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Abstract

The field of computer vision has experienced a paradigm shift with the emergence of general-
purpose foundation models, which exhibit strong generalization capabilities across a wide
range of tasks. However, their applicability to specialized medical imaging tasks, partic-
ularly cardiac MRI reconstruction, remains underexplored. In this work, we investigate
the transferability of state-of-the-art vision foundation models like CLIP and DINOv2 for
cardiac MRI reconstruction. We propose a novel framework that leverages frozen vision
foundation models as image encoders, combined with a UNETR-based trainable decoder.
We validate our framework on the CMRxRecon2024 dataset, demonstrating improved per-
formance over the traditional state-of-the-art U-Net under acceleration factor (×4), despite
relying on frozen natural-domain foundation model and significantly fewer trainable param-
eters. Authors will disclose the code upon acceptance.
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1. Introduction

Cardiac magnetic resonance (CMR) imaging, including multi-contrast techniques, is a vi-
tal clinical tool for comprehensive evaluation of cardiovascular diseases, offering detailed
insights into cardiac structure and function. However, acquiring high-quality CMR images
often involves lengthy scan durations, causing patient discomfort and motion artifacts that
hinder reconstruction. Multi-contrast reconstruction from undersampled k-space further
challenges the preservation of contrast-specific structural details (Xu et al., 2024).

Medical image reconstruction has seen significant progress through deep learning, par-
ticularly with convolutional neural networks (CNNs), especially U-Net-based architectures
(Ronneberger et al., 2015; Lyu et al., 2025). However, these methods typically require ex-
tensive selection and tuning of hyperparameters and often fall short in preserving fine details
or generalizing across diverse contrast types, limiting their adaptability in multi-contrast
CMR reconstruction (Knoll et al., 2020).
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Recently, vision foundation models trained on large-scale datasets have attracted con-
siderable interest for their strong generalization and zero-shot capabilities across diverse
tasks (Bommasani et al., 2021; Huix et al., 2024). Despite this progress, their potential for
CMR reconstruction remains largely unexplored. In this work, we take a first step towards
exploring the potential of vision foundation models for CMR reconstruction. Our contri-
butions are: (1) To the best of our knowledge, this is the first study to investigate the
use of vision foundation models, such as CLIP and DINOv2, for CMR reconstruction, ex-
ploring their transferability to this task; (2) We propose a novel reconstruction framework
that fuses multi-level features from frozen image encoder of the foundation models using
a trainable MLP and a UNETR-based decoder, complemented by a lightweight convolu-
tional stem to enrich with domain-specific local feature details. (3) We evaluate CLIP and
DINOv2 for CMR reconstruction on the CMRxRecon2024 dataset using NMSE, PSNR,
and SSIM, comparing them against BiomedCLIP—a medical domain-specific model—and
a U-Net trained from scratch.

Figure 1: The architecture of proposed framework with frozen CLIP image encoder.

2. Method

Our framework, depicted in Figure 1, leverages a frozen CLIP (Radford et al., 2021) im-
age encoder based on the ViT-B/16. To capture scale information effectively, we extract
multi-level features from the image encoder’s layers and concatenate them along the hidden
dimension. These concatenated features are normalized using LayerNorm (Ba et al., 2016;
Cai et al., 2024) for training stability and then processed through a trainable MLP layer.
Additionally, we include a lightweight convolutional block (Qin et al., 2024) with three 3×3
convolutional layers, each followed by batch normalization and ReLU activation, to capture
more local details. The outputs of this block are added as skip connections to the trainable
UNETR-based decoder (Hatamizadeh et al., 2022), which integrates them to reconstruct
images.
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3. Experimental Results

We use the multi-contrast k-space data from the CMRxRecon2024 (Wang et al., 2025) chal-
lenge, including Cine, Aorta, Tagging, and Mapping contrasts, with 200 training samples
split into 70% training, 10% validation, and 20% testing. Reconstruction performance is
evaluated under acceleration factors AF (×4,×8,×10). In our experiments, we minimize
SSIM loss between the target and reconstructed images. The input images have a resolution
of 224× 224, and a batch size of 8. Models are trained using the AdamW optimizer with a
weight decay of 0.01 and an initial learning rate of 2× 10−4 on a GTX 4090 GPU.

The experimental results in Table 1, show that our CLIP-based framework outperforms
the U-Net model trained from scratch at an AF of (×4), achieving a PSNR of 28.87 dB,
and remains competitive across higher acceleration factors. Notably, CLIP surpasses both
DINOv2 (Oquab et al., 2023) and the domain-specific BiomedCLIP (Zhang et al., 2023)
model in overall performance. The trainable parameters for the models investigated are as
follows: CLIP (20.87M), DINOv2 (20.92M), BiomedCLIP (20.87M) and U-Net (31.04M).

Table 1: Experimental Results on CMRxRecon2024 dataset

Model (×4) (×8) (×10)
SSIM ↑ PSNR ↑ NMSE ↓ SSIM ↑ PSNR ↑ NMSE ↓ SSIM ↑ PSNR ↑ NMSE ↓

CLIP ViT-B/16 0.8760 28.8750 0.0363 0.8259 26.8198 0.0576 0.8118 26.3439 0.0641
DINOv2 ViT-B/14 0.8720 27.8272 0.0467 0.8243 26.7226 0.0595 0.8105 26.1954 0.0677
BiomedCLIP ViT-B/16 0.8694 28.1403 0.0439 0.8224 26.6565 0.0611 0.8061 25.9521 0.0713
U-Net 0.8810 28.7364 0.0371 0.8357 27.1537 0.0534 0.8224 26.5216 0.0609

Figure 2: Reconstruction results and error maps for AF (×4), highlighting lower errors by
the CLIP-based framework over U-Net and BiomedCLIP.

4. Conclusion

In this work, we explored the applicability of frozen vision foundation models, such as CLIP
and DINOv2, for CMR reconstruction. While improvements—such as domain-specific fine-
tuning are needed to fully optimize their performance, our findings underscore the promising
potential of repurposing natural image foundation models for CMR reconstruction.
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