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ABSTRACT

We study continual offline reinforcement learning, a practical paradigm that fa-
cilitates forward transfer and mitigates catastrophic forgetting to tackle sequential
offline tasks. We propose a dual generative replay framework that retains previous
knowledge by concurrent replay of generated pseudo-data. First, we decouple the
continual learning policy into a diffusion-based generative behavior model and a
multi-head action evaluation model, allowing the policy to inherit distributional
expressivity for encompassing a progressive range of diverse behaviors. Second,
we train a task-conditioned diffusion model to mimic state distributions of past
tasks. Generated states are paired with corresponding responses from the behav-
ior generator to represent old tasks with high-fidelity replayed samples. Finally, by
interleaving pseudo samples with real ones of the new task, we continually update
the state and behavior generators to model progressively diverse behaviors, and
regularize the multi-head critic in a behavior cloning manner to mitigate forget-
ting. Experiments on various benchmarks demonstrate that our method achieves
better forward transfer with less forgetting, and closely approximates results of us-
ing previous ground-truth data due to its high-fidelity replay of the sample space.

1 INTRODUCTION

Offline reinforcement learning (RL) (Fujimoto et al.,[2019; [Levine et al.,|2020) allows an agent to
learn from a pre-collected dataset without having to interact with the environment in real time. This
learning paradigm is vital for many realistic scenarios where collecting data online can be very ex-
pensive or dangerous, such as robotics (Kumar et al.,|2022), autonomous driving (Yu et al.| 2018),
and healthcare (Gottesman et al.,[2019)), and has attracted widespread attention in recent years (Yuan
& Lu, [2022; Nikulin et al.| 2023). The emergence of offline RL also holds tremendous promise for
turning massive datasets into powerful sequential decision-making engines, e.g., decision transform-
ers (Chen et al.,[2021), akin to the rise of large language models like GPT (Brown et al., 2020).

In the real world, huge amounts of new data are produced as new tasks emerge overwhelm-
ingly (van de Ven et al.,[2022). However, current parametric RL. models learn representations from
stationary batches of training data, and are prone to forgetting previously acquired knowledge when
tackling new tasks, a phenomenon known as catastrophic forgetting or interference (Parisi et al.,
2019). Accordingly, continual RL (Khetarpal et al.| 2022), also known as lifelong RL, is widely
studied to address two major issues: i) mitigating catastrophic forgetting, and ii) allowing forward
transfer, i.e., leveraging previous knowledge for efficient learning of new tasks. In recent years,
continual learning has seen the proposal of a variety of methods (Fu et al., [2022; |Gaya et al., [2023)
that can mainly be categorized into: regularization-based (Zeng et al., [2019; |Kaplanis et al.,|2019),
parameter isolation (Kessler et al., 2022} |Konishi et al.| 2023), and rehearsal methods |Isele & Cos-
gun| (2018)); [Rolnick et al. (2019); [Daniels et al.| (2022). Among them, rehearsal with experience
replay is a popular choice due to its simplicity and promising results (Gao & Liu, 2023). In a recent
benchmark study Wolczyk et al. (2022), experiments demonstrate that experience replay signifi-
cantly improves both transfer and the final performance, and plays a critical role in continual RL.

This paper focuses on continual offline RL (CORL), an understudied problem that lies in the inter-
section of offline RL and continual RL. The learner is presented with a sequence of offline tasks
where datasets are collected by different behavior policies. Current rehearsal-based methods are
confronted with two main challenges arising from intrinsic attributes of offline RL. First, differ-
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ent from supervised learning, RL models are more prone to deficient generalization across diverse
tasks (Kirk et al., 2023)), and existing policy models are usually unimodal Gaussian models with
limited distributional expressivity (Chen et al.|[2023)). Nonetheless, in the realm of CORL, collected
behaviors become progressively diverse as novel datasets continue to emerge, which might lead to
performance degradation due to deficient generalization and distributional discrepancy. Second, ex-
isting methods (Rolnick et al., 2019; Wolczyk et al.| 2022; |Gai et al., [2023) rely on a substantial
buffer for storing real samples from previous tasks. However, this presents a memory capacity con-
straint that becomes more pronounced as new tasks keep emerging, restricting its applicability for
large-scale problems as well as practical scenarios involving privacy issues.

To address the above challenges, we propose an efficient Continual learning method via diffusion-
based dual Generative Replay for Offline RL (CuGRO), which avoids storing past samples and
retains previous knowledge by concurrent replay of generated pseudo-data. First, inspired by (Chen
et al.|(2023), we decouple the continual learning policy into an expressive generative behavior model
e (als) and an action evaluation model Qg(s, a). Training a unified behavior model can contin-
ually absorb new behavior patterns to promote forward knowledge transfer for the offline setting,
and sampling from this generative model can naturally encompass a progressive range of observed
behaviors. Second, we introduce a state generative model p,,(s|k) to mimic previous state distribu-
tions conditioned on task identity k. Generated states 8 ~ p,,(s|k) are paired with corresponding
responses from the behavior generative model @ ~ 114 (a|$) to represent old tasks. In particular, we
leverage existing advances in diffusion probabilistic models (Ho et al., 2020) to model states and
corresponding behaviors with high fidelity, allowing the continual policy to inherit the distributional
expressivity. Finally, to model progressively diverse behaviors without forgetting, we interleave
replayed samples with real ones of the new task to continually update the state and behavior gener-
ators. We use a multi-head critic to tackle the diversity of emerging tasks, and mitigate forgetting of
the critic in a behavior cloning manner. In summary, our main contributions are threefold:

* We propose an efficient generative replay framework for CORL. To the best of our knowledge,
CuGRO is the first that leverages expressive diffusion models to tackle the CORL challenge.

* We develop a dual generator system to synthesize high-fidelity samples for modeling progres-
sively diverse behaviors, and mitigate forgetting of a multi-head critic using behavior cloning.

* We empirically show on various benchmarks that CuGRO better mitigates forgetting and facil-
itates forward transfer than prior methods, and closely approximates the same results as using
previous ground-truth data due to its reliable and high-fidelity synthesis of the sample space.

2 PRELIMINARIES

2.1 OFFLINE REINFORCEMENT LEARNING

RL is commonly studied based on the Markov decision process (MDP) formulation, (S, A, P,r,7),
where S and A denote the state and action spaces, P(s’|s,a) and r(s, a) are the transition and
reward functions, and -y is the discount factor. The goal is to maximize the expected return:

J(1) = Egnp, (s)Eamn(|s) [Zr(s,a)] = /Sp,r(s)/A7r(a|s)Q“(s,a)dads, (1)

where p.(s) is the state visitation frequencies induced by policy . When online data collec-
tion from 7 is feasible, it is difficult to estimate p,(s) and thus J(m). For a static dataset
D, = > .(si,a;,r;,s;) collected by a behavior policy si(a|s), offline RL approaches (Peng et al.,
2019; [Nair et al.,|2020) usually encourage 7 to stick with ;2 and maximize a constrained objective as

. 1
7 = [ outs) [ wlals)@* (s a)ada— 2 [ o) (< ls) 1) ds. @
The optimal policy 7* for Eq. (2) can be derived by using a Lagrange multiplier as

1 *
Ts)u(a\s)exp (aQ*(s,a)), 3)

where Z(s) is the partition function. By projecting 7* onto a parameterized policy m¢ with a critic
(g, we can obtain the final objective in a weighted regression form as

7™ (als) =

. . 1
argdr)mn Esp, [DxL (77||7¢)] = arg;}nax E(s,a)~D, [Z(s) log my(als) exp (aQo(s,a))| . (4)
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2.2 GENERATIVE BEHAVIOR MODELING

To avoid learning an explicitly parameterized policy model in Eq. (), |Chen et al. (2023) decouples
the learned policy into an expressive generative behavior model 114 (a|s) and an action evaluation
model Qg (s, a), and form a policy improvement step as

m(als) x pe(als) - exp (aQo(s, a)), (5)

where « is a temperature parameter that balances between conservative and greedy improvements.
Diffusion probabilistic models (Ho et al., 2020; Song et al., [2021) are utilized to fit the behavior
distribution from the offline dataset. A state-conditioned diffusion model € is trained to predict the
noise € added to the action a sampled from the behavior policy u(-|s) as

argmin K, q)p, et |lowep (ara + o€, 5,t) + eH;} (6)
o]

where ¢ ~ U(0,T), € ~ N(0,1I), and oy and oy are determined by the forward diffusion process.
The generative model €4 is trained to denoise the perturbed action a; := «o;a + o€ back to the
original undisturbed one a. Then, a critic network Qg (s, @) is learned to evaluate actions sampled
from the learned behavior model pu4(-|s). With the idea of episodic learning (Blundell et al., 2016}
Ma et al., 2022)), the value function is updated using a planning-based Bellman operator as

RY) = r; + ymax (Rl(i)l, Vfi;”) ;
where V;(jil) = anw(-ISi) [Qo(si,a)], (7
and 0 = al“g;niﬂ E(s;.a:)~D,. {HQG(% a;) — Rzﬁjfl)\\g} ’

where j = 1,2, ... is the iteration number. Eq. (7)) offers an implicit planning scheme within dataset
trajectories to avoid bootstrapping over unseen actions and to accelerate convergence. Finally, the
action is re-sampled using importance weighting with exp(aQg (s, a)) being the sampling weights.

Notation. There are three “times” at play in this work: that of the RL problem, that of the diffusion
process, and that of the continual learning setting. We use subscripts ¢ to denote the timestep within
an MDP, superscripts ¢ to denote the diffusion timestep, and subscripts &k to denote the sequential
task identity. For example, a! refers to the i-th action in a noiseless trajectory, and s;, and ¢
represent a given state and the behavior model during task M.

3 DIFFUSION-BASED DUAL GENERATIVE REPLAY

3.1 PROBLEM FORMULATION AND METHOD OVERVIEW

In CORL, we assume that the task follows a distribution My, = (S, A, P,r,v)x ~ P(M). The
learner is presented with an infinite sequence of tasks [M7, ..., My, ...], and for each task M}, an
offline dataset D,,, = ".(s;, @i, 74, 8;)1 is collected by a behavior policy si;.. The learner can only
access the offline dataset of the new task M, without retrieving real samples from previous tasks
{ My, }fz_ll or any online environmental interactions. The objective for CORL is to learn a continual
policy that maximizes the expected return over all encountered tasks as

K
J(ﬂ'continual) = Z JMk (Ter) (®)
k=1

Importantly, the learner ought to build upon the accumulated knowledge from previous tasks
My, ..., Mg to facilitate learning the new task Mg, while not forgetting previous knowledge.

In the following, we first introduce the dual generator system that mimics the state and behavior
distributions of past tasks, as described in Section @ Then, in Section @ we present the dual
generative replay mechanism that sequentially trains conditional diffusion-based generators to syn-
thesize high-fidelity pseudo samples for modeling progressively diverse behaviors without forget-
ting. Finally, we show the behavior cloning process that prevents forgetting of a multi-head critic
in Section With the above implementations, the training procedure of CuGRO is illustrated in
Fig.|l| and the algorithm summary is presented in Appendix A.
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Figure 1: Sequential training of CuGRO. (a) A new diffusion-based state generative model is trained
to mimic a mixed data distribution of real samples s and replayed ones S. (b) A new diffusion-based
behavior generative model learns from real state-action pairs (s, a) and pseudo pairs (8, @), where
replayed action a is obtained by feeding replayed states § into current behavior generator. (c) A
new head in the critic is expanded for tackling the new task with real state-action pairs and Bellman
targets, and previous heads are regularized by cloning the Q-value of replayed pairs ($, a).

3.2 DUAL GENERATOR SYSTEM

Behavior Generative Model. Inspired by [Chen et al. (2023), we decouple the continual learning
policy into a diffusion-based generative behavior model pq(als) and an action evaluation model
Qo(s,a) asin Eq. . This perspective rooted in generative modeling presents three promising ad-
vantages for CORL. First, existing policy models are usually unimodal Gaussians with limited dis-
tributional expressivity, while collected behaviors in CORL become progressively diverse as novel
datasets keep emerging. |'| Learning a generative behavior model is considerably simpler since sam-
pling from the behavior policy can naturally encompass a diverse range of observed behaviors, and
allows the policy to inherit the distributional expressivity of diffusion models. Second, RL models
are more prone to deficient generalization across diverse tasks (Kirk et al., . Learning a
unified behavior model can naturally absorb novel behavior patterns, continually promoting knowl-
edge transfer and generalization for offline RL. Third, generative behavior modeling can harness
extensive offline datasets from a wide range of tasks with pretraining, serving as a foundation model
to facilitate finetuning for any downstream tasks. This aligns with the paradigm of large language
models (Brown et al.| [2020), and we reserve this promising avenue for future research.

'For instance, given a bidirectional navigation task where the agent can go to either of two opposite direc-
tions to get the final reward, fitting the policy with an unimodal Gaussian distribution leads to encompassing
the low-density area situated between the two peaks (Chen et al.L 2023).

2For example, considering two navigation tasks where the goals are in adverse directions, the single RL
model ought to execute completely opposite decisions under the same states for the two tasks. By contrast, a
supervised classification model just needs to derive two decision boundaries (Li & Hoiem|[2017) or a merged
one (Shin et al.,|2017) based on the augmented feature space shared by two tasks.
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State Generative Model. Under the generative replay framework, we train another diffusion-based
generator to mimic state distributions of previous tasks {sk}f:jl. Specifically, we learn a scored-
based task-conditioned model €, to predict the noise € added to the state s as
. 2
@ = argmin ]Eswpuk,e’t lorep (s + or€, k,t) + eHQ} , 9)
7
where ¢t ~ U(0,T), € ~ N(0,I), and oy and o, are hyperparameters of the forward diffusion
process, and state s is sampled from the k-th task’s dataset D,,, . The generative model €, is trained
to refine the perturbed state s := a;s -+ o€ back to the original undisturbed one s, such that the
random noise s7 ~ A/(0, I') can be reversed to model the original state distribution.

To generate high-fidelity state samples for each past task, we condition the diffusion model on task
identity k as § ~ p,,(s|k). Moreover, conditional diffusion models can further improve the sample
quality with classifier guidance that trades off diversity for fidelity using gradients from a trained
classifier (Dhariwal & Nichol, 2021). Unfortunately, in the CORL setting, it might be infeasible
to train a classifier with task identity as the label, since new tasks continually emerge and samples
from prior tasks are unavailable. We leave this line of model improvement as future work, such as
training with classifier-free guidance (Ho & Salimans, |2022).

3.3 HIGH-FIDELITY DUAL GENERATIVE REPLAY

We consider sequential training on dual generative models {(py, ¢x )}, where the K-th models
(¢K,@K) learn the new task My and the knowledge of previous models (¢px_1, K —1). This
involves a dual procedure of training the conditional diffusion-based state and behavior generators
using the mechanism of generative replay, as described below.

State Generative Replay. At new task M, to prevent forgetting of the state generative model, we
use the previously learned generator i1 to generate synthetic state samples for retaining knowl-
edge of prior tasks, i.e., §x ~ P, _, (8|k). The new state generator ¢ i receives real state samples

of the new task sx and replayed state samples of all previous tasks {.§k}kK:_11. Real and replayed
samples are mixed at a ratio that depends on the desired importance of the new task compared to
the older ones. The state generator learns to mimic a mixed data distribution of real samples and re-
played ones from the previous generator, aiming to reconstruct the cumulative state space. Formally,
the loss function of the K -th state generative model during training is given as

Lain( @) = B o, et 0160y (a1 + 016, K, 1) + e}
K-1 (10)

+(1-p) Zk:l Esynpe, (k) [HUtQpK (u8) + o€, k,t) + GHE} ;

where [ is the ratio of mixing real data. As we aim to evaluate the generator on original tasks, test
loss differs from the training loss as

Liesi(pr) = B ESKNDMK,e,t [HUtecpx (usk +ore, K, t) + EHg}
e q 0 ay
+(1-0) Zk:l Esinp,, et [HUthpK (ousk + o€, k,t) + €||2} )

Behavior Generative Replay. Subsequently, it is crucial to replay samples from previous tasks to
continually train the behavior generative model ¢ for encompassing an expanding array of behavior
patterns without forgetting. This update involves generating pseudo-state-action pairs using both
the state and behavior generators. At the new task M, we first obtain synthetic state samples of
previous tasks using learned state generator ¢ i1, and then pair these pseudo state samples with
corresponding responses from the current behavior generator ¢ x 1 to represent old tasks as

81 ~ Doxc 1 (s[k),

. . (12)
ag ~ Lo ,(alsk), k=1, K —1.

The new behavior generator ¢ receives real state-action pairs of the new task (sx,ax) and re-
played pairs of all previous tasks {(Sy, dk)},{,{:jl. The behavior generator aims to continually re-
construct the ever-expanding behavior patterns. With replayed pairs generated by Eq. (I2)), the loss
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function of the K-th behavior generative model during training is given as

£train(¢K) = 5 E(SK7(LK)~DHK7E,1: |:||O-t6¢K (ataK + o€, SK7t) + 6”;]

K-1 )
+(1-75) Zk:l E(s,,a0),e.t [Hatem{ (azay + or€, 8k, t) + e||2} .
Similarly, we evaluate the behavior generator on original tasks, resulting in the test loss as
Lis®) = BE (oD et |100€x (arax + o€ sic,t) + el
(14)

K—1 )
+ (1 - 5) Zk:l E(Sk,ak)NDHk,e,t |:H0-t€¢K (O‘tak + o€, skat) + 6”2} .

3.4 BEHAVIOR CLONING

To tackle the diversity of emerging tasks, we employ a multi-head critic network 6, with each head
Q(’f,(s7 a) for capturing distinctive characteristics of each task M. When training the new task
My, we use the planning-based operator in Eq. to update the K-th Q-function Q} (s, a) with
real samples from newest offline dataset (sx,ax) ~ D,,. Then, we utilize a behavior cloning
technique to alleviate forgetting of previous tasks’ heads in the critic, analogous to the data rehearsal
approaches that work well in supervised continual learning (Li & Hoiem| 2017; |(Chaudhry et al.
2019). After obtaining the pseudo state-action pairs of previous tasks { (8, @)}, in Eq. lb we
annotate these replayed samples using the previously trained critic @ as {ngﬂ (S8, ar) k:ll'
During training the new critic O, we treat the labeled pseudo samples as expert data and perform
behavior cloning via applying an auxiliary regularization term to imitate the expert data. The overall
loss function for the multi-head critic is formulated as

L(Ok) = E(sre.ar)~p,, [[|Qox(sK,ax) — Ril[3)

K-1 . . ) (15)
A Esan [(Qex (80 0) — Qb (31, ar) } :
k=1

where Ry corresponds to the Bellman target in Eq. (7), and ) is the regularization coefficient.
The first term is responsible for incorporating new knowledge using an expanded head in the critic,
and the second term encourages the existing heads to stay close to previous outputs for mitigating
forgetting. The critic, equipped with progressive heads, accumulates knowledge of previous tasks,
enabling the reuse of the most relevant parts from the past to enhance the training of new tasks.
Additionally, the behavior cloning loss acts as a regularizer that helps shape more general features,
thus further improving forward knowledge transfer.

4 EXPERIMENTS

In this section, we show the applicability of our dual generative replay framework on various se-
quential learning tasks. Generative replay is superior to other continual learning methods in that
the generator is the only constraint of the task performance. When the generative model is opti-
mal, training the networks with generative replay is equivalent to joint training on the entire dataset.
This is also a significant motivation for our method to leverage powerful diffusion models as our
generators, as diffusion models have achieved sample quality superior to the current state-of-the-art
generative models (Dhariwal & Nichol, 2021)).

Continual Offline Datasets. We consider four domains from OpenAl Gym with the MuJoCo sim-
ulator (Todorov et al.| [2012) as: 1) Swimmer-Dir, it trains a simulated swimmer to move towards a
given 2D direction and tasks vary in the goal direction; 2) Hopper-Vel, it trains a simulated hopper
to run forward at a particular velocity and tasks vary in the goal velocity; 3) Walker2D-Params, it
trains a two-dimensional two-legged walker to move forward and tasks differ in the physical param-
eters of the simulated robot; 4) HalfCheetah-Vel, it trains a planar cheetah to run forward at a given
velocity and tasks differ in the goal velocity. For each evaluation domain, a sequence of four tasks
with varying dynamics is presented, and the offline dataset collection is given in Appendix B.

Baselines. We compare the performance of CORL trained with variants of replay methods, includ-
ing: 1) Oracle, it serves as the upper bound with exact replay by assuming a perfect generator.
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Figure 2: Test performance of CuGRO and Oracle on each task during sequential training imple-
mented in all evaluation domains.

Therefore, Oracle uses real samples of all previous tasks to sequentially train the dual generators,
and to train the multi-head critic with behavior cloning. 2) Noise, it considers the opposite case when
generated samples do not resemble the real distribution at all. We omit the state generative model
and use random noises as replayed state samples. The behavior generator and multi-head critic are
sequentially trained using these randomly generated states. 3) None, it naively trains the model
pipeline on sequential tasks without replay. We use the same notations throughout this section.

For evaluation, all experiments are carried out with 10 different random seeds, and the mean of the
received return is plotted with 95% bootstrapped confidence intervals of the mean (shaded). The
standard errors are presented for numerical results. Appendix C gives implementation details and
hyperparameter settings of CuGRO.

4.1 MAIN RESULTS

Our primary concern is to validate whether the dual generative replay mechanism can realize high-
fidelity replay of the sample space. Hence, we first look into the performance gap between CuGRO
and Oracle to see whether our method can closely approximate the results of using previous ground-
truth data. Fig. [2]presents the test performance on each task during sequential training. The continual
RL policy with dual generative replay (red) maintains the former task performance throughout se-
quential training on multiple tasks, and obtains almost the same performance as the Oracle (blue)
in most evaluation domains. Specially, in the Hopper-Vel domain, the performance of CuGRO for
retaining previous knowledge drops a little in later task training, as shown in Fig. 2[b). It is likely
because the Hopper robot easily falls down and terminates the episode during training, and switch-
ing the goal velocity during sequential training exacerbates this phenomenon. Hence, the continual
policy becomes extremely sensitive to tiny extrapolation errors between replayed pseudo samples
and the ground-truth data of previous tasks. However, in domains with higher dimensions like
Walker2D-Params and HalfCheetah-Vel, CuGRO can still achieve almost full performance com-
pared to real experience replay. It demonstrates CuGRO’s capability of accurately modeling the
mixed data distribution to produce reliable continual learning performance.

Furthermore, Fig. [3|shows the average test performance of CuGRO and baseline methods measured
on cumulative tasks during sequential training, and Table [I| presents the corresponding final per-
formance averaged over all sequential tasks. Higher return is achieved when the replayed pseudo
samples better resemble the real data. It can be observed that the None baseline with sequential train-
ing the model pipeline naively incurs catastrophic forgetting (green). The average performance of
None keeps decreasing significantly, indicating that the forgetting becomes severer as the sequential
training goes on. Similarly, the Noise baseline that replays random Gaussian noises with recorded
responses does not help the continual learning performance (purple). An interesting point is that
Noise outperforms None by a large margin. It shows that adding random noises to the sample space
could actually augment the feature space with enhanced generalization and robustness, thus helping
alleviate forgetting to some extent.

4.2 HYPERPARAMETER ANALYSIS

In replay-based continual learning, the coefficient A in Eq. (15) is a key factor that balances the
learning of the expanded new head (plasticity) and the behavior cloning of previous knowledge
(stability). In the CuGRO setting, we select A as 1 and achieve good performance in all evaluation
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Figure 3: Average test performance of all methods over cumulative tasks during sequential training.

Table 1: Average final performance of all methods over all sequential tasks.

Method ‘ Swimmer-Dir Hopper-Vel Walker2D-Params | HalfCheetah- Vel
None 429.50 £569.74 | 10.44+124.39 | —7.36 +113.91 | —105.13 +-47.38
Noise 661.26 £ 447.12 | 107.53 £60.17 120.61 +51.51 —69.22 + 32.94
Oracle | 1066.84 = 52.69 | 186.79 + 3.45 167.60 = 9.09 —20.92 +8.92

CuGRO | 1060.89 £61.29 | 171.13£22.15 | 169.46 £8.17 —20.89+£6.29

domains. Moreover, we conduct experiments to analyze the influence of the tradeoff coefficient A
on CuGRO’s performance. Fig.[d]and Table 2] show the average performance over cumulative tasks
and average final performance over all sequential tasks with varying coefficients, respectively. A
higher coefficient corresponds to more emphasis on replaying previous tasks. Results demonstrate
that CuGRO achieves good learning stability and robustness as the performance is insensitive to the
pre-defined balancing coefficient. It verifies the effectiveness of the multi-head critic for tackling
task diversity and the efficiency of behavior cloning for mitigating forgetting.
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Figure 4: Average test performance of CuGRO over cumulative tasks with varying coefficients A.

Table 2: Average final performance of CuGRO over all sequential tasks with varying coefficients A.

Method Swimmer-Dir Hopper-Vel Walker2D-Params | HalfCheetah-Vel
0.1 1055.41 + 61.24 163.91 + 32.91 169.56 + 8.94 —22.34+7.15

1 1060.89 +£61.29 | 171.12 +22.15 169.46 £ 8.17 —20.89 +6.29

10 1062.79 + 59.35 | 160.16 + 39.00 171.67+6.10 —22.43+6.73
100 1053.36 £ 60.66 149.63 £ 40.97 169.74 £ 6.25 —22.81 £6.59

5 RELATED WORK

Offline RL imposes new challenges including overestimation of out-of-distribution (OOD) actions
and accumulated extrapolation error due to distribution mismatch between the behavior and target
policies (Levine et al.,[2020). Policy regularization tackles the problem by constraining policy distri-
bution discrepancy to avoid visiting state-action pairs less covered by the dataset (Kumar et al.,[2019j
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Fujimoto & Gu, [2021}; [Ran et al., 2023)). Pessimistic value-based approaches learn a conservative
Q-function for unseen actions to discourage the selection of OOD actions (Kostrikov et al.,[2021bza;
Yang et al.,|2022). An alternative is to learn a constrained actor with advantage-weighted regression
to implicitly enforce a constraint on distribution shift and overly conservative updates (Peng et al.|
2019; Nair et al., 2020; Wang et al., [2020). Recently, some studies (Kumar et al.,[2019; Zhou et al.,
2021} |Chen et al.| [2022) attempt to leverage advances in generative models, such as VAEs (Fuji-
moto et al., [2019) or diffusion models (Lu et al., 2023), to model offline datasets for model-based
planning (Janner et al.| |2022)) or to directly model the policy with regularization (Wang et al.,[2023)).

Continual RL ought to facilitate forward transfer and mitigate catastrophic forgetting for sequential
RL tasks. Regularization-based approaches imposes additional terms on the learning objective to
penalize large updates on weights that are important for previous tasks, such as EWC (Kirkpatrick:
et al., [2017), OWM (Zeng et al 2019), and PC (Kaplanis et al., 2019). With limited resources,
comprising regularization terms might result in a compromise between achieving proficiency in both
previous and new tasks. Parameter isolation approaches learn to mask a sub-network for each task
in a shared network (Kang et al.,|2022; |[Konishi et al.|[2023)), or dynamically expand model capacity
to incorporate new information (Kessler et al., 2022; [Wang et al.| |2022), to prevent forgetting by
keeping parameters of previous tasks unaltered. However, they could potentially suffer from over-
consumption of network capacity as each task monopolizes and consumes some amount of resource.

Using the idea of episodic memory, rehearsal methods (Jeeveswaran et al., |2023) store exam-
ples from previous tasks that are reproduced for interleaving online updates when learning a new
task (Isele & Cosgun, [2018} [Rolnick et al.| |2019; [Wolczyk et al., 2022). Nonetheless, they might
not be viable in real-world scenarios due to requiring a large working memory and involving several
ramifications like data privacy or security concerns. To bypass the memory burden, generative replay
methods (Shin et al.}[2017) turn to use generative models to mimic older parts of the data distribu-
tion and sample synthetic data for rehearsal when learning the new task (Qi et al.,|[2023). Classical
generative replay approaches typically adopt VAEs (Ketz et al.,|2019) or GANs (Zhai et al., [2019)
as the generator, and recent work suggests that powerful diffusion models can be employed with
high-quality image synthesis (Gao & Liu, 2023). |[Ketz et al. (2019) continually trains a world model
through the interleaving of generated episodes of past experiences. Daniels et al.[(2022) uses a VAE
generator to realize the replay of observation-action pairs in Starcraft I and Minigrid domains.

Diffusion models (Sohl-Dickstein et al., 2015) achieve great success in generating high-fidelity
synthetic images (Dhariwal & Nichol,|2021)), audios (Kim et al.,|2022), and videos (Ho et al.,[2022).
The unconditional diffusion model does not require additional signals and learns the reverse process
by estimating the noise at each step, such as DDPM (Ho et al., [2020) and its improvement (Nichol
& Dhariwal| 2021). To accelerate sampling, DDIM (Song et al., 2020) generalizes the Markovian
forward process of DDPM to a class of non-Markovian ones that lead to the same training objective.
The conditional diffusion model relies on various source signals, e.g., class labels in image tasks, to
generate corresponding data. Dhariwal & Nichol|(2021) conditions on the gradient from a pretrained
classifier to trade off diversity for fidelity, producing high-quality samples but not covering the whole
distribution. Further, Ho & Salimans| (2022) proposes classifier-free guidance that jointly trains a
conditional and an unconditional diffusion model, and combines the resulting score estimates to
attain a trade-off between sample quality and diversity. In this paper, we build our method on top of
the diffusion model in (Song et al., [2021]) that enables new sampling methods and further extends
capabilities of score-based generative models through the lens of stochastic differential equations.

6 CONCLUSION AND DISCUSSION

In this paper, we tackle the CORL challenge via a dual generative replay framework that leverages
advances in diffusion models to model states and corresponding behaviors with high fidelity, allow-
ing the continual learning policy to inherit the distributional expressivity. The dual state and behavior
generators are continually trained to model a progressive range of diverse behaviors via mimicking
a mixed data distribution of real samples and replayed ones from previous generators. Experiments
on various offline RL tasks verify the superiority of our method and its high-fidelity replay of the
sample space. Though, our method requires two diffusion models to synthesize replayed samples,
which could be further improved by sampling acceleration methods or developing one diffusion
model for unifying the state and behavior modeling. We leave these directions as future work.
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