). In particular, the results reported in Table 1 demonstrate that
the adversarial directions are shared not only across MDPs, but further across algorithms. Note that
Arandom

alg+M represents the adversarial setting where the adversarial direction is transferred both across
MDPs and algorithms.

The state-of-the-art adversarially trained deep reinforcement learning polices utilize the State-
Adversarial DDQN (SA-DDQN) algorithm proposed by Zhang et al. (2020) with prioritized expe-
rience replay. All of the experiments are conducted in the high-dimensional state representation
MDPs, i.e. Arcade Learning environment (Bellemare et al., 2013). Vanilla trained deep reinforcement
learning policies are trained with deep double Q-learning, i.e. DDQN (van Hasselt, 2010; van Hasselt
et al., 2016).

Table 1: Impacts of AGaussian, Arandom
alg and Arandom

alg+M where the perturbation is computed from a policy
trained with DDQN and introduced to the observation system of the state-of-the-art adversarially
robust trained deep reinforcement learning policy.

MDPs AGaussian Arandom
alg Arandom

alg+M

RoadRunner 0.023±0.058 0.397±0.024 0.546±0.014
Pong 0.019±0.007 1.0±0.000 0.659±0.069
BankHeist 0.061±0.012 0.758±0.042 0.241±0.009

Robust deep reinforcement learning is not only non-robust, but further can even be
attacked via black-box adversarial attacks.

5 Robust Deep Reinforcement Learning is Neither Robust Nor Can
Generalize

In this section we will highlight the results regarding how vanilla trained deep reinforcement learning
policies can generalize better and further are more robust than adversarial robust deep reinforcement
learning policies. In particular, we will reiterate the results discovered in (Korkmaz, 2023) regarding
generalization and robust deep reinforcement learning. The results reported in Figure 2 demonstrate
clearly the separation between generalization capabilities of adversarial training (i.e. robust deep
reinforcement learning) and vanilla training in deep reinforcement learning. In particular, when the
environment experiences imperceptible changes the results reported in Figure 2 demonstrate that
vanilla trained policies can perform substantially better than robust trained policies. Furthermore,
see that the study of Korkmaz (2023) provides the contradistinction between adversarial attacks
and natural semantically meaningful changes to the environment within the perceptual similarity
metric. The results reported in this paper demonstrate that natural changes made to an environment
that are imperceptible as much as the adversarial perturbations can cause more damage on the
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Figure 2: The performance drop results when moved along policy-independent high-sensitivity
directions of the state-of-the-art adversarially trained deep reinforcement learning policy manifold
and vanilla trained deep reinforcement learning policy manifold with varying degrees of discrete
cosine transform artifacts, brightness, rotation, and contrast.

deep reinforcement learning policy performance.2 Furthermore, the results reported in Figure 1
demonstrate that adversarially robust trained policies still have vulnerabilities compared to vanilla
trained policies3.

Reinforcement learning can generalize better than robust deep reinforcement learning.

In this study we highlight and reiterate the results originally discovered and reported in the following
papers. Please visit the original papers for a detailed analysis.

Ezgi Korkmaz. Adversarial Robust Deep Reinforcement Learning Requires Redefining Robustness.
AAAI Conference on Artificial Intelligence, AAAI 2023.

Ezgi Korkmaz. Deep Reinforcement Learning Policies Learn Shared Adversarial Features Across
MDPs. AAAI Conference on Artificial Intelligence, AAAI 2022.

Ezgi Korkmaz. Investigating Vulnerabilities of Deep Neural Policies. Conference on Uncertainty in
Artificial Intelligence (UAI), Proceedings of Machine Learning Research (PMLR), PMLR 2021.

6 Conclusion

In this work we highlight the recent findings on investigations on the safety and robustness of
robust deep reinforcement learning. The results reported demonstrate that adversarial robust deep
reinforcement learning is in fact neither robust nor safe. While robust deep reinforcement learning
policies can be attacked via black-box perturbations (i.e. the adversary does not have access to the
training details of the policy of interest), furthermore vanilla trained deep reinforcement learning
policies can generalize substantially better than robust deep reinforcement learning policies. These
results require further attention on the safety of robust deep reinforcement learning policies and the
definitions of robustness in reinforcement learning.

2See more details in (Korkmaz, 2021c, 2023). For a more comprehensive analysis on the connection between
generalization and adversarial perspective see the recent survey (Korkmaz, 2024b).

3See (Korkmaz, 2022c,b) for robustness and safety of inverse reinforcement learning.
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