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Abstract
Simultaneous Machine Translation (SiMT)001
aims to yield a real-time partial translation002
with a monotonically growing source-side003
context. However, there is a counterintuitive004
phenomenon about the context usage between005
training and inference: e.g., in wait-k inference,006
model consistently trained with wait-k is007
much worse than that model inconsistently008
trained with wait-k′ (k′ ̸= k) in terms of009
translation quality. To this end, we first010
investigate the underlying reasons behind this011
phenomenon and uncover the following two012
factors: 1) the limited correlation between013
translation quality and training (cross-entropy)014
loss; 2) exposure bias between training and015
inference. Based on both reasons, we016
then propose an effective training approach017
called context consistency training accordingly,018
which encourages consistent context usage019
between training and inference by optimizing020
translation quality and latency as bi-objectives021
and exposing the predictions to the model022
during the training. The experiments on023
three language pairs demonstrate our intuition:024
our system encouraging context consistency025
outperforms that existing systems with context026
inconsistency for the first time, with the help of027
our context consistency training approach.028

1 Introduction029

Simultaneous machine translation (SiMT) (Cho030

and Esipova, 2016; Gu et al., 2017; Ma et al.,031

2019) aims to generate a partial translation while032

incrementally receiving a prefix of a source033

sentence. A good SiMT system should not only034

have low latency in the generation process but035

also yield a complete translation with high quality.036

SiMT has been widely used in many real-world037

scenarios such as multilateral organizations and038

international summits (Ma et al., 2019). Hence,039

there has recently been witnessed a surge of interest040

in the research about SiMT (Elbayad et al., 2020;041

Ma et al., 2020; Zhang and Feng, 2021, 2022).042
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Figure 1: Counterintuitive phenomenon on the context
usage between training and inference: in wait-1
inference (k = 1), model trained with k′=9 (denoted by
“ctx incons") outperforms the model trained with k′=1
(denoted by “ctx cons") in terms of BLEU, even though
the former model (trained by k′=9) induces a mismatch
on context usage between training and inference.

In this paper, we shed light on a counterintuitive 043

phenomenon on the context usage between training 044

and inference in SiMT: in wait-k inference, 045

model consistently trained with wait-k is worse 046

than that model inconsistently trained with wait- 047

k′ (k′ ̸= k) in terms of the evaluation 048

metrics of SiMT, as shown in Figure 1. This 049

phenomenon was first observed by Ma et al. 050

(2019) yet without explanations. Subsequently, 051

such context inconsistency training becomes a 052

standard practice (Elbayad et al., 2020; Zhang 053

and Feng, 2021, 2022), even if this phenomenon 054

is counterintuitive due to the mismatch between 055

training and inference on the usage of partial 056

source-side context. 057

To investigate the reasons behind the above 058

counterintuitive phenomenon, we conduct exper- 059

iments from two perspectives: calculating the 060

correlation between translation quality and training 061

(cross-entropy) loss, as well as evaluating the 062

translation quality under the prefix-constrained 063

decoding setting. Our empirical experiments 064

demonstrate two reasons that are responsible 065

for the phenomenon: 1) the limited correlation 066

between translation quality and training loss; 2) 067
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exposure bias between training and inference068

(§2). Moreover, based on our findings, this069

paper proposes an effective training approach070

called context consistency training accordingly,071

and breaks through the standard practice of072

inconsistent training. Its key idea is to make073

the context usage consistent between training and074

inference by optimizing translation quality and075

latency as bi-objectives and exposing the model076

to its own predictions to during the training stage.077

Particularly, this approach is general to be applied078

to most SiMT systems (§3).079

Experiments conducted across various bench-080

marks demonstrate that the proposed context081

consistency training towards bi-objectives achieves082

substantial gains over the original consistency083

training based on cross-entropy. In particular,084

with the help of our training approach, our085

SiMT systems encouraging context consistency086

outperform the existing systems with context087

inconsistency in terms of translation quality and088

latency (§4).089

Our main contributions are:090

• This paper sheds light on a counterintuitive091

phenomenon about context usage between092

training and inference in SiMT and pro-093

vides comprehensive explanations for this094

phenomenon.095

• Based on our findings, this paper proposes a096

simple yet effective approach, known as con-097

text consistency training, which encourages098

consistent context usage between training and099

inference in SiMT.100

• Experiments conducted on three benchmarks101

and several SiMT systems demonstrate that102

our system encouraging context consistency103

outperforms the existing systems with context104

inconsistency for the first time.105

2 Rethinking Counterintuitive106

Phenomenon on Context Usage107

2.1 Counterintuitive Phenomenon108

Counterintuitive Phenomenon on Valid Set In109

wait-k systems, the counterintuitive phenomenon110

of the context usage between training and inference111

was first observed by Ma et al. (2019) yet without112

explanations: in wait-k inference, model trained113

consistently with the same wait-k setting is worse114

than the model trained with the wait-k′ setting115

Train
Inference

k=1 k=3 k=5 k=7 k=9

k′=1 19.10 18.06 17.42 16.94 16.80
k′=3 19.29 23.76 24.97 25.00 24.40
k′=5 20.33 24.89 26.36 26.93 27.27
k′=7 20.48 24.60 26.46 27.26 27.81
k′=9 21.42 24.82 26.92 27.84 28.63

Table 1: Evaluation by BLEU score on the valid set of
the WMT15 De-En task for wait-k policy . Bold: best
in a column. Underline: training context is consistent
with inference context. (§4 provides detailed settings.)

(k′ ̸= k) in terms of translation quality, as 116

illustrated in Table 1.1 For example, the BLEU 117

score obtained by the model trained with wait-9 118

surpasses the model trained with wait-1 by a large 119

margin with wait-1 inference. As a result, it has 120

become a standard practice to utilize inconsistent 121

context for training, and this practice is widely 122

followed by (Elbayad et al., 2020; Zhang and Feng, 123

2021, 2022; Zhang et al., 2022; Guo et al., 2022, 124

2023), even if this phenomenon is counterintuitive 125

due to the mismatch between training and inference 126

on the usage of source-side context. 127

Counterintuitive Phenomenon on Training 128

Subset One might hypothesize that this phe- 129

nomenon is attributed to the generation issue from 130

training data to valid data. To verify this hypothesis, 131

we conduct similar experiments on a subset of 132

the training data. We sample examples from the 133

training data as a training subset with the same size 134

as the valid set. Table 2 depicts that the situation

Train
Inference

k=1 k=3 k=5 k=7 k=9

k′=1 21.42 21.21 21.00 20.25 19.67
k′=3 22.07 25.51 26.73 26.69 26.33
k′=5 22.53 25.55 27.27 28.06 28.07
k′=7 23.15 25.73 27.20 28.34 28.63
k′=9 23.22 26.21 27.52 28.66 29.33

Table 2: Evaluation by BLEU score on the training
subset of the WMT15 De-En task for wait-k policy.

135
on the training subset is almost similar to that on 136

the valid set except for k = 3, where the optimal 137

k′ = 9 for the training subset rather than k′ = 5 138

as for the valid set. This shows that generalization 139

from training data to valid data is not the main 140

reason for this counterintuitive phenomenon and 141

it is non-trivial to analyze its reasons. Therefore, 142

in the next subsection, we plan to investigate the 143

reason for this phenomenon in depth. 144

1Actually, this observation focuses on the lower triangle.
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2.2 Reasons of Counterintuitive Phenomenon145

Correlation between BLEU and Cross-entropy146

Loss in SiMT Firstly, we explore the correlation147

between translation quality and training loss.148

To investigate correlation, we measure both the149

training loss and translation quality of each sample150

and calculate their Absolute Pearson Correlation151

in the training subset. In the majority of SiMT152

systems, the training objective is based on the153

cross-entropy objective. Therefore, we assess the154

training loss using cross-entropy loss score in our155

experiments. However, training loss is measured156

at the word level, while translation quality (BLEU157

score) is measured at the sentence level. To bridge158

this disparity, we compute the average training loss159

for each word within a sentence, thus representing160

it as sentence-level training loss.161

k 1 3 5 7 9 ∞

Entire 0.62 0.70 0.73 0.74 0.75 0.75
Low 0.68 0.73 0.74 0.75 0.76 0.75
High 0.27 0.44 0.51 0.56 0.60 0.64

Table 3: Correlation between BLEU score and training
(cross-entropy) loss on three subsets from the training
subset of the WMT15 De-En task for wait-k policy,
where k = ∞ means Full-sentence MT. Entire denotes
the entire training subset, Low consists of those samples
whose cross-entropy loss is lower than the averaged loss,
High consists of those samples whose loss is higher than
the averaged loss.

Table 3 presents the results of the correlation162

between BLEU and training (cross-entropy) loss163

in the wait-k policy. We reveal the following164

insights. 1) In wait-k systems, especially when165

k is smaller, the correlation is lower than that in166

Full-sentence MT. 2) When evaluating samples167

with high training (cross-entropy) loss, we observe168

a weaker correlation (between training loss and169

BLEU) compared to that with low training loss.170

This observation is not difficult to understand:171

taking a two-class classification task as an example,172

if the cross-entropy loss of an example is very173

high (e,g., the loss is − log 0.2), then the model174

can not predict the correct label for this example175

even if its loss is improved to − log 0.4, because176

the probability of the ground-truth label is 0.4,177

which is less than 0.5. This suggests the reason178

for the counterintuitive phenomenon on context179

usage is attributed to the relatively high cross-180

entropy loss for SiMT, 2 leading to the weak 181

correlation between training (cross-entropy) loss 182

and translation quality. 183

Effects of Exposure Bias on the Models 184

Trained Consistently and Inconsistently Since 185

the SiMT model is typically trained by cross- 186

entropy loss, it suffers from the well-known 187

exposure bias, i.e., during training, the model 188

is only exposed to the training data distribution, 189

instead of its predictions. Therefore, we propose 190

to study the effects of exposure bias on the 191

model trained with consistent context as well 192

as the model trained with inconsistent context. 193

To control the extent of exposure bias during 194

inference stage, we measure translation quality 195

by BLEU for both models (e.g., the former wait- 196

1 inference model is trained with wait-1 setting 197

and the later wait-1 inference model is trained 198

with wait-9 setting) under the prefix-constrained 199

decoding setting (Wuebker et al., 2016), where 200

each model requires to predict the suffix for a given 201

gold prefix. Under this setting, as the gold prefix 202

gets shorter, more predicted tokens are used as the 203

context during the prefix-decoding stage and the 204

exposure bias is more severe. 205

0 5 10 15 20
The length of gold prefix

24

25

26

27

28
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EU

Consistency: Wait-1
Inconsistency: Wait-9

Figure 2: BLEU score comparison between context
consistency and context inconsistency under the prefix-
constrained decoding setting. The x-axis denotes the
number of tokens for the gold prefix.

The results as presented in Figure 2 are averaged 206

from a subset of 400 sentence pairs in the train set, 207

all having the same number of tokens in the target 208

(20 target tokens). It is evident that as the gold 209

prefix becomes shorter (i.e., exposure bias is more 210

severe) the performance of the consistent model 211

significantly deteriorates, while the inconsistent 212

model’s performance remains relatively better; 213

however, when the number of tokens in the gold 214

prefix is larger than 10 (i.e., exposure bias is less 215

severe), the consistent model performs better. This 216

2Compared with full-sentence translation, SiMT uses less
source-side context, which essentially results in a higher cross-
entropy loss.
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Valid set Training subset

Train
Inference

k=1 k=3 k=5 k=7 k=9 k=1 k=3 k=5 k=7 k=9

k′=1 5.78 5.26 5.00 4.87 4.81 5.43 5.11 4.95 4.87 4.83
k′=3 5.78 5.12 4.79 4.61 4.53 5.48 5.03 4.83 4.73 4.67
k′=5 5.81 5.10 4.73 4.53 4.42 5.54 5.06 4.81 4.69 4.61
k′=7 5.86 5.12 4.72 4.50 4.38 5.60 5.09 4.82 4.67 4.59
k′=9 5.91 5.14 4.72 4.49 4.36 5.65 5.12 4.84 4.68 4.58

Table 4: Evaluation by cross-entropy loss on valid set and training subset of WMT15 De-En task for wait-k policy.

finding reveals that one of the underlying causes217

of the counterintuitive phenomenon is attributed to218

exposure bias (Ranzato et al., 2016; Bengio et al.,219

2015; Zhang et al., 2019).220

2.3 Counterintuitive Phenomenon Depends on221

Evaluation Metrics222

The above reasons motivate us to study the223

counterintuitive phenomenon by using the cross-224

entropy loss for evaluation, in addition to BLEU225

as before, because training and inference criteria226

are the same, and there is no exposure bias issue227

in this case. We evaluate cross-entropy loss for228

the wait-k inference while models trained with229

wait-k′ settings on the valid set and training230

subset, as illustrated in Table 4. On the valid231

set, we almost notice a diagonal trend, indicating232

the superiority of the consistent model. On the233

training subset, we observe a similar diagonal234

trend, indicating the counterintuitive phenomenon235

disappears in terms of cross-entropy loss as the236

evaluation metric. These observation suggests237

that the counterintuitive phenomenon of context238

usage between training and inference depends239

on evaluation metrics, and it might be helpful240

to address this phenomenon by encouraging the241

consistent criterion between training and inference.242

3 Context Consistency Training for SiMT243

Previous findings have shown that: 1) it is244

helpful to address the counterintuitive phenomenon245

by encouraging the consistent criterion between246

training and inference; 2) exposure bias is a reason247

for the counterintuitive phenomenon. To address248

the counterintuitive phenomenon and make the249

consistent model successful, we propose a simple250

and effective training approach, called context251

consistency training for SiMT, which not only252

incorporates the evaluation metrics for SiMT as253

training objectives (§3.1) but also allows the model254

to expose its predictions during training (§3.2). 255

3.1 Bi-Objectives Optimization for SiMT 256

In SiMT, the evaluation metrics of models are 257

translation quality and latency. Therefore, we 258

intend to leverage both of these metrics as bi- 259

objectives in our proposed method. 260

Translation Quality To measure the transla- 261

tion quality of SiMT models, we employ BLEU 262

score (Papineni et al., 2002). 263

Latency Latency measurement is conducted 264

using Average Lagging (AL) (Ma et al., 2019). AL 265

quantifies the number of tokens of hypotheses that 266

fall behind the ideal policy and is calculated as: 267

ALg(x,u) =
1

τ

τ∑
i=1

g(i,u)− i− 1

|u|/|x|
, (1) 268

where τ=argmaxi {i | g (i)= |x|}, x is the source 269

sentence, u is the hypothesis sentence, and g (i) 270

is the number of waited source tokens before 271

translating ui and thus it is dependent on u<i, 272

and its detailed definition depends on different 273

read/write policies. 274

Formally, the SiMT model parametrized by θ 275

can be defined as follows: 276

pg(u|x; θ) =
∏|u|

i=1 p(ui|x≤g(i), u<i), (2) 277

where u denotes a complete translation hypothesis 278

and u<i denotes its partial prefix with i tokens. 279

Inspired by Minimum Risk Training (MRT) 280

(Shen et al., 2016; Wieting et al., 2019), we directly 281

optimize the SiMT model towards its bi-objectives 282

(i.e., BLEU and Latency) as follows: 283

Lg =
∑

u∈U(x)

costg(x,y,u)
pg(u|x; θ)∑

u′∈U(x) pg(u
′|x; θ)

,

(3) 284

where U(x) is a set of candidate hypotheses, y 285

is the reference and costg(x,y,u) consists of bi- 286

objectives: 287
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costg(x,y,u) = γ · ALg(x,u)+288

(1− γ) · (1− BLEU(y,u)). (4)289

The hyperparameter γ is adjustable and allows us290

to fine-tune for different latency requirements.291

Remark In Shen et al. (2016); Wieting et al.292

(2019), the cost is directly defined on a translation293

candidate u, and thus it is trivial to calculate the294

cost for a given u. However, in our scenario,295

ALg(x,u) depends not only on u but also on g(i)296

specified by the read/write policy used in the SiMT297

system. As a result, during the training process,298

for each candidate u generated via decoding, we299

access the SiMT model to incrementally compute300

the g(i) for all i and then compute ALg(x,u) based301

on all g(i) for u.302

3.2 Generating n Candidates for Training303

SiMT304

In the conventional training SiMT with cross-305

entropy loss, the decoding process does not306

consider multiple candidates. In our scenario,307

to calculate the objective function defined in (3),308

we need to generate a set of candidates U via309

decoding which also allows the SiMT model to310

be exposed to the predictions and thereby mitigates311

exposure bias during the training stage. To this312

end, we try two different ways (Beam search313

and Sampling search) (Holtzman et al., 2020)314

to generate n-best candidates in SiMT. Beam315

search is a maximization-based decoding technique316

that optimizes output by favoring high-probability317

tokens. It is widely used in the generation of318

Full-sentence MT. Sampling search (Holtzman319

et al., 2020) is a stochastic decoding approach that320

samples from the top-p portion of the probability321

distribution. This method excels in enhancing322

candidate diversity. In our experiments, we323

generate a set of 5-best candidates and select 0.8324

for top-p in the sampling search.325

Furthermore, to calculate the ALg(x,u) of326

candidates defined in Eq. (1) which is dependent on327

the g(i), we maintain both model score pg as well328

as g(i) (the number of waited source words before329

translating ui) at each timestep i. Specifically,330

during the decoding process, the SiMT model uses331

the value of g(i) to incrementally specify the source332

context and produce the next predictive distribution333

pg. From this predictive distribution pg, we select334

the top n-best (for beam search method) or sample335

n (for sampling method) partial candidates along336

with their respective g(i) values.337

Following Edunov et al. (2018); Wieting et al. 338

(2019), we employ the two-step training paradigm 339

to train SiMT to speed up the training process: we 340

first train the SiMT model with the standard cross- 341

entropy loss, and then, in our context consistency 342

training, we fine-tune the model by optimizing the 343

bi-objectives (translation quality and latency) with 344

the generated n-best candidates. It is worth noting 345

that we only generate n candidates in the training 346

stage, but in the inference stage the greedy search 347

is used because of the essence of SiMT. 348

4 Experiments 349

4.1 System Settings 350

The proposed approach is evaluated on three widely 351

used SiMT benchmarks, including IWSLT14 352

German→English (De-En), IWSLT15 Vietnamese 353

→ English (Vi-En) and German → English (De- 354

En). Experiments are conducted on SiMT 355

systems including two different policies: The fixed 356

read/write system (wait-k policy) (Ma et al., 2019); 357

The adaptive read/write system (wait-info policy) 358

(Zhang et al., 2022). 359

Baseline Training Approaches The conven- 360

tional training approach of SiMT systems is the 361

context consistency training based on cross-entropy 362

Ma et al. (2019), denoted Consistency-CE. In 363

contrast, context inconsistency training, also based 364

on cross-entropy, involves inconsistent context 365

usage between training and inference stages, called 366

Inconsistency-CE. Additionally, we implement 367

a recently widely-used special case of context 368

inconsistency training (Elbayad et al., 2020), 369

termed Inconsistency-CE-MP. 370

Our Training Approaches The proposed 371

SiMT systems follow the standard evaluation 372

paradigm (Ma et al., 2019) and report BLEU 373

scores (Papineni et al., 2002) for translation quality 374

and Average Lagging (AL) (Ma et al., 2019) for 375

latency mentioned in §3.1. The proposed context 376

consistency training is based on bi-objectives, 377

called Consistency-Bi, and we also implement 378

the context consistency training based on BLEU 379

as the uni-objective, called Consistency-Uni for 380

further comparison. For generating n candidates, 381

we implement Beam search in most cases, except 382

the wait-k policy, for which we utilize the Sampling 383

search strategy. The implementation of all systems 384

is based on Transformer in the Fairseq Library (Ott 385

et al., 2019). Appendix A provides detailed 386

experimental settings. 387
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Figure 3: Translation quality (BLEU) v.s. latency (Average Lagging, AL) in Wait-k Policy.

2.5 5.0 7.5 10.0
Average Lagging (AL)

26
27
28
29
30
31
32
33
34

BL
EU

Consistency-CE
Inconsistency-CE
Inconsistency-CE-MP
Consistency-Bi

(a) IWSLT14 De-En

0.0 2.5 5.0 7.5 10.0
Average Lagging (AL)

18

20

22

24

26

28

BL
EU

Consistency-CE
Inconsistency-CE
Inconsistency-CE-MP
Consistency-Bi

(b) IWSLT15 Vi-En

2.5 5.0 7.5 10.0
Average Lagging (AL)

25
26
27
28
29
30
31
32
33

BL
EU

Consistency-CE
Inconsistency-CE
Inconsistency-CE-MP
Consistency-Bi

(c) WMT15 De-En

Figure 4: Translation quality (BLEU) v.s. latency (Average Lagging, AL) in Wait-info Policy.

4.2 Main Results388

The results are illustrated in Figure 3 and Figure 4.389

Within our proposed context consistency training390

approach (Consistency-Bi), all implemented SiMT391

systems (wait-k and wait-info) exhibit significant392

improvements in both translation quality and393

latency, as evidenced by an increase in BLEU score394

and a decrease in AL across all the benchmarks.395

This reveals that our proposed methods not only396

yield substantial performance improvements but397

also demonstrate strong generalization capabilities398

for SiMT systems.399

In contrast to the original consistency training400

(Consistency-CE) of the wait-k policy, our401

proposed Consistency-Bi achieves over 5 BLEU402

improvement at low latency (k=1) across all403

datasets. Specifically, our method improves 2.68404

BLEU on the IWSLT14 De-En task, 4.39 BLEU on405

the IWSLT15 Vi-En task, and 1.91 on the WMT15406

De-En task, respectively (average on all latency).407

Furthermore, compared with inconsistency training408

(Inconsistency-CE and Inconsistency-CE-MP), the409

proposed method also demonstrates significant410

improvements, especially at low latency (k=1),411

achieving over 3 BLEU score increases. This412

suggests that incorporating our proposed context 413

consistency training enables a wait-k model trained 414

consistently under the same wait-k inference 415

setting to outperform an inconsistently trained 416

model. 417

To evaluate whether our method could achieve 418

improvements with advanced adaptive SiMT 419

systems, we apply our proposed training method to 420

wait-info policy (Zhang et al., 2022). The results 421

are depicted in Figure 4. Similarly, in comparison 422

to the three baseline training methods, we observe 423

a significant enhancement in translation quality 424

across all latencies. However, in IWSLT15 Vi-En 425

and WMT15 De-En tasks, Inconsistency-CE and 426

Inconsistency-CE-MP are not significantly better 427

than Consistency-CE. This can be attributed to 428

the advanced policy, which makes more informed 429

read/write decisions based on information. 430

4.3 Ablation Study 431

Ablation Studies on Consistency-Bi and 432

Consistency-Uni To validate the effectiveness 433

of Consistency-Bi, we perform the ablation 434

studies on Consistency-Bi (Both BLEU and AL) 435

and Consistency-Uni (BLEU only) in Figure 436
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Figure 5: Ablation studies between Consistency-Bi and
Consistency-Uni on WMT15 De-En test set of wait-k.

5. The experiments reveal that compared with437

Consistency-Uni, Consistency-Bi not only results438

in lower latency but also yields superior translation439

quality, especially in low latency scenarios (k=1),440

except for k=3, where Consistency-Uni is slightly441

better than Consistency-Bi. It is largely attributed442

to the latency as part of the training objectives.443

Ablation studies on n-best candidates genera-444

tions We conduct the ablation studies on two types445

of n-best generation methods (Beam search and446

Sampling search) under both wait-k and wait-info447

policies, as depicted in Figure 6. The results reveal448

that under the wait-k policy, the performance of449

Consistency-Bi using sampling search is slightly450

superior to that using beam search. Conversely,451

under the wait-info policy, employing beam search452

yields slightly better results compared to sampling453

search. These findings suggest the choice of454

generation method is not notably sensitive.
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Figure 6: Ablation studies on n-best candidates
generations (Beam search and Sampling search) on the
valid set of WMT15 De-En.

455
Variation in hyperparameter γ Fine-tuning456

hyperparameter γ defined in (4) aims to achieve457

a better trade-off between BLEU and latency in458

our proposed Consistency-Bi. As illustrated in459

Table 5, as γ increases, AL decreases while the460

BLEU score improves, reaching its peak at γ = 461

0.4. This indicates that our proposed method 462

can simultaneously optimize two objectives and 463

achieve a value that is relatively optimally balanced 464

between BLEU and AL, which can effectively 465

enhance both translation quality and latency.

γ 0.0 0.1 0.2 0.3 0.4 0.5 0.6

BLEU 23.5 23.37 23.08 23.56 24.21 21.09 17.74
AL 1.68 1.62 1.53 1.14 0.16 -1.48 -2.93

Table 5: Ablation studies on various γ in wait-1 training
with wait-1 inference of Consistency-Bi.

466

4.4 Analysis 467

Counterintuitive Phenomenon Mitigation To 468

explore whether the counterintuitive phenomenon 469

described in §2.1 is alleviated, we conduct 470

experiments using models trained with wait-k′ 471

but tested with wait-k , as illustrated in Figure 472

7. Figure 7(a) presents the results of the original 473

training method. Optimal results for inference 474

with k are generally achieved when k′=9, except 475

for k=3, where k′=5 yields the best. In contrast, 476

our proposed training method demonstrates that 477

the best results tested with wait-k closely match 478

with the diagonal line as depicted in Figure 7(b). 479

Specifically, when inference with k=1 and 9, the 480

best results match the models trained with the same 481

value of k′. For k=3, 5, and 7, although the best 482

results come from different models, the differences 483

are not significant. These findings suggest that 484

our method exhibits improved consistency between 485

training and inference compared with the original 486

one.

1 3 5 7 9
Inference k

1

3

5

7

9

Tr
ai

n 
k′

19.1 18.1 17.4 16.9 16.8

19.3 23.8 25.0 25.0 24.4

20.3 24.9 26.4 26.9 27.3

20.5 24.6 26.5 27.3 27.8

21.4 24.8 26.9 27.8 28.6

(a) orgin(train w/ CE-obj)

1 3 5 7 9
Inference k

1

3

5

7

9

Tr
ai

n 
k′

24.2 25.2 26.5 27.6 28.3

23.2 25.9 27.0 27.9 28.6

23.0 26.0 28.0 28.7 29.3

22.3 25.7 27.7 28.6 29.2

22.5 25.7 28.1 28.9 29.4

(b) proposed(train w/ Bi-obj)

Figure 7: BLEU score comparison between the original
and proposed training methods using wait-k′ during
training and wait-k during inference on the WMT15
De-En valid set. The diagonal line indicates consistency
between training k′ and inference k.

487
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Correlation between training loss and transla-488

tion quality We analyze the correlation between489

BLEU score and training loss, similar to the490

analysis described in §2.2. The results shown491

in Figure 8 demonstrate that, compared with492

Consistency-CE, proposed Consistency-Bi exhibits493

a strong correlation between training loss and494

translation quality, even when using a small k.

2 4 6 8
Inference k

0.5

0.6

0.7

0.8

0.9

Co
rre

la
tio

n

Consistency-CE
Consistency-Bi

Figure 8: Comparison of correlation between BLEU
score and training loss (cross-entropy loss for
Consistency-CE and bi-objectives loss for Consistency-
Bi) on training subset of WMT15 De-En task.

495
Exposure Bias To assess whether our method496

successfully mitigates exposure bias discussed in497

§2.2, we conduct wait-1 decoding experiments498

using both Consistency-CE and Consistency-Bi499

under the prefix-constrained decoding setting500

(Wuebker et al., 2016). The detailed experimental501

settings are as described in §2.2. Figure 9 reveals502

that as the number of gold prefixes decreases, the503

performance of Consistency-Bi improves, while504

the performance of Consistency-CE deteriorates.505

This suggests that the proposed method effectively506

mitigates exposure bias, enhancing the model’s507

performance when relying on prediction rather than508

on gold prefixes.

0 5 10 15 20
The length of gold prefix

24

25

26

27

28

BL
EU

Consistency-CE
Consistency-Bi

Figure 9: BLEU score comparison between original
Consistency-CE model and ours proposed Consistency-
Bi model for wait-1 decoding under the prefix-
constrained decoding setting.

509

5 Related Work 510

Existing SiMT sudies can be mainly categorized 511

into two types (i.e., fixed or adaptive policy) 512

according the READ/WRITE policy. 513

As the fixed policy, Dalvi et al. (2018) 514

introduced STATIC-RW, and Ma et al. (2019) 515

proposed the wait-k policy, which consistently 516

generates target tokens lagging behind the source 517

by k positions. Building upon this, Elbayad et al. 518

(2020) enhanced the wait-k policy by introducing 519

the practice of sampling different values of k 520

during training. Additionally, Han et al. (2020) 521

incorporated meta-learning into the wait-k policy, 522

and Zhang et al. (2021) proposed future-guided 523

training for the wait-k policy. 524

Alternatively, many notable works develop an 525

adaptive policy for SiMT (Zheng et al., 2019; 526

Zhang et al., 2020; Wilken et al., 2020; Miao 527

et al., 2021; Zhang and Feng, 2022; Zhang et al., 528

2022). For instance, Zheng et al. (2020) propose 529

the adaptive policy through a heuristic ensemble 530

of multiple wait-k models. Other studies (Zheng 531

et al., 2019; Arivazhagan et al., 2019; Ma et al., 532

2020; Zhang and Zhang, 2020; Zhang et al., 2020) 533

resort to an adaptive policy controller to determine 534

the READ/WRITE action and then integrate the 535

controller into the SiMT model. 536

The above studies overlook the counterintuitive 537

phenomenon about the context usage between 538

training and inference, and our work thereby pro- 539

vides comprehensive analysis on this phenomenon 540

and propose an effective approach to address 541

this phenomenon, which is general enough to be 542

applied into both policies. 543

6 Conclusion 544

This paper pays attention to a counterintuitive 545

phenomenon in the context of usage between 546

training and inference in SiMT. Subsequently, 547

we conduct a comprehensive analysis and make 548

the noteworthy discovery that this phenomenon 549

primarily stems from the weak correlation between 550

translation quality and training loss as well as 551

exposure bias between training and inference. 552

Based on our findings, we propose a context 553

consistency training method that incorporates both 554

translation quality and latency as bi-objectives 555

and alleviates the exposure bias issue during the 556

training. Experiments verify the effectiveness 557

of the proposed approach, making the context- 558

consistent SiMT successful for the first time. 559
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Limitations560

Our context consistency training approach neces-561

sitates a search for an appropriate hyperparameter,562

denoted as γ, to strike a balance between563

translation quality and latency. Further research564

is required to establish an efficient method for this565

purpose.566
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A Detailed Experimental Settings803

We conduct experiments on the following datasets,804

which are the widely-used SiMT benchmarks.805

IWSLT14 German→English (De→En) (Cet-806

tolo et al., 2013) we train on 160K pairs,807

develop on 7K held-out pairs, and test on TED808

dev2010+tst2010-2013 (6,750 pairs). Following809

the previous setting (Elbayad et al., 2020), all810

data is tokenized and lower-cased and we segment811

sequences using byte pair encoding (Sennrich et al.,812

2016) with 10K merge operations. The resulting813

vocabularies are of 8.8K and 6.6K types in German814

and English respectively.815

IWSLT153 Vietnamese → English816

(Vi→En) (Luong and Manning, 2015) we817

train on 133K pairs, develop on TED tst2012818

(1,553 pairs), and test on TED tst2013 (1,268819

pairs). The corpus is simply tokenized by820

SentencePiece (Kudo and Richardson, 2018),821

resulting in 16K and 8K word vocabularies in822

English and Vietnamese respectively.823

WMT154 German → English824

(De→En) (Callison-Burch et al., 2009) is a825

parallel corpus with 4.5M training pairs. We use826

newstest2013 (3003 pairs) as the dev set and827

newstest2015 (2169 pairs) as the test set. The828

corpus is simply tokenized by SentencePiece829

resulting in 32k shared word vocabularies.830

The implementation of all systems is based on831

Transformer (Vaswani et al., 2017) and adapted832

from Fairseq Library (Ott et al., 2019). Follow-833

ing Ma et al. (2019); Elbayad et al. (2020), we834

3nlp.stanford.edu/projects/nmt/
4www.statmt.org/wmt15/translation-task

apply Transformer-Small (4 heads) for IWSLT15 835

Vi-En and IWSLT14 De-En, Transformer-Base 836

(8 heads) for WMT15 De-En. To avoid the 837

recalculation of the encoder hidden states when 838

a new source token is read, unidirectional 839

encoder (Elbayad et al., 2020) is proposed to make 840

each source token only attend to its previous words. 841
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