
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARN TO MEMORIZE: OPTIMIZING LLM-BASED
AGENTS WITH ADAPTIVE MEMORY FRAMEWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

LLM-based agents have been extensively applied across various domains, where
memory stands out as one of their most essential capabilities. Previous memory
mechanisms of LLM-based agents are manually predefined by human experts,
leading to higher labor costs and suboptimal performance. In addition, these meth-
ods overlook the memory cycle effect in interactive scenarios, which is critical to
optimizing LLM-based agents for specific environments. To address these chal-
lenges, in this paper, we propose to optimize LLM-based agents with an adaptive
and data-driven memory framework by modeling memory cycles. Specifically, we
design an MoE gate function to facilitate memory retrieval, propose a learnable
aggregation process to improve memory utilization, and develop task-specific re-
flection to adapt memory storage. Our memory framework empowers LLM-based
agents to learn how to memorize information effectively in specific environments,
with both off-policy and on-policy optimization. In order to evaluate the effec-
tiveness of our proposed methods, we conduct comprehensive experiments across
multiple aspects. To benefit the research community, we release our project at
https://anonymous.4open.science/r/learn_to_memorize.

1 INTRODUCTION

Large language model (LLM) based agents have been widely applied in various fields (Wang et al.,
2024; Xi et al., 2025; Guo et al., 2024), such as finance (Ding et al., 2024), recommender sys-
tems (Zhang et al., 2025a), and personal assistants (Li et al., 2024). During the interaction with
environments, agents are supposed to perceive and memorize observations to support subsequent
decision-making processes. These memories are crucial for maintaining the consistency of contex-
tual interactions, and providing necessary information to facilitate reasoning under the current envi-
ronment (Zhang et al., 2024a). Previous studies have proposed various methods to construct memory
of LLM-based agents. These methods primarily rely on retrieval-augmented generation (RAG) (Gao
et al., 2023) to acquire relevant information about the current states for in-context learning (Dong
et al., 2022; Zhong et al., 2024). Recent approaches also explore transforming observations into
modifications of model parameters to implement memories (Yang et al., 2024).

However, there are two significant limitations in previous studies. First of all, most of these methods
are manually predefined by human experts, lacking a data-driven optimization process. For instance,
Park et al. (2023) introduce a retrieval function by considering different aspects of memories. How-
ever, it assigns weights to these aspects manually. Similarly, MemoryBank (Zhong et al., 2024)
summarizes critical information from observations before storage, yet it relies on fixed and intuitive
prompts. In such cases, human experts need to try numerous parameters for better performance,
resulting in increased labor costs and suboptimal performance, as demonstrated in Figure 1(a).

Moreover, previous studies have largely overlooked the memory cycle effect, as illustrated in Fig-
ure 1(b), which highlights a significant difference between vanilla LLMs and LLM-based agents.
For vanilla LLMs, due to the lack of feedback from environments, they fail to establish a cycle
between memory storage and utilization. In contrast, LLM-based agents store observations from en-
vironments as memories, in order to support the subsequent reasoning to take actions. These actions
will further influence the states of environments, resulting in new feedback as observations that will
be stored in the next cycle. From this perspective, the policies of memory storage and utilization
mutually influence each other during agent-environment interactions. Therefore, learning either of
them in isolation may lead to suboptimal performance due to neglecting the memory cycle effect.

1

https://anonymous.4open.science/r/learn_to_memorize

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Manual vs. Data-driven Memory Design (b) Memory Cycle Effect

Memory Retrieval

Memory Storage

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝛼𝛼 ⋅ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛽𝛽 ⋅ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛾𝛾 ⋅ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
[Short-term Task]

[Long-term Task]
𝛼𝛼(↑) 𝛽𝛽(~) 𝛾𝛾(↑↑)

𝛼𝛼(↑↑) 𝛽𝛽(↑) 𝛾𝛾(~)
[Other Tasks]
𝛼𝛼(?) 𝛽𝛽(?) 𝛾𝛾(?)

𝛼𝛼(1.0) 𝛽𝛽(1.0) 𝛾𝛾(1.0) 𝛼𝛼(1.42) 𝛽𝛽(0.41) 𝛾𝛾(1.34)

Expert Manual Design
(e.g., Relevance matters.)

Higher Cost.

Sub-optimal.

Data-driven Optimization
(e.g., According to reward.)

Lower Cost.

Gradient Optimization.

User: Yesterday was my birthday. I ate the cake brought by Bob and was moved to tears.
[Personal Assistant Task]
User: Yesterday was my birthday. I ate the
cake brought by Bob and was moved to tears.
[Emotional Companion Task]
User: Yesterday was my birthday. I ate the
cake brought by Bob and was moved to tears.

Expert Manual Design
Based on experiences, factual information
should be extracted from raw observations.

Data-driven Optimization
Focus on factual information. [Reward ↑]
Focus on emotional information. [Reward ↓]

Agent EnvironmentMemory

Storage

Retrieval Utilization

Action

Observation

Retrieved
Memory

Memory Cycle

User: Yesterday was my birthday.
I ate the cake brought by Bob
and was moved to tears.

Raw Observation (Step 1)

...... [previous memories] …...
Yesterday, Alice was moved
to tears by Bob because his
cake.

Extracted Memory (Step 1)

...... [other memories] …...
Yesterday, Alice was moved to
tears by Bob because his cake.

Retrieved Memory (Step 1)
Yesterday, Alice stayed along during
the day, but she was moved to tears by
Bob because his cake at night.

Utilized Memory Context (Step 1)

Assistant: Loneliness is temporary,
while the warmth of friendship is
truly precious. I wish you happy.

Agent Action (Step 1)

User: Thank you for your warm-
hearted comfort. I will also cherish
this friendship with Bob.

Raw Observation (Step 2)

Observation: Alice is sad because she broke up.

Storage

Retrieval

Utilization

LLM Inference

State Update

Figure 1: (a) In memory retrieval, the optimal weights for different aspects vary across different
tasks. Similarly, in memory storage, the attention of information storage is task-dependent. How-
ever, manual model adaptation by human experts results in higher labor costs and suboptimal perfor-
mance. (b) We demonstrate the memory cycle during interactions between agents and environments.

In this paper, we propose an adaptive memory framework that can be optimized with a data-driven
approach. This framework formulates a memory cycle that consists of retrieval, utilization, and
storage. Specifically, we design a Mixture-of-Expert (MoE) gate function across multiple aspects
to implement adaptive combination for retrieval. We implement prompt optimization through task-
specific reflection to adjust the extraction focus for storage. We propose a learnable aggregation
process to better utilize retrieved memories, which is aligned by direct preference optimization
(DPO) (Rafailov et al., 2023). In addition, to optimize our framework based on the training data,
we propose off-policy and on-policy optimization strategies considering the memory cycle effect.
Finally, we conduct extensive experiments to verify the effectiveness of our framework. To benefit
the research community, we release our code on Github Repository1.

Our primary contributions can be summarized as follows:
•We propose an adaptive and data-driven memory framework that empowers LLM-based agents to
learn to memorize, with optimizable memory retrieval, utilization, and storage procedures.
• We formulate the memory cycle effect during agent-environment interactions, and propose off-
policy and on-policy optimization strategies for our memory framework.
• We conduct comprehensive experiments to demonstrate the effectiveness of our framework in
improving the performance of LLM-based agents when interacting with environments.

2 RELATED WORKS

2.1 REINFORCEMENT LEARNING BASED AGENTS

Reinforcement learning (RL) primarily studies how agents can optimize their actions within an en-
vironment to maximize cumulative rewards (Sutton et al., 1998). Unlike supervised learning, RL
emphasizes learning by interacting with environments rather than relying on labeled data. Specifi-
cally, an RL-based agent makes decisions, receives feedback, and adjusts its strategy based on the
results of its actions. The target is to establish a mapping from states to actions to maximize their
rewards. Previous research has extensively explored optimizing RL-based agents, using methods
such as Policy Gradient (Sutton et al., 1999), DQN (Mnih et al., 2013), Actor-Critic (Konda and
Tsitsiklis, 1999), and DDPG (Lillicrap et al., 2015). These approaches typically construct cross-trial
experiences through neural networks or tabular methods by exploration and exploitation.

2.2 LARGE LANGUAGE MODEL BASED AGENTS

With the rapid development of LLMs, building agents based on LLMs has emerged as a promising
field of research (Wang et al., 2024; Xi et al., 2025; Guo et al., 2024). These LLM-based agents
have recently found extensive applications in various domains, including finance (Ding et al., 2024),
social simulation (Gao et al., 2024), and personal assistants (Li et al., 2024). For instance, Gen-
erative Agents (Park et al., 2023) aim to simulate human daily activities with LLM-based agents.

1https://anonymous.4open.science/r/learn_to_memorize

2

https://anonymous.4open.science/r/learn_to_memorize

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Although they commonly have different architectures (Xi et al., 2025), most of them incorporate
reasoning (Huang et al., 2024a), memory (Zhang et al., 2024a), and action modules. Similar to
RL-based agents, they also interact with environments by receiving observations, making decisions,
and taking actions. However, due to their extensive pretraining, LLM-based agents have more prior
world knowledge, which enhances their generalization capabilities.

2.3 MEMORY OF LARGE LANGUAGE MODEL BASED AGENTS

For LLM-based agents, memory is one of the most critical capabilities for interacting with environ-
ments, as it maintains contextual consistency and supports inferences made by LLMs (Zhang et al.,
2024a). Previous studies primarily employ in-context learning to implement memories (Park et al.,
2023; Zhong et al., 2024). They commonly utilize RAG methods to retrieve relevant information
about the current states and incorporate it into prompts (Gao et al., 2023). For example, Memory-
Bank (Zhong et al., 2024) implements a hierarchical memory structure with textual summarization
and forgetting mechanisms. MemTree (Rezazadeh et al., 2024) proposes a tree-structured memory
framework that dynamically updates memory storage. However, they still require human experts to
manually design for specific applications, and they overlook the memory cycle effect during inter-
actions. These limitations result in increased labor costs and suboptimal performance.

3 METHODS

3.1 PRELIMINARY: MEMORY CYCLE EFFECT

Before proposing our adaptive memory framework, we explicitly formulate the memory cycle, as
illustrated in Figure 2(a). We model the continuous interactions between agents and environments as
a Markov Decision Process (MDP) (Sutton et al., 1998). Specifically, we denote the state transition
distribution of an environment as penv(·|st, at), where st and at represent the state and action at step
t. We employ the reward function r(st, at) to reflect the achievement of tasks. We denote the agent’s
policy as πagent(·|st, θ), where the next action is determined by the current state st with parameter θ.
For LLM-based agents, their policies are typically implemented with memory contexts to construct
prompts for LLMs. During the interaction process, at each step t, the agent perceives the current state
st, and selects an action by at ∼ πagent(·|st, θ). Then, the state is updated by st+1 ∼ penv(·|st, at),
obtaining the reward r(st, at). The objective is to maximize cumulative reward.

The memory cycle effect in agent-environment interactions can be further formulated into a frame-
work with three consecutive procedures as demonstrated in Figure 2(b), including memory storage
S(θs; ·), retrieval R(θr; ·), and utilization U(θu; ·). Here, we use θ = {θs, θr, θu} to emphasize
their model parameters. First, the agent observes the current state st and stores it into the storage
M t, where M t = S(θs;M

t−1, st). Then, the agent retrieves a ranked subset of the current storage
by M t

rank = R(θr; s
t,M t) based on the current state st. After that, the agent integrates this memory

subset into a prompt through the utilization procedure by pt = U(θu;M
t
rank, s

t). Finally, the agent
determines the next action by LLM with at = LLM(pt), and updates the state st+1 ∼ penv(·|st, at)
for the next cycle. In these cycles, the memory storage, retrieval, and utilization procedures are
not isolated, but influence each other. Therefore, the optimization of these three procedures should
be performed jointly. Our adaptive memory framework is proposed based on this framework of
the memory cycle effect, which can be optimized in a data-driven manner. An overview of our
framework is demonstrated in Figure 2(c), and we present the details in the rest of this section.

3.2 MEMORY RETRIEVAL PROCEDURE

Due to the large collection of memories, agents should retrieve a subset of memories before in-
tegrating them into prompts. Previous studies typically calculate matching scores f(st,mi) be-
tween the current state st and memories mi ∈ M t, and select the top-k memories. These
matching scores are often associated with metrics, such as semantic similarity, time recency, and
so on. For instance, Generative Agents (Park et al., 2023) calculate the matching scores by
f(st,mi) = αrel · drel(s

t,mi)+αimp · dimp(s
t,mi)+αrec · drec(s

t,mi), where drel(·), dimp(·), drec(·)
are metric functions and αrel, αimp, αrec are weights on semantic relevance, memory importance,
and time recency. However, these weights are fixed and manually determined by human experts,
instead of learning from interactions with the environment. Besides, in different applications, the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Retrieval Utilization

Storage

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑡𝑡 = 𝑅𝑅(𝜃𝜃𝑟𝑟;𝑀𝑀𝑡𝑡 , 𝑠𝑠𝑡𝑡)

𝑠𝑠𝑡𝑡+1, 𝑟𝑟𝑡𝑡+1 = 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒(⋅ |𝑠𝑠𝑡𝑡 ,𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝𝑡𝑡))𝑀𝑀𝑡𝑡 = 𝑆𝑆(𝜃𝜃𝑠𝑠;𝑀𝑀𝑡𝑡−1, 𝑠𝑠𝑡𝑡)

𝑎𝑎𝑡𝑡 = 𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝𝑡𝑡)

𝑝𝑝𝑡𝑡 = 𝑈𝑈(𝜃𝜃𝑢𝑢;𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑡𝑡 , 𝑠𝑠𝑡𝑡)

Inference Model

Environment
𝑠𝑠𝑡𝑡+1, 𝑟𝑟𝑡𝑡+1 = 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒(⋅ |𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)

𝑀𝑀𝑡𝑡

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑡𝑡

𝑎𝑎𝑡𝑡

Agent EnvironmentMemory

Storage

Retrieval Utilization

Action

Observation

Retrieved
Memory

(a) Memory Cycle

𝑠𝑠𝑡𝑡+1 ← 𝑠𝑠𝑡𝑡

{𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑡𝑡+1}

Off-policy/On-policy
Optimization

𝒉𝒉𝑠𝑠𝑡𝑡

𝒉𝒉𝑚𝑚𝑖𝑖
𝑊𝑊1,𝑏𝑏1 𝑊𝑊2,𝑏𝑏2

𝒈𝒈(𝜃𝜃𝑟𝑟; 𝑠𝑠𝑡𝑡 ,𝑚𝑚𝑖𝑖)
𝑠𝑠𝑡𝑡

𝑚𝑚𝑖𝑖

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑙𝑙1 𝑙𝑙2

𝑠𝑠𝑡𝑡

𝑚𝑚𝑖𝑖

Time Recency

Relevance

Importance

Emotion

𝒅𝒅 𝑠𝑠𝑡𝑡 ,𝑚𝑚𝑖𝑖 ⋅ 𝒈𝒈(𝜃𝜃𝑟𝑟; 𝑠𝑠𝑡𝑡 ,𝑚𝑚𝑖𝑖)

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑡𝑡

=𝑓𝑓(𝜃𝜃𝑟𝑟; 𝑠𝑠𝑡𝑡 ,𝑚𝑚𝑖𝑖)

Memory Retrieval

�𝑚𝑚1

𝑝𝑝1𝑝𝑝0

𝑠𝑠𝑡𝑡 �𝑚𝑚2 … … �𝑚𝑚𝑘𝑘

Initial Prompt 𝑝𝑝0
for 𝑖𝑖 in (1,𝑁𝑁):
𝑝𝑝𝑖𝑖𝑡𝑡 = 𝐿𝐿𝐿𝐿𝐿𝐿 𝜃𝜃𝑢𝑢; 𝑝𝑝𝑖𝑖−1𝑡𝑡 , �𝑚𝑚𝑖𝑖, 𝑠𝑠𝑡𝑡

𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0, Δ𝑙𝑙𝑖𝑖−1
Δ𝑙𝑙𝑖𝑖−2

, 1

if 𝑃𝑃~𝑈𝑈 0,1 > max(𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑖𝑖−1):
𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑖𝑖𝑡𝑡 ; break;

Memory Utilization

𝑚𝑚𝑡𝑡 = 𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ,𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑠𝑠𝑡𝑡) 𝑀𝑀𝑡𝑡 = 𝑀𝑀𝑡𝑡−1 ∪ {𝑚𝑚𝑡𝑡} Memory Storage
add extraction

Observation Cache Storage
transfer

(b) Memory Framework

Transfer all the information from cache to storage when:
(1) Execute memory recalling operation. (2) Exceed the maximum capacity of cache.

𝑀𝑀𝑡𝑡

(c) Memory Procedures

𝑝𝑝2 … 𝑝𝑝𝑡𝑡

Figure 2: Overview of the memory cycle effect and adaptive memory framework.

significance of metric functions can also be various, and the sensitivities of states and memories on
different metrics are often not the same.

To solve these challenges, we propose an optimizable retrieval procedure. We define a vector-
valued function d(st,mi) = [d1(s

t,mi), d2(s
t,mi), ..., dn(s

t,mi)], where d1(·), d2(·), ..., dn(·)
are metric functions. Then, we design a parameterized MoE gate function to activate different
metrics as g(θr; s

t,mi) = [g1(θr; s
t,mi), g2(θr; s

t,mi), ..., gn(θr; s
t,mi)], where θr represents

optimizable parameters. This gate function can adaptively adjust weights on metric functions for
different states and memories based on the training data. After that, we calculate the matching
scores by f(θr; s

t,mi) = g(θr; s
t,mi) ·d(st,mi)

T . Finally, all the memories mi ∈M t are ranked
according to their matching scores, resulting in a ranked memory list M t

rank = [m̃t
1, m̃

t
2, ..., m̃

t
t].

In addition, we extend metric functions to expand the learning space for covering more potential
retrieval policies. We incorporate emotional relevance by pre-training a scoring function to extract
emotions from memories. We further extend linear time recency using Taylor’s Formula to get
dprec(st,mi) = ||∆(st,mi)

t ||p on various p-norms, where ∆(st,mi) is the time gap between st and
mi. The full details are provided in Appendix A. Besides, we implement g(θr; st,mi) with

g(θr; s
t,mi) = softmax

(
W2 · σ(W1 · [hst ;hmi]

T + b1) + b2
)
,

where θr = {W1,W2, b1, b2} are optimizable parameters, and hst ,hmi
are embeddings of st,mi.

3.3 MEMORY UTILIZATION PROCEDURE

After obtaining the retrieval result M t
rank, it is necessary to transform it into a memory context to

serve as part of the prompt pt. Most studies directly concatenate their top-k memories. However,
this approach solely focuses on state-memory relations but overlooks memory-memory relations.
It leads to the recurrence of similar memories within the same context. To solve this problem, we
design a learnable memory augmentation process that can be optimized using training datasets.

We iteratively integrate the memories from M t
rank into the memory context. Starting with the initial

memory context pt0, we obtain pti = LLM(θu; p
t
i−1, m̃

t
i, s

t) for i ≥ 1 until the end of process,
where θu represents the optimizable parameters in LLMs. To prevent excessive merging steps, we
calculate the word increase rate from pti−1 to pti as ∆lti , and approximate the information gain as
ci = clip(∆li

∆li−1
, 0, 1). Then, we sample the stop signal with zi ∼ B (1−max(ci, ci−1)) to allow

one exemption, where B(·) denotes a Bernoulli distribution. Finally, we incorporate the last memory
context into the template to get the prompt pt. However, common LLMs may exhibit suboptimal
performance for specific applications. To address this issue, we adjust the parameters θu of LLMs
to align with training datasets through SFT and DPO, as described in Section 4.

3.4 MEMORY STORAGE PROCEDURE

When an agent perceives a new state during interactions, it typically extracts critical parts from
complete observations before storing them. For instance, an agent designed for personal assistance
should concentrate on factual daily information from observations (Zhang et al., 2024b), while an
emotional companion agent should prioritize sentiments (Zhong et al., 2024). This extraction pro-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1: Algorithm of on-policy optimization.

Input: The number of total epochs L, the trajectory size n, the learning rates αr, α
s
u, α

d
u, and

the initial parameters θ0s , θ
0
r , θ

0
u.

Output: The optimized parameters θ∗s , θ
∗
r , θ

∗
u.

1 for l← 1 to L do
2 Sample trajectories T1, T2, ..., Tn by interacting with the training environment.

3 θlr ← θl−1
r − αr · ∇ 1

n

∑n
i=1

1
ti

∑ti
j=1 wi,j ln

σ
[
f(θl−1

r ;s
ti
i ,m̃

ti
i,ti−j+1)−f(θl−1

r ;s
ti
i ,m̃

ti
i,j)

]
σ
[
f(θl−1

r ;s
ti
i ,m̃

ti
i,j)−f(θl−1

r ;s
ti
i ,m̃

ti
i,ti−j+1)

] .

4 θlu ← θl−1
u − αs

u · ∇ 1
n

∑n
i=1 CELoss(θl−1

u ; p̃titi |p
ti
ti−1, m̃

ti
ti , s

ti
i).

5 θlu ← θlu − αd
u · ∇ 1

n

∑n
i=1 lnσ

[
β ln

P (θl
u;p̂

ti
ti
|pti

ti−1,m̃
ti
i,ti

,s
ti
i)

P (θl−1
u ;p̂

ti
ti
|pti

ti−1,m̃
ti
i,ti

,s
ti
i)
− β ln

P (θl
u;p

ti
ti
|pti

ti−1,m̃
ti
i,ti

,s
ti
i)

P (θl−1
u ;p

ti
ti
|pti

ti−1,m̃
ti
i,ti

,s
ti
i)

]
.

6 θlu ← θl−1
u

⋃n
i=1 LLM({stii ,m

ti
i } ∈ T pos

i) ∪ LLM({stii ,m
ti
i } ∈ T neg

i).
7 end
8 Obtain optimized parameters θ∗s = θLs , θ

r
s∗ = θLr , θ

∗
u = θLu .

9 return θ∗s , θ
∗
r , θ

∗
u.

cess can be implemented by LLM to highlight critical aspects in instructions. However, different
applications inherently emphasize distinct aspects.

To solve this problem, we design an extraction process based on task-specific reflection (Shinn et al.,
2023). Specifically, we structure an instruction with a general part pglob and a task-specific part ptask.
Then, we consider ptask as the learnable parameter θs, and optimize it based on successful and un-
successful trajectories from training datasets, as discussed in the next section. For each interaction,
we transform an observation into a memory unit with mt = LLM(pglob, ptask, s

t), and update the
storage with M t = M t−1 ∪ {mt}. To balance the extraction load, we set a cache to temporarily
hold observations, and transfer them into storage when recalling memories or reaching the capacity.

4 OPTIMIZATION STRATEGIES

4.1 OVERVIEW: OPTIMIZATION OF LLM-BASED AGENTS

Unlike LLM optimization, which is based on a static corpus, optimizing LLM-based agents relies
on interactions with dynamic environments. Therefore, we propose two strategies to optimize our
memory framework. The first strategy is off-policy optimization, which samples trajectories D
from training environments using the reference policy πagent(·|st, θref), and optimizes another policy
πagent(·|st, θ) with the loss function L(·). It supports offline training and the reuse of previous
trajectories, making it more flexible and efficient. However, it encounters the issue of distribution
shift between the sampling policy πagent(·|st, θref) and the optimized policy πagent(·|st, θ). Another
strategy is on-policy optimization, which consistently employs the optimized policy πagent(·|st, θ)
to sample training trajectories for ongoing optimization. This approach requires online learning to
keep alignment between the sampling and optimized policies, thereby alleviating distribution shifts.

4.2 OFF-POLICY OPTIMIZATION

Memory Retrieval Optimization. We propose a contrastive learning approach to optimize parame-
ters θr of the MoE gate function g(θr; s

t,mi) in the retrieval procedure. First of all, we filter out all
the successful interactions Ds whose final rewards exceed the threshold βr (e.g., answer correctly
for QAs). Then, we focus on the ranking result M t

rank = [m̃t
1, m̃

t
2, ..., m̃

t
t] from their memory re-

trieval procedures. We pair all the elements m̃t
i ∈ M t

rank in reverse order as xi = (m̃t
i, m̃

t
t−i+1),

where 1 ≤ i ≤ t. Then, we assign a weight wi =
−sign(vi)∑t

j=1 γvi
· γvi with vi = t − 1 − |t − 2j + 1|,

which allocates higher contrastive confidence to the pairs with larger ranking differences, thereby
reducing the ranking noise. Finally, we define our loss function as

L(θr;Ds) =
1

|Ds|
∑

st,Mt
rank∈Ds

1

t

t∑
i=1

wi · ln
σ
[
f(θr; s

t, m̃t
t−i+1)− f(θr; s

t, m̃t
i)
]

σ
[
f(θr; st, m̃t

i)− f(θr; st, m̃t
t−i+1)

] ,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and optimize the parameters with θ∗r = argminθr L(θr;D) by gradient descent.

Memory Utilization Optimization. We employ SFT and DPO to optimize the parameters θu of
LLMs for the aggregation process in memory utilization. First of all, we choose the final interac-
tions of training trajectories and denote them as Dl. Then, we focus on their memory utilization
procedures. Specifically, we optimize θu in ptt = LLM(θu; p

t
t−1, m̃

t
t, s

t) by collecting the outputs
from expert models in p̃tt = E(ptt−1, m̃t, s

t), where the expert model E(·) can be implemented by
domain-specific or more advanced LLMs. Finally, the SFT loss function can be expressed as

LSFT(θu;Dl) =
1

|Dl|
∑

pt
t−1,m̃

t
t,s

t∈Dl

CELoss(θu; p̃tt|ptt−1, m̃
t
t, s

t),

where CELoss(·) is the cross-entropy loss function. Then, we have θSFT
u = argminθu LSFT(θu;Dl).

We further refine the expert model using DPO to better align with the expert model. Specifically,
we consider LLM(θSFT

u ; ·) as the reference model, and re-generate utilization results with p̂tt =
LLM(θu; p̂

t
t−1, m̃

t
t, s

t). Then, we establish the DPO loss function

LDPO(θu;Dl) =
1

|Dl|
∑

pt
t−1,m̃

t
t,s

t∈Dl

lnσ

[
β ln

P (θu; p̂
t
t|ptt−1, m̃

t
t, s

t)

P (θSFT
u ; p̂tt|ptt−1, m̃

t
t, s

t)
− β ln

P (θu; p
t
t|ptt−1, m̃

t
t, s

t)

P (θSFT
u ; ptt|ptt−1, m̃

t
t, s

t)

]
,

where β is a parameter to control the deviation from the original parameter θSFT
u , and P (·) is the

output probability distribution of the LLMs given certain parameters. Finally, we obtain the optimal
parameters by θ∗u = argminθu LDPO(θu;Dl), where θu is initialized as θSFT

u .

Memory Storage Optimization. To optimize the task-specific instruction for memory extraction,
we optimize θs by self-reflection. Specifically, we divide all the interactions into two groups based
on their rewards. The interactions with rewards above the threshold βs are placed in the posi-
tive group Dpos, while interactions with rewards below the threshold are assigned to the negative
group Dneg. For interactions in the positive group, we utilize LLMs to reflect and summarize
their successful experiences. Similarly, the failure experiences can also be reflected and sum-
marized by LLMs automatically. After that, we iteratively update the task-specific prompt with
ptask ← ptask ∪ LLM({st,mt} ∈ Dpos) ∪ LLM({st,mt} ∈ Dneg), where we have θ∗s = p∗task.

4.3 ON-POLICY OPTIMIZATION

Although off-policy optimization supports offline training, it is often hindered by distribution shifts
between the sampling policy and the optimized policy, leading to suboptimal performance in mem-
ory cycles. To alleviate this problem, we extend our optimization strategy to on-policy optimization,
as described in Algorithm 1. Building upon the model parameters after off-policy optimization, we
further conduct the on-policy optimization with online learning. Specifically, during each epoch,
we sample n trajectories by interacting with the training environment based on the current model
parameters. Then, we utilize the training procedures above with single-step optimization to update
model parameters. Finally, we obtain the optimal model parameters from the last epoch.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Our experiments are conducted on three datasets with various difficulty levels, including HotpotQA-
hard, HotpotQA-medium, and HotpotQA-easy (Yang et al., 2018). Additionally, we also carry
out experiments on MemDaily (Zhang et al., 2024b), and put the details in Appendix B due to
the page limitation. To fulfill interactive scenarios between the agent and the environment, we
adopt fullwiki mode in HotpotQA by implementing a simulator to create a dynamic environment,
which presents greater challenges than distractor mode with static references. For the LLM-based
agents, we employ the ReAct (Yao et al., 2023) reasoning structure along with textual memory
contexts (Zhang et al., 2024a). Our memory framework is compared against several baselines of
memory models implemented by MemEngine (Zhang et al., 2025b) as follows:
• FUMemory (Full Memory): Directly concatenate all the observations into a memory context.
• LTMemory (Long-term Memory): Retrieve most relevant observations by semantic similarities.
• STMemory (Short-term Memory): Keep the latest observations to combine as a memory context.
• GAMemory ((Park et al., 2023)): Memory with self-reflection and weighted retrieval.
•MBMemory ((Zhong et al., 2024)): Hierarchical memory with summarization and forgetting.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Overall performance across different baselines and inference models on various datasets.
Bold values represent the best results, while underlined values represent the second-best results.

HotpotQA-Hard
Inference ActOnly CoTOnly FUMemory LTMemory STMemory GAMemory

GPT-4o-mini 0.2832 0.3274 0.3451 0.3274 0.3540 0.3186
Qwen-2.5 0.1504 0.2389 0.2920 0.2212 0.1504 0.2124
Llama-3.1 0.1770 0.2566 0.1239 0.0619 0.0177 0.0354

Inference MBMemory SCMemory MTMemory Ours-def Ours-off Ours-on
GPT-4o-mini 0.3009 0.3363 0.3628 0.3274 0.3186 0.3274

Qwen-2.5 0.2301 0.1416 0.2566 0.2832 0.2832 0.3186
Llama-3.1 0.1062 0.0619 0.1504 0.2478 0.1416 0.2920

HotpotQA-Medium
Inference ActOnly CoTOnly FUMemory LTMemory STMemory GAMemory

GPT-4o-mini 0.3303 0.4220 0.4862 0.4037 0.3945 0.3853
Qwen-2.5 0.2202 0.2844 0.2844 0.2385 0.1651 0.1468
Llama-3.1 0.1560 0.2294 0.1284 0.0642 0.0275 0.0642

Inference MBMemory SCMemory MTMemory Ours-def Ours-off Ours-on
GPT-4o-mini 0.3853 0.3486 0.3853 0.4220 0.4037 0.4404

Qwen-2.5 0.2385 0.1009 0.2752 0.3119 0.3486 0.4037
Llama-3.1 0.0642 0.0826 0.1743 0.2752 0.1468 0.3119

HotpotQA-Easy
Inference ActOnly CoTOnly FUMemory LTMemory STMemory GAMemory

GPT-4o-mini 0.3738 0.4019 0.3645 0.3832 0.3832 0.3738
Qwen-2.5 0.2991 0.3364 0.2710 0.2523 0.2056 0.1776
Llama-3.1 0.2991 0.3271 0.1589 0.0654 0.0374 0.0935

Inference MBMemory SCMemory MTMemory Ours-def Ours-off Ours-on
GPT-4o-mini 0.3364 0.3645 0.3271 0.3832 0.3738 0.3738

Qwen-2.5 0.2523 0.2056 0.3364 0.3925 0.3364 0.4112
Llama-3.1 0.1028 0.0748 0.1495 0.2523 0.1682 0.3271

• SCMemory ((Wang et al., 2023)): Self-controlled memory with adaptive memory context length.
•MTMemory ((Rezazadeh et al., 2024)): Structured-based memory with node representation.

Besides, we implement two one-step baselines without memory for comparison as follows:
• ActOnly: Take actions based on current observations without memory or reasoning structure.
• CoTOnly: Reason on current observations by Chain-of-Thought (Wei et al., 2022) to take actions.

We represent our models as Ours-def, Ours-off, and Ours-on, corresponding to the non-optimized
model, the off-policy optimized model, and the on-policy optimized model, respectively. Following
the previous work (Yang et al., 2018), we calculate the accuracy of Exact Match (EM) between
the ground-truth and predicted answer, serving as the final reward of each trajectory. Specifically,
agents are required to answer a question in each independent trajectory. Within a maximum number
of steps, they can either search for a keyword on Wikipedia in each step to get its full document, or
submit a predicted answer to finish this trajectory. Due to the page limitation, we provide additional
details regarding experimental settings in Appendix D to facilitate the reproduction.

5.2 OVERALL PERFORMANCE

The results of major performances are present in Table 1. From the results, we find that our model
with on-policy optimization outperforms other baselines in most cases, showing the effectiveness
of our proposed framework. The results also reveal that our framework can still work with default
parameters, showing a certain degree of multitask generalization, but its performance declines after
off-policy optimization due to the distribution mismatch. Moreover, MTMemory and MBMemory
also present relatively great performance, whereas the one-step baselines demonstrate weaknesses
in more challenging tasks. Besides, it appears that some LLMs exhibit limited dependence on
memory for easy-level questions, possibly because they have encountered the necessary references
to these questions in their pre-training corpus. Finally, the performance of memory methods varies

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Results of ablation studies across different baselines, inference models and datasets. Bold
values represent the best results, while underlined values represent the second-best results.

HotpotQA-Hard
Inference Ours-def Ours-R Ours-U/sft Ours-U/dpo Ours-S Ours-off Ours-on

GPT-4o-mini 0.3274 0.3451 0.3097 0.3186 0.2920 0.3186 0.3274
Qwen-2.5 0.2832 0.3186 0.3009 0.3186 0.2832 0.2832 0.3186
Llama-3.1 0.2478 0.2301 0.2478 0.1593 0.2566 0.1416 0.2920

HotpotQA-Medium
Inference Ours-def Ours-R Ours-U/sft Ours-U/dpo Ours-S Ours-off Ours-on

GPT-4o-mini 0.4220 0.4587 0.4220 0.4312 0.4495 0.4037 0.4404
Qwen-2.5 0.3119 0.3303 0.3211 0.2661 0.3853 0.3486 0.4037
Llama-3.1 0.2752 0.2385 0.2385 0.0917 0.2844 0.1468 0.3119

HotpotQA-Easy
Inference Ours-def Ours-R Ours-U/sft Ours-U/dpo Ours-S Ours-off Ours-on

GPT-4o-mini 0.3832 0.3925 0.3645 0.3551 0.3645 0.3738 0.3738
Qwen-2.5 0.3925 0.4112 0.3271 0.3458 0.3645 0.3364 0.4112
Llama-3.1 0.2523 0.2710 0.2243 0.1589 0.2617 0.1682 0.3271

across different inference models, potentially due to disparities in their in-context learning abilities
to leverage memory contexts. Some methods show weak performance on open-source inference
models, which may be attributed to the failure to organize effective memory contexts.

5.3 ABLATION STUDIES

In order to further study each procedure and optimization strategy within our framework, we con-
duct ablation experiments by independently optimizing retrieval, utilization (SFT/DPO), and storage
procedures with off-policy optimization. We denote these ablation models as Ours-R, Ours-U/sft,
Ours-U/dpo, and Ours-S, respectively. The results, presented in Table 2, indicate that on-policy
optimization is crucial for improving the performance of our framework. Besides, optimizing indi-
vidual memory procedures can also take effect, especially for the retrieval procedure. However, di-
rectly combining the parameters of memory procedures results in reduced performance. Intuitively,
the memory procedures have mutual influence due to the memory cycle effect, but the off-policy
samples fail to trace the optimized memory outcomes. Therefore, the optimal parameters of a cer-
tain procedure are based on the initial parameters of other procedures, leading to a policy mismatch.

5.4 EXTENSIVE STUDIES ON REASONING STEPS

To further study the effectiveness of memory methods inside trajectories, we calculate the average
reasoning steps across different baselines under HotpotQA-hard and Qwen-2.5, and we present the
results in Figure 3. The results indicate that our approach significantly reduces the average rea-
soning steps within trajectories. Specifically, the proportion of five-step reasoning in our model
decreases, while the occurrence of two-step reasoning trajectories increases. Under identical con-
ditions, achieving tasks with fewer reasoning steps suggests that agents can make more informed
decisions utilizing memory, thereby finding answers more quickly and confidently. Meanwhile, we
observe that models with lower overall performance generally require more inference steps. This
might be due to their inability to solve the problem even after reaching the maximum steps.

5.5 EXTENSIVE STUDIES ON PRE-TRAINED METRIC FUNCTIONS

We further conduct experiments to verify the effectiveness of pre-trained metric functions in the
memory retrieval procedure. Specifically, we calculate NDCG@5 for the ranked messages based on
importance scoring and use MSE to evaluate emotion scoring across different dimensions. Addition-
ally, we record the instruction failure rate (IFR) for prompting methods. Due to the page limitation,
the detailed results are presented in Appendix A.3. The results indicate that our pre-trained metric
functions show certain improvements over zero-shot and few-shot prompting methods in predicting
importance scores and emotion decomposition. Moreover, we observe that some open-source mod-
els exhibit instruction failures during the scoring process, leading to instability in retrieval metrics.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Results of time costs (seconds) across different baselines.

Efficiency ActOnly CoTOnly FUMemory LTMemory STMemory GAMemory
Time/Step 0.08 2.80 11.33 9.68 11.64 8.83

Time/Trajectory 0.08 2.80 43.05 32.91 54.73 39.72

Efficiency MBMemory SCMemory MTMemory Ours-def Ours-off Ours-on
Time/Step 8.38 7.14 107.34 14.98 13.03 11.74

Time/Trajectory 35.21 29.99 472.31 40.45 33.88 25.83

Figure 3: Results of average reasoning steps across different baselines.

5.6 INFLUENCE OF HYPER-PARAMETERS

We further explore the influence of some significant hyper-parameters in our framework, including
SFT batch size, DPO batch size, and reflection batch size. Due to the page limitation, we include
more details and the results in Appendix C. According to the results, we find that the best choice
of SFT batch size is around 16, while the best DPO batch size is roughly 32. Additionally, we find
that the accuracy is more sensitive to variations in DPO batch size, significantly diminishing when
the values are particularly low. In contrast, the reflection batch size has a relatively minor impact on
performance, with accuracy remaining similar when it ranges from 20 to 50 samples per reflection.

5.7 ANALYSIS OF EFFICIENCY

In addition to evaluating the effectiveness of memory mechanisms, we conduct experiments to assess
their efficiency. Specifically, we calculate the average time cost of different baselines for each step
and each trajectory. Our experiments are performed on a computing server with 8 NVIDIA A800-
SXM-80G GPUs, and the results are presented in Table 3. According to the results, while our
method shows a slight increase in time per step due to additional operations, the time per trajectory
is significantly reduced because the total number of reasoning steps decreases. Additionally, we
observe that FUMemory, LTMemory, and STMemory exhibit higher time consumption per step,
possibly due to increased inference costs associated with longer memory contexts in prompts.

6 CONCLUSIONS AND LIMITATIONS

In conclusion, we propose an adaptive and data-driven memory framework to optimize LLM-based
agents. We formulate the memory cycle with retrieval, utilization, and storage procedures. We
develop an MoE gate function to enhance the memory retrieval procedure, a task-specific reflection
process to refine the memory extraction, and a post-training stage to improve the memory utilization
procedure. Additionally, we design both off-policy and on-policy optimization strategies based on
the memory cycle effect. The extensive experiments have verified the effectiveness and efficiency
of our methods. Despite the advancements achieved in our study, there are still some limitations
in our work. First, our method focuses on explicit memory using RAG pipelines, and we primarily
utilize CoT as the reasoning structure of agents. We will study implicit memory and other reasoning
structures in future work. Additionally, the questions in HotpotQA might pose a leakage risk in the
pre-training corpus for LLMs, and we will try to construct better evaluation datasets for this task.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. Science China Information Sciences, 68(2):121101, 2025.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv preprint arXiv:2402.01680, 2024.

Han Ding, Yinheng Li, Junhao Wang, and Hang Chen. Large language model agent in financial
trading: A survey. arXiv preprint arXiv:2408.06361, 2024.

Yu Zhang, Shutong Qiao, Jiaqi Zhang, Tzu-Heng Lin, Chen Gao, and Yong Li. A survey of large
language model empowered agents for recommendation and search: Towards next-generation
information retrieval. arXiv preprint arXiv:2503.05659, 2025a.

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu,
Wenxing Xu, Xiang Wang, Yi Sun, et al. Personal llm agents: Insights and survey about the
capability, efficiency and security. arXiv preprint arXiv:2401.05459, 2024.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong,
and Ji-Rong Wen. A survey on the memory mechanism of large language model based agents.
arXiv preprint arXiv:2404.13501, 2024a.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Haofen
Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey.
arXiv preprint arXiv:2312.10997, 2, 2023.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. arXiv preprint arXiv:2301.00234,
2022.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 19724–19731, 2024.

Hongkang Yang, Zehao Lin, Wenjin Wang, Hao Wu, Zhiyu Li, Bo Tang, Wenqiang Wei, Jinbo
Wang, Zeyun Tang, Shichao Song, et al. Memory3: Language modeling with explicit memory.
arXiv preprint arXiv:2407.01178, 2024.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pages 1–22, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao Ding, Zhilun Zhou, Fengli Xu, and Yong
Li. Large language models empowered agent-based modeling and simulation: A survey and
perspectives. Humanities and Social Sciences Communications, 11(1):1–24, 2024.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. arXiv
preprint arXiv:2402.02716, 2024a.

Alireza Rezazadeh, Zichao Li, Wei Wei, and Yujia Bao. From isolated conversations to hierarchical
schemas: Dynamic tree memory representation for llms. arXiv preprint arXiv:2410.14052, 2024.

Zeyu Zhang, Quanyu Dai, Luyu Chen, Zeren Jiang, Rui Li, Jieming Zhu, Xu Chen, Yi Xie, Zhenhua
Dong, and Ji-Rong Wen. Memsim: A bayesian simulator for evaluating memory of llm-based
personal assistants. arXiv preprint arXiv:2409.20163, 2024b.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Zeyu Zhang, Quanyu Dai, Xu Chen, Rui Li, Zhongyang Li, and Zhenhua Dong. Memengine: A
unified and modular library for developing advanced memory of llm-based agents. arXiv preprint
arXiv:2505.02099, 2025b.

Bing Wang, Xinnian Liang, Jian Yang, Hui Huang, Shuangzhi Wu, Peihao Wu, Lu Lu, Zejun Ma,
and Zhoujun Li. Enhancing large language model with self-controlled memory framework. arXiv
preprint arXiv:2304.13343, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Le Huang, Hengzhi Lan, Zijun Sun, Chuan Shi, and Ting Bai. Emotional rag: Enhancing role-
playing agents through emotional retrieval. arXiv preprint arXiv:2410.23041, 2024b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PRE-TRAINED METRIC FUNCTIONS

A.1 EMOTION SCORING FUNCTION

In addition to considering the semantic similarity between current states and memories, we propose
incorporating emotional similarity as a factor for calculating matching scores. For each message, we
represent its emotional content with eight dimensions: joy, acceptance, fear, surprise, sadness, dis-
gust, anger, and anticipation (Huang et al., 2024b). This allows us to extract the emotion he(ϕe;x)
from message x. While most previous studies use LLMs for emotion scoring, this approach is
hampered by randomness and a lack of comparative analysis of emotions across different mes-
sages. It also suffers increased computational expense due to frequent LLM inferences. To mitigate
these challenges, we propose a pre-trained emotion scoring function leveraging contrastive learning.
Specifically, we have

he(ϕe;x) = W e
2 · tanh(W e

1 · hT
x + be1) + be2,

where hx is the text embedding of x and ϕe = {W e
1 ,W

e
2 , b

e
1, b

e
2} are trainable parameters. Then,

the emotional similarity can be calculated as

demo(s
t,mi) =

he(ϕe; s
t) · he(ϕe;mi)

T

||he(ϕe; st)|| · ||he(ϕe;mi)||
.

To optimize the emotion scoring function, we construct datasets for pre-training. The core assump-
tion here is that the ability of LLMs to generate sentences with a specific sentiment is superior to
their ability to discern the sentiment of given sentences. First, we generate a seed sentence s0 with-
out emotion. Next, we randomly select combinations {ci}ni=1 of up to three emotions from the eight
emotional dimensions. We then instruct the LLMs to generate sentences si = LLM(s0, ci) contain-
ing the specified emotions based on this seed sentence and each emotional combination. Finally,
we compile a dataset Demo = {(si, ci)}ni=1 consisting of sentences with different emotions along
with their corresponding emotion labels. Finally, we compile a dataset Demo = {(si, ci)}ni=1 con-
sisting of sentences with varying emotions and their corresponding emotion labels. Subsequently,
we optimize our emotion scoring function with

ϕ∗
e = argmin

ϕe

1

|Demo|
∑

(si,ci)∈Demo

[he(ϕe;x); ci]
2
.

To verify the effectiveness of our proposed method, we conduct extensive experiments across differ-
ent baselines, and we present more details and in Appendix A.3.

A.2 IMPORTANCE SCORING FUNCTION

In a similar approach, we pre-train an importance scoring function to evaluate various messages.
It is crucial to differentiate between importance and relevance. Relevance pertains to the degree
of semantic similarity between messages and is symmetrical in nature. Conversely, importance
refers to the significance of specific information in relation to the current state and is asymmetrical.
Therefore, we propose hp(ϕp; s

t) = W p
1 ·hT

st+bp1 and hp(ϕp;mi) = W p
2 ·hT

mi
+bp2, where hst ,hmi

are the text embedding of st,mi, and ϕp = {W p
1 ,W

p
2 , b

p
1, b

p
2}. Then, we calculate the importance

score with

dimp(s
t,mi) =

hp(ϕp; s
t) · hp(ϕp;mi)

T

||hp(ϕp; st)|| · ||hp(ϕp;mi)||
.

To optimize the importance scoring function, we construct datasets for pre-training. Initially, we
select a query q and a seed sentence s0 containing minimal information. Subsequently, we incre-
mentally enrich this seed sentence to generate new sentences {si}ni=1, thereby forming a partially
ordered set. After that, we sample sentences from the same partially ordered set, forming positive
and negative examples (q, s+, s−). Finally, we obtain the dataset Dimp = {(q, s+j , s

−
j)}mj=1 for

contrastive learning. We optimize our importance scoring function with

ϕ∗
p = argmin

ϕp

1

|Dimp|
∑

(q,s+,s−)∈Dimp

log σ
[
dimp(q, s

+)− dimp(q, s
−)

]
− log σ

[
dimp(q, s

−)− dimp(q, s
+)

]
.

A.3 COMPARISON EXPERIMENTS AMONG DIFFERENT SCORING METHODS

We conducted experiments to assess the effectiveness of pre-trained metric functions within the
memory retrieval process. Specifically, we compute NDCG@5 for ranked messages based on im-

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 4: Results of pre-trained metric functions on testing datasets. Bold values represent the best
results, while underlined values represent the second-best results.

Methods Base Models
Importance Scorer Emotion Scorer

CostnDCG@5 ↑ IFR MSE ↓ IFR
Random Random 0.498 N/A 2.685 N/A Low

Zero-shot Prompt

GPT-4o 0.648 0.000 0.999 0.000 High
GPT-4o-mini 0.826 0.000 0.983 0.000 High

Qwen-2.5 0.774 0.000 0.902 0.000 High
Llama-3.1 0.629 0.026 0.713 0.001 High

Few-shot Prompt

GPT-4o 0.672 0.000 0.904 0.000 High
GPT-4o-mini 0.814 0.000 0.993 0.000 High

Qwen-2.5 0.578 0.000 0.814 0.006 High
Llama-3.1 0.439 0.661 0.942 0.001 High

Ours (Learning) E5-base-v2 0.978 N/A 0.491 N/A Medium

Figure 4: Results of different hyper-parameters.

portance scoring and MSE for emotional analysis across various dimensions. We also record the
instruction failure rate (IFR) of prompting methods. For zero-shot and few-shot prompting tech-
niques, we craft instructions for LLMs to generate scores within the range of [0.0, 1.0] concerning
importance and various emotional aspects of specific messages. Additionally, we employ GPT-4o,
GPT-4o-mini, Qwen-2.5, and Llama-3.1 as the base models. For the random method, scores were
independently generated from a uniform distribution between 0.0 and 1.0. We utilize E5-base-v2
as the base model for sentence embedding within our pre-trained metric functions. The results
demonstrate that our pre-trained metric functions achieve notable improvements over zero-shot and
few-shot prompting methods in predicting importance scores and emotional analysis. However,
some open-source models exhibited instruction failures during scoring, contributing to instability in
retrieval metrics.

B MORE EXPERIMENT DETAILS ON MEMDAILY

We conduct further experiments on the MemDaily dataset, focusing specifically on aggregative
question-answering (QA) tasks. These tasks are the most challenging type, as they necessitate ex-
tended reasoning by recalling previous user messages. In line with our experiments on HotpotQA,
we employ ReAct as the reasoning framework for our agents. To emulate an interactive scenario be-
tween users and agents, we divide all user messages in a specific trajectory into k sequential blocks.
These blocks serve as k observations provided by the environment (i.e., the user) to the agent. The
interactions between the agent and the environment consist of k + 1 steps. During the first k steps,
we treat each t-th information block as the observation from the environment at step t, where the
agent is not required to return any action. In the final step, we present a question to the agent as the
observation and require it to return a predicted answer. We then compare the agent’s final answer
with the ground truth to calculate the Success Rate (SR). We set k = 5 in our experiments.

It should be noted that since the agent does not provide actions during the first k steps, our proposed
memory framework performs only one recall per trajectory. Consequently, there is only a single
memory entity under this setting, and we optimize memory storage exclusively in off-policy and

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 5: Overall performance across different baselines MemDaily.

Inference FUMemory LTMemory STMemory GAMemory MBMemory SCMemory MTMemory Ours-on

Accuracy 0.439 0.5366 0.5122 0.5366 0.4878 0.3171 0.2927 0.561

on-policy optimization. We employed Qwen-2.5 as the inference model for these tasks. The results
are presented in Table 5. The experimental results indicate that our proposed method outperforms
other baselines. Moreover, both GAMemory and LTMemory also demonstrate strong performance.

C MORE EXPERIMENT DETAILS OF HYPER-PARAMETER INFLUENCE

We further explore the influence of some significant hyper-parameters in our framework, including
SFT batch size, DPO batch size, and reflection batch size. According to the results, we find that
the best choice of SFT batch size is around 16, while the best DPO batch size is roughly 32. Ad-
ditionally, we find that the accuracy is more sensitive to variations in DPO batch size, significantly
diminishing when the values are particularly low. In contrast, the reflection batch size has a minor
impact on performance, with accuracy remaining similar when it ranges from 20 to 50 samples per
reflection.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D REPRODUCTION DETAILS

D.1 ENVIRONMENT SETTINGS

We construct our environment based on HotpotQA, which includes hard, medium, and easy levels of
difficulty. For each trajectory, the agent is required to give the correct answer to a question within a
certain steps. For each step, the agent can observe feedback from the environment, and take the next
action after that. There are two valid actions from agents: (1) Search[entity] means search the
provided entity in Wikipedia. (2) Finish[answer] means give the final answer to the question.

We adopt the fullwiki mode in HotpotQA to make sure an interactive environment. In order to
make the experiments more reproducible, we download the dumps file of Wikipedia. We obtain
wikipedia en all nopic 2024-06.zim (53.2GB) from Wikimedia Downloads 1, and im-
plement a Wikipedia searcher with libzim package based on previous works. If the environment
receives Search[entity], it will search the given entity and return the full document of its
Wikipedia page. If the environment receives Finish[answer], it will compare answer with
the ground truth and terminate this trajectory. If the environment receives other actions, it will re-
turn that the action is invalid. In our experiments, the maximum step is set as 5. The numbers of
questions of hard, medium, and easy levels are 113, 109, and 107, respectively.

D.2 AGENT SETTINGS

To better evaluate the memory capability of LLM-based agents, we standardize their reasoning struc-
tures as ReAct. For each step, the agent first receives the current state and executes the memory
storage procedure. Then, it will execute the memory recall procedure to obtain a memory context.
After that, it will think explicitly via LLM inference, and make the decision of actions based on the
thought. Finally, it stores the thought and actions into memory and responds to the actions. The
prompt of thinking and making action decisions is shown as follows.

The prompt of thinking of LLM-based agents.

You are a knowledgeable expert, and you are answering a question. You are allowed to
search in Wikipedia to get information.
The question is: {question}. Now, you can choose to answer the question or search an entity
on Wikipedia. Please think step by step to analyze how to choose the next action, and output
it into one paragraph in concise. In previous steps, you have already accumulated some
knowledge in your memory as follows: {memory context}.

1https://dumps.wikimedia.org/kiwix/zim/wikipedia

15

https://dumps.wikimedia.org/kiwix/zim/wikipedia

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The prompt of making the action decision of LLM-based agents.

You are a knowledgeable expert, and you are answering a question. You are allowed to
search in Wikipedia to get information.
The question is: {question}. You have thought step by step to analyze how to choose the
next action as follows: {thought}.
Now, you can choose to answer the question or search an entry on Wikipedia: (1)
Search[entity], which searches the entity on Wikipedia and returns the paragraphs if they
exist. (2) Finish[answer], which returns the answer and finishes the task. Your answer
should be in concise with several words, NOT a sentence. Please generate the next action
accordingly.
Your output must follow one of the following two formats:
Search[entity]
Finish[answer]
Here are some examples:
Search[Alan Turing]
Finish[no]
Finish[Shanghai]
In previous steps, you have already accumulated some knowledge in your memory as fol-
lows: {memory context}

For the inference LLMs in our experiments, we utilize Qwen2.5-7B-Instruct, Llama3.1-8B-Instruct,
and GPT-4o-mini.

D.3 BASELINE SETTINGS

We implement baselines of memory methods based on MemEngine. For all the LLM inference in-
side memory methods, we utilize Qwen2.5-7B-Instruct as the backbone. For all the text embedding
process, we adopt e5-v2-base model with 768 dimensions. For all the top-k retrieval process, we set
k as 10 with cosine similarity. We set the maximum length of memory context as 8096 words. For
all the summarization process, the prompt is as follows.

The prompt of summarization process.

Content: {content}
Summarize the above content concisely, extracting the main themes and key information.
Please output your summary directly in a single line, and do not output any other messages.

For GAMemory, we set the question number as 2, the insight number as 2, the reflection threshold
as 0.3, the reflection top-k as 2, and the prompt of reflection as follows.

The prompt of summarization process (generate question).

Information: {information} Given only the information above, what are {question number}
most salient highlevel questions we can answer about the subjects in the statements? Please
output each question in a single line, and do not output any other messages.

The prompt of summarization process (generate insight).

Statements: {statements}
What {insight number} high-level insights can you infer from the above statements? Please
output each insight in a single line (without index), and do not output any other messages.

For MBMemory, we set the forgetting coefficient as 5.0. For our method, the prompts of storage
and utilization are shown as follows.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The prompt of storage process.

Observation: {observation}
Hint: {hint}
From the above observation and according to the hint, please extract critical informative
points and summarize them into a concise paragraph. You should just output the result of
summarization, without any other messages.

The prompt of utilization process.

Observation: {observation}
Existing Memory: {memory context}
New Memory: {new memory}
Please merge the above new memory into the existing memory, which is useful to response
the observation. You should remove the duplicated information to make it concise, but do
not lose any information. You should just output the final memory after merge, without any
other information.

For the hyper-parameters of off-policy training, we set the SFT learning rate as 0.0001, the SFT
batch size as 16, the DPO learning rate as 0.0001, the DPO batch size as 16, and the reflection size
as 40. For the hyper-parameters of on-policy training, we set the SFT learning rate as 0.0005, the
SFT batch size as 16, the DPO learning rate as 0.0001, the DPO batch size as 16, the reflection size
as 15, the sample batch size as 30, and the training epoch as 5.

17

	Introduction
	Related Works
	Reinforcement Learning Based Agents
	Large Language Model Based Agents
	Memory of Large Language Model Based Agents

	Methods
	Preliminary: Memory Cycle Effect
	Memory Retrieval Procedure
	Memory Utilization Procedure
	Memory Storage Procedure

	Optimization Strategies
	Overview: Optimization of LLM-based Agents
	Off-policy Optimization
	On-policy Optimization

	Experiments
	Experimental Settings
	Overall Performance
	Ablation Studies
	Extensive Studies on Reasoning Steps
	Extensive Studies on Pre-trained Metric Functions
	Influence of Hyper-parameters
	Analysis of Efficiency

	Conclusions and Limitations
	Pre-trained Metric Functions
	Emotion Scoring Function
	Importance Scoring Function
	Comparison Experiments Among Different Scoring Methods

	More Experiment Details on MemDaily
	More Experiment Details of Hyper-parameter Influence
	Reproduction Details
	Environment Settings
	Agent Settings
	Baseline Settings

