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Abstract: In visibility-based pursuit-evasion tasks, a team of mobile pursuer
robots with limited sensing capabilities is tasked with detecting all evaders in a
multiply-connected planar environment, whose map may or may not be known
to pursuers beforehand. This requires tight coordination among multiple agents
to ensure that the omniscient and potentially arbitrarily fast evaders are guaran-
teed to be detected by the pursuers. Whereas existing methods typically rely on
a relatively large team of agents to clear the environment, we propose ViPER,
a neural solution that leverages a graph attention network to learn a coordinated
yet distributed policy via multi-agent reinforcement learning (MARL). We exper-
imentally demonstrate that ViPER significantly outperforms other state-of-the-art
non-learning planners, showcasing its emergent coordinated behaviors and adapt-
ability to more challenging scenarios and various team sizes, and finally deploy
its learned policies on hardware in an aerial search task.
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1 Introduction

Pursuit-evasion broadly encompasses general problems that consider detecting/capturing mobile or
even adversarial targets (i.e., evaders) by a team of pursuer agents. It has broad applicability in
robotic deployments, including human localization after disasters, area patrols to prevent unautho-
rized activities, and environmental monitoring of wildlife habitats [1, 2, 3, 4]. In this work, unlike
many pursuit-evasion problems that assume full observability of the evader’s position and motion
dynamics [5, 6, 7]—allowing the focus to be merely on chasing the evader(s) without the need for
searching—we address a more general worst-case scenario: visibility-based pursuit-evasion, where
agents have no information about the evaders. In this scenarios, agents with limited sensing range
must coordinate to eventually detect all omniscient evaders, regardless of their movements.

In visibility-based pursuit-evasion, based on the agents’ sequential observations, the environment is
classified into contaminated areas, where the presence of evaders is uncertain, and cleared areas,
where it is guaranteed that no evaders can reside/enter without being detected by any agent [2, 8, 9].
Agents are tasked with expanding frontiers (i.e., the boundaries between cleared and contaminated
areas) to methodically explore the entire environment, turning all contaminated areas into cleared
areas. During the task, agents need to coordinate their actions to control recontamination, where
evaders might re-enter cleared areas undetected, turning them back into contaminated areas (see
Fig. 1b). Therefore, this problem is also referred to as adversarial search [5], or the clearing prob-
lem [8, 10]. Due to the complexity of this problem, [8] deploys rule/constraint-based planners to
reduce the complexity by prohibiting agents’ actions that lead to recontamination, thereby signifi-
cantly reducing the action space of agents. However, as shown in Fig. 1c, recontamination is un-
avoidable to complete the task in some challenging scenarios. Following works [10, 11] utilize cen-
tralized (meta-heuristic) sampling-based methods to seek efficient search directly in unconstrained
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Figure 1: Visibility-based pursuit-evasion in a simple environment with two agents. The agents’
trajectories are shown in red/blue, while that of an imaginary, worst-case evader is shown in gray.

action spaces. However, these methods are still limited to relatively small-scale scenarios or require
extensive optimization.

Motivated by the advanced performance recently achieved by deep reinforcement learning (DRL)
over sampling-based methods in various single-robot informative path planning tasks [12, 13, 14],
we propose ViPER, a MARL-based solution for pursuit-evasion, allowing agents to learn to ac-
tively collaborate in a decentralized manner, to achieve significantly improved performance over
conventional methods in relatively large-scale pursuit-evasion tasks. To develop such a desired
learning-based planner, we make efforts to address the following key challenges: (1) Informatively
yet concisely encode the observed/communicated information through the agents’ neural network
to enable efficient policy learning. Complex observations (including cleared/contaminated areas,
obstacles, other agents, etc.) need to be represented in an efficient format so that the neural net-
work can learn smoothly and efficiently. (2) Accurately model the long-term influence of agents’
decisions on recontamination. Due to the changeability of the task (i.e., environments are partially
known), model-free RL may struggle at accurately estimating the underlying transition model, mak-
ing the training process less stable. (3) Efficiently enable agents to learn cooperative maneuvers.
In some scenarios, the optimal actions of the team might depend on sensible decisions of specific
agents, making efficient credit assignment critical for cooperation learning. ViPER addresses the
challenges above by:

• incorporating the cleared area dynamics and the other agents’ information into a graph attention
network to allow context-aware policy learning;

• leveraging privileged ground-truth information during training to address the inaccuracy and in-
stability inherent to model-free RL’s state value estimation;

• employing an attentive critic for credit assignment that integrates agent action features to enable
agents learning more efficient, decentralized cooperation.

To the best of our knowledge, ViPER is the first neural solution for the visibility-based pursuit-
evasion problem that considers worst-case adversaries. Our approach improves team coordination,
significantly outperforming state-of-the-art non-learning planners in unknown environments. We
further empirically show that ViPER, once trained, can adapt to varying team sizes and (significantly
more challenging) map structures. We also highlight its robustness in the face of agent failure, and
finally experimentally validate learned policies on hardware in an aerial search task.

2 Prior Works

The initial formulation of the guaranteed worst-case pursuit-evasion problem was introduced by
Parsons [15], followed by Suzuki and Yamashita [16] who proposed a visibility-based variant, tran-
sitioning the setting from discrete graphs to continuous polygonal environments. In such scenarios,
agents aim to find an evader who can move at unpredictable and potentially unbounded speeds.

Known environments: There is a rich literature on visibility-based pursuit-evasion problems,
with the majority of works considering fully known environments in which agents precalculate
their routes offline before execution. Many of these studies focus on completeness and optimal-
ity of single-agent pursuit-evasion algorithms, considering an omnidirectional sensor with infinite
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range [17, 18]. Furthermore, Gerkey et al. [2] provided a complete algorithm for agents with a
limited angle of view and proved that computing the minimum number of such agents required to
search an area is NP-hard. Since there is no known closed-form solution for the multi-agent pursuit-
evasion game, Quattrini Li et al. [19] decomposed the environment into convex hulls and introduced
a heuristic search approach, whereas Olsen et al. [11] proposed solving it with graph sampling-based
method, aiming to mitigate the inherent complexity of the complete algorithms [20].

Unknown environments: Sachs and Rajko [21] presented the first single-agent algorithm that does
not require a complete map of the environment, while Kolling and Carpin [9] utilized coordinated
sweep lines by the team to simultaneously clear and explore unknown environments. Based on this,
Durham et al. [8] developed an algorithm that guarantees capture if the number of pursuers is suf-
ficient. They introduced a method to update the global frontiers between cleared and contaminated
areas using solely local information. All these methods assume a relatively simple polygonal topol-
ogy of the unknown environments and require more than sufficient agents to carry out the tasks [10].

3 Problem Formulation

Environments: We consider a bounded, multiply-connected environment represented by an occu-
pancy map M ⊂ R2 that is initially known (M = Mk) or unknown (M = Mu) to the agents. In
the case of an unknown environment, the map is gradually explored and revealed by the agents such
that Mk ∪Mu = M. Based on their omnidirectional sensor measurements, agents will classify the
known areas into either traversable free areas Mf or occupied areas Mo within their line-of-sight
visibility range (i.e., Mf ∪ Mo = Mk). The free space is further categorized into either cleared
areas Mc or contaminated areas Mf \ Mc. Note that we assume perfect communication among
agents, allowing them to exchange information and share the same map throughout the task.

Agents and evaders: We task n agents to coordinate their trajectories Ψ = {ψ1, ..., ψn}, with
the objective of capturing evaders capable of moving at potentially unbounded speeds ve. Here,
ψi : {0, 1, 2, ...} → Mf represents the trajectory of agent i over time, with ψi(t) indicating the
agent’s location at timestep t. Agents scan their surrounding environment within their sensor foot-
print S(ψi(t)) ⊆ M which has a range of rfov (with visibility also limited by obstacles), commu-
nicate with other agents to exchange their measurements, and consequently update their map M.
We hypothesize a worst-case scenario where the evaders are positioned right outside the frontiers
between the cleared and contaminated areas, denoted by F = ∂Mc \ Mo, poised to intrude once
there are any frontiers not within the visibility of any agent. Such frontiers are termed the uncovered
frontiers Fu, where evaders in contaminated areas can penetrate and cause recontamination, con-
fined to their speed ve. Since the locations of an agent in two consecutive timesteps are within each
other’s visibility (explained in Section 4), the intersection of two consecutive sensor footprints will
also be visible during the agent’s movement. This applies to any agent in the team and we denote
this intersected area as

S(Ψt:t+1) =

t+1⋂
t′=t

[
n⋃
i=1

S(ψi(t
′))

]
. (1)

Recontamination will spread through the free areas Mf at speed ve, encroaching upon the cleared
areas Mc. In particular, when evaders are arbitrarily fast (i.e., ve = ∞), the contaminated areas will
expand through each connected Mf until reaching the boundary of S(Ψt:t+1).

Objective: The objective of the visibility-based pursuit-evasion problem is to determine the optimal
agent trajectories Ψ∗ such that the cleared areas can expand to encompass the entire free space while
minimizing the length of the trajectory for all agents:

Ψ∗ = argmin
Ψ

∑
t

max
i

∥ψi(t+ 1)− ψi(t)∥, s.t.Mc = M∗
f , (2)

with M∗
f the ground-truth free areas. Note that we optimize the sum of the maximum length per

step, assuming synchronous decision-making and execution, whereby all agents must reach their
viewpoints to proceed to the next step.
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4 Multi-Agent Coordination Method

This section casts visibility-based pursuit-evasion as an RL problem, outlines our proposed policy
and critic networks based on graph attention, and details its training procedure. We provide insights
into the design of our observation, reward, and network architecture to foster advanced coordination.

4.1 Pursuit-Evasion as an RL Problem

Sequential decision-making: While agents can pre-plan their trajectories offline in a known en-
vironment, navigating an unknown environment relies on an adaptive online planner to continu-
ally update the map. This casts the task as a sequential decision-making problem, specifically a
Markov decision process (MDP). We first uniformly distribute candidate viewpoints (also referred
to as nodes hereafter) Vt = {v0, v1, ...}, ∀vj = (xj , yj) ∈ Mf across the free areas, and ap-
pend additional nodes into the newly identified free areas (if any) with each decision timestep. We
then connect each node with its collision-free neighboring nodes within a specified range (usually
≤ rfov), forming the graph Gt = (Vt, Et) with its corresponding traversable edge set Et. Upon
all agents reaching their previously selected viewpoints, each agent will simultaneously choose the
next viewpoint to visit, sequentially constructing the agent’s trajectory ψi(t) ∈ Vt.

Observation space: Inspired by recent single-agent DRL-based informative path planning plan-
ners [12, 13], the observation ot = (G′

t,Ψt) includes the augmented graph G′
t = (V ′

t , Et) and the
current locations of the agent team Ψt. The augmented graph G′

t shares the same edge topology Et
asGt, but also incorporates map information to assist agents in making informed and coordinated de-
cisions. For each v′j ∈ V ′, the property of the node is v′j = (∆xi,j ,∆yi,j , pj , uj , uu,j , sj , sc,j , gj):
(1) Relative position (∆xi,j ,∆yi,j): the node’s position relative to agent j, i.e., (∆xij ,∆yij) =
vj −ψi(t). For simplicity, we omit the agent enumerator i in graph and observation. (2) Occupancy
of other agents pj : a binary value indicating whether any other agent is positioned at vj . (3) Utility
uj : represents the number of visible frontiers at node vj [22], i.e., uj = |{f ∈ F : ∥f − vj∥ <
rfov, vjf∩(Mo∪Mu) = ∅}|, where vjf ⊂ M is a straight line connecting the node to the frontier.
The node utility in contaminated areas is set to −1. (4) Uncovered utility uu,j : similar to utility,
but counts only the uncovered frontiers not within any agents’ visibility, i.e., replace F above with
Fu. (5) Cleared signal sj : a binary value indicating whether vj is within cleared areas. (6) Coun-
terfactual cleared signal sc,j : hallucinates a scenario without the presence of agents, considering
how cleared areas would change, to help improve understanding of the evader’s speed. Specifically,
when ve = ∞, sc,j ≡ 0. (7) Guidepost gj : a binary value indicating whether vj is on the agent’s A∗

trajectory to its nearest frontier, which significantly aids in agent navigation to frontiers, especially
when they are distant. The node coordinates and utility values in the observation are normalized
before being fed into the neural network.

Action space: Each time all agents reach their designated viewpoints Ψt, the graph attention-
based networks, parameterized by θ and shared among all agents, output stochastic policies
πθ (ai,t | oi,t) , i = 1, ..., n (s.t. ψi(t + 1) = vj , (vj , ψi(t)) ∈ Et). Agents select the next neigh-
boring node based on these policies, then navigate to their selected viewpoints along straight paths,
updating their maps with the information collected en route. If multiple agents select the same
viewpoint, the others will alternatively choose the closest node to that viewpoint.

Reward structure: Our reward is designed to incentivize agents to optimize the task objective
as outlined in Eq. (2). That is, we assign rewards/penalties for expanding/shrinking cleared areas,
impose penalties for the largest distance traveled between viewpoints among all agents, and assign
a substantial reward rf upon the successful task completion (0 otherwise):

rt = c1 · (|Mc,t+1| − |Mc,t|)− c2 ·max
i

∥ψi(t+ 1)− ψi(t)∥+ 1{Mc=M∗
f} · rf , (3)

where c1, c2 are two constants for scaling. This reward rt is equally shared among all agents, as
it is challenging to design a reward structure that aligns with the actual objective while accurately
assigning individual rewards to each agent.
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Figure 2: ViPER’s policy and critic networks based on graph attention. It illustrates the scenario
with unknown prior knowledge of the environment. In the constructed maps, black, white, and
gray colors denote the occupied, free, and unknown areas, respectively. The collision-free graph is
extracted from the map, with nodes colored to represent their utility and connected by pink edges.
Note that the ground-truth map is only used by the critic during training.

4.2 Network Architecture

Inspired by recent advances in graph attention networks [23, 24], we design a network to learn policy
πθ that orchestrates coordinated behaviors among multiple agents. Our graph attention-based policy
network consists of an encoder and a decoder: the encoder extracts information from nodes across
the entire known map, while the decoder yields which neighboring node to visit next, based on the
aggregated global information.

We train a critic network to approximate the state-action values. These values represent the expected
cumulative future rewards (i.e., return) and guide our policy network by evaluating the quality of the
chosen actions. The environment is fully observable if it is known a priori: st = ot. However, in
unknown environments, the policy network can only access partial information about the environ-
ment as agents explore. In our work, unlike the policy network, the critic network is provided with
complete ground-truth information (e.g., entire map/graph, see Fig. 2) during training phase. This
privileged learning approach, leveraging the critic’s access to the full state, contributes to a more
stable training process [13]. To harness the full potential of the well-established centralized training
with decentralized execution (CTDE) paradigm [25], we further provide the critic with the actions
of other agents within the team at. That is, during the training phase, the integration of the state
st = (G

′∗
t ,Ψt) along with at enables the critic to estimate state-action values with greater accuracy,

thus in turn implicitly assisting agents in predicting the structure of the environment as well as the
behaviors of other agents.

Encoder: Our encoder is essentially a sequence of masked self-attention layers (introduced in
Appendix A) that enhances the features of each node by incorporating information from other nodes
within the graph structure. We first apply a feed-forward layer to embed the node properties in V ′

t

into d-dimensional node features hn. These node features are then processed through N stacked
self-attention layers (i.e., hq = hk,v = hn, and with N = 6 in our practice), where each layer
uses the output of the previous one as its input. We calculate the mask Mt of the graph using the
adjacency matrix derived from Et. This mask is applied to ensure each node has access only to
features of its neighboring nodes (i.e., attention weight wi,j = 0, ∀(vi, vj) /∈ Et). Although atten-
tion is constrained to neighboring nodes at each layer, nodes can still acquire non-neighboring node
features by repeatedly aggregating features through this stacked self-attention structure. We find
that, in contrast to unmasked self-attention, our method of masked self-attention, which propagates
neighboring features layer by layer, leads to a more effective learning of pathfinding solution [26].
The encoder thus enhances the node features hn to h̃n, as each updated set of node features contains
dependencies on other nodes in the graph, depending on Mt and N .

Policy decoder: The decoder is used to determine the final policy based on the enhanced node
features h̃n. From these node features, we select the one at the robot’s current position as query:
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hq = hc = h̃nψi(t)
. The current node features hc, along with its neighboring node features (presented

as key-value pairs) from h̃n, are fed into an attention layer, thereby enhancing the output h̃c with
information from its neighboring nodes. Subsequently, we adopt a single-head attention mechanism
with h̃c and its neighboring node features, and directly use its attention scores as the final output
policy πθ = (ai,t | oi,t) = wi,j , from which the agent selects the next viewpoint to move to. This
design relaxes the need for a predefined policy size, instead allowing the policy’s dimensions to
adapt dynamically to the number of neighboring nodes, thus naturally accommodating graphs with
arbitrary connectivity.

Critic decoder: The critic network Qϕ, parameterized by ϕ, shares the same encoding structure
with the policy network πθ, but employs a different decoder that incorporates other agent’s actions.
We mirror the idea in MAAC [27] that introduced an attentive critic to select relevant information for
each agent. From the enhanced node features h̃n output by the encoder, we filter the node features of
other agents h̃nψ−i(t)

and their corresponding selected features h̃nψ−i(t+1) at the next timestep based
on their current actions at. These features are then concatenated as key-value pairs to enhance the
current node feature hc. Subsequently, informed by the actions of other agents, the current node
features are further enhanced by incorporating neighboring features, identical to the process in the
policy decoder. The enhanced current node features h̃c are then concatenated with neighboring
features and are finally mapped to state-action values Qϕ(st, at) by a feed-forward layer.

4.3 Network Training Procedure

We train our RL agents using the soft actor-critic (SAC) algorithm on 4, 000 randomly created maps
for our training dataset, and an additional set of 100 unseen maps as the test dataset. The training
details (algorithm, dataset, graph and sensing configurations) can be found in Appendix B. ViPER’s
code and trained model are available at https://github.com/marmotlab/ViPER.

5 Experiments

In this section, we compare our method with state-of-the-art (SOTA) baseline planners designed
for unknown environments, showcasing its superiority in terms of performance, generalization, and
robustness. We also discuss the emergent coordinated behavior of our trained policy and present the
results of a real-life aerial search task involving three drones and one ground robot.

5.1 Comparison Analysis

We compare ViPER with two planners from Durham et al. [8] and Gregorin et al. [10]. Durham et
al. proposed a distributed planner that makes decisions based solely on local frontiers and communi-
cation, thus it does not require prior mapping of the environment. Suggested by the settings in their
original paper, we tuned their planner to output high-quality solutions for a fair comparison. While
many studies evaluate their algorithms in simply structured environments, our map dataset is more
structurally complex, requiring agents to implicitly predict the map and actively respond to updates.
Our evaluation map dataset comprises 100 maps that were unseen during model training. We also
use multiply-connected and conjugated maps from Gregorin et al. and compare our performance
against the results reported in their paper, using the same rfov. Following [10], we test each map 30
times with random start positions. Note that throughout all evaluations, we use our model trained
with 3 agents and a bounded evader speed (ve ≤ 20m/timestep, with map size 100 × 100m2) to
facilitate faster environment simulation during training.

We report the success rate and the maximum trajectory length
∑T
t=0 maxni=1 ∥ψi(t+1)−ψi(t)∥ in

Table 1, averaged across 100 maps with unbounded evader speed, i.e., ve = ∞. We mark failure of
the task if the trajectory length of any agent exceeds 1, 000m. Our results show that ViPER outper-
forms the other two baselines in both metrics. Upon closer inspection, the performance gap is more
pronounced when the team size is smaller. We believe that this likely comes from the restriction in
Durham’s algorithm of not allowing recontamination, potentially requiring a larger team size than
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Table 1: Comparison against SOTA planners in different map sets and team sizes n. We report
the success rate and averaged trajectory length (in parentheses).

Our maps Multiply-connected maps [10] Conjugated maps [10]
n Durham ViPER n Gregorin Durham ViPER n Gregorin Durham ViPER

3 24.0% (842.7) 86.0% (411.5) 4 38.5% 20.0% 50.0% 9 29.5% 84.2% 92.5%
4 66.0% (577.1) 100% (281.9) 5 73.5% 60.0% 80.0% 15 48.5% 88.3% 100%
5 89.0% (394.4) 100% (230.0) 6 74.0% 76.7% 98.3%Explored ratio: 1 | Safe ratio: 1 | Travel distance: 773.5Explored ratio: 1 | Safe ratio: 1 | Travel distance: 448.5

Figure 3: Paths in complex unknown/known
(left/right) large-scale environments (n = 10).
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Figure 4: Evolution of the cleared rate
versus trajectory length on our map set.

necessary. This is evident in Fig. 4, which plots the evolution of the cleared rate |Mc|/|M∗
f | com-

pared to trajectory length. When n = 4, the performance disparity is significant, while at n = 8,
both approaches achieve a 100% success rate, resulting in averagely monotonic increases in the
cleared rate. Gregorin’s approach, on the other hand, is centralized and allows a certain level of
recontamination. Their method combines random walking with an evolutionary approach to address
rarely explored states. However, in conjugated maps, its success rate still significantly drops as the
environment size and the number of agents increase, limiting its scalability to larger team sizes.

5.2 Generalization and Adaptability Analysis

Known environments: We evaluate our model in known environments and present our results
in Table 2. Despite being trained in unknown environments, our model is capable of adapting to
known environments (and vice versa) without much performance change/degradation, and it scales
effectively to various team sizes. This is largely due to the fact that the agent observations only
include the number of observable frontiers between cleared and contaminated areas (i.e., utility) by
design, while excluding information on the exploration frontiers between known and unknown areas.
That is, we regard the exploration of the environment as an auxiliary task of the pursuit-evasion.

Complex environments: We adopt an additional map dataset of 100 maps with significantly more
complex topologies than those used during training and 4 times larger the area to evaluate the al-
gorithm’s generalizability with 10 agents. There, the task is deemed unsuccessful once any agent’s
trajectory length exceeds 3, 000m. The results are presented in the last row of Table 2 and example
solutions can be seen in Fig. 3. In unknown environments, the agents may initially misjudge the lay-
out, leading to inaccurate agents distribution. Consequently, certain agents need to wait at junctions
for a long period, awaiting the arrival of other agents before continuing to collaboratively explore
the environment and minimize recontamination, thereby increasing the difficulty of the task. We
believe these results suggest that ViPER can generalize to vastly different/challenging environments
with minimal impact on map size or the number of agents involved, without the need for retraining.

Agent failure: In Appendix C, we exhibit ViPER’s robustness to mid-task agent failures, showing
its ability to adapt and prevent further recontamination from failed agent(s).

5.3 Emergent Coordination

Our agents exhibit interesting emergent coordinated behaviors during training, thanks to our graph-
attention-based network and centralized privileged critic (an ablation study of these modules can
be found in Appendix D). One of our map set is shown in Fig. 5, where we display the solution
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Table 2: Adaptability to various
environments/settings.

Our maps
n Unknown Known

3 77.0% (483.7) 80.0% (472.2)
4 98.0% (282.0) 97.0% (275.9)
5 100% (228.0) 99.0% (240.3)

Our maps (complex)

10 69.0% (1795) 98.0% (1005)

(a) t = 10 (98.9)Explored ratio: 0.5853 | Safe ratio: 0.5534 | Travel distance: 98.89(b) t = 15 (139.8)Explored ratio: 0.8567 | Safe ratio: 0.7999 | Travel distance: 139.8(c) t = 21 (192.1)Explored ratio: 1 | Safe ratio: 1 | Travel distance: 192.1

Figure 5: 3 agents clearing an unknown environment.
Dotted green/red lines show covered/uncovered frontiers.

snapshots at various timesteps and trajectory lengths (in parentheses). We observe that, once the
green agent clears the top-right room and begins moving towards the blue agent for assistance, the
blue agent starts to move downward in advance upon observing the green agent’s approach, allowing
for some areas of controllable recontamination to reduce trajectory length. Then, after clearing the
room, the blue agent joins forces with the green agent to clear the upper room, which has an obstacle
situated in the middle requiring at least two agents to clear. Our additional examples in Appendix E
further confirm that, although agents make synchronous decisions in MARL framework, they can
intelligently allocate themselves on-demand and dynamically redistribute as the task progresses.

5.4 Experimental Validation
Agent 2

Agent 3
Agent 1

Imaginary 
Evader

Figure 6: Experimental validation on three
Crazyfile drones.

We carried out experiments to validate ViPER in an
aerial search task using three Crazyfile 2.1 drones
as searching agents and one TurtleBot3 robot as an
imaginary evader (see Fig. 6). The experiment was
conducted in a 4 × 4m2 mockup arena with a way-
point node resolution of 0.2m. We opted to use the
optical flow sensors on the drones for position track-
ing, with the origins set at their take-off positions,
and transformed the updated positions into a global
frame. Waypoints were iteratively published to drones by a remote computer, while the TurtleBot3,
controlled by a human as an omniscient evader, only navigated in contaminated areas. This exper-
iment confirms that ViPER can be deployed on robots with relatively low computational costs, and
exhibit high performance. For each agent, forward inference takes less than 0.01s, and the combined
environment update and planning take less than 1s of wall clock time.

6 Conclusion

Summary: We introduce the first neural framework based on multi-agent reinforcement learning for
visibility-based pursuit-evasion tasks that addresses worst-case scenarios. Our approach relies on a
graph attention network to allow agents to individually process their shared information and achieve
the necessary level of tight coordination that can ensure the detection of omniscient and potentially
arbitrarily fast evaders. In our evaluation, our learned policies exhibit emergent coordinated team-
work behaviors that outperform state-of-the-art planners by a large margin. We also demonstrate
ViPER can adapt to different team sizes, handle diverse scenarios, and remain effective in the face
of agent failures.

Limitations and future work: Although ViPER can efficiently handle exploration and recontam-
ination compared to other methods, the initial positions of the agents still greatly affects their per-
formance and can sometimes result in task failure. When all agents are in a position that necessi-
tates additional support from other agents, they are unlikely to sacrifice their own, usually extensive,
cleared areas to assist others. This reluctance can lead to deadlocks in actions, despite the theoretical
existence of a solution. Future work will explore multi-level graph representations and hierarchical
decision-making for improved graph structure reasoning and state exploration.

8



Acknowledgments

This work was supported by Temasek Laboratories (TL@NUS) under grant TL/FS/2022/01.

References
[1] P. Tokekar, E. Branson, J. Vander Hook, and V. Isler. Tracking aquatic invaders: Autonomous

robots for monitoring invasive fish. IEEE Robotics & Automation Magazine, 20(3):33–41,
2013.

[2] B. P. Gerkey, S. Thrun, and G. Gordon. Visibility-based pursuit-evasion with limited field of
view. The International Journal of Robotics Research, 25(4):299–315, 2006.

[3] Y. Wang, Y. Wang, Y. Cao, and G. Sartoretti. Spatio-temporal attention network for persis-
tent monitoring of multiple mobile targets. In 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3903–3910. IEEE, 2023.
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A Attention Layers

Our network relies on attention layers in the Transformer [28], where each layer transforms a query
vector hq and a collection of key-value pair vectors hk,v into an output vector h′i by computing a
weighted sum of values. The attention scores are derived by measuring the similarities between
queries and keys within each attention head:

wij = Softmax

(
q⊤i · kj√

d

)
, h′i =

n∑
j=1

wijvj , (4)

where q, k, v are derived by three separate learnable matrices in Rd×d as qi = WQhqi , ki =

WKhk,vi , vi = WV hk,vi . Following [29], we adopt Identity Map Reordering (IMR) between at-
tention layers, placing layer normalization before attention layer to improve network stability in RL
tasks.

B Network Training Procedure

Algorithm: We train our DRL agents with the soft actor-critic (SAC) algorithm. SAC learns a soft
value function by modifying the policy gradient to include an entropy term, H(π(· | ot)), which
encourages the exploration of more diverse actions and helps prevent premature convergence [30]:

∇θJπ(θ) = Eo∼D,a∼π[∇θ log(πθ(ai,t | oi,t)) · (−α log(πθ(ai,t | oi,t)) +Qϕ(st, at))], (5)

where T is the number of timesteps and γ ∈ [0, 1] the discount rate, D the replay buffer, and α
serves as a temperature parameter that scales the importance of the entropy term against the reward.
The temperature parameter is automatically adjusted to match the target entropy H.

Map dataset: We use a dungeon map generator [31] to randomly create a set of 4×1, 000 multiply-
connected maps for our training dataset, with each map oriented four times for map set augmenta-
tion, and an extra set of 100 different maps that are unseen during training for performance evalua-
tion. Each map have a size of 100m× 100m.

Sensing: The onboard omnidirectional sensor with a radius of rfov = 20m will monitor/identify
potential evaders (and map the environment). Here, assuming a circular field of view (FoV) aligns
with most related works [9, 10] and helps incorporate ViPER with both downward-facing cameras
and LiDAR. Each agent scans its surrounding environment and communicates with other agents to
update a shared belief.

Graph: The candidate viewpoints Vt are uniformly distributed throughout the entire known free
areas Mf . The spacing between two adjacent nodes (i.e., resolution) is set at 4m. Note that these
parameters are tunable to meet specific practical requirements. Each node is connected with its
k = 25 nearest neighboring nodes (including itself) to establish the edge set Et, provided the paths
between them are collision-free. We consider a successful task completion to be the closure of the
cleared areas Mc (i.e., no frontiers between cleared and contaminated areas).

Training: During training, the episode is terminated once its length exceeds 128 timesteps, with a
replay buffer size of |D| = 10, 000, a discount rate of γ = 1, and the target entropy set to 0.01·log k.
Our model is trained on a workstation with an AMD 7950X3D CPU where 12 environments run in
parallel, and an NVIDIA GeForce RTX 3090 GPU to train the network once an episode terminates,
after accumulating 5, 000 steps of data in the replay buffer. The model converges after 40 hours of
training, and we adopt the model at 40, 000 episodes for experiments in Section 5.

C Robustness to Agent Failure

We evaluate the robustness of ViPER to agent failures occurring in the middle of the task. Specifi-
cally, we simulate agent failure by deactivating a random agent, including its movement and sensor,
once agents have explored half of the environment. The result is plotted in Fig. 7, averaged over 100
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maps. Our results indicate that the performance remains similar to (or slightly superior to) that of
the fully functional agent group (comparing n → n − 1 to n − 1). This demonstrates that the re-
maining functional agents are able to reactively adapt and prevent further recontamination from the
failed agent, thereby avoiding the need to almost entirely restart the task should the recontamination
spread uncontrolled.

D Ablation Results
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Figure 7: Performance amidst agent fail-
ure during the task.

We perform a comprehensive ablation study to eval-
uate the effectiveness of our graph attention architec-
ture, attentive critic, and privileged learning module.

Graph attention encoding: To evaluate the effec-
tiveness of our graph attention architecture, we addi-
tionally train two ablation baselines. In comparison
to ViPER with a 6-layer graph encoder, one baseline
was trained with a 3-layer graph encoder, while the
other was trained without any encoder. As shown in
Fig. 8, the performance significantly degrades with a
shallower encoder during training, as agents’ limited
graph perception results in more myopic decision-
making. Without a graph encoder, the agents struggle to learn any effective long-term policies
necessary to successfully complete the task, leading to frequent task failures.

Critic module: We train three additional ablation baselines: ViPER without the MAAC (attentive
critic module), ViPER without GT (ground truth information during training), and ViPER without
both MAAC and GT. We present the reward and length curves during training in Fig. 8. It is evi-
dent that ViPER consistently outperforms its baselines throughout the training process. We further
observe a significant performance decline without privileged learning, indicating the importance of
access to ground truth information for the critic to achieve a more accurate value estimate during
training. Our ablation study demonstrates that both the attentive critic and privileged learning (indi-
vidually and combined) enhance ViPER’s ability to learn a better policy for multi-agent coordination
in visibility-based pursuit-evasion tasks.

E Emergent Multi-Agent Coordination: Some Examples

We handcraft several specific scenarios to showcase team coordination and provide insights into
ViPER’s policy. As illustrated in Fig. 9a, when there is an isolated obstacle/chamber in the center
of a closed environment, it is impossible for a single agent to clear the entire areas, as the evaders
can continuously hide behind the obstacle to elude detection. In this case, two agents must simul-
taneously extend their frontiers from both sides of the obstacle to ensure the evaders are detected.
Similarly, as shown in Fig. 9b, each passage must be monitored by an agent to prevent recontam-
ination. In Fig. 9c, four agents are initially paired off to direct toward rightward and downward.
However, upon discovering more frontiers below, the green agent reactively reverses and adjusts its
trajectory to head downward instead. Fig. 9d depicts scenarios where, if an agent inspects each room
along a corridor, an evader could potentially slip past and conceal itself in an already cleared room.
One solution is to use two agents, with one consistently monitoring the corridor. Our two agents
alternatively choose to take turns clearing rooms and monitoring the corridor, resulting in an even
shorter trajectory length.
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Figure 8: Training curves of ViPER and its ablation baselines, all trained with a team size of
n = 4. All curves are averaged over a window of 200 data points, with the shaded area representing
±0.2 times the standard deviation.
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Figure 9: Coordinated behaviors among agents to clear the environment. (a-c) unknown, (d)
known.
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