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Abstract

We consider learning generative models for sensitive financial and healthcare data. While
previous work incorporates Differential Privacy (DP) into GAN training to protect the privacy
of individual training instances, we consider a different privacy context where the primary
objective is protecting the privacy of sensitive marginal distributions of the true generative
process. We propose and motivate a new notion of privacy: α-Level Marginal Distribution
Privacy (α-LMDP), which provides a statistical guarantee that the sensitive generative
marginal distributions are different from the observed real data. We then propose Privacy-
Preserving Energy Models (PPEMs), a novel energy-based generative model formulation
where the representations for these attributes are isolated from other attributes. This
structured formulation motivates a learning procedure where a penalty based on a statistical
goodness of fit test, the Kernel Stein Discrepancy, can be applied to only the attributes
requiring privacy so that α-LMDP may be satisfied without affecting the other attributes.
We evaluate this approach using financial and healthcare datasets and demonstrate that
the resulting learnt generative models produce high fidelity synthetic data while preserving
privacy. We also show that PPEMs can incorporate both α-LMDP and DP in contexts
where both forms of privacy are required.

1 Introduction

In recent years, the quantity and variety of data collected from individuals and organizations has grown
dramatically. Such growth has fueled the development of large-scale machine learning systems capable of
high accuracy predictions, but also led to significant concerns about data privacy and the potential leakage of
sensitive information. These concerns are particularly relevant for the financial and healthcare industries
as their data are often very sensitive and personally identifiable and these industries are subject to strict
regulatory and compliance requirements. As a result, data access at such organizations is typically highly
controlled and the usage of data for research purposes often requires lengthy legal reviews with no guarantees
of success (Choi et al., 2017). These restrictions often apply not only to external researchers, but also to
internal research groups working in different parts of the same company (Assefa et al., 2020). These processes
can impede opportunities for academic collaborations and potential advances in areas such as financial fraud
detection, anti-money laundering, disease diagnosis and patient care (Nass et al., 2009).

Advances in neural generative models such as GANs (Goodfellow et al., 2014) have led many such organizations
to consider using synthetic data to enable more timely and collaborative research. Recent work, however, has
shown that GANs can still leak sensitive information: GAN attack models have been proposed for inferring
membership in or reconstructing training data (Shokri et al., 2017; Hayes et al., 2019). This led to the
development of GANs which incorporate Differential Privacy (DP) to mitigate such attacks (Xie et al., 2018;
Yoon et al., 2019). DP (Dwork & Roth, 2014) is a paradigm for protecting the privacy of training data
by ensuring a learning algorithm’s output does not vary significantly based on the inclusion of a particular
training instance. While DP is effective for ensuring the privacy of particular individuals or organizations is
protected, it does not, however, protect against the potential leakage of aggregate-level information which may
be inferred from the generative distribution. This is a particular concern for (e.g.) financial institutions as
generative models for financial data may leak aggregate-level information about typical client characteristics
or markets the institution is most active in. We thus propose a new notion of privacy which may be used

1



Under review as submission to TMLR

either in place of or in conjunction with DP, depending on the privacy requirements, and a robust procedure
for learning generative models while satisfying this privacy notion.

1.1 Contributions

Specifically, we make the following contributions:

1. We propose a new notion of privacy for protecting sensitive marginal distributions of the generative
process: α-Level Marginal Distribution Privacy (α-LMDP), which provides a statistical guarantee
that sensitive generative marginal distributions differ from the observed real data.

2. We theoretically show that α-LMDP is neither strictly stronger nor weaker than DP.

3. We propose Privacy-Preserving Energy Models (PPEMs), a novel energy-based generative model
formulation where representations for attributes requiring α-LMDP protection are isolated from
other attributes.

4. We introduce a non-negative normalized variant of the Kernel Stein Discrepancy, a goodness-of-fit
test that is compatible with energy models, which we use to incorporate α-LMDP protection into
PPEMs through a training penalty.

5. We show that when PPEM training converges, the learnt generative models produce samples
indistinguishable from the real data and provide conditions under which α-LMDP will be satisfied.

6. We show how DP can also be incorporated into PPEMs when both privacy notions are required.

7. Using credit card data and electronic healthcare records, we empirically demonstrate that PPEMs
produce high fidelity synthetic data while preserving privacy.

To the best of our knowledge, this work is the first to consider the proposed privacy notion α-LMDP and
PPEMs are the first generative models capable of incorporating α-LMDP as well as the first energy-based
models with privacy-preserving properties.

2 Notions of Privacy for Generative Models

Differential Privacy (DP) is a paradigm for quantifying how much the output of a mechanism that interacts
with data may be affected by changing a single data point in a dataset.
Definition 2.1 (Dwork & Roth, 2014). A randomized mechanism M is (ε, δ)-Differentially Private
((ε, δ)-DP) if for any output set S and two datasets D and D′ which differ by only a single data point, the
following holds for ε, δ ∈ R+ :

P (M (D) ∈ S) ≤ exp(ε)P (M (D′) ∈ S) + δ

A mechanism that is (ε, δ)-DP guarantees changing any data instance will affect the probability of an outcome
only up to a multiplicative (ε) and additive (δ) factor, providing protection against membership inference
attacks. Gradient Perturbation is an efficient way to augment a learning algorithm to make it DP, such
as in Differentially Private Stochastic Gradient Descent (DP-SGD) (Abadi et al., 2016), where at each
descent step, the gradient norm is clipped and Gaussian noise, which is carefully scaled to ensure a particular
(ε, δ)-level, is added to the gradient. DP-GAN (Xie et al., 2018) is a GAN which uses DP-SGD to learn to
generate synthetic data with DP guarantees. While DP is effective for protecting the privacy of individuals
and organizations whose information make up specific instances of training datasets, it does not, however,
consider the privacy of aggregate-level information that may be inferred from the distribution of the generated
data. For example, consider a dataset consisting of customer information from a financial institution. A DP
generative model would ensure that the privacy of individual customers is not violated, but the distribution
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of certain attributes in the generated data might reveal information about the institution’s typical customer
profiles that is valuable to a competitor. Similarly, many financial transaction and trade datasets contain no
personally identifiable attributes, but their marginal distributions reveal information about which markets
and venues the institution is most active in. Unless this risk is managed, institutions will likely not approve
of the release and use of synthetic data, limiting potential collaborations with external researchers as well
as among internal teams. Similarly in healthcare, there may be ethical concerns that revealing marginal
distributions of demographics associated with specific outcomes in electronic healthcare records through
synthetic data could lead to discrimination in patient care or insurer coverage.

We thus propose a new privacy notion for the context of protecting sensitive marginal distributions: α-Level
Marginal Distribution Privacy (α-LMDP). α-LMDP is a statistical notion of privacy that ensures, for a
specified subset of attributes whose marginal distribution may be sensitive, that a level-α test that the
training data for these attributes follows the learnt (marginal) generative distribution can be rejected.
Definition 2.2. Let x ∈ X d be a d-dimensional vector, {x′, x∗} a partitioning of the dimensions of x,
G : Ld′ → X d a generative model with output distribution pG, Dx = {xi}ni=1 a dataset of vectors x ∈ X d and
Dx′ = {x′i}ni=1 the corresponding dimensions x′, pGx′ =

∫
x∗∈Xd∗ pG the marginal generative distribution for x′

and Ξ a level-α goodness of fit test. G satisfies α-Level Marginal Distribution Privacy (α-LMDP) with respect
to Ξ and x′ if the null hypothesis H0 : Dx′ ∼ pGx′ can be rejected using Ξ.

α-LMDP makes use a of statistical goodness of fit test, which tests whether a sample fits a specified distribution,
to provide a statistical guarantee that the privacy of the specified marginal distribution is protected; the
sample corresponds to the private attributes (x′) in the real data and the specified distribution is the marginal
distribution learnt by the generative model. The definition does not constrain the other (non-private)
attributes x∗ as it assumes all sets of attributes whose marginal distributions are sensitive are included in x′.
α-LMDP requires a representation for pG and a goodness of fit test capable of evaluating this representation.
We propose a framework providing these requirements in section 3. We note that the definition assumes G
and pG have sufficient representation power and Ξ has sufficient statistical power to reject the null hypothesis;
otherwise, a training procedure soundly designed to ensure this privacy notion may still fail in practice. The
framework we propose in section 3 makes use of a powerful nonparametric goodness of fit test which permits
flexible representations for pG , the Kernel Stein Discrepancy (Liu et al., 2016).

An important distinction between α-LMDP and DP is α-LMDP is a model-based notion of privacy, whereas
DP is mechanism-based. We can still, however, relate α-LMDP to mechanisms defined to return generative
models which satisfy α-LMDP under certain conditions, as we describe in section 3. This is advantageous since
mechanisms often require assumptions that are not always realistic. In such cases, the resulting models may
be checked after training to ensure they satisfy α-LMDP and accepted or retrained under different conditions
depending on whether the test is rejected. When we consider α-LMDP in regards to such mechanisms, we
can formally show that it is neither a strictly weaker nor strictly stronger notion of privacy than (ε, δ)-DP,
i.e. (ε, δ)-DP mechanisms which return generative models never also guarantee any level of α-LMDP and
vice-versa. While such results are expected since α-LMDP and DP address completely different privacy
concerns, we provide this theoretical analysis since, in practice, DP training procedures often affect the learnt
generative distributions. We provide proofs in Appendix B.
Theorem 2.1. For a generative mechanism M, α < 1, a partitioning x = {x∗, x′} and ε, δ ∈ R+, M is
(ε, δ)-DP ;M returns models satisfying α-LMDP for x′.
Theorem 2.2. For a generative mechanismM and partitioning x = {x∗, x′},M returns models satisfying
α-LMDP for x′ ;M is (ε, δ)-DP for finite ε, δ.

Since α-LMDP and DP address different types of privacy concerns, we cannot rely on using one to entail the
other. Our proposed model in section 3 is capable of incorporating both α-LMDP and DP if required.

3 Privacy-Preserving Energy Models (PPEMs)

We first provide background on GANs as well as energy models and then we propose Privacy-Preserving
Energy Models (PPEMs).
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Figure 1: Diagram of PPEMs (left) and network architectures of the individual components (right)

3.1 Background

A Generative Adversarial Networks (GAN) consists of a generator Gφ parameterized by φ which maps samples
z from a latent distribution pz to the real distribution px and a discriminator Dθ parameterized by θ which
attempts to distinguish real from generated samples. In Goodfellow et al. (2014), Gφ and Dθ are trained
adversarially using the following minimax loss, which minimizes the Jensen-Shannon divergence between the
real and synthetic distributions:

min
φ

max
θ

(Epx logDθ(x) + Epz log [1−Dθ (Gφ(z))]) (1)

As training with the above loss is notoriously unstable, alternative formulations have been proposed. The
Wasserstein GAN (WGAN) (Arjovsky et al., 2017) replaces the discriminator with a critic that scores, rather
than classifies, the realness of a sample. It minimize the Wasserstein-1 distance by enforcing a Lipschitz
constraint on the critic and generally leads to more stable training. The original formulation was implemented
using parameter clipping (Arjovsky et al., 2017). Gulrajani et al. (2017) proposes an alternative formulation
which appends the below soft penalty, where u ∼ Unif(0, 1) and x̂ = ux+ (1− u)Gφ(z), to the critic loss and
generally leads to improved performance.

λL (‖∇x̂Dθ (x̂)‖2 − 1)2 (2)

An energy-based model (EBM) (Saremi et al., 2018) Eθ : X d → R+ parameterized by θ maps d-dimensional
samples x ∈ X d from an unknown distribution px to scalar energy values, resulting in the following density
pθ with normalization Zθ, referred to as the partition function:

pθ(x) = 1
Zθ

exp (−Eθ(x)) Zθ =
∫
x

exp (−Eθ(x)) (3)

Eθ(·) thus represents an unnormalized log-density: lower energies correspond to higher probability events.
EBMs offer considerable flexibility in the designing the energy function, often a neural network. Their primary
challenge is estimating the (generally intractable) partition function. The model we propose incorporates
EBMs, but does not require evaluating the partition function.

3.2 Proposed Model

We propose Privacy-Preserving Energy Models (PPEMs) which consist of two EBMs and two generators:
one EBM and generator pair models the marginal distribution of the attributes x′ for which α-LMDP must
be satisfied while the other pair models the distribution of the other attributes x∗ conditioned on x′. The
purpose of this structured formulation is to allow for a training procedure that ensures the resulting generators
satisfy α-LMDP with respect to x′ without impacting the the generated non-sensitive attributes x∗ and their
relation to x′. This permits the generation of paired values for the attributes {x′, x∗} that are individually
realistic given the real data, but in the aggregate do not reveal the true marginal distribution of x′. Figure 1
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(left) provides a schema depicting how the individual PPEM components, defined below, each interact with
the data.

Let x ∈ X d be a d-dimensional vector and {x′, x∗} a partitioning of the dimensions of x such that x′
corresponds to the attributes with sensitive marginal distributions that require α-LMDP protection. Let d′
and d∗ be the corresponding dimensions of x′ and x∗. We define the marginal energy Eξ to be a standard
EBM as in (3) parameterized by ξ mapping X d′ → R+. We then define the conditional energy Eγ to be an
EBM representation of a conditional distribution on X d∗ given x′. Eγ maps X d∗ ×X d′ → R+, which permits
the following conditional density model:

pγ(x∗|x′) = 1
Z∗γ,x′

exp(−Eγ(x∗|x′)) (4)

Z∗γ,x′ =
∫
x∗

exp(−Eγ(x∗|x′))

Since Eγ represents the energy for a conditional density with respect to x′, we apply the normalization over
x∗ rather than x. We further define a marginal generator Gω mapping Z l → X d′ and a conditional generator
Gυ mapping Z l′ × X d′ → X d∗ . Samples for x are generated using learnt PPEMs by first sampling z and
z′ from the latent distributions of the marginal and conditional generators and then generating x′ ← Gξ(z)
followed by x∗ ← Gγ(z′|x′).

The motivating goals of the dual energy and generator framework of PPEMs are (i) it isolates the representation
for x′ from x∗ (and its relation to x′), allowing a privacy penalty to be applied when learning the representation
for x′ that does not affect the attributes which do not require α-LMDP protection; (ii) it provides an explicit
representation for pGx′ , which is required for constructing the goodness of fit test for α-LMDP. This permits
an adversarial training procedure that results in generative models which satisfy α-LMDP for x′ without
affecting x∗ and its relation to x′.

We next discuss this training procedure in a general, non-private setting and show a Nash equilibrium exists
where the generators produce samples indistinguishable from the real data. We then show how α-LMDP and
DP protection can be incorporated into the procedure. We note PPEMs do not require estimating partition
functions or expensive MCMC-based procedures to generate samples, as samples come directly from learnt
generators. Pseudocode for training and sampling is provided in Appendix A and proofs are provided in
Appendix B.

3.3 Training PPEMs

Our goal in training the two EBMs which comprise a PPEM is to learn Eξ and Eγ which together represent
the joint distribution of x according to the following likelihood model:

log pθ(x) = log (pγ (x∗|x′) pξ (x′)) (5)
= −Eγ (x∗|x′)− logZ∗γ,x′ − Eξ (x′)− logZξ

Notice that the gradients ∇γ log pθ and ∇ξ log pθ do not include terms from the marginal and conditional
EBMs, respectively, so we can learn an EBM for the joint density pθ by considering Eξ and Eγ separately. We
thus train Eξ and Eγ adversarially with Gω and Gυ, respectively.

Our trained Eξ should assign low energies to real samples and high energies to the samples generated by Gω.
As in Zhao et al. (2017), we use the following margin loss, where m is a positive margin and [·]+ = max(0, ·),
and use a separate generator loss (Goodfellow et al., 2014):

Lξ (x′, z) = Eξ (x′) + [m− Eξ (Gω(z))]+ (6)
Lω(z) = Eξ (Gω(z))

We train Eξ and Gω using the above losses by iteratively taking minibatchs of training data {x′i}
n
i=1 and

samples from the generator’s latent distribution and optimizing the EBM in an inner loop and generator in
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an outer loop. In practice, it is computationally prohibitive to optimize the EBM to convergence at each
outer step so k inner steps are performed for each outer step. Adversarial training of the conditional model is
carried out identically, independent of Eξ and Gω, but while conditioning on real samples from px′ . We use
the following losses for Eγ and Gυ:

Lγ (x∗, z′, x′) = Eγ (x∗|x′) + [m− Eγ (Gυ (z′|x′) |x′)]+ (7)
Lυ (z′, x′) = Eγ (Gυ (z′|x′) |x′)

When training Eγ and Gυ, we sample a minibatch {x∗i , x′i}ni=1 and provide {x′i}ni=1 to both Eγ and Gυ to
condition on. Otherwise, the procedure is the same as for the marginal model, substituting x∗i for x′i and
z′i for zi. We emphasize that when training Eγ and Gυ, we condition on values x′ from the real data for
both. This ensures that Eγ learns to provide strong coverage as a conditional density model for x∗ when
conditioning on x′ ∼ px′ and similarly Gυ produces realistic samples. It is important that Gυ be trained by
conditioning on the real marginals x′ ∼ px′ rather than marginals generated by Gω : x′ ∼ pω, since Eγ might
otherwise learn to assign high energies to samples generated by Gυ because of differences between px′ and
pω rather than the quality of samples produced by Gυ. This is important because if PPEMs are trained to
ensure α-LMDP for x′ then, by definition, such differences between the real and generative distributions for
x′ will exist.

3.4 Optimality of the solution

We can show that when the systems defined in (6) and (7) converge, the generators produce samples
indistinguishable from the real data. Define the following:

Vm (ξ, ω) =
∫
x′,z

Lξ (x′, z) px′ (x′) pz (z) (8)

Um (ξ, ω) =
∫
z

Lω(z)pz (z) (9)

Vc (γ, υ) =
∫
x,z′

Lγ (x∗, z′, x′) px(x)pz′ (z′) (10)

Uc (γ, υ) =
∫
z′,x′

Lυ (z′, x′) pz′ (z′) px′ (x′) (11)

A Nash equilibrium for the first system is a pair (ξ∗, ω∗) such that ∀ξ, Vm(ξ∗, ω∗) ≤ Vm(ξ, ω∗) and
∀ω, Um(ξ∗, ω∗) ≤ Um(ξ∗, ω). A Nash equilibrium for the second system is a pair (γ∗, υ∗) such that
∀γ, Vc(γ∗, υ∗) ≤ Vc(γ, υ∗) and ∀υ, Uc(γ∗, υ∗) ≤ Uc(γ∗, υ). We get the following results.
Theorem 3.1. If (ξ∗, ω∗) and (γ∗, υ∗) are Nash equilibria for the systems (6) and (7), then pω∗pυ∗ = px
almost everywhere and Vm(ξ∗, ω∗) = Vc(γ∗, υ∗) = m.
Theorem 3.2. Nash equilibria for (6) and (7) exist and are characterized by (a) pω∗pυ∗ = px almost
everywhere and (b) there exists a constant νm ∈ [0,m] such that Eξ∗(x′) = νm almost everywhere and for
x′ ∈ X d′ a constant νc ∈ [0,m] such that Eγ∗(x∗|x′) = νc almost everywhere.

3.5 Incorporating α-LMDP Protection into PPEM Training

When x′ corresponds to attributes requiring α-LMDP protection, we only need to modify the training
procedure for the marginal model to ensure the learnt generative distribution is different from px′ , since Gυ
only generates attributes x∗ for a given setting of x′. Our goal is to augment training in such a way that the
resulting generative distribution is sufficiently different from px′ but individual samples remain realistic.

For example, consider the simple univariate case where px′ is N (0, 1). A generator that produces samples
roughly uniform between -1 and 1 would likely satisfy α-LMDP while still producing values for x′ that are
individually realistic given a training dataset.

To achieve this goal, we retain the loss functions defined in (6), but append a soft penalty based on the
goodness of fit test statistic we use to satisfy α-LMDP. This ensures training promotes the dual objective
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that samples are individually realistic but in the aggregate satisfy α-LMDP. Penalizing Gω directly, however,
may result in Eξ initially learning to trivially distinguish real from generated samples and Gω never receiving
sufficient signal to learn to generate realistic samples. Instead, we penalize Eξ and rely on the fact that since
Gω interacts with the data only indirectly through Eξ, its representation power is limited by Eξ.

To implement this penalization for α-LMDP protection, we require a goodness of fit test that is sufficiently
flexible to make use of our EBM-based representation for the marginal distribution pξ. In addition, we desire
a test that does not require evaluating the partition function Zξ and can be calculated efficiently for each
minibatch {x′i}ni=1.

The Kernel Stein Discrepancy (KSD) (Liu et al., 2016) is a powerful nonparametric goodness of fit test which
has these properties. The KSD only interacts with a density p through its score function sp(x) = ∇x log p(x).
When p has an EBM-based representation, sp does not depend on the partition function:

sp(x) = ∇x log
[
Z−1
θ exp (−Eθ(x))

]
= −∇xEθ(x)

Thus, computing the KSD for pξ does not require evaluating Zξ.

The KSD is based on Stein’s identity, which states that for distributions p and q with support on R and
smooth functions f , the following equivalence holds if and only if p = q (Stein et al., 2004):

Ep [sq(x)f(x) +∇xf(x)] = 0 (12)

A Stein discrepancy S(p, q) between p and q can thus be defined by taking a maximum over f for a sufficiently
rich space of functions F :

S(p, q) = max
f∈F

Ep [sq(x)f(x) +∇xf(x)]2 (13)

When F is a reproducing kernel Hilbert space (RKHS) associated with a smooth positive definite kernel
k(·, ·), e.g. the RBF function exp(−σ−1‖x− x′‖2), S(p, q) is the Kernel Stein Discrepancy (KSD).

Liu et al. (2016) provides the following empirical estimator for the KSD:

Ŝ(p, q) = 1
n(n− 1)

∑
i 6=j

uq(xi, xj) (14)

uq(x, x′) = sq(x)>k(x, x′)sq(x′) +∇x′sq(x)>k(x, x′) (15)
+∇xk(x, x′)>sq(x′) + tr(∇x,x′k(x, x′)).

The computational cost of evaluating Ŝ(p, q) at each gradient update is O(n2) for a minibatch of size n. Thus
Liu et al. (2016) also proposes the following more efficient estimator:

Ŝl(p, q) = 1
bn/2c

bn/2c∑
i=1

uq(x2i−1, x2i) (16)

Ŝl(p, q) has O(n) computational complexity at a cost of less statistical power (Liu et al., 2016). There are
two issues, however, with including Ŝl(p, q) in a soft penalty that can lead to training instability: (i) its
magnitude can vary significantly across minibatches; (ii) oscillations between positive and negative values can
occur. To address these issues, we propose the following non-negative, normalized variant of the KSD, which
we show has a χ2

1 null distribution:

Ŝl,n(p, q) =
(bn/2c − 1)

[∑bn/2c
i=1 uq(x2i−1, x2i)

]2

bn/2c
∑bn/2c
i=1 uq(x2i−1, x2i)2

(17)

Lemma 3.1. Ŝl,n(p, q) has an asymptotic χ2
1 distribution under the null hypothesis p = q.

Ŝl,n(p, q) is more well behaved than Ŝl(p, q) when used in a soft penalty, but has the same computational
efficiency and performance as a test statistic (in terms of type I and II errors), as we confirm empirically in
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section 5. We propose the following soft penalty based on Ŝl,n(p, q) which grows in magnitude relative to the
confidence with which the hypothesis H0 : {x′i}ni=1 ∼ pξ may be rejected:

Lpenξ (x′, z) = Lξ(x′, z) + λα

[
F−1
χ2

1
(1− α)− Ŝl,n(px′ , pξ)

]+
(18)

F−1
χ2

1
is the χ2

1 quantile function and λα is a hyperparameter used to scale the relative magnitudes of the two
quantities. Since Lξ and −Ŝl,n(px′ , pξ) have conflicting goals, the influence of −Ŝl,n(px′ , pξ) is modulated
by the critical value of the level−α test: it is inactive whenever H0 can be rejected with confidence level
1− α and otherwise decreases relative to the confidence at which H0 may be rejected. We can now state the
following result which relates training using the penalized loss (18) to satisfying α-LMDP:

Theorem 3.3. For sufficiently large λα and Gω and Eξ with sufficient representation power, when Eξ is
trained to convergence using (18) and reaches a global optimum, the resulting G = (Gω,Gυ) will satisfy
α-LMDP with respect to x′ and the KSD test using the estimator Ŝl,n(px′ , pξ).

The above result assumes Eξ is trained to convergence, which may be computationally prohibitive, but this is
not a practical limitation since after training we can confirm the model satisfies α-LMDP using the KSD and
adjust the hyperparameters and retrain if needed.

3.6 Incorporating Differential Privacy into PPEM Training

DP can also be incorporated into PPEMs by perturbing gradients when training the marginal and conditional
EBMs, as in DP-GAN. Following Abadi et al. (2016), we clip gradients to ensure their norms are bounded by
a constant C and then add Gaussian noise, scaled according to C and a factor σ determining the (ε, δ) level
of privacy. We use the moments accountant method of Abadi et al. (2016) to find a setting of σ which will
result in the desired level of privacy given the sample size, minibatch size and number of iterations. The
post-processing property of DP (Dwork & Roth, 2014) guarantees the generators are (ε, δ)-DP with respect
to their generated attributes since each observe these only through their corresponding EBM.

3.7 Stabilizing Training

While existing work demonstrates that EBM-based generative models for images can be successfully learned
using adversarial training, pairing an EBM with a generator (Zhao et al., 2017; Wang & Liu, 2017), our
experiments using tabular datasets found that gradients become very unstable and regularization is needed
for such data. While image data is superficially more complex than tabular data, it is highly structured due to
spacial similarities and distributions of pixel values, whereas tabular data may be non-Gaussian, multimodal
and highly imbalanced. Other generative modeling approaches for tabular data note similar difficulties
(Xu et al., 2019). Prior work interprets imposing Lipschitz constraints on EBMs as a form of smoothing
regularization (Che et al., 2020). Given the success of using the soft penalty defined in Gulrajani et al.
(2017) to enforce Lipschitz constraints on Wasserstein GAN critics and similarities between the critic and
EBM-based loss functions, we incorporate the same Lipschitz soft penalty into (6) and (7) when optimizing
the marginal and conditional EBMs.

3.8 Network architectures

We use multi-layer perceptron (MLP) architectures with 3-layers and LeakyReLU activations for EBMs and
generators. Despite findings that autoencoder-based EBM architectures perform well with image data (Wang
& Liu, 2017; Zhao et al., 2017), our experiments indicated MLP architectures perform best with tabular
datasets. We add residual connections and use batch normalization in the generators. For the conditional
EBM and generator, we include initial sets of neurons connected only to the conditional and unconditional
attributes. These architectures are depicted in figure 1 (right).
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Figure 2: Distributions of Ŝl,n (left) and Ŝl (center) empirical type I and II error rates (right)

4 Related Work

4.1 Generative models for healthcare and finance

Procedures leveraging domain knowledge have been proposed in healthcare (Buczak et al., 2010; Park et al.,
2013) and finance (Galbiati & Soramäki, 2011; Weber et al., 2019), but there are few domain-agnostic
approaches. medGAN (Choi et al., 2017) is one such procedure for binary and count variables. medGAN
uses an autoencoder that is pretrained on the real data; the GAN generator learns to generate from the
autoencoder latent dimension while the discriminator compares the real and fake outputs of the autoencoder’s
decoder. GAN architectures for financial time series have also been proposed (Wiese et al., 2020). CT-GAN
is another GAN architecture for tabular data with mixed discrete and continuous variables (Xu et al., 2019).

4.2 Generative models with privacy-preserving properties

DP-GAN (Xie et al., 2018) and PATE-GAN (Yoon et al., 2019) are GANs which both incorporate DP.
DP-GAN uses DP-SGD whereas PATE-GAN is based on the PATE framework (Papernot et al., 2018).
PATE-GAN is evaluated using both financial and healthcare data.

4.3 EBM-based generative models

EnergyGAN (Zhao et al., 2017) and SteinGAN (Wang & Liu, 2017) are related approaches which combine
EBMs with generators and use adversarial training to generate synthetic images. EnergyGAN’s training is
identical to our marginal model training when no privacy penalty or gradient stabilization is used. SteinGAN
uses an alternative procedure, Stein variational gradient descent, to train the energy model. Both use AE
architectures for the energy model whereas we use MLPs.

5 Experiments

In all experiments, we set α = .05 for α-LMDP and ε = 1, δ = n−1 for DP. We use RBF kernels and choose
bandwidths using the median distance heuristic described in (Garreau et al., 2018) when evaluating the KSD.
Further details regarding datasets, hyperparameters and additional results are provided in Appendices C and
D.

5.1 Evaluation of KSD variant using synthetic data

We first confirm our proposed KSD variant Ŝl,n has the desired properties from section 3 and the same test
performance as Ŝl using simulated data from a 1-D Gaussian mixture model (GMM) with 5 equally weighted
components. Since the underlying distribution is known, we can calculate the score function exactly when
evaluating the KSD. We evaluate Ŝl,n and Ŝl across 10,000 sets of 128 samples, the minibatch size used to
train PPEMs, using data sampled from the true GMM (p = q) and an alternative 5-component GMM with
different parameters (p 6= q).
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Figure 3: KDE plots for real (blue) and synthetic data (orange) for attributes not requiring α-LMDP
protection
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Figure 4: MIMIC-III Bernoulli success probability for the real (x-axis) vs. generated (y-axis) data

Figure 2 shows the empirical distributions of each estimator under the null and alternative conditions. We
observe Ŝl,n is non-negative and falls within the expected range of a χ2

1 variable under the null condition,
whereas Ŝl is negative for some samples and has significant variance, confirming Ŝl,n has the properties from
section 3 which result in a more well behaved soft penalty. To compare test performance, we report empirical
type I and II errors when simulating from GMMs with randomly chosen parameters 10,000 times in figure 2.
We observe type I errors are well controlled for both Ŝl,n and Ŝl and the two estimators exhibit comparable
statistical power, confirming Ŝl,n has the same test performance as Ŝl.

5.2 Evaluation of PPEMs using real data

We next apply PPEMs to real financial and healthcare datasets that have previously been used to benchmark
privacy-preserving generative models: the Kaggle credit card fraud dataset (Pozzolo et al., 2015), used as
the primary evaluation dataset for PATE-GAN, consists of 28 factors used to predict whether a transaction
is fraudulent and the transaction amount; the MIMIC-III critical care electronic healthcare record (EHR)
dataset (Johnson et al., 2016) consists of binary indicators for diagnoses patients received. For MIMIC-III, we
use the same procedure as Choi et al. (2017) and Xie et al. (2018) to construct 1070 longitudinal indicators
for each patient and then add extremely-low magnitude Gaussian noise so the binary indicators appear
continuous, which we found led to improved performance over using the medGAN autoencoder architecture.

For each dataset we train PPEMs with α-LMDP for two cases: when x′ consists of (i) 2 or 50 and (ii) 5
or 200 attributes for the Kaggle and MIMIC-III datasets, respectively, since MIMIC-III is a much higher
dimensional dataset. For each case, we train PPEMs with (a) α-LMDP only and (b) α-LMDP and DP (for
both the marginal and conditional models). We evaluate the results to confirm α-LMDP is satisfied and
compare the fidelity of the generated samples to non-private (Wasserstein GAN, EnergyGAN, SteinGAN)
and DP (DP-GAN, PATE-GAN) baselines. We also include medGAN for MIMIC-III.

5.2.1 Privacy evaluation

To confirm the trained PPEMs satisfy .05-LMDP, we evaluate the KSD with the learnt marginal EBMs and
training data for the protected attributes (x′) and calculate a p-value, corresponding to the minimum level-α
test with which we can reject the null hypothesis that the training data for x′ follow the learnt energy-based

10
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Table 1: KSD and MMD test results and classification and regression performance

Kaggle Credit Card Fraud MIMIC-III EHR
pKSD pMMD AUROC MSE R2 pKSD AUROC

Real Data - - 0.975 0.124 0.881 - 0.970
WGAN (no privacy) - 0.15 0.966 0.126 0.879 - 0.811
medGAN (no privacy) - - - - - - 0.625
EnergyGAN (no privacy) - 0.00 0.871 7.13 -5.86 - 0.594
SteinGAN (no privacy) - 0.00 0.822 1.81 -0.740 - 0.508
PPEM (2/50) 0.00 0.02 0.922 0.184 0.822 0.00 0.828
PPEM (5/200) 0.00 0.00 0.948 0.196 0.812 0.00 0.769
PPEM (2/50) + DP 0.00 0.00 0.872 0.656 0.368 0.00 0.504
PPEM (5/200) + DP 0.00 0.00 0.889 0.485 0.533 0.00 0.511
DP-GAN - 0.00 0.857 1.881 -0.811 - 0.491
PATE-GAN - 0.00 0.879 1.569 -0.510 - 0.490

distribution. We also evaluate the MMD two sample test (Gretton et al., 2012) for whether the real and
generated data for the protected attributes (x′) follow the same distribution and calculate a p-value. We
report these in table 1. We observe that the p-values for PPEMs under all conditions (for the KSD and
MMD and each dataset) are ≤ .05, confirming .05-LMDP is satisfied.

5.2.2 Fidelity evaluation of credit card transaction data

We next consider the fidelity of the credit card transaction data, following previous benchmarking approaches.
In figure 3, we plot kernel density estimates for the attributes which do not require α-LMDP protection
(x∗) in the real (blue) vs. generated (orange) data for each PPEM training scenario mentioned above and
baseline. We also train logistic regression models to predict whether a transaction is fraudulent and linear
regression models to predict the transaction amount using the generated data for training and evaluate these
models’ performance on the real data in terms of area under the ROC curve (AUROC) and mean-squared
error (MSE) and coefficient of determination (R2), respectively. We report these in table 1 and include an
additional baseline where the prediction models are trained using the real data (“Real Data”).

We first observe that the non-private Wasserstein GAN produces synthetic data with marginal distributions
which best match the real data, whereas EnergyGAN and SteinGAN result in more peaked distributions
which fail to capture the true marginal distributions. The poor performance of EnergyGAN and SteinGAN is
due to unstable gradients when using tabular data and consistent with our expectations discussed in section
3: Stabilizing Training, which motivates the gradient stabilization strategy used for PPEMs. We include
the EnergyGAN and SteinGAN results for completeness, using the Wasserstein GAN results as the primary
non-private benchmark.

We next observe that the plots for PPEMs trained without DP are the next closest to the real data (after the
Wasserstein GAN), indicating the privacy vs. accuracy tradeoff when learning models which satisfy α-LMDP
is (at least) no worse than the tradeoff for (1, n−1)−DP. The plots for the PPEMs with α-LMDP and DP
are comparable to the plots for PATE-GAN (DP-GAN is slightly worse), indicating that when .05-LMDP is
combined with (1, n−1)−DP, it does not significantly affect the privacy vs. accuracy tradeoff. We observe the
same pattern when we consider the prediction models trained on the synthetic data and evaluated on the real
data: the performance for the PPEMs without DP is greater than all DP approaches and the performance
for the PPEMs with α-LMDP and DP is comparable to PATE-GAN.

5.2.3 Fidelity evaluation of electronic healthcare records

Finally, we consider the fidelity of the EHR data, again following previous benchmarking approaches. We
report average AUROC when the generated data is used to train classifiers for each attribute, using the other
attributes as predictors, and evaluation is carried out using the real data in table 1. We also plot Bernoulli
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success probabilities for each attribute in the real vs. generated data in figure 4 as in Choi et al. (2017):
ideally, it should form a diagonal line.

Again, we observe the Wasserstein GAN is the best non-private baseline (SteinGAN closely matches the data
in terms of Bernoulli success probabilities, but fails to capture relationships between variables as evidenced by
low average AUROC, again due to unstable gradients), the PPEMs trained with α-LMDP but without DP
most closely resemble the real data and WGAN baseline compared to other privacy-preserving approaches,
and the PPEMs trained with α-LMDP and DP perform comparably to PATE-GAN.

5.3 Summary of results

In summary, from these results we draw the following conclusions: (i) PPEMs succeed in ensuring α-LMDP
is satisfied; (ii) the fidelity of data generated using PPEMs compared to that of DP generative models reveals
the privacy vs. accuracy tradeoff for α-LMDP, when implemented using PPEMs, is (at least) no worse
than the tradeoff for DP; (iii) when PPEMs are trained to ensure both α-LMDP and DP, the results are
comparable to using only DP; (iv) the non-negative normalized variant of the KSD we propose Ŝl,n results in
a more stable soft penalty, but retains the same test performance of Ŝl; (v) the gradient stabilization strategy
of PPEMs successfully prevents the instabilities which result when applying EnergyGAN and SteinGAN to
tabular data.

6 Conclusion

We proposed α-LMDP, a new privacy notion, and PPEMs, novel energy-based generative models which
support training with α-LMDP as well as DP, if required. Our results confirm that PPEMs succeed in
ensuring α-LMDP is satisfied while maintaining a favorable privacy vs. fidelity tradeoff.

There are several directions for future work. A potential concern with PPEMs is that since the conditional
model is trained using real data for x′, when generating data one might encounter generated x′ which do not
map to realistic outputs for x∗ in the conditional model. While we did not encounter this in our experiments,
adding a sampling layer to the conditional architecture, as in variational autoencoders (Kingma & Welling,
2014), might improve robustness. Another direction is extending PPEMs to include multiple sets of private
attributes, rather than assuming all are contained in a single set. Finally, we can consider other goodness of
fit tests, such as the Finite Set Stein Discrepancy (FSSD) (Jitkrittum et al., 2017), which is a more powerful
test than the linear KSD, but difficult to incorporate into a soft penalty that scales with the rejection level
due to its null distribution.
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A Pseudocode for Training and Sampling

Algorithm 1: Training Privacy-Preserving Energy Models
for iterations 1 to TG do

for iterations 1 to TE do
Sample minibatch of real data {x′i, x∗i }

n
i=1

Sample {zi}ni=1 ∼ N (0l, Il) and {z′i}
n
i=1 ∼ N (0l′ , Il′)

Sample {ui}ni=1 ∼ Unif (0, 1)
{Lξ (x′i, zi)}

n
i=1 ←

{
Eξ (x′i) + [m− Eξ (Gω(zi))]+

}n
i=1

{x̂′i}
n
i=1 ← {uix′i + (1− ui)Gω(zi)}ni=1{

PLξ (x′i, zi)
}n
i=1
←
{
λL

(∥∥∥∇x̂′
i
Eξ (x̂′i)

∥∥∥
2
− 1
)2
}n
i=1

Pαξ ← λα

[
F−1
χ2

1
(1− α)− Ŝl,n (px′ , pξ)

]+

{g′i}
n
i=1 ←

{
∇ξ
(
Lξ (x′i, zi) + PLξ (x′i, zi) + 1

nP
α
ξ

)}n
i=1

{Lγ (x∗i , zi, x′i)}
n
i=1 ←

{
Eγ (x∗i |x′i) + [m− Eγ (Gυ (z′i|x′i) |x′i)]

+
}n
i=1

{x̂∗i }
n
i=1 ← {uix∗i + (1− ui)Gυ (z′i|x′i)}

n
i=1{

PLγ (x∗i , z′i, x′i)
}n
i=1 ←

{
λL

(∥∥∇x̂∗
i
Eγ (x̂∗i )

∥∥
2 − 1

)2
}n
i=1

{g∗i }
n
i=1 ←

{
∇γ
(
Lγ (x∗i , z′i, x′i) + PLγ (x∗i , z′i, x′i)

)}n
i=1

if differentially private then
Sample w ∼ N

(
0|ξ|, C2σ2I|ξ|

)
{g′i}

n
i=1 ←

{
g′i / max

(
1, ‖g

′
i‖2
C

)
+ w

n

}n
i=1

Sample v ∼ N
(
0|γ|, C2σ2I|γ|

)
{g∗i }

n
i=1 ←

{
g∗i / max

(
1, ‖g

∗
i ‖2
C

)
+ v

n

}n
i=1

ξ ← Adam
( 1
n

∑n
i=1 g

′
i, ξ
)

γ ← Adam
( 1
n

∑n
i=1 g

∗
i , γ
)

ω ← Adam
( 1
n

∑n
i=1∇ωEξ (Gω(zi)) , ω

)
υ ← Adam

( 1
n

∑n
i=1∇υEγ (Gυ (z′i|x′i) |x′i) , υ

)

Algorithm 2: Sampling from Privacy-Preserving Energy Models
Sample {z}ni=1 ∼ N (0d, Id) and {z′}ni=1 ∼ N (0d′ , Id′)
{x′i}

n
i=1 ← {Gω (zi)}ni=1

{x̃∗i }
n
i=1 ← {Gυ (z′i|x′i)}

n
i=1

{xi}ni=1 ← {x′i, x∗i }
n
i=1

B Proofs of Theorems

B.1 Proof of Theorem 2.1

Proof.

Let X = [B,B′] be a bounded interval on R, X a random variable on X d with CDF FX(x) =
∏d
j=1

xj−B
B′−B ,

i.e. the dimensions are independent Uniform(B,B′) variables and Dx = {xi}ni=1 a dataset sampled according
to FX .
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LetM be a mechanism which always returns a generative model G which is a collection of d independent
random number generators over X which generate values for each dimension of X.

Now define Dy = {y}ni=1 to be another dataset sampled according to FX such that Dx and Dy differ by only
one datapoint and define S ⊆ Range(M).

SinceM always returns a collection of random number generator over X for each dimension of x, the following
equivalence holds trivially for any such Dx and Dy:

P [G(Dx) ∈ S] = P [G(Dy) ∈ S]

It follows that for ε, δ ∈ R+, the following inequality holds:

P [G(Dx) ∈ S] ≤ exp(ε)P [G(Dy) ∈ S] + δ

ThusM is a (ε, δ)-differentially private for any ε, δ ∈ R+.

However, since G generates values uniformly between B and B′ for each dimension of x, {x′}ni=1 ∼ pGx′ for any
partitioning x = {x′, x∗}. Thus, for α < 1, a level-α goodness of fit test will fail to reject H0 : {x′i}ni=1 ∼ pGx′
soM is not guaranteed to return generative models which satisfy α-LMDP for any α < 1.

B.2 Proof of Theorem 2.2

Proof.

Let Dx = {xi}ni=1 and Dy = {yi}ni=1 be two datasets which differ by only a single datapoint and
let 1 be the index of the datapoint for which these two datasets differ.

LetM be a mechanism which always returns a generative model G that is a biased identity function, i.e. G
reproduces elements from the input dataset {xi}ni=1 non-uniformly, with the specific bias that G returns x1
with probability 1 and all other elements with probability 0.

Thus, for any partitioning of the dimensions of x, x = {x′, x∗}, pGx′ is a single point mass distribution so
any level-α goodness of fit test with sufficient power will reject H0 : {x′i}ni=1 ∼ pGx′ unless the underlying
distribution from which {x′i}ni=1 is sampled is a single point mass. Thus, M is guaranteed to return a
generative model G which satisfies α-LMDP whenever the underlying distribution is not a single point mass.

Let S ⊆ Range(M) consist of a single element which is the generator that returns x1 with probability 1.
Since 1 is the index of the element for which Dx and Dx differ, we have the following:

P [M(Dx) ∈ S] = 1
P [M(Dy) ∈ S] = 0

The definition of differential privacy is equivalent to the following inequality holding with probability 1− δ
for every S ′ ⊆ Range(M) (Dwork & Roth, 2014):∣∣∣∣log

(
P [M(Dy) ∈ S ′]
P [M(Dx) ∈ S ′]

)∣∣∣∣ ≤ ε
Since when S ′ = S, this inequality only holds for ε =∞,M is not (ε, δ)-DP for finite ε, δ.
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B.3 Proof of Theorem 3.1

We first consider the marginal model system (5) in section 3 of the main text. We note that Vm(ξ, ω) and
Um(ξ, ω) are equivalent to V (G,D) and U(G,D) in (Zhao et al., 2017) for x′. Thus by Theorem 1 in (Zhao
et al., 2017), it follows that if (ξ∗, ω∗) is a Nash equilibrium for (5), then pω∗ = px′ almost everywhere and
Vm(ξ∗, ω∗) = m.

Now we consider the conditional model system (6) in section 3 of the main text. Using the same proof
technique as for Theorem 1 in (Zhao et al., 2017) with a modification to account for our partitioning of x into
{x∗, x′}, we can show that Gυ produces samples that are indistinguishable from the conditional distribution
of x∗ given x′ in the real data.

First, we observe the following:

Vc(γ, υ∗) =
∫
x

px(x)Eγ(x∗|x′)dx+
∫
z′,x′

pz′(z′)px′(x′) [m− Eγ (Gυ∗(z′|x′)|x′)]
+
dz′dx′ (19)

=
∫
x

(
px∗|x′(x∗|x′)px′(x′)Eγ(x∗|x′) + pυ∗(x∗|x′)px′(x′) [m− Eγ (x∗|x′)]+

)
dx (20)

From Lemma 1 in the appendix of (Zhao et al., 2017), the analysis of the function ϕ(y) = ay + b[m− y]+
shows:
(a) Eγ∗(x∗|x′) ≤ m almost everywhere. To verify, assume there exists a set of measure non-zero such that
Eγ∗(x∗|x′) > m and let Eγ̃(x∗|x′) = min(Eγ∗(x∗|x′),m). Then Vc(γ̃, υ∗) < Vc(γ∗, υ∗) so (γ∗, υ∗) is not a Nash
equilibrium.
(b) ϕ reaches its minimum in m if a < b and in 0 otherwise so Vc(γ, υ∗) reaches its minimum when we replace
Eγ∗ by these values. We thus observe the following:

Vc(γ∗, υ∗) = m

∫
x

1px∗|x′ (x∗|x′)px′ (x′)<pυ∗ (x∗|x′)px′ (x′)px∗|x′(x
∗|x′)px′(x′)dx

+m

∫
x

1px∗|x′ (x∗|x′)px′ (x′)≥pυ∗ (x∗|x′)px′ (x′)pυ∗(x
∗|x′)px′(x′)dx (21)

= m

∫
x

1px∗|x′ (x∗|x′)<pυ∗ (x∗|x′)px∗|x′(x∗|x′)px′(x′)dx

+
(

1− 1px∗|x′ (x∗|x′)<pυ∗ (x∗|x′)

)
pυ∗(x∗|x′)px′(x′)dx (22)

= m

∫
x

pυ∗(x∗|x′)px′(x′)dx

+m

∫
x

1px∗|x′ (x∗|x′)<pυ∗ (x∗|x′)
(
px∗|x′(x∗|x′)− pυ∗(x∗|x′)

)
px′(x′)dx (23)

= m+m

∫
x

1px∗|x′ (x∗|x′)<pυ∗ (x∗|x′)
(
px∗|x′(x∗|x′)− pυ∗(x∗|x′)

)
px′(x′)dx (24)

Since the second term in (24) above is non-positive Vc(γ∗, υ∗) ≤ m.

Now, putting the ideal conditional generator into the right side of Uc(γ∗, υ∗) ≤ Uc(γ∗, υ), we get:∫
x

pυ∗(x∗|x′)px′(x′)Eγ∗ (x∗|x′) dx ≤
∫
x

px∗|x′ (x∗|x′) px′ (x′) Eγ∗ (x∗|x′) dx (25)

Thus by (20) above, we get the following:∫
x

(
pυ∗(x∗|x′)px′(x′)Eγ∗(x∗|x′) + pυ∗(x∗|x′)px′(x′) [m− Eγ∗ (x∗|x′)]+

)
dx ≤ Vc(γ∗, υ∗) (26)

Since Eγ∗(x∗|x′) ≤ m, we get m ≤ Vc(γ∗, υ∗). Thus since Vc(γ∗, υ∗) is bounded above and below by m, we
have Vc(γ∗, υ∗) = m.
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Now by (24) above we see that Vc(γ∗, υ∗) = m can only happen when
∫
x
1px∗|x′ (x∗|x′)<pυ∗ (x∗|x′)dx = 0 or

equivalently
∫
x
1px∗|x′ (x∗|x′)px′ (x′)<pυ∗ (x∗|x′)px′ (x′)dx = 0. Since px∗|x′(x∗|x′)px′(x′) and pυ∗(x∗|x′)px′(x′) are

probability densities for x, by Lemma 2 in the appendix of (Zhao et al., 2017) this is true if and only if
px∗|x′(x∗|x′)px′(x′) = pυ∗(x∗|x′)px′(x′) almost everywhere or equivalently px∗|x′(x∗|x′) = pυ∗(x∗|x′) almost
everywhere. Thus, we have pω∗pυ∗ = px′px∗|x′ = px almost everywhere.

B.4 Proof of Theorem 3.2

We first consider the marginal model system (5) in section 3 of the main text. We note that Vm(ξ, ω) and
Um(ξ, ω) are equivalent to V (G,D) and U(G,D) in (Zhao et al., 2017) for x′. Thus by Theorem 2 in (Zhao
et al., 2017), it follows that a Nash equilibrium for (5) exists and is characterized by pω∗ = px′ almost
everywhere and there exists a constant νm ∈ [0,m] such that Eξ∗(x′) = νm almost everywhere.

Now we consider the conditional model system (6) in section 3 of the main text. Using the same proof
technique as for theorem 2 in the appendix of (Zhao et al., 2017), it follows that a Nash equilibrium for (6)
exists and is characterized by pυ∗ = px∗|x almost everywhere and there exists a constant νc ∈ [0,m] such that
Eγ∗(x∗|x′) = νc almost everywhere.

As in theorem 2 in (Zhao et al., 2017), the sufficient conditions are obvious. The necessary condition on Gυ∗
comes theorem 3.1. The necessary condition Eγ∗(x∗|x′) ≤ m comes from the proof of theorem 3.1. Now we
assume Eγ∗(x∗|x′) is not constant and arrive at a contradiction.

If Eγ∗(x∗|x′) is not constant, then there is a constant C and set S of non-zero measure such that ∀x ∈ S,
Eγ∗(x∗|x′) ≤ C and ∀x /∈ S, Eγ∗(x∗|x′) > C. We can choose S such that there exists S ′ ⊂ S of non-zero
measure such that px∗|x′(x∗|x′) > 0 on S. We can build a generator Gυ̃ such that pυ̃(x∗|x′) ≤ px∗|x′(x∗|x′)
on S and pυ̃(x∗|x′) < px∗|x′(x∗|x′) on S ′. We get the following:

Uc(γ∗, υ∗)− Uc(γ∗, υ̃) =
∫
x

(
px∗|x′(x∗|x′)− pυ̃(x∗|x′)

)
px′(x′)Eγ∗(x∗|x′)dx

=
∫
x

(
px∗|x′(x∗|x′)− pυ̃(x∗|x′)

)
px′(x′) (Eγ∗(x∗|x′)− C) dx

=
∫
S

(
px∗|x′(x∗|x′)− pυ̃(x∗|x′)

)
px′(x′) (Eγ∗(x∗|x′)− C) dx

+
∫
Rd\S

(
px∗|x′(x∗|x′)− pυ̃(x∗|x′)

)
px′(x′) (Eγ∗(x∗|x′)− C) dx

> 0

Then Uc(γ∗, υ∗) > Uc(γ∗, υ̃) so (γ∗, υ∗) is not a Nash equilibrium.

B.5 Proof of Lemma 3.1

Proof.

We can write Ŝl,n as follows:

Ŝl,n(p, q) =
(bn/2c − 1)

[∑bn/2c
i=1 uq(x2i−1, x2i)

]2

bn/2c
∑bn/2c
i=1 uq(x2i−1, x2i)2

= (bn/2c − 1)∑bn/2c
i=1 uq(x2i−1, x2i)2


[∑bn/2c

i=1 uq(x2i−1, x2i)
]

√
bn/2c

2

= g(x)
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where

x =

[∑bn/2c
i=1 uq(x2i−1, x2i)

]
√
bn/2c

g(x) = bn/2c − 1∑bn/2c
i=1 uq(x2i−1, x2i)2

x2

From (Liu et al., 2016), the above quantity x = bn/2c− 1
2
∑bn/2c
i=1 uq(x2i−1, x2i) has an asymptotic N

(
0, σ2

uq

)
distribution under the null hypothesis p = q. Thus, since bn/2c−1∑bn/2c

i=1
uq(x2i−1,x2i)2

> 0 and x2 is symmetric and

monotonically decreasing for x ≤ 0 and monotonically increasing for x ≥ 0, using the change of variables
formula, Ŝl,n has the following density function:

fŜl,n(y) = 2fx
(
g−1(y)

) dg−1(y)
dy

where

g−1(y) =

√∑bn/2c
i=1 uq(x2i−1, x2i)2

bn/2c − 1 y
dg−1(y)
dy

= 1
2

√∑bn/2c
i=1 uq(x2i−1, x2i)2

(bn/2c − 1)y

Thus, we can write the density function for Ŝl,n as follows:

fŜl,n(y) = 2fx
(
g−1(y)

) dg−1(y)
dy

= 2 1√
2πσ2

uq

exp
(
−
(
g−1(y)

)2

2σ2
uq

)
dg−1(y)
dy

= 2 1√
2πσ2

uq

exp

 −
∑bn/2c

i=1
uq(x2i−1,x2i)2

bn/2c−1 y

2σ2
uq

 1
2

√∑bn/2c
i=1 uq(x2i−1, x2i)2

(bn/2c − 1)y

Now plugging in the sample variance estimator for σ2
uq , we get the following

fŜl,n(y) = 2 1√
2πσ2

uq

exp

 −
∑bn/2c

i=1
uq(x2i−1,x2i)2

bn/2c−1 y

2σ2
uq

 1
2

√∑bn/2c
i=1 uq(x2i−1, x2i)2

(bn/2c − 1)y

= 1√
2πy

exp
(
−y
2

)
= 1

Γ (1/2) 21/2 y
1
2−1 exp

(
−y
2

)
which is the χ2

1 density function

B.6 Proof of Theorem 3.3

Proof.

By Lemma 3.1, Ŝl,n has an asymptotic χ2
1 distribution under the null hypothesis p = q. Thus, the

quantity F−1
χ2

1
(1− α) > Ŝl,n(px′ , pξ) if and only if Ŝl,n(px′ , pξ) falls outside of the rejection region of a level-α

test for the null hypothesis {x′}ni=1 ∼ pξ for a minibatch {x′}ni=1.

Now consider the possible parameter settings for ξ and partition them into ηreject and ηfail, where ηreject
consists of all settings of ξ such that H0 : {x′}ni=1 ∼ pξ is rejected using the above test and ηfail consists of all
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other settings. Define the following quantities (where Lξ (x′i, zi) and PLξ (x′i, zi) are defined as in Algorithm
1):

ξ∗reject = arg min
ξ∈ηreject

(
n∑
i=1

[
Lξ (x′i, zi) + PLξ (x′i, zi)

]
+ λα

[
F−1
χ2

1
(1− α)− Ŝl,n(px′ , pξ)

]+
)

ξ∗fail = arg min
ξ∈ηfail

(
n∑
i=1

[
Lξ (x′i, zi) + PLξ (x′i, zi)

]
+ λα

[
F−1
χ2

1
(1− α)− Ŝl,n(px′ , pξ)

]+
)

From the above observation from Lemma 3.1, we have the following:

λα

[
F−1
χ2

1
(1− α)− Ŝl,n(px′ , pξ∗

reject
)
]+

= 0

λα

[
F−1
χ2

1
(1− α)− Ŝl,n(px′ , pξ∗

fail
)
]+

> 0

Define Lξ as follows:

Lξ =
n∑
i=1

[
Lξ (x′i, zi) + PLξ (x′i, zi)

]
Now assume that for some iteration of the outer loop of algorithm 1, ξ converges to a global optimum ξ∗ in
the inner loop. If ξ∗ = ξ∗fail, then we have the following:

Lξ∗
fail

+ λα

[
F−1
χ2

1
(1− α)− Ŝl,n(px′ , p∗

fail
)
]+

< Lξ∗
reject

+ λα

[
F−1
χ2

1
(1− α)− Ŝl,n(px′ , pξ∗

reject
)
]+

Lξ∗
fail

+ λα

[
F−1
χ2

1
(1− α)− Ŝl,n(px′ , p∗

fail
)
]+

< Lξ∗
reject

λα

[
F−1
χ2

1
(1− α)− Ŝl,n(px′ , p∗

fail
)
]+

< Lξ∗
reject

− Lξ∗
fail

Thus, there exists λα∗ > λα, such that if we replace λα with λα∗ , the above inequality would be reversed and
we would have ξ∗ = ξ∗reject. Thus, for sufficiently large λα, when Algorithm 1 is trained to convergence in the
inner loop and reaches a global optimum, we can reject H0 : {x′}ni=1 ∼ pξ using the above test.

Now, let pω be a representation for the generative distribution of Gω When the inner loop of Algorithm 1 is
trained to convergence and reaches a global optimum with sufficiently large λα, Gω observes x′ indirectly
through Eξ∗

reject
. From the data processing inequality, we have

DKL(px′,ξ∗
reject

||px′pξ∗
reject

) ≥ DKL(px′,ω||px′pω)

Thus, rejection of the level-α test for {x′}ni=1 ∼ pξ entails rejection of the level-α test for {x′}ni=1 ∼ pω.

C Dataset Descriptions

C.1 1-D Gaussian Mixture Models to Compare the Distributions of Ŝl,n and Ŝl

Below are the randomly chosen parameters for the 1-D Gaussian Mixture Model used to evaluate the
distributions of Ŝl and Ŝl when p = q and p 6= q.

Mixture Weight µ σ2

0.2 6.9734 0.2622
0.2 7.1579 0.9046
0.2 2.4358 0.4533
0.2 9.2579 0.0773
0.2 3.0420 0.7823
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C.2 Kaggle Credit Card Fraud

This dataset consists of 284,807 credit card transactions made by European cardholders which occurred during
two days in September 2013 (Pozzolo et al., 2015). Each transaction record includes 28 continuous variables
which result from a PCA transformation (the original variables as well as descriptions are unavailable due
to confidentially) as well as the time and amount of the transaction and a binary indicator of whether the
transaction was fraudulent. The dataset is highly imbalanced; fraudulent transactions make up 0.172% of
all transactions. We exclude the time variable in our experiments, treating each transaction as occurring
independent of all previous transactions and standardize the variables before training. The license for this
dataset is available at https://opendatacommons.org/licenses/dbcl/1-0/.

C.3 MIMIC-III Critical Care

MIMIC-III (Medical Information Mart for Intensive Care) is a publicly available (subject to approval)
electronic health care record (EHR) dataset that is widely used as a benchmark (Johnson et al., 2016). It
includes data associated with 53,423 distinct hospital admissions to critical care units between 2001 and 2012,
e.g. vital signs, medications, laboratory measurements, observations and notes charted by care providers, fluid
balance, procedure codes, diagnostic codes, imaging reports, hospital length of stay and survival data. The
license for this dataset is available at https://physionet.org/content/mimiciii/view-license/1.4/.
Please see https://mimic.mit.edu/iii/about/ and (Johnson et al., 2016) for details regarding personally
identifiable information and obtaining consent as well as requirements for researchers to use MIMIC-III.

For dataset construction, we follow the same procedure as in (Choi et al., 2017) and (Xie et al., 2018),
focusing on only the ICD-9 codes for each patient. ICD-9 codes (International Statistical Classification of
Diseases and Related Health Problems) identity a particular disease or health problem that a patient has been
diagnosed with during a hospital stay. We group ICD-9 codes according to their first 3 digits, which results
in 1071 possible diagnoses for each hospital stay. We then construct longitudinal health records for each
patient {0, 1}1071 such that each ICD-9 code group is coded as 1 or 0 if the patient received or never received
the diagnosis during any recorded hospital stay, respectively. This results in 46,520 individual longitudinal
patient health records which each contain 1071 binary attributes.

D Experimental Settings and Additional Results

D.1 Hyperparameters

Below are the hyperparameters used in all experiments with PPEM models:

m = 10
λα = 10
λD = 1
Training epochs = 100
Minibatch size = 128
Number of energy model iterations per generator iteration = 5
MLP layer dimensions (all networks) = 256
Latent dimensions (both generators) = 128
Generators learning rate = 5e−4

Energy models learning rate = 1e−3

α-level = 0.05
(ε, δ) = (1, n−1)

For DP-GAN and PATE-GAN, we use the public implementation https://github.com/BorealisAI/
private-data-generation with the default settings.

D.2 Environment

All experiments were run using a single NVIDIA T4 GPU.
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D.3 KSD and MMD Test Statistic Values

Below are the KSD test statistic values and p-values resulting from the bootstrap test to evaluate fitness of
the real attributes which require α-LMDP protection to the learnt marginal energy distribution.

Kaggle Credit Card Fraud
KSD p-value

PPEM (2) 220.2 0.00
PPEM (5) 60.86 0.00
PPEM (2) + DP 131.9 0.00
PPEM (5) + DP 213.6 0.00

MIMIC-III EHRs
KSD p-value

PPEM (50) 77.16 0.00
PPEM (200) 162.9 0.00
PPEM (50) + DP 18.48 0.00
PPEM (200) + DP 241.7 0.00

Below are the MMD test statistic values and p-values to evaluate whether the samples generated from each
model for the attributes requiring α-LMDP protection are from the same distribution as the real private
attributes.

Kaggle Credit Card Fraud
MMD p-value

WGAN (No Privacy) 0.0417 0.15
EnergyGAN (No Privacy) 0.5891 0.00
SteinGAN (No Privacy) 0.1445 0.00
PPEM (2) 0.0530 0.02
PPEM (5) 0.0667 0.00
PPEM (2) + DP 0.0571 0.01
PPEM (5) + DP 0.1570 0.00
DP-GAN 0.0968 0.00
PATE-GAN 0.1075 0.00

D.4 Comparison of PPEMs with α-LMDP to DP applied only to x′

We include an additional experiment where we compare PPEMs with α-LMDP to only applying Differential
Privacy to the attributes x′ to directly compare the impact to fidelity for these two different privacy penalties.
To train with DP applied to only x′, we using the same model and training procedure as for PPEMs, but we
do not include the KSD-based penalty and perturb gradients in the marginal model, but not in the conditional
model. We apply this procedure to the Kaggle Credit Card Fraud dataset and compare the results to PPEMs
with α-LMDP. Below, we show the KSD test results on the private attributes and the classification and
regression results as in the experiments in the main paper when x′ includes 2 and 5 attributes.
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KSD p-value AU-ROC MSE R2

(2) 0.05-LMDP 220.2 0.00 0.922 0.184 0.822
(2) (1, n−1)−DP 7.181 0.00 0.903 0.602 0.421
(5) 0.05-LMDP 60.86 0.00 0.948 0.196 0.812
(5) (1, n−1)−DP 1.212 0.00 0.891 0.720 0.307

We observe that training with both penalties results in models which satisfy α-LMDP, but the regression and
classification performance is stronger for the PPEMs trained to ensure α-LMDP, indicating the KSD-based
penalty has a weaker impact on the fidelity of the resulting models than DP. These results argue that PPEMs
trained to ensure α-LMDP have a favorable fidelity vs. privacy tradeoff.

23


	Introduction
	Contributions

	Notions of Privacy for Generative Models
	Privacy-Preserving Energy Models (PPEMs)
	Background
	Proposed Model
	Training PPEMs
	Optimality of the solution
	Incorporating -LMDP Protection into PPEM Training
	Incorporating Differential Privacy into PPEM Training
	Stabilizing Training
	Network architectures

	Related Work
	Generative models for healthcare and finance
	Generative models with privacy-preserving properties
	EBM-based generative models

	Experiments
	Evaluation of KSD variant using synthetic data
	Evaluation of PPEMs using real data
	Privacy evaluation
	Fidelity evaluation of credit card transaction data
	Fidelity evaluation of electronic healthcare records

	Summary of results

	Conclusion
	Pseudocode for Training and Sampling
	Proofs of Theorems
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Lemma 3.1
	Proof of Theorem 3.3

	Dataset Descriptions
	1-D Gaussian Mixture Models to Compare the Distributions of l,n and l
	Kaggle Credit Card Fraud
	MIMIC-III Critical Care

	Experimental Settings and Additional Results
	Hyperparameters
	Environment
	KSD and MMD Test Statistic Values
	Comparison of PPEMs with -LMDP to DP applied only to x'


