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ABSTRACT

It is well known that Large language models (LLMs) have good zero-shot and
few-shot performance which makes them a promising candidate for inference
when no or few training samples are available. However, when there is abun-
dant task data, small custom trained models perform as well or are superior in
performance to pre-trained LLMs, even after accounting for in-context examples.
Further, smaller models are far cheaper and easier to maintain and serve for online
traffic. This paper studies algorithms to optimally switch between such models for
online inference. In the case when inference traffic is stationary, it makes sense
to start with LLMs during the cold-start phase, and then switch over to small cus-
tom models once there is sufficient data. However, when distribution shifts are
encountered, it is essential to fall back on LLMs while the custom models adapts
to the distribution shift. We present an empirical study of such switching behav-
iors on 3 common real-world tasks like classification, regression, and forecasting
across different data modalities like images, text, and time series and show how
they can add value from the perspective of both cost and performance.

1 INTRODUCTION

Figure 1: Cost vs Performance trade-off.
Switching algorithms (HYN, UBS, LGS) provide
more value than LLM- and TSM-only approaches
under cold-start and distribution shifts.

Online inference suffers from two classical
problems that have been studied in literature for
a long time: (a) cold-start Volkovs et al. (2017);
Schein et al. (2002); (b) distribution shift Gibbs
& Candes (2021). Cold-start is a common prob-
lem in online tasks like outlier detection Gr-
bovic et al. (2013); Roth et al. (2022), forecast-
ing Jegannathan et al. (2022), and recommen-
dation systems Lika et al. (2014); Feng et al.
(2021); Xu et al. (2022); Vartak et al. (2017)
where the trained models need some runway to
collect data about the given task or user before
making meaningful predictions. This runway
can vary from few hours to several days de-
pending on the downstream task. Distribution
shift Gibbs & Candes (2021); Kim et al. (2021);
Dragoi et al. (2022) typically occurs when the
test samples start to diverge from the data dis-
tribution which model was initially trained on.
This makes it impossible for organizations to
deploy-and-forget models in production. But with the availability of pre-trained foundation mod-
els there’s a growing interest in using them to address these two long standing problems Wu et al.
(2024); Zhang et al. (2025); Horn et al. (2024); Zeng et al. (2024).

Research shows that pre-trained LLMs are reasonably good out-of-the-box on a wide range of tasks
and emergent capabilities like few-shot learning or in-context learning (ICL) allow them to quickly
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Figure 2: Classification (MNIST/Images): Accuracy and Reward plots evaluated on a fixed held-
out test set over time. The red dotted line represents a label shift. At each time step, N = 10
samples arrive which the models use to learn and improve on the test-set over time as can be seen
in the graph. For clear visualization we only show the best performing LLM (in green) chosen from
different variants like zero-shot, 1-shot, few-shot, etc.

adapt to unseen tasks with a handful of examples where task-specific neural nets struggle Radford
et al. (2019); Brown et al. (2020). Thus a natural question to ask is- ’RQ1: For online tasks, can
pre-trained foundation models (such as LLMs) be used in-place of task-specific models (TSM)
to alleviate the cold start problem?’. Similarly, when a distribution shift occurs, a trained TSM is
quickly rendered obsolete, requiring it to adapt to the new distribution. This adaptation process or re-
training a TSM to meet the production requirements is time-consuming, impacting the effectiveness
of downstream service. However, given LLMs few-shot learning capabilities, another interesting
question is- ’RQ2: Can LLMs serve as temporary replacement during distribution shift until a
new TSM is available?’. It is also worth noting that pre-trained LLMs are exponentially costlier
than small TSMs for running inference at a production scale Irugalbandara et al. (2024) and this
cost grows with the number of in-context examples. Furthermore, works like Liu et al. (2024) show
that LLMs are sensitive to context position, i.e., they can produce different outputs for the same
input depending on the positions of in-context examples or the task instructions making them unre-
liable when context length grows in size. These examples shows that choice of ’right’ model isn’t
stationary. Thus, the final question we examine is- ’RQ3: How to identify the optimal switching
points b/w TSMs and LLMs to minimize cost and maximize accuracy?’.

We start with demonstrating the existence of phenomenons presented as RQ1 and RQ2 on multiple
real-world datasets across different modalities. We then show that simple switching algorithms are
sufficient to strike the necessary balance between LLMs and TSMs and achieve better cost and
performance than individual LLMs and TSMs under distribution shifts. Choosing the best pre-
trained LLM at inference time is a crucial problem for real-world setting Xia et al. (2024a); Huang
et al. (2025); Okanovic et al. (2024) both from cost and performance standpoint. We extend this
problem setup to include TSMs in the mix and study the behavior under distribution shifts which is
a fundamental problem in online setting.

2 PROBLEM STATEMENT

Let (Xi
t)

N
i=1 be a batch of N samples arriving at time t and (Y i

t+η)
N
i=1 be the ground truth labels of

those samples that arrive at time t + η, where η > 0. The ground truth labels are subject to noise
where β% of samples have incorrect labels (β ≥ 0). There are K different models that one can
choose from to run a forward pass (a.k.a inference). At-each time t, one can run forward pass on
at-most 1 ≤ M1 ≤ K models and then do a backward pass or update at-most 0 ≤ M2 ≤ K. A
backward pass for a pre-trained LLM model could be as simple as storing (Xi, Y i) in a running
memory to be able to use it for ICL. At any time t, task is to pick 1 out of K models to run inference
for each sample in the arriving batch, with a goal of maximizing overall performance over a given
inference period of length τ . Let (Cf

LLM , Cb
LLM ) and (Cf

TSM , Cb
TSM ) be the cost of running a
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Figure 3: Classification (Sentiment Analysis/Text): Accuracy and Reward plots evaluated on a
fixed held-out test set over time. The red dotted line represents a label shift. At each time step,
N = 10 samples arrive which the models use to learn and improve on the test-set over time as can
be seen in the graph. For clear visualization we only show the best performing LLM (in green)
chosen from different variants like zero-shot, 1-shot, few-shot, etc.

forward and backward pass on a LLM and TSM respectively. Similarly, let Cswitch be the switching
cost between a LLM and TSM.

In this preliminary study, we consider the simplest non-trivial instance of this problem. We assume
Cb

LLM = Cb
TSM ≈ 0 and Cf

LLM >> Cf
TSM ≈ 0. We also ignore the switching cost, i.e.,

Cswitch ≈ 0. We assume η = 1 i.e., labels arrive immediately at the next step; K = 2, γ = 1, i.e., a
binary decision of model selection for each sample, and no incorrect labels, i.e., β = 0. This setting
is already complex enough to capture several problem nuances as we detail in the Appendix A.5.

2.1 MOTIVATION

In real-world applications like online recommendation systems or anomaly detection, new customers
with unique behavior arrive all the time making it harder to deploy one-size-fit-all models. To
reduce false positives in classical ML a cold-start period is introduced to adapt to the behavior
of new customer during which no recommendations or detections are surfaced to the customer.
This period can last anywhere from few minutes (e.g., movie recommendations) to few days (e.g.,
fraud detection) depending on the nature and severity of the task. Similarly, seasonal changes,
new releases, deprecation of old features, etc lead to unpredictable shifts in data distribution that
classical TSMs are not robust to, requiring them to constantly adapt. This adaptation typically
means retraining the TSM from scratch or fine-tuning last few layers on large amounts of newly
collected data leading to an increase in downtime of the service. Foundation models (FMs) on
other hand possess features like ICL on a small set of examples making them ideal replacement of
TSMs for such downtimes. However, aside from being exponentially costlier, LLMs are seen to
become less-effective with growing context length Liu et al. (2024); Tan et al. (2024). This demands
an investigation into the class of solutions which can robustly switch between LLMs and TSMs
depending on incoming data to provide the best cost and performance value for the downstream
service.

3 EXPERIMENTAL SETUP

Datasets. We examine the 3 research questions on 2 common tasks: classification, and regression
across 3 different data modalities: (1) image, (2) time series, and (3) text. These form the basis of
several popular real-world use-cases like recommender systems, fault detection, stock prediction,
weather analysis etc. For classification we use the MNIST dataset Deng (2012), IMDB dataset of
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Figure 4: Regression (Time Series): MAE Loss and Reward plots evaluated on a fixed held-out test
set over time. The red dotted line represents a covariate shift. At each time step, N = 10 samples
arrive which the models use to learn and improve on the test-set over time as can be seen in the
graph. For the first plot, lower is better while for second, higher is better.

Task (Modality) LLM TSM LGS UBS HYN TSM-λ

Classification (Image) 259.35 247 271.65 289.42 300.45 244.02
Sentiment Analysis (Text) 279.30 242.15 244.10 198.65 198.65 222.25
Regression (Time Series) 43.26 817.08 36.50 1785.46 817.08 814.10

Table 1: Comparing Area-under-learning-curve (ALC) for accuracy on test set for all the models
across time on a variety of different tasks and modalities. Higher is better for classification tasks
(Row 1 and 2) but lower is better for regression task (Row 3) where we report ALC for MAE curve.

movie reviews 1, and Twitter sentiment analysis dataset 2. For the regression task we use Bitcoin
Historical Dataset Kottarathil (2020). Given the likelihood that LLM must’ve already been trained
on these public datasets, we modify the datasets by feature transformations and label obfuscations
to truly test the ICL capabilities of LLMs. For e.g, in MNIST dataset we replaced the digit labels to
random names like: {0 : beta, 1 : alpha, 3 : gamma, . . .}. More details on obfuscation is provided
in Appendix A.

Models: We use Claude 3 Sonnet model Anthropic (2024) as the pre-trained LLM and a standard
2-layer neural-net as a TSM trained with ADAM Diederik (2014) optimizer and a cross-entropy loss
or a quantile loss depending on the nature of task.

Cold-start setup: We create an online inference setup where both LLM and TSM have 0 samples
to begin with. At each time step t, a batch of N = 10 samples arrive for inference. A switching
algorithm picks one of the two model for each sample in the batch and runs the inference. At next
step, true labels for the batch arrives, which is then used to update the two models. For TSM, update
refers to a gradient descent step, while for LLM is adding examples in context for ICL. The process
is repeated in online manner. A fixed held out test set is used to report the performance at each step.

Distribution shift setup: Setup is similar to cold-start, however, we introduce a shift half-way
through the run as shown in Figures 2, 3, and 4. For classification task this shift is a label shift,
i.e., we alter the distribution of labels, and for regression we introduce a covariate shift using an
exponential transformation on the incoming test samples half-way through the timeline.

Evaluation Metrics: We use the area-under-the-learning-curve (ALC) as our evaluation metric
Gonzalez-Gutierrez et al. (2023). A higher ALC score denotes superior performance across time
under both cold-start and distribution shifts. It captures the overall performance of an algorithm
throughout the learning process taking into account both the speed of learning and the final accu-

1https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
2https://www.kaggle.com/datasets/jp797498e/twitter-entity-sentiment-analysis
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Task (Modality) LLM TSM LGS UBS HYN TSM-λ

Classification (Image) 2394 1900 2886 2760.5 4038 1971.0
Sentiment Analysis (Text) 3192.0 1706.0 1784.0 837.0 −34.0 1500.0
Regression (Time Series) −7990.0 −6736.0 −6818.0 −7099.0 −7990.0 -6641.0

Table 2: Comparing Area-under-learning-curve (ALC) for reward on test set for all the models
across time on a variety of different tasks and modalities. Higher is better.

racy achieved. It’s particularly useful for comparing algorithms in online or incremental learning
scenarios where data arrives in a stream.

We report ALC under two curves: ’accuracy vs time’ (Table 1) and ’reward-vs-time’ (Table 2). Here
reward is computed as −1 for incorrect answer, 0 for not answering, +1 for a correct answer. This
kind of scoring is particularly useful in scenarios where False Positives (FPs) are detrimental to the
downstream service (e.g., fraud detection). For regression task, we assign reward as +1 only if
the prediction is within ±10% of the true value. We also compare the total cost of running these
models under various switching algorithms to study how expensive these algorithms are compared
to baselines (Table 3).

4 RQ1: CAN LLMS BE USED IN-PLACE OF TSMS TO ALLEVIATE THE COLD
START PROBLEM?

The cold start period occurs in the first half i.e., the left hand side of the distribution shift line in red
in all tasks– Figure 2, Figure 3, and Figure 4. The TSM starts afresh at t = 0 which is visible in
its initially poor test accuracy, while the pre-trained LLM is clearly superior across all 3 tasks. This
difference is emphasized in the reward plots where we penalize models for incorrect predictions.
For e.g., in MNIST classification (Fig 2) the TSM starts from a high negative reward compared
to the LLM and its cold-start variant TSM-λ which doesn’t produce any output for first λ steps.
Even on a difficult task like time series regression (Fig 4) the performance gap, although smaller,
still exists. These results support the hypothesis that LLMs could serve as placeholders during the
cold-start period in-place of TSM or even TSM-λ. We also hypothesized in the beginning that the
cold-start period is variable and depends on the nature of the task. This too can be observed in the
plots where the point in time at which TSM begins to beat LLM on test-accuracy is different across
tasks depending on their complexity.

5 RQ2: CAN LLMS SERVE AS TEMPORARY REPLACEMENT OF TSMS
DURING DISTRIBUTION SHIFT?

The red line in the plots denotes an introduction of distribution shift in form of either a label shift or
a covariate shift depending upon the nature of the task. From all 3 tasks we can see the performance
of TSM is severely impacted by the distribution shift and the time it takes to recover is dependent on
the incoming data distribution and complexity of the task. For e.g., in MNIST classfication (Fig 2)
the TSM is able successfully beat the LLM in∼ 200 steps after the shift. However, in more complex
tasks like regression (Fig 4) or LLM-friendly task like sentiment analysis (Fig 3) it takes TSM a long
time to even come close to the LLM-level accuracy after the shift. These results across multiple
tasks, modalities, and types of shifts provide reasonable evidence that the drop in performance of
TSMs can be alleviated by substituting it with a pre-trained LLM during a distribution shift.

6 RQ3: HOW TO IDENTIFY THE OPTIMAL SWITCHING POINTS B/W TSMS
AND LLMS?

In this section we explore a set of simple baselines and learned methods that can achieve a higher
ALC score than some trivial practices that are common in real-world. We study the following
approaches:
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Task (Modality) LLM TSM LGS UBS HYN TSM-λ

Classification (Image) 9× 1017 2× 1012 3× 1019 4× 1017 3× 1019 2× 1012

Sentiment Analysis (Text) 7× 1017 3× 1014 3× 1020 4× 1017 3× 1020 2× 1014

Regression (Time Series) 1× 1017 7× 1012 3× 1019 1× 1017 3× 1019 7× 1012

Table 3: Comparing total cost incurred on test set by all the models across time on a variety of
different tasks and modalities. Here the cost is represented as the no. of FLOPs. Lower is better.

• (Baseline 1) LLM: In this method we simply use a pre-trained LLM as the inference method
across time. New samples with labels are added in-context for ICL as they arrive.

• (Baseline 2) TSM-λ: In this method an untrained TSM is used as inference method and
trained on new samples as they arrive online. Here λ denotes the cold-start period, i.e., for
λ steps the TSM will be in learning mode and hence will not perform inference. The value
of λ is usually domain dependent.

• (Baseline 3) Loss-guided switching (LGS): This method uses a moving window of size T
to compute the mean loss over last T steps for each model and uses that to select the best
model for next inference step. Drawback of this approach is that it runs both the models in
background to compute the running loss and select the best one for inference.

• (Learned method 1) Hypernetwork (HYN): This method learns a binary classifier that maps
the input features to the right model to choose for inference. It is trained in an online manner
as new samples and labels are observed.

• (Learned method 2) Uncertainty-based switching (UBS): This method uses TSM’s predic-
tion uncertainty to decide when to switch over to LLM. We use entropy to measure the
uncertainty of predictions Louizos & Welling (2017) and if it below a set threshold ϕ we
deem the TSM to be confident, otherwise we use the LLM to generate the response. Simi-
larly, for regression task we use a quantile loss to train the TSM and set a threshold on the
Interquartile Range (IQR) to determine the confidence of model.

LGS, HYN, and UBS are the three simple switching algorithms with different cost vs performance
trade-offs. Figure 1 provides a good overview of how these models compare on scale of both perfor-
mance and cost. Table 1 shows the ALC score which represents the overall performance of models
across time with periods of cold start and distribution shifts. We can see that HYN achieves the best
score on classification task, even better than individual LLM and TSM models, closely followed by
UBS. HYN also achieves the highest reward (Table 2) indicating lower false positive rate. HYN is a
relatively costlier algorithm as it learns a mapping from features to right model and performs better
if both TSM and LLM are constantly run on all samples in background.

UBS on the other hand relies heavily on TSM’s uncertainty estimation and is likely to suffer on tasks
that are naturally harder for TSMs. This is seen in Sentiment Analysis task where LLM is the best
performant model closely followed by LGS. Since LGS relies on last T -step loss estimates of both
models, it turns out to be a more reliable switching method for harder tasks like sentiment analysis
and time series regression where LGS is the most performant, closely followed by LLM. This is
visualized in Fig 4 where LGS (yellow) sticks with LLM in beginning, then switches to TSM after
it is able to defeat LLM around the t = 200 mark and after the shift, it gradually switched back to
LLM given the dip in TSM’s performance.

7 CONCLUSION AND FUTURE WORK

Our work explores test-time switching algorithms between LLMs and TSMs to improve perfor-
mance without hurting costs. We demonstrate that combining LLMs with TSMs can enhance per-
formance, particularly during cold-start and distribution shift phases. Preliminary results show that
simple switching algorithms can, in most cases, outperform both LLMs and TSMs individually
across various tasks and modalities. We are currently working on designing principled algorithms
that borrow from the study of non-stationary bandits Besson et al. (2022) , budgeted and combina-
torial bandits Zhang & Cheung and rising bandits Metelli et al. (2022); Xia et al. (2024b) to propose
a comprehensive methodology to handle the open questions highlighted in Sec A.4.
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Figure 5: Classification (MNIST/Images): Number of FLOPs for each model measured over time
to study the cost of using each model.

A APPENDIX

A.1 DATA OBFUSCATION

Given the likelihood that LLM must’ve already been trained on almost all of the public datasets, we
modify the following datasets by feature transformations and label obfuscations to truly test the ICL
capabilities of LLMs. Below we discuss the strategies we adopted to transform these datasets.

MNIST dataset. MNIST is a primarily a classification dataset that maps from a vector representa-
tion of images to class labels. In this case, we obfuscated the labels by replacing them with random
Greek letters like α, β, γ etc. We did this for all 10 class labels ranging from 0 to 9. Since there is
no logical connection between the true class labels and Greek labels it is impossible for the LLM
to succeed just by using its pre-trained knowledge, i.e., zero-shot inference. It should use its ICL
capabilities to learn the mapping at test-time in order to perform successfully at the task.

Twitter dataset. In Twitter Sentiment Analysis Dataset, the task is to judge the sentiment of the
message about the entity. There are three classes in this dataset: Positive, Negative and Neutral.
The messages that are not relevant to the entity (i.e. Irrelevant) are regarded as Neutral. Similar
to MNIST, we perform label obfuscation and replace the ’positive’, ’negative’ and ’neutral’ labels
with random colors like ’green’, ’blue’, and ’yellow’. This breaks the relationship between tweets
and the sentiment labels that LLM might’ve learned during pre-training. It will need to possess ICL
capabilities at test-time to generate correct obfuscated labels.

IMDB dataset. IMDB dataset has 50K movie reviews for natural language processing or text an-
alytics tasks. This is a dataset mainly for binary sentiment classification containing a set of 25,000
highly polar movie reviews for training and 25,000 for testing. We perform obfuscation similar to
the Twitter dataset given the similar nature of task.

Bitcoin Historical Dataset. Bitcoin Historical Dataset is a multivariate time series dataset where
the goal is to predict the closing price from a set of categorical and continuous variables. Given
the outcome variable is continuous, this dataset is typically posed as a regression task. For this
dataset we perform non-linear feature transformation to modify its original form. More specifically,
we perform a log transformation on the dataset which modifies it in a way where memorization
skills would no longer be of use. The LLM will need to use its ICL capabilities to learn the right
relationship between features and bitcoin prices at test-time to perform well on the task.

A.2 RESULTS (COST)

In Table 3 we compare the total runtime cost of all the models across tasks. It is interesting to
see how close some of the switching models are to the most cost effective option– TSMs and least
cost-effective option– LLMs. We also show how the cost varies with time in Figure 5, Figure 6, and
Figure 7. As expected, TSMs are the most cost-effective approach given their cheap inference cost
compared to LLMs. HYN is the costliest model to run since it requires both TSM and LLM to be
run in the background. UBS is an interesting candidate that is cheaper than LLM-only but costlier
than TSM-only approach as seen in Figure 1 and across all the cost plots.
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Figure 6: Classification (Sentiment Analysis/Text): Number of FLOPs for each model measured
over time to study the cost of using each model.
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Figure 7: Regression (Time Series): Number of FLOPs for each model measured over time to study
the cost of using each model.

A.3 HOW DO LLMS MAKE MODEL-SELECTION DIFFERENT COMPARED TO ‘CLASSICAL
ML’?

LLMs have shown to be great at zero/few shot learning, where even with very small dataset, the
inference accuracy is high for many tasks. This is accomplished through a variety of methods
- for eg., prompting and ICL. On the other hand, when there is abundant task data available, it
has been shown that much cheaper specialized ‘classical ML’ models such as small neural-nets
have comparable or better accuracy than LLMs prompted using ICL and/or RAG Liu et al. (2024);
Tan et al. (2024). In other words, a larger model (such as LLM) is optimal for inference in the
small data regime and a smaller specialized model is optimal in the large data regime. This is a
reversal from conventional ML practice that in the small data regime smaller model-sizes yield better
generalization as they avoid over-fitting and in the large sample regime, more complex models yield
better generalization as they overcome the high bias problem of small models.

A.4 DISCUSSION OF OPEN RESEARCH PROBLEMS

As stated in Section 2, for the scope of this paper we consider the simplest non-trivial instance
of this problem. In this section we discuss the harder questions that will make the problem more
complicated and closer to real-life scenarios. Goal of this section is to raise important and interesting
open research questions that will intrigue researchers in this community to dive deeper in this space
of problems.

Q1. Unclear how to incorporate cost and accuracy in a single optimization function?: Figure
1 shows a summary of how various switching models perform on both performance and cost. How-
ever, when training these models we still use the performance-driven traditional objective function
like minimizing some kind of loss like MSE, cross-entropy, MAE, etc. In real-world customers al-
ways look at both cost and performance together when making business decision. This demands a
custom metric which can robustly put cost and performance on a single scale. Optimization algo-
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rithms that can consider both cost and performance while learning, and make trade-offs accordingly,
will tend to be far more superior than algorithms presented in our work so far.

How does this framework change when η > 1? In real-world customers rarely provide instant
feedback (i.e., η = 0 or 1). Usually the feedback is either delayed or absent making the learning
process hard. In this work we assume η = 1 which makes the problem simpler but how do these
learning algorithms translate to delayed feedback is an interesting question we leave for future work.

How does this framework change when β > 0? Another related question is the correctness of
feedback. We assume 100% correctness of feedback labels which is a rare scenario. In real world,
labels are not only absent but in many cases incorrect which could significantly impact the leaning
based switching models.

How does this framework change when Cswitch > 0? Switching methods like UBS, LGS and
HYN work well because they try to pick the best model for each sample in the arriving batch. This
works well on the performance scale but is reasonable on cost scale only if we assume Cswitch = 0,
i.e., we can easily switch between TSMs and LLMs as needed. In reality this may not always be
true as there might be infrastructure cost, delay, and other factors impacting the seamless transition
between two inference models.

How sensitive is this framework to varying user preferences (e.g., cost-sensitive vs
performance-driven?) Customers’ preferences are non-stationary. They can vary from requiring
the inference to be extremely performant (absolutely no tolerance for false positives and negatives)
to cost sensitive (high tolerance for false alarms). This could be driven by multiple factors like
nature of the task, market fluctuations, feature changes, or personal preferences. The switching al-
gorithms should be sensitive to such customer preferences and pick models that meet the customer
requirements on both performance and cost scales over time.

A.5 TECHNICAL CHALLENGES IN ALGORITHM DESIGN

The main challenge is that similar to prior works Xia et al. (2024b), the model selection problem is
an instance of the rising bandit problem. Roughly, the performance of a choice of a model at a given
time, depends on the number of past samples it was trained on. If a given model was selected to play
more in the past, then its average reward for the input at the given time is higher. This already poses
significant complexities to the standard explore-exploit trade-off as highlighted in Xia et al. (2024b)
and (Metelli et al., 2022).

In our setting, this challenge is exacerbated by the possibility of abrupt distribution changes. These
distribution changes implies that the average performance of a model at a given time is dependent
on the number of times the model was played in the past since the distribution shift, with higher
average performance, if a model was played more since the last distribution shift. This implies that
the ideal algorithm must be adaptive to not only the gradual changes that are occurring as models
are selected due to one-step gradient updates or addition of a small corpus of ICL examples, but
also be adaptive to distribution shifts that can make a large change in the average performance of
one or more models. Further, this adaptation needs to be done online without having predictable
information on when the change occurs.

A.6 ALGORITHMS

In this section we outline the pseudocode for the two learning based methods for switching models
at test-time.
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Algorithm 1 Hypernetwork (HYN)
1: Input:
2: Stream of input data Xi in a batch of size N at time t: {Xi

t}Ni=1

3: Stream of ground truth labels of the batch arriving at time t+ η: {Y i
t }Ni=1

4: Let η = 1 (time delay in arrival of labels)
5: Let f(·) and g(·) be the update functions for LLM and TSM respectively.
6: Initialize a pre-trained LLM MLLM (·) and an untrained TSM MTSM (·)
7: Initialize a binary classification model H(·) with parameters θ.
8: Let α be the learning rate and L(·) be a supervised cross entropy loss function.
9: for Time t = 1, 2, . . . do

10: // Obtain predictions from each model for the previous batch
11: MLLM ({Xi

t−1}Ni=1) = {Ŷ i
t,LLM}Ni=1

12: MTSM ({Xi
t−1}Ni=1) = {Ŷ i

t,TSM}Ni=1

13: Receive the true labels of previous batch at this time step, {Y i
t }Ni=1.

14: // Identify the correct model and build a training batch

15: Dt = {Xi, Zi}Ni=1 where Zi =
[
I(ŶLLM = Y i), I(ŶTSM = Y i)

]
16: // Train the hypernetwork
17: Compute a supervised loss L(θ) over training batch Dt

18: Update the model parameters θ ← θ − α∇θL(θ)
19: // Update both LLM and TSM
20: M∗

LLM = f(MLLM , {Xi
t−1, Y

i
t }Ni=1)

21: MLLM ←M∗
LLM

22: M∗
TSM = g(MTSM , {Xi

t−1, Y
i
t }Ni=1)

23: MTSM ←M∗
TSM

24: end for

Algorithm 2 Uncertainty based switching (UBS)
1: Input:
2: Stream of input data Xi in a batch of size N at time t: {Xi

t}Ni=1

3: Stream of ground truth labels of the batch arriving at time t+ η: {Y i
t }Ni=1

4: Let η = 1 (time delay in arrival of labels)
5: Let f(·) and g(·) be the update functions for LLM and TSM respectively.
6: Let Ht(·) be the decision function of TSM at time t, i.e., entropy of predicted distribution

for classification, or IQR for regression.
7: Let p̂it denote the prediction probability of a sample Xi at time t if the task is classification

and q̂it denote the predicted quantiles if the task is regression.
8: Let ϕ be the decision threshold, either on entropy score or IQR.
9: Let Dt(·) be the model chosen for inference at time t.

10: Initialize a pre-trained LLM MLLM (·) and an untrained TSM MTSM (·)
11: for Time t = 1, 2, . . . do
12: // For the current batch of samples, obtain either the

prediction probabilities or the quantiles from TSM
13: MTSM ({Xi

t}Ni=1) = {p̂it}Ni=1 or MTSM ({Xi
t}Ni=1) = {q̂it}Ni=1

14: if H({p̂it}Ni=1) < ϕ then
15: // Use TSM for inference
16: Dt ←MTSM

17: else
18: // Use LLM for inference
19: Dt ←MLLM

20: end if
21: // Update both LLM and TSM
22: M∗

LLM = f(MLLM , {Xi
t−1, Y

i
t }Ni=1)

23: MLLM ←M∗
LLM

24: M∗
TSM = g(MTSM , {Xi

t−1, Y
i
t }Ni=1)

25: MTSM ←M∗
TSM

26: end for
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