
Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

PREDICTING FLUID DYNAMICS IN PHYSICAL-
INFORMED MESH-REDUCED SPACE

Yeping Hu∗

Lawrence Livermore National Laboratory
Livermore, CA 94550, USA
hu25@llnl.gov

Bo Lei∗
Lawrence Livermore National Laboratory
Livermore, CA 94550, USA
lei4@llnl.gov

Victor M. Castillo
Lawrence Livermore National Laboratory
Livermore, CA 94550, USA
castillo3@llnl.gov

ABSTRACT

For computational fluid dynamics, there is a considerable interest in using neu-
ral networks for accelerating simulations. However, these learning-based mod-
els suffer from scalability issues when training on high-dimensional and high-
resolution simulation data generated for real-world applications. In this work,
we study the problem of improving accuracy of desired physical properties using
graph learning models for learning complex fluid dynamics, while operating on
mesh-reduced space. We design several tailored modules to incorporate physical-
informed knowledge into a two-stage prediction model, which directs the learning
process to focus more on the region of interest (ROI). Prediction will then be made
in a mesh-reduced space, which helps reduce computational costs while preserv-
ing important physical properties. Results on simulated unsteady fluid flow data
show that even under reduced operational space, our method still achieves desir-
able performance on accuracy and generalizability of both prediction and physical
consistency over region of interests.

1 INTRODUCTION

In industrial applications such as furnace and aerodynamic simulation, predicting physical dynamics
with Graph Neural Network (GNN) models has become an active and growing area of research in
machine learning due to their flexibility and power. However, the dynamic systems in these appli-
cations are often high-dimensional and require very fine meshes to resolve, resulting in significantly
larger computational costs. Moreover, as the mesh becomes finer, GNNs have to perform more
message passing steps to pass information along the same physical distance, which may result in
accuracy reduction caused by over-smoothing (Li et al., 2018) and over-squashing (Alon & Yahav,
2020). In fact, in many cases, simulating the entire dynamic system accurately may not be necessary,
as certain regions can be more important than others. For instance, in the steel manufacturing pro-
cess, the von Kármán flow (Zandbergen & Dijkstra, 1987) that occurs during steel casting operations
can cause many defects in the final product. Vortex formation is one of the fluid flow phenomena
that occur in the casting mold and is believed to contribute significantly to mold powder entrapment.
The entrapped flux may be carried deeply down into the mold by downward flows and results in
uncleanness of steel (He, 1993). Therefore, accurate simulation of the areas where vortex formation
occurs is more important than that of other regions. By focusing the learning process on the region
of interest (ROI), we can achieve better accuracy on important regions while reducing computational
costs by paying less attention to other areas. Our contributions of this paper are in three folds:
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the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL release number:
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Figure 1: The proposed two-stage training framework.

• We study the problem of improving accuracy of desired physical properties using graph
learning models for learning complex fluid dynamics (e.g. turbulence), while operating on
mesh-reduced space.

• We design tailored modules to incorporate physical-informed knowledge into a two-stage
training model for fluid dynamic forecasting.

• When evaluate on unsteady fluid flow prediction, our method achieves desired performance
on accuracy and generalizability of both prediction and physical consistency over ROI.

2 METHODS

Our proposed prediction system contains two training stages. A Mesh Graph Autoencoder will
first learned to incorporate physical-informed priors into the full mesh graph and summarize the
information into subgraph, forming representations of each time frame into a mesh-reduced space.
Then, a Graph Predictor will learn to predict subgraph evolution in the mesh-reduced space. We
denote an attributed graph with N nodes as a tuple G = (N , E). All fluid simulations in this work
use Eulerian systems to model the evolution of continuous fields, such as velocity, over a fixed mesh.
As a result, the graph remains fixed for each data across all time steps

2.1 PHYSICAL-INFORMED PRIOR (PIP) EXTRACTOR

The underlying physical prior incorporated in our graph learning system is rooted in the family of
vortex methods that are rigorously derived, analyzed, and tested in the computational fluid dynamics
(CFD) (Graftieaux et al. (2001); Leonard (1980)). In this work, we apply the vortex center identi-
fication algorithm to characterize the location of the center. Specifically, for any given node i in a
mesh graph Gt, we utilized a scalar function Γ to quantify the streamline topology of the flow in the
vicinity of node center Ci and the rotation sign of the vortex:

Γi,t =
1

L

L∑
l=1

sin θMl
=

1

L

L∑
l=1

⃗CiMl × vtMl

∥ ⃗CiMl∥ · ∥vtMl
∥
, (1)

where Ml is one of the evenly spaced L points on a circle centered at Ci with radius r. θMl
represents

the angle between the velocity vector vtMl
at time t and the radius vector ⃗CiMl. The velocity vtMl

at Ml is computed by spatial interpolation. The nodes with high |Γ| generally locate near vortices.
Here, Γ is a dimensionless scalar, with |Γ| ≤ 1. It can be shown that this bound is reached at the
vortex center if the vortex is axisymmetrical.

2.2 MESH GRAPH AUTOENCODER

The proposed Mesh Graph Autoencoder model (Gt → St → Ĝt), shown in Figure 1(a), consists
of a Physical-informed Prior (PiP) Extractor, two MeshGraphNet (MGN), a MeshGraphSelector
(MGS), and a MeshGraphReverser (MGR). After finishing training this module, a set of pivotal
nodes St with feature Zt will be obtained and further used as input for the next-stage Graph Predictor
(discussed in 2.3).
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The internal structure of MGN is an Encoder-Process-Decoder (EPD) network Pfaff et al. (2020).
After the original graph Gt passing through the first MGN module (denoted as f1

MGN ), the updated
graph along with the prior information obtained from the PiP extractor is fed into MGS. In the MGS
module (denoted as fMGS), it adaptively selects a subset of nodes based on k-largest values in Γt to
form a new but smaller graph. Eventually, the new graph will contain information from the mesh-
reduced space with a set of St ∈ N pivotal nodes. These pivotal nodes will preserve as much PiP
information as possible at each time step while ensuring consistency of the graph across time-steps.

The features of the pivotal nodes need to go through the MGR module (denoted as fMGR) to restore
information of full nodes from the original mesh graph. This step is implemented by spatial inter-
polation of the non-pivotal nodes. A commonly used approach is to use inverse distance weighted
(IDW) interpolation Alet et al. (2019); Han et al. (2022). However, as these pivotal nodes are irreg-
ularly spaced points and we will later construct triangular mesh graph using these pivotal nodes, we
instead use another spatial interpolation technique named by triangular interpolation network (TIN)
Wood et al. (1990); Vivoni et al. (2004). After reversed into its original form, the mesh graph will
be fed into a second MDN module (denoted as f2

MGN ) which will output a reconstructed graph Ĝt.
We then minimize the difference between the original graph Gt and the reconstruction graph Ĝt at
each time step through backpropagation.

2.3 GRAPH PREDICTOR IN MESH-REDUCED SPACE

The proposed Graph Predictor, shown in Figure 1(b), operates in mesh-reduced space, which con-
sists of a MeshGraphConnector (MGC) and a Dynamic Predictor. The MeshGraphConnector is
necessary to construct valid subgraphs with proper connectivity, while the Dynamic Predictor oper-
ates on these subgraphs to make time-series predictions.

As related edges are removed when removing nodes in MGS, the nodes in the selected graph might
become isolated. Therefore, we need to increase connectivity among nodes in the selected graph
through MGC. The connector function determines, for each pair of supernodes Sa, Sb, the presence
or absence of an edge between the corresponding nodes a and b in the pooled graph. The function
also computes the attributes to be assigned to new edges. There are many different connection
functions to choose from Grattarola et al. (2022) and we use Delaunay triangulation for its nearly
unique and optimal triangulation Watson & Philip (1984). For a set of points, the Delaunay criterion
ensures that a circle that passes through three points on any triangle contains no additional points.

After the training of Mesh Graph Autoencoder, we are able to obtain representative subgraphs for
every full graphs in the data. The Dynamic Predictor will then be trained to learn a function that
can predict Gt+1,St+1

from Gt,St
, where Gt,St

denotes a subgraph of Gt with a set of St ∈ N nodes
at time step t. The challenge here is that for unsteady or turbulent flow, pivotal nodes from PiP
extractor will vary across time and thus St ̸= St+1. Therefore, we need to find a way to make
the prediction. The first step within the Graph Predictor is to feed Gt,St into another MGN module
(denoted as f3

MGN ) to predict a subgraph at time t+1, denoted as Ĝt+1,St
which has a feature matrix

Zt+1,St with pivotal node set St at time step t + 1. Then, Ĝt+1,St is consecutively fed into fMGR

and f2
MGN to obtain a full graph Ĝt+1. Finally, to obtain the subgraph Ĝt+1,St+1

(with feature matrix
Zt+1,St+1

) that has pivotal node set St+1 at time step t+ 1, Ĝt+1 is sequentially passed into f1
MGN

and fMGS . To train the dynamic predictor module, we minimize the difference between Ĝt+1 and
the Gt+1 at each time step through backpropagation.

3 EXPERIMENT

To generate our simulation data, we use a numerical solver with Navier-Stokes equations on fixed 2D
Eulerian meshes. Specifically, two dataset are generated: Lid-driven Cavity Flow dataset simulates
the flow inside a cavity with a moving top wall; Cylinder Flow dataset simulates the flow around
a cylinder inside a tunnel. To make the dataset more challenging and to futher test generalizability
of our model, we generate data with irregular cavity shape and with more than one cylinder in the
tunnel. Additional dataset details and visualizations are available in Appendix B.
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Figure 2: (a) Simulation results comparison of different methods tested on a cylinder flow data at
t = 100. In the first row, pivotal nodes used in the mesh-reduced space are colored in red. (b)
Generalization results of our method on unseen two-cylinder test cases at t = 200. For both plots, on
their third row, red ’X’ marks denote vortices detected from the actual data, while blue dots denote
vortices detected from predicted velocity fields.

We compare the performance of our approach with a baseline method GMR GMUS Han et al.
(2022) which also aims to reduce computational cost by learning a low-dimensional mesh graph.
Different from our approach, they used random sampling to construct subgraphs and did not take
physical-informed priors into account. In this section, we visually illustrate performance of our
method on accuracy and generalizability of both prediction and physical consistency over ROI.
Details on model parameter selection, in-depth quantitative analysis, and other experiment results
are available in Appendix C.

The prediction results for a selected case are visualized for our model, GMR GMUS, and a full
graph (FG) predictor in Figure 2(a). The first and second row of the figure show the mesh color
representing the magnitude of Vx, while the third row shows the magnitude of the difference between
the predicted and ground truth values. According to the results, the PiP-selected nodes of our model
are located near the cylinder and the area to the right, where vortices commonly appear, while
randomly selected nodes in GMR GMUS do not attend to this region. The prediction results of our
model are visually close to the ground-truth and the FG prediction, showing a clear sign of unsteady
flow past the cylinder. On the other hand, GMR GMUS’s prediction shows a steady flow, which is
incorrect. In the third row, we can observe that the detected vortices from the ground truth and our
model’s prediction are located close to each other, while the vortex detection from GMR GMUS’s
prediction is a failure.

We further investigate the generalizability of our model using unseen test cases with two cylinders.
Figure 2(b) shows two different placements of the cylinders, one vertical and the other horizontal.
As expected, the overall performance of our model decreases on these new cases, but it is still able to
produce reasonable velocity predictions. Most importantly, the detected vortices from the ground-
truth and our model predictions still appear close to each other. If we take a closer look at the third
row in Figure 2(b), the absolute prediction errors of our model are small around ROI.

4 CONCLUSION

In this work, we study the problem of improving accuracy of desired physical properties using graph
learning models for learning complex fluid dynamics, while operating on mesh-reduced space. A
two-stage graph-based model is proposed, which utilizes physical-informed prior information to
learn and predict physical dynamics in a reduced mesh space. We generate challenging unsteady
fluid flow data to test and evaluate the performance of our model. Results show that the proposed
model is able to accurately detect important physical properties, such as vortex locations, more
effectively than other baseline methods, even with reduced mesh space. Additionally, the model
demonstrates great generalizability, as it is able to accurately predict flow in out-of-distribution
cases. While the overall prediction accuracy of the proposed model may not be as high as models
trained using the entire mesh, the trade-off in computational cost reduction and the improvement of
prediction accuracy around regions of interest makes the proposed method a useful tool in real-world
applications where high-dimensional data cannot be trained using full domain information.
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A RELATED WORKS

The rapid emergence of machine learning techniques is creating new opportunities for solving iden-
tification problems of physical systems by statistically exploring their underlying structures. These
techniques have found applications in various areas of physical systems, including quantum physics
Sellier et al. (2019), thermodynamics Hernández et al. (2021), material science Teichert et al. (2019),
rigid body control Geng et al. (2020), Lagrangian systems Cranmer et al. (2020), and Hamiltonian
systems Greydanus et al. (2019). Specifically, in the field of fluid mechanics, machine learning of-
fers a wealth of techniques to extract information from data that could be translated into knowledge
about the underlying fluid field, as well as exhibits its ability to augment domain knowledge and
automate tasks related to flow control and optimization Brunton et al. (2020); Holl et al. (2020).

Particular for computational fluid dynamics, there is a considerable interest in using neural networks
for accelerating simulations of aerodynamics Bhatnagar et al. (2019) or turbulent flows Kochkov
et al. (2021). Tasks such as airfoil design Thuerey et al. (2020), weather prediction Rasp & Thuerey
(2021), and graphic visualizations for Um et al. (2018) take the advantages of these fast predictions
and differentiable learned models. While many of these methods use convolutional networks on
2D grids, recently GNN-based learned simulators, in particular, have shown to be a very flexible
approach, which can model a wide range of systems, from articulated dynamics Sanchez-Gonzalez
et al. (2018) to dynamics of particle systems Sanchez-Gonzalez et al. (2020). However, as men-
tioned earlier, the scalability of GNNs to high-dimensional and high-resolution simulations remains
a challenge. A recent approach proposed by Fortunato et.al. Fortunato et al. (2022) proposed a possi-
ble solution by learned a mapping function from high-dimensional to low-dimensional mesh graph.
However, to train the mapping function, it needs to have mesh data in two different dimensionalities,
which may not always be available. Another potential approach is to learn a low-dimentional mesh
graph that can best represent the full mesh graph Gao & Ji (2019); Alsentzer et al. (2020); Grattarola
et al. (2022); Han et al. (2022). However, these methods are either limited to graph classification
tasks or lack guarantees that the subgraph captures desirable properties.

Recently, there has been a surge of research aimed at effectively learning fluid dynamics by inte-
grating physical priors into the learning framework. Examples include encoding the Navier-Stokes
equations Raissi & Karniadakis (2018), incorporating the concept of an incompressible fluid Mo-
han et al. (2020), and establishing a correspondence between the dynamics of wave-based physical
phenomena and the computation in a recurrent neural network (RNN) Hughes et al. (2019). Most
of these approaches fall under the category of Physics-Informed Neural Networks (PINN). How-
ever, this type of method often faces convergence issues Rohrhofer et al. (2022) and requires careful
design of network architectures.

In this work, we aim to tackle fluid dynamic prediction challenges by integrating two powerful tech-
niques, namely subgraph networks and physics-informed learning. Our proposed graph-based model
employs physical-informed prior knowledge to learn subgraphs that exist only in mesh-reduced
space. This not only leads to significant reductions in computational expenses but also maintains
crucial physical information, thereby achieving the best of both worlds.

B DATASET DETAILS

We use OpenFOAM solver to generate our simulation data. The governing equations for incom-
pressible flows, namely the continuity and momentum equations, are numerically solved using an
unstructured cell-centered collocated grid finite volume method. Integrated over a small control
volume, which in this case is a triangular cell of the mesh, the equations are written as:

∇ · u = 0,
∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u, (2)

where u is the flow velocity, ρ is the (mass) density, ν is the kinematic viscosity, and p is the pressure.

B.1 LID-DRIVEN CAVITY FLOW

This dataset simulates the flow inside a cavity on a fixed 2D Eulerian mesh, where the top wall
moves in the x direction at a constant speed. The dataset consists of three node types: fluid nodes,
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(a) Lid-driven cavity flow

(b) Cylinder flow

Figure 3: Illustration of velocity fields (streamlines are colored in white) of two fluid dataset and
corresponding physical-informed priors (selected pivotal nodes are colored in black)

side wall nodes, and top wall nodes. A typical lid-driven cavity problem assumes a rectangular
cavity. We let the height of the cavity vary between 0.5 to 4, while the cavity width remain constant
at 1. In order to make the dataset more challenging, a notch is added to the bottom right corner of the
cavity resulting in an irregular shaped cavity. The dimensions of the indented notch vary between
0 and 0.8 for both width and height. When both the width and height of the notch are 0, the cavity
takes on a regular rectangular shape. The Reynolds number varies between 209 to 2000. The dataset
includes 1497 data points recorded at steady state. Figure 3(a) illustrates velocity fields of one of
the data and the corresponding physical-informed prior values.

B.2 CYLINDER FLOW

This dataset simulates the flow around a cylinder on a fixed 2D Eulerian mesh. In all fluid domains,
the node type distinguishes fluid nodes, wall nodes and inflow/outflow boundary nodes. The inlet
boundary conditions are given by a prescribed parabolic profile, uin = u0[1 − 4(y/H)] where u0

and H are the centerline velocity and the distance between the sidewalls, respectively. The simula-
tions were generated for various Reynolds numbers (Re), centerline inflow velocity, and diameter
(D) of the cylinder. The Re values ranged from 45 to 250, while the H/D values ranged from 2
to 8. The dataset consists of 1000 training data, 100 validation data, and 100 testing data, each
containing 60 time steps sampled at ∆t = 0.05 and 300 time steps sampled at ∆t = 0.01. To test
the generalizability of the model, 35 additional testing data were generated, each containing two
cylinders randomly placed in the domain. Figure 3(b) illustrates velocity fields of one of the data
and the corresponding physical-informed prior values.

C EXPERIMENT DETAILS

C.1 EVALUATION METRICS

To quantitatively evaluate the performance of the autoencoder and predictor models, we compute
the root mean squared error (RMSE) of the velocities in two directions. To further assess the perfor-
mance on vortex detection, we define two metrics: vortex detection rate (VDR) and mean distance
to detected vortices (MDDV). To compute these two metrics, we need to first identify the location of
the vortices in both the ground truth and the reconstruction/prediction velocity field. We use linear
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spatial interpolation to compute the velocities in a 1000× 1000 grid and find the location of the vor-
tices on the grid (using the method describe in Holmén (2012)). For a vortex pi in the ground truth,
it is detected if there is a vortex qj found in the predicted velocity field within a distance threshold
d. The detection indicator for pi is:

DIi = 1{min(di0, ..., diQ) ≤ d}. (3)

Denote the number of vortices in ground truth and prediction as P and Q, the distance between
vortex pi and qj as dij . The metrics are defined as:

VDR@d =

∑P
i=1 DIi
P

MDDV@d =

P∑
i=1

DIi ·min(di0, ..., diQ)

(4)

For cylinder flow data, the region of interest (ROI) is the area surrounding the cylinder and to the
right of the cylinder. We define a ROI box that contains this area. Given cylinder center c and
radius r, the top left and bottom right corners of the box are (cx − r − 0.05, cy + r + 0.05) and
(cx + r + 0.45, cy − r − 0.05). For both reconstruction and dynamics prediction, we calculate the
RMSE, VDR and MDDV within the ROI box as well as the global RMSE.

C.2 RECONSTRUCTION VIA SUBGRAPH

Mesh graph autoencoders are trained on both datasets with the aim of summarizing the full mesh
graph into a subgraph. The MLPs in the MGNs consisted of two hidden layers and an output size
of 128, except for the output layers of the MGNs. The output dimension for the first MGN is 4,
indicating that each node in the subgraph is represented by a 4-dimensional vector. For the second
MGN, the output dimension corresponds to the prediction dimension.

C.2.1 LID-DRIVEN CAVITY FLOW

For lid-driven cavity flow, we trained 150K steps with an exponential decay of learning rate from
10−4 to 10−6 over the last 100K steps. Since the number of nodes varies from case to case, we do
not fix the number of subgraph nodes and use half of the total nodes in the original mesh graph. We
use a threshold d = 0.001 to compute VDR and MVVD.

The reconstruction results are listed in Table 1. Our model outperforms GMR GMUS in all evalua-
tion metrics when IDW interpolation is used. The use of TIN interpolation improves the results sig-
nificantly by reducing RMSE by over 30%. Although our model’s global RMSE is marginally worse
than GMR GMUS, it has a notable advantage in vortex-related metrics, with 11% improvement in
VDR and 26% reduction in MDDV. This suggests that our model produces better reconstruction
results near vortices, an area that a random node selector would neglect. Figure 4 illustrates the
reconstruction results of two cases from the lid-driven cavity flow test data. In case (a), the fluid
flow in the top right corner is confined by a narrow simulation wall and the change of flow direction
is abrupt. Our model is successful in handing this case and identifying the vortex. There is another
vortex in the bottom low-velocity region and our model can also accurately detect it. In case (b),
although the cavity height is deeper and two more vortices appear in the bottom region, our model
can still reconstruct the case accurately and locate all vertices.

C.2.2 CYLINDER FLOW

For cylinder flow, we trained 600K steps with an exponential decay of learning rate from 10−4 to
10−6 over the last 400K steps. We fix the number of subgraph nodes to be 512. We report both the
global RMSE and the RMSE within the ROI box. We use a threshold d = 0.001 to compute VDR.
The MDDV is not reported because the value is 0 for all cases listed in the table.

The reconstruction results are listed in Table 2. Our model outperforms GMR GMUS with a reduc-
tion of approximately 26% in global RMSE, 55% in ROI RMSE, and an 81% improvement in VDR
when IDW interpolation is employed. The model performs better in the vortex regions in compar-
ison to the lid-driven cavity flow cases as cylinder flow involves a much larger simulation system
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where a random node selector will sample proportionally fewer nodes in vortex regions. Therefore,
the results demonstrate that PiP extractor is better suited for large simulation systems with relatively
small ROI regions. We also observe an improvement in both global RMSE and ROI RMSE when
TIN interpolation is applied. The VDR score is less sensitive to the interpolation method. We also
test the methods with varying simulation time step ∆t and a similar trend is observed. With TIN
interpolation and ∆t = 0.01, our model yields a 20% reduction in global RMSE, 49% reduction in
ROI RMSE, and a 59% increase in VDR. The high performance of our model in ROI demonstrates
that PiP extractor is effective in selecting pivotal nodes for summarizing the whole mesh graph with
an adaptive concentration on vortex regions.

(b)

(a)

Ours Truth Difference

Figure 4: Simulation results of our method tested on lid-driven cavity flow dataset. Vortex centers
are extract from velocity fields, which are color in green and red to denote predicted and ground-
truth, respectively.

Table 1: Reconstruction results for Lid-driven Cavity Flow dataset.

global RMSE
(x10−3)

VDR
@0.001 ↑

MDDV
@0.001 ↓
(x10−3)

Vx Vy

GMR GMUS(IDW) 2.19 0.96 0.61 0.23
GMR GMUS(TIN) 1.23 0.68 0.65 0.19

Ours(IDW) 1.82 1.00 0.65 0.18
Ours(TIN) 1.26 0.70 0.72 0.14

Table 2: Reconstruction results for Cylinder Flow dataset.
∆t
(s)

global RMSE
(x10−3)

ROI RMSE
(x10−3)

VDR
@0.001 ↑

Vx Vy Vx Vy

GMR GMUS
(IDW) 0.05 4.7 2.2 8.5 4.3 0.48

GMR GMUS
(TIN)

0.05 4.3 2.1 7.8 4.0 0.49
0.01 4.1 1.9 7.5 3.7 0.53

Ours (IDW) 0.05 3.8 1.5 4.4 1.7 0.87

Ours (TIN) 0.05 3.5 1.4 4.0 1.6 0.86
0.01 3.5 1.4 4.2 1.7 0.84
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Table 3: Dynamics prediction results for 300-step rollout with ∆t = 0.01 tested in Cylinder Flow
dataset.

N node global RMSE
(x10−3)

ROI RMSE
(x10−3)

VDR
@0.02 ↑

MDDV
@0.02 ↓ (x10−3)

Vx Vy Vx Vy
FG ∼1885 75.3 42.1 98.1 76.0 0.56 8.7

GMR GMUS 512 125.9 57.5 216.1 100.6 0.38 10.2
Ours 512 114.9 60.2 183.5 114.4 0.46 9.8

C.3 TIME-SERIES PREDICTION

To learn the flow dynamic predictor in mesh-reduced space, we use the trained autoencoder to gen-
erate ground truth data pairs (Zt,St , Zt+1,St ). The autoencoders we used are the ones with t = 0.01
and TIN interpolation. The dynamics predictor is a separate MGN with input and output dimension
being 4. The MLPs in the MGN has two hidden layers with output size of 128. Since the subgraph
has a reduced size compared to the full mesh graph, we use only 8 message passing steps in the
MGN instead of 15. The predictor is trained for 3M steps with the learning rate decaying from
10−4 to 10−5 in the last 2M steps. Since dynamics prediction is substantially more difficult than
reconstruction, we use a larger threshold d = 0.02 to compute VDR and MDDV.

The results of the 300-step rollout are presented in Table 3. Our PiP extractor model produces
superior performance in comparison to GMR GMUS with a random extractor, with a reduction
of 8.7% in global RMSE and 15.1% in ROI RMSE for Vx. In spite of the limited improvement
in RMSE, our model demonstrates a remarkable 21% enhancement in VDR, indicating that the
predicted velocity field by our model is more efficient in identifying vortices. Additionally, we
compare our model with a full graph (FG) dynamics predictor, which is a simple MGN. With a 73%
decrease in the number of nodes, our predictor only falls 10% behind of the FG model. Although
FG achieves a significantly lower velocity RMSE, it is mostly accurate in less important regions and
it is not efficient for very large system

Figure 5 depicts the prediction rollouts for two different scenarios of our model in comparison to
the ground truth, where our model demonstrates accurate and stable rollout predictions. The color
of the mesh indicates the magnitude of Vx, and the red dots signify the selected pivotal nodes.
In case (a), the cylinder is large and the flow becomes unsteady, resulting in the vortex shedding
phenomenon where alternating vortices are created. Our model successfully learns the dynamics
and correctly predicts the beginning and the periodic progression of vortex shedding. In case (b),
where the cylinder is small, the flow is laminar and steady, and our model can generate predictions
that resemble the ground truth. For both cases, we observe that the pivotal nodes adapt to the change
in the velocity field and consistently locate near the cylinder ROI region. This targeted and adaptive
design makes our model superior for vortex prediction.

t = 0 t = 10 t = 50 t = 200

(a)

(b)
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Figure 5: Velocity field simulation results of our method versus ground truth tested on Cylinder
Flow dataset. Pivotal nodes used in the mesh-reduced space are colored in red at each time step. Our
model extracts informative nodes at each time step and accurately predicts long rollout sequences
under different design parameters.
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